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Crack propagation from a pre-existing flaw at a notch root — I1:
Detailed form of the stress intensity factors at the initial crack tip
and conclusion.

JEAN-BAPTISTE LEBLOND' and PIERRE MOURO?

L aboratoire de Modélisation en Meécanique, Université Pierre et Marie Curie, Tour 66, 4 place Jussieu,
75005 Paris, France

2 Laboratoire de Mécanique des Solides, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France

Abstract. This paper pursues the study of crack kinking from a pre-existing crack emanating from some notch
root. It was shown in Part I that the stress intensity factors at the tip of the small initial crack are given by universal
(that is, applicable in all situations, whatever the geometry of the body and the loading) formulae; they depend
only on the ‘stress intensity factor of the notch’ (the multiplicative coefficient of the singular stress field near the
apex of the notch in the absence of the crack), the length of the crack, the aperture angle of the notch and the angle
between its bisecting line and the direction of the crack. Here we identify the universal functions of the two angles
just mentioned which appear in these formulae, by considering the model problem of an infinite body endowed
with a notch with straight boundaries and a straight crack of unit length. The treatment uses Muskhelishvili’s
complex potentials formalism combined with some conformal mapping. The solution is expressed in the form
of an infinite series involving an integral operator, which is evaluated numerically. Application of Goldstein and
Salganik’s principle of local symmetry then leads to prediction of the kink angle of the crack extension. It is found
that although the direction of the crack is closer to that of the bisecting line of the notch after kinking than before
it, the kink angle is not large enough for the crack tip to get closer to this line after kinking, except perhaps in
some special situations.

Key words: Notch, pre-existing crack, mixed mode, stress intensity factors, complex potentials, conformal map-
ping, crack kinking, principle of local symmetry

1. Introduction

The reader is referred to the Introduction and Fig. 1 of Part I for a general statement of the
problem envisaged and notations. It was shown in Section 4 of this first part that the stress
intensity factors (SIFs) K,(a) (p = I, 11) (where a is recalled to denote the length of the
initial crack) at the tip of this crack admit the following asymptotic expression for a — 0 :

Ky(a) = K" +o(a”). (1
In this expression S is an exponent given by
B=a—3, 2

where « denotes the ‘exponent of the displacements’ in their asymptotic expression near the
notch root in the absence of the crack; « is the smallest positive solution of the equation

sin(a ) + asin2y) = 0, (3)



where it is recalled that 2(w — 1) represents the aperture angle of the notch. Since « varies
from 1 to % when i varies from 7 /2 to 7, 8 is positive except for i = 7 (case where the notch
is itself a crack), so that except in this case, the SIFs K, (a) go to zero with a. Furthermore
the quantities K ,(,’3 ) (p = 1, 11) are given by the following universal (that is, applicable in all
circumstances, whatever the geometry of the body, the notch and the crack and whatever the
loading) formula:

KP =L, o), (C))

where ¢ is recalled to denote the angle between the bisecting line Ox of the notch and the
initial tangent to the crack, the L ,(y/, ¢) some yet unknown functions of the angles ¥ and ¢
and « the ‘mode I stress intensity factor of the notch’, that is, the multiplicative coefficient of
the singular stress field near the notch root, in the absence of the crack. It is recalled that the
definition of the ‘stress intensity factor « of the notch’ chosen, implicitly implied by Equations
(1) of Part I, possesses the nice properties that « reduces to the ordinary SIF K; for ¢ =
m (case of a crack) and to the uniform tensile stress o, for v = m/2 (case of a regular,
corner-free boundary).

