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ON THE IDENTIFICATION OF ELASTOVISCOPLASTIC CONSTITUTIVE LAWS FROM INDENTATION TESTS

This paper addresses the identi®cation of the parameters of a nonlinear constitutive law from indentation tests. The identi®cation problem is considered as a constrained minimization problem and the gradient is computed using the adjoint state method, in spite of the diculties of the underlying contact problem. This provides a general framework to perform optimization in some problems involving contact conditions and nonlinear material behaviour. The case of a Maxwell viscoelastic and a Norton-Ho elastoviscoplastic constitutive law are treated extensively and a series of numerical identi®cation examples are shown.

INTRODUCTION

The indentation test is performed by pressing a punch into a material sample. It was initialy used to evaluate the hardness of metals and is now being considered as an ecient non-destructive method for determining mechanical characteristics of materials [START_REF] Taljat | New analytical procedure to determine stress-strain curve from spherical indentation data[END_REF].

The constitutive law should be identi®ed from the knowledge of the indentation curve (see Fig. 3), which represents the load applied on the punch versus the penetration depth. The applicability of the indentation tests depends at this point on the precision and generality of this identi®cation.

The identi®cation strategies currently used in the experiments are based on semi-empirical formulas dedicated to given constitutive behaviour: elasticity, perfect plasticity [START_REF] Johnson | Contact mechanics[END_REF], power laws [START_REF] Jayaraman | Determination of monotonic stress-strain curve of hard metals from ultra-low-load indentation tests[END_REF], FFF. These formulas are based on elastoplastic ¯ow theories as presented in the classical monograph of Tabor [START_REF] Tabor | Hardness of metals[END_REF].

Only a few studies present a general method applicable to a large class of constitutive behaviours, like de®ning the identi®cation as the minimization of a cost functional.

Koguchi [START_REF] Koguchi | Determination of mechanical properties of thin ®lms and functional gradient materials using an inverse technique[END_REF] identi®ed the elastic coecients of a layered half-space indented with a sphere, minimizing a least squares distance between measurements and computations using a closed form solution to the direct problem.

More generally, for a non-linear elastic constitutive law and a least squares cost functional Hasanov [7 ± 9] proved some existence results and proposed a numerical procedure based on trial and error.

The previous methods are dedicated essentially to some elastoplastic behaviours and the minimizations do not include gradient computations of the cost functional. Gradient computations are dicult due to the mathematical complexity of the contact description [START_REF] Hilding | Optimization of structures in unilateral contact[END_REF][START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and ®nite element methods[END_REF], appearing independently of the constitutive behaviour of the material. As the direct problem is numerically costly, the knowledge of the gradient could speed up the minimization algorithm.

The computation of a gradient of a least squares functional in the case of linear elasticity has been given in [START_REF] Constantinescu | The adjoint state method applied to material identi®cation through indentation tests[END_REF][START_REF] Tardieu | On the determination of elastic coecients from indentation tests[END_REF]. It has been shown that the adjoint state method [START_REF] Lions | Contr ole optimal des syst emes gouvern es par des equations aux d eriv ees partielles[END_REF] can be extended to variational inequalities. The eciency of the method has been illustrated by numerical examples in the identi®cation of linear elastic moduli from indentation tests.

The goal of this paper is to show that the gradient computation by an adjoint state method can be used in combination with a nonlinear elastoviscoplastic constitutive law under the assumption of small strains and rotations. Moreover, the method applies to any suciently regular standard generalized constitutive law (for a presentation of these behaviours, see [START_REF] Bourgeois | Contr ole optimal et probl emes inverses en plasticit e[END_REF][START_REF] Halphen | Sur les mat eriaux standards g en eralis es[END_REF]). This ensures the generality of the approach.

As a consequence the parameters of nonlinear elastoviscoplastic constitutive laws can be identi®ed from indentation tests by minimizing least squares functionals with gradient algorithms.

The accuracy and robustness of the method is illustrated in this paper through numerical examples for a Maxwell viscoelastic and a Norton-Ho viscoplastic constitutive law.

THE DIRECT PROBLEM

Let us consider an axisymmetric body, with its section occupying in its reference con®guration an open subset &R 2 with smooth boundary À (see Fig. 1). The boundary is partioned in three parts À À D À F À C : the part À D where displacements are imposed, the free surface À F , and the surface À C where contact might occur. n and t denote the normal and tangent vector to the boundary À.

The axisymmetric hypothesis is taken in order to simplify the presentation and the computational burden and does not restrict the generality of the method.

The problem will be treated within the theory of small strains and rotations. The validity of this hypothesis will be discussed later. Therefore, let us denote respectively by u, " and s the vector ®eld of displacements and the tensor ®elds of small strains and stresses.

The problem considered in the sequel is the indentation of the body by a rigid punch whose pro®le is characterized by the gap g. For a FIGURE 1 The con®guration of the direct problem for a conical punch.

complete presentation of contact computations see [START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and ®nite element methods[END_REF]. The contact is considered without friction. An indentation experiment is driven either by the vertical displacement U or by the force F applied to the punch. The force F can be expressed as integral of the contact pressure:

F Z À C n Á s Á n dÀ
An experiment provides an indentation curve (see Fig. 3), representing a displacement-force history (U exp , F exp ) over a given time interval [0, T ].

In this work, we have always expressed the problem as driven by the punch displacement. The governing equations can be written using: a time continous expression, where the intervening quantities are the velocities of the ®elds, or a time discretized expression, where the intervening quantities are small increments of the ®elds between two time steps.0 Describing contact conditions using velocities of the ®elds is a complicated task demanding care in the choice of the functional spaces of the mathematical formulations [START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and ®nite element methods[END_REF]. Therefore the time discretized expression, which permits to avoid some of these diculties, will be used in this paper.

Constitutive Law

A standard generalized material without work hardening [START_REF] Halphen | Sur les mat eriaux standards g en eralis es[END_REF] is considered here. This constitutive behaviour is completely determined by the elasticity tensor S(c) and by the pseudo-potential of dissipation È È(s, c). The later is supposed to be twice dierentiable with respect to s. c is the vector of the material parameters characterizing the material behaviour (Young's modulus, elasticity limit, FFF).

Time Continuous Expression

In a time continuous description, the constitutive law is expressed by the classical set of equations:
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where the dot . denotes the time derivative and " p is the viscoplastic strain.

Time Discretized Expression

In a time discretization, the previous equations are expressed as

"Áu i S XÁs i Á" p i 3 Á" p i @Ès i ; c @s Át 4
Examples The following classical constitutive laws can be expressed under this formalism:

The Maxwell viscoelastic material : the pseudo potential È is given by È(s i , c) (1/2)s i : M : s i where M is a fourth order tensor. The plastic strain increment is determined by : Á" p i M X s i Át. The Norton-Ho viscoplastic material: the pseudo potential È is given by Ès i ; cK=m 1hs i eq À Y =Ki m1 where Y is the elasticity limit, hÁi is the positive part operator and (Á) eq is the equivalent Mises stress. The plastic strain increment is determined by: Á" p i 3=2h i eq À Y =Ki m si = i eq Át; si is the deviator of s i .0

Equations of the Direct Problem

The governing equations of the direct problem consist of the equilibrium and constitutive equations, the boundary and contact conditions and a set of initial values. The contact conditions on À C are expressed using the Lagrange multipliers p i P N, where N {q P (H 1/ 2 (À C )) H jq 0} is a closed convex set and (H 1/2 (À C )) H denotes the dual of H 1/2 (À C ) (see [START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and ®nite element methods[END_REF]).