It was also shown, in Section V of Part I, that the function L,(¥,¢) (p = I,1I) can
be identified with the p-th SIF at the crack tip in a ‘model problem’ involving an infinite
body endowed with a notch with straight boundaries and a straight crack originating from the
notch root, of unit length (Fig. 1c). The conditions on the notch boundaries, the crack lips and
at infinity in this problem read as follows:

o(r,0 ==xY)-e(@ = =%y) =0,Vr > 0 (conditions on the notch boundaries)

o(r,0 =¢").(—€(0 =) =X(r,0 = ¢).¢o(0 =)
Vr,0 <r <1 (condition on the upper lip of the crack)
&)
0(r.0 =¢7)el =¢)=—-X(r0=09)e0 =9)
Vr,0 <r <1 (condition on the lower lip of the crack)

6(r,0) =0@") for r— +00,V0, -y <O <+  (condition at infinity).

In these equations, r and 6 are recalled to denote polar coordinates with origin at the notch
root, eg(0) the unit orthoradial vector and {X(r, )} the stress field defined by Equations (1)
of Part I, except for the omission of the factor «:

B —a)sin((1 +a)y)
(1 —a)sin((1 —a)y)
B (1 + ) sin((1 + a)yr)
(1 —a)sin((1 —a)y)

_sin(( +a)y)
sin(1 = a)y)

This plane elasticity problem is solved here with the aid of Muskhelishvili’s (1952) com-
plex potentials formalism and conformal mapping. The conformal mapping used maps the
lower half-plane of some z-plane onto the physical domain in some Z-plane. To the best of
the authors’ knowledge, its expression has not previously been available in the literature. It is

X (r,0) = —%(27'(;0"‘_1 [ cos((1 —a)0) 4+ cos((1 + a)@):| ,

Yoo (r, 0) = %(2711’)""1 [ cos((1 — a)f) 4 cos((1 + 01)9):| , (6)

¥,0(r,0) = %(27”)“—1 [ sin((1 — «)@) + sin((1 + a)e)] )
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Figure 1. Conformal mapping: the z-plane (a); the Z-plane (b); the (physical) Z-plane (c).

deduced here from the thesis of Mouchrif (1994), who has considered the special case where

= 7. The problem is reduced to an integral equation on Muskhelishvili’s potential ¢’(z).
The solution is given in the form of an infinite series involving the integral operator appearing
in the integral equation. This series is evaluated numerically. Finally, the SIFs and hence the
functions L, (v, ¢), are deduced from Andersson’s (1969) formula which relates them to the
value of the potential ¢’(z) at that point corresponding to the crack tip in the z-plane.

The results are then compared with those available in the literature. The latter results all
pertain to special cases involving a notch with straight boundaries and a straight crack; that
is, the universal applicability of the functions L, (¥, ¢) has not been perceived. As already
mentioned in the Introduction of Part I, four special cases have been previously envisaged.
The first one is quite classical and concerns the case where ¢ = /2 and ¢ = 0 (edge crack
originating perpendicularly from a regular free surface). The second one, envisaged by many
authors (notably Bilby and Cardew, 1975; Wu, 1978; Amestoy et al., 1979; Amestoy and



Leblond, 1992), is that where i = 7 but ¢ is arbitrary (semi-infinite crack with an arbitrarily
kinked extension). The third one, also considered by several authors (Wilson, 1969; Sha and
Yang, 1985; Aliabadi, 1987; Fett and Munz, 1997), is that where ¢ = 7 /2 but ¢ is arbitrary
(oblique edge crack emanating from a regular free surface). Finally, the fourth one, which has
been treated by Fett and Munz (1997), using some previous works of Gross (1970), Hasebe
and Isida (1978) and Iida (1979), concerns the situation where ¢ = 0 but v is arbitrary (crack
lying on the bisecting line of an arbitrary notch). In all of these special cases, we find results
in good agreement with those of the literature.

We finally envisage the problem of determining the kink angle x of the crack extension
(see Fig. 1 of Part I). This kink angle is deduced from the values of the SIFs of the initial
crack using some suitable criterion, namely Goldstein and Salganik’s (1974) well-known and
widely accepted principle of local symmetry. As a consequence of the fact that the notch is
always asymptotically predominantly loaded in ‘mode I’, the angles ¢ and x are found to be
of opposite signs; that is, the direction of the crack is closer to that of the bisecting line of
the notch after kinking than before it. It remains to see whether or not the kink angle is large
enough for the distance from the crack tip to the bisecting line to decrease after the kink. It is
found that it is generally not sufficiently large for this possibility to occur, that is, the crack tip
generally still tends to move away from the bisecting line of the notch after the kink, although
less markedly than prior to it.