The punch is driven by its vertical displacement U i at time t i . At the same moment, the gap g i between the surface À C and the punch is expressed by g i g U i À u n i .
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THE INVERSE PROBLEM À1

In the present inverse problem, one wants to identify the parameters of the material behaviour c from the knowledge of the indentation curve (U exp , F exp ). c is supposed to evaluate in a closed convex of R n (n ! 2). This inverse problem can be expressed as a minimization problem of a well chosen cost functional. Since the direct problem is driven by the imposed displacement of the punch U, it is natural to express the cost functional as a function of the resultant force F. A possible formulation of the inverse problem À1 is:

Find c P minimizing tc 1 2 X I i0 F comp i cÀF exp i 2 1 2 X I i0 Z À C p i cdÀ À F exp i 2 16
where, F comp is the computed resultant force from the direct problem driven by U exp . One can remark that the cost functional t depends implicitly on the material parameters c through the intermediate of the pressure distribution p. The resolution of the direct problem permits the determination of the Lagrange multiplier p i and then the calculation of F calc i . In consequence, this minimization problem can be considered as a constrained one, the constraint being the resolution of .

In the case of an elastoplastic constitutive law existence results for this problem are given in [7 ± 9].

Resolution

The resolution of a constrained minimization problem is equivalent, under some regularity conditions, to ®nding the saddle point of a Lagrangian functional v. In the case of the inverse problem À1 , the Lagrangian v is introduced as a sum between the cost functional and a variational formulation of the direct problem .

For each variable of the direct problem, an adjoint variable, denoted by a ? superscript, is introduced. These adjoint variables are the Lagrange multipliers of the constraints, the equations of the direct problem.

According to the optimal control theory, all direct and adjoint variables will be considered mutually independent. The relationships between them will be recovered from the stationarity conditions of the Lagrangian v, characterizing the saddle point.

The Lagrangian functional has the following form: 
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and where À C i is the eective contact surface at time t i .0

The complex form of this Lagrangian does not permit to draw any conclusions with regard to the existence and uniqueness of its saddle point. Nevertheless, necessary conditions of stationarity can be formally written in order to characterize this eventual saddle point.

The stationarity conditions of v are given by the following expressions:
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where hÁ, Ái represents in each equation the duality pairing for the corresponding functional spaces.

Calculating the derivatives with respect to the adjoint variables (Eqs. (21) ± ( 23)) leads to the set of equations:
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The preceding calculation leads in classical Lagrangian theory to the equations of the direct problem. In the present case, opposite to the classical frame, the equations do not represent exactly the direct problem. However, if (u, s, p) are the solutions to , they obviously verify the above relations.

The derivation of v with respect to the direct variables (Eqs. ( 18) ± ( 20)) and series of calculations: spatial integration by parts and use of the ®rst order approximation
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the following set of equations: This set of equations and the ®nal conditions de®ne a well-posed incremental problem with Dirichlet conditions on a part of the boundary and will be called the adjoint problem ? .
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The preceding calculations can be summarized as:

Stationarity Result

If (u, s, p) and (u ? , s ? , p ? ) are respectively the solutions to the incremental direct and adjoint problem and ? , then the Conditions (18) ± (23) of stationarity of the Lagrangian v are veri®ed.

Moreover, if (u, s, p) are the solutions to , one can notice that the Lagrangian v is reduced to the cost functional t . Together with the expression of stationarity conditions (24) this implies that:

Gradient Computation

If (u, s, p) and (u ? , s ? , p ? ) are respectively the solutions to the incremental direct problem and to the incremental adjoint problem à , then the gradient of the cost functional t is given by
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Some remarks can be done about the preceeding results:

The adjoint problem is not a contact problem. Its loading is a Dirichlet conditions (imposed displacement) on À C i , the eective contact surface of the direct problem. The adjoint problem is a time dependent system of partial dierential equations on [0, T] and a ®nal condition given by a well-posed elasticity problem. Therefore the adjoint problem will be integrated from T to 0 in the reversed time.

The adjoint constitutive law is viscoelastic considered in the reversed time i H 2 I À i:
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where R is the forth order tensor:

R @ 2 Ès i H ; c @s 2 i H
The pseudo potential È has to be twice dierentiable to ensure the existence of the adjoint state (For example in the Norton-Ho constitutive law, m > 1 is needed ). From a numerical point of view, this leads to a linear problem at each time step and therefore a rapid integration.

The parameters to the adjoint constitutive law depend on the parameters of the direct constitutive law, but also on the solution of the direct problem. Hence the solution to the adjoint problem is implicitly dependent on the solution of the direct problem. The equations of the adjoint problem in the reversed time describe a linear viscoelastic problem with Dirichlet boundary conditions and initial conditions, and therefore well posed. This method allows the computation of the gradient of the cost functional t using the solutions to the direct and adjoint problems, independently of the number of parameters involved. A rapid evaluation of the computational burden shows that a gradient calculation takes %1.5 the time for solving the direct problem due to the simplicity of the adjoint behaviour and the elimination of the contact condition. This is extremely interesting for problems with a large number of parameters. However, the intervention of the solution to the direct problem in the resolution of the adjoint problem, demands large memory space for keeping track of all the ®elds.0

NUMERICAL EXAMPLE FOR THE MAXWELL EQUATION

In order to illustrate the presented method, let us consider the identi®cation of the parameters of a Maxwell viscoelastic material:
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where E, , denote respectively the Young's modulus, the Poisson coecient and the viscosity. The tensor M computes the deviatoric part of stress.

As explained before, this constitutive law enters the formalism of the standard generalized materials without work-hardening.

The identi®cation problem consists of determining E and from an indentation curve (U exp , F exp ). The Poisson coecient was considered as known, but could be identi®ed in the same way.

In this work the indentation curve is obtained from numerical experiments as explained in the sequel.

Direct Calculations

The experiment simulations have been realized through ®nite elements computations using the CASTEM2000 code [START_REF]Castem2000 Finite Element[END_REF]. The body was a cylinder with radius 10 mm and height 10 mm and the punch was a rigid cone with a 68 half angle at the apex. The mesh of the body had 20 Â 20 quadratic elements. At this coarness the solution of the direct problem is independent of the mesh size.

The indentation process has been displacement controlled and consists of a loading, maintain and unloading parts (see Fig. 2). A typical indentation curve is represented on Figure 3.

The hypothesis of small strains and rotations has been the keypoint in the development of the calculations of the adjoint state method. It was therefore important to validate this assumption. A series of direct computations have been done in three dierent cases: small strain and rotations, large strains and large strains and rotations, with E 2 10 4 MPa and 310 4 MPa Á s. The results show a good agreement of the indentation curves (see Fig. 3). It is important to remark that the small dierence is due in part to the simple constitutive law assumed. This hypothesis should be checked before applying this method for other constitutive laws.

Identi®cation Procedure

The identi®cation procedure presented next is based on minimization of the cost functional t (16) using a gradient descent method. The ``experimental'' curve was simulated by ®nite element calculations as stated in the previous section with E 21 0 4 MPa, 0.3, 3 10 4 MPa Á s.

The gradient has been computed using the adjoint state method with the expression (40) after solving the direct problem and the adjoint problem ? . In the case of the Maxwell material behaviour the adjoint behaviour is also a Maxwell law, which we might call a self adjoint material behaviour. This is due to the quadratic viscoelastic potential È.

The numerical gradient computation by the adjoint method has been compared with a computation by ®nite dierences. The results for several points and directions showed less than 10% dierence between the two methods.

The minimization algorithm was the quasi Newton BFGS algorithm with a line search obeying the Armijo selection rule [START_REF] Gill | Practical optimization[END_REF].

The shape of the cost functional has been plotted in Figure 4 from a series of direct computations. We remark a smooth ®at valley which should not pose special diculties to the identi®cation.

Identi®cation Using Exact Measurements

A ®rst series of identi®cations have been performed with exact measurements. The results for dierent initial points are presented in Table I. The starting values for the algorithm have been at maximum 5 times smaller or 3 times larger than the real values. In all cases the ®nal value was less than 0.02% from the value to be identi®ed, after about 15 iterations. Some typical evolution path of the algorithm on the isovalues of the cost functional are plotted in Figure 5.