2. The problem in the physical Z-plane

Let ®(Z) and W (Z) denote Muskhelishvili’s potentials in the physical Z-plane. Then, the
boundary Z,Z,7Z37Z4Zs (see Fig. 1c) of the body being oriented in that way, the boundary
conditions read

i%[®(z)+zm+m]:Tx(Z)+iTy(Z) on  Zy2,2324Zs, 0

where S denotes the curvilinear length along the arc Z,Z,7Z37Z47Z5 and Tx(Z), Ty (Z) the com-
ponents of the traction T(Z) exerted on the boundary' . Also, since the stresses are O (| Z| _D‘_l)
at infinity (Equation (5),4), the conditions at infinity for the potentials ®(Z), W (Z) read

®(2Z)=0(21"), ¥ (©Z)=0(2z*) for|Z|— +oo, (8)

which implies that they vanish at infinity (since « is positive).

The traction T(Z) being zero on the notch boundaries ZZ, and Z4Zs (Equation (5);),
Equation (7) implies that ®(Z) + Z®'(Z) + W(Z) is constant along these two half-straight
lines. Since both ®(Z) and W(Z) vanish at infinity, one must in fact have

D(Z)+ZP(Z)+V(Z) =0 for Ze Z;Z,UZsZs. )

Let us now calculate the traction T(Z) on the lower lip Z,Z; of the crack. By Equation
(5)3, one has on this lip T(Z) = —X(r, ¢).eg(¢) = —Z,9(r, p)e.(¢) — Zgo(r, p)es(¢)
s0 that Tx(Z) + iTy(Z) = [T,(r, @) +iTy(r, @)1 €* = —[S,(r, ) + iSea(r, @)] €. A
straightforward calculation based on Equations (6), and (6); then leads to Tx(Z) +iTy(Z) =
—ia8Q2m|Z|)* ! where

I There is a difference of sign here with respect to Muskhelishvili’s classical formula, which arises from the
fact that the unit normal exterior vector to the boundary is oriented to the left, instead of to the right as usual, of
the unit tangent vector to the boundary.
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1 sin((1 + a)yr)
2 (1 — ) sin((1 —a)yr)
Since dS = d|Z| on Z,Z3, Equation (7) reads

(eioap +a ei(27o¢)(ﬂ) +eiarp:| . (10)

d D7) L U(7) | — a—1
iz [CD(Z) + ZD(2) + \IJ(Z)] — —a8Qr|Z)* ",

which yields upon integration

P2Z)+Zd(2Z)+V(Z2) = —%(2n|Z|)°‘ for Z e 7,73, a1

the constant of integration being zero since by Equation (9), ®(Z) + Z®'(Z) + W(Z) is zero
at the point Z, =0~

On the upper lip Z3Z, of the crack, the traction T(Z) is opposite to that on the lower lip
7,73 by Equations (5), and (5)3. It follows that Tx (Z) +iTy(Z) = ia 82| Z))*~! on Z3Z,.
On the other hand, dS = —d|Z]| instead of d|Z|, so that Equation (7) reads for Z € Z3Z, :

d D7y L U(7)| — a—1
3z [CD(Z) +Z(2) + \IJ(Z)] — a8 |Z)* ",

which is the same equation as on Z,Z3 and leads upon integration to the same result:
_— — 3
2L+ ZP(2)+V(Z2) = —2—(2n|Z|)°‘ for Z € Z3Z4, (12)
b4

the constant of integration being again zero because ®(Z) + Zd'(Z) + V(Z) is zero at the
point Z, = 0" by