Figure 6 shows the real indentation curve in comparison to the initial and converged indentation curve. In terms of cost functional the algorithm brought its value from % 10 8 to % 10 1 .

Identi®cation Using Measurements with Random Error

In order to check the robustness of the identi®cation procedure the simulated measurements have been perturbed by a 10% random noise. The results of several identi®cations using perturbed measurement data are presented in Table II. The ®rst pair and the last pair of data are results coming from identi®cation with dierent starting points but with the same measurement perturbation. The identi®ed values lie at 2.5% from the real values for both measurement perturbations.

The path of the algorithm on the isovalues of the perturbed cost functional is shown on Figure 7.

Figure 8 shows the real indentation curve (E 21 0 4 MPa, 3 10 4 MPa Á s) in comparison to the initial (E 610 4 MPa, 910 4 MPa Á s) and converged (E 1.95 10 4 MPa, 2.91 10 4 MPa Á 10 8 to % 10 4 . This is minimal value of the cost functional where the algorithm could descent. However, there is a good agreement between the experimental and identi®ed indentation curve. 

NUMERICAL EXAMPLE FOR THE NORTON-HOFF MATERIAL

We recall that the viscoplastic Norton-Ho constitutive law is expressed as:
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As explained before, this constitutive law enters the formalism of the standard generalized materials without work-hardening. In comparaison with the Maxwell viscoelasticity two diculties have been adjoined a yield limit and a nonlinearity represented by the power law. 

Direct Calculations

The direct computations have been programmed in the same framework as previously presented and similar meshes and loading histories (Fig. 2) have been used. The integration of the direct constitutive law was performed using a build in forward Euler scheme (implicit) under the hypothesis of small strains.

Identi®cation Procedure

The identi®cation procedure is based on minimization of the cost functional t (16) using the same algorithm as before.

The ``experimental'' curve was simulated by ®nite element calculations with E 10 5 MPa, 0.3, K 1500 MPa Á s 1/m , m 5, Y 500 MPa.

The gradient has been computed using the adjoint state method with the expression (40) after solving the direct problem and the adjoint problem ? .

Opposite to the Maxwell case, the adjoint constitutive law is dierent from the direct one and can be expressed as:
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This formula already expresses a forward Euler integration scheme which has been programmed as such in the code. One can remark that the adjoint constitutive law is a viscoelastic, nevertheless anisotropic and nonhomogenous.

Identi®cation Using Exact Measurements

A series of identi®cations have been performed with exact measurements on two meshes with dierent coarsness (tests 1 ± 5 and 6 ± 8) and the results for dierent initial points are presented in Table III.

The starting values for the identi®cation are in this case just % 30% from the real values. This choice has been motivated by the slow convergence of the direct computation for the Norton-Ho material.

One can remark that the parameters have been identi®ed within % 5% of the real values for tests 1, 2, 7 and 8. In the other cases, only the Young's modulus E and the viscosity K have been reasonably identi®yed (1% error for E and 1 À 10% for K ). The power coecient m and the yield limit Y are in these cases still far away from the real values. However the ®nal computed indentation curves are always superposed with the experimental curve, meaning that the minimization of the geometrical distance between them has been achived.

The initial and ®nal parameters in tests 5 present a peculiar property. As can be seen in Figure 9, both parameters sets produce the same loading curve as the experimental one. The best identi®ed parameter in this case, was the Young's modulus. This result is a new con®rmation of the importance of the unloading part of the experimental curve in the identi®cation of the Young's modulus as already observed in a series of previous papers [START_REF] Loubet | Vickers indentation curve for a magnesium oxide (MgO)[END_REF][START_REF] Oliver | An improved technique for determining hardness and elastic moduli used load and displacement sensing indentation experiments[END_REF].

The previous results are a direct consequence of the poor sensitivity of the cost functional in this region of the parameter space. In order to illustrate this property we have plotted the values of the cost Using a coordinate parametrization given by two orthogonal vectors, the parameter sets in this plane can be generated using the following formula: 

CONCLUSION

The identi®cation of the parameters of a standard generalized non hardening constitutive law from indentation tests was presented. It has been shown that the adjoint state method can be extended to contact problems using Lagrange multipliers.

The eciency of the method has been studied on numerical examples for an indentation problem in the case of Maxwell viscoelatic and Norton-Ho viscoplastic constitutive laws.

Even if no precise proof of uniqueness and stability has been provided, one can remark that for the Maxwell material the cost functional is almost convex and presents a unique minimum (see Fig. 4). For other values of the material parameters c (E, )wehave obtained similar shapes of the cost functional. It is important to state that for the Maxwell material identi®cations started with completely dierent values did converge to the same parameter set. All these remarks suggest that this inverse identi®cation problem has a unique solution.

In the case of the Norton-Ho material the numerical examples presented a lack of sensitivity of the cost functional with regards to certain parameters. However the Young moduli and the viscosity are well identi®ed. In spite of the lack of sensitivity it seems that the identi®cation problem has a unique minimum.

In order to improve the presented solution, dierent possibilities are available: to increase the number of experimental measures for example by varying the indentation rate, to change the expression of the cost functional like the error on constitutive law or crossed dierences (t U exp À U comp ÂF comp À F exp see [START_REF] Tardieu | On the determination of elastic coecients from indentation tests[END_REF]). These questions do not depreciate the presented approach as the technique for the gradient computations remains valid. They rather demand a study of the strategy of identi®cation and of the identi®ability of a certain family of constitutive laws.
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TABLE I

 I Identi®cation results with exact measurements for the Maxwell material for the reference values E ref 20000. MPa, ref 30000. MPa Á s (E ini , ini )( E ®nal , ®nal ) (MPa, MPa Á s)( MPa, MPa Á s)

	(4000., 70000.)	(20002., 30004.)
	(60000., 10000.)	(20002., 30009.)
	(10000., 5000.)	(20002., 30006.)
	(60000., 90000.)	(19999., 29999.)

FIGURE 5 Path of the algorithm (exact measurements) for the Maxwell material.

TABLE II

 II 

	Identi®cation results from measurements with random error for the
	Maxwell material	
	(E ini , ini )( E ®nal , ®nal )
	(MPa, MPa Á s)( MPa, MPa Á s)
	(4000., 70000.)	(20580., 30490.)
	(10000., 5000.)	(20611., 30457.)
	(60000., 10000.)	(19509., 29130.)
	(60000., 90000.)	(19509., 29136.)

FIGURE 6 Evolution of the indentation curve with exact measurements.

TABLE III

 III Identi®cation results with exact measurements for the Norton-Ho material for the reference values E ref 100000. MPa, K ref 1500. MPa. s 1/5 m ref 5. and Y ref 500. MPa

	Test E ini MPa (MPa Á s) 1/m K ini	m ini	Y ini MPa	E ®nal MPa (MPa Á s) 1/m K ®nal	m ®nal	Y ®nal MPa
	1 130000.	800.	2.	1000.	99664.3	1533.36 5.38417 446.414
	2 150000.	1000.	3.	1000. 100228.0	1524.64 5.00296 491.795
	3 150000.	2000.	3.	200.	99429.3	1598.24 6.18529 343.533
	4 150000.	2000.	8.	1000.	99288.9	1657.20 6.98908 246.959
	5 70000.	2000.	8.	200.	99126.5	1682.47 6.94556 238.366
	6 70000.	3000.	8.	250. 100598.0	1451.36 4.24316 602.651
	7 70000.	1000.	3.	250.	99630.1	1521.18 4.94161 497.229
	8 150000.	1000.	3.	250.	99778.0	1516.32 5.28676 464.255
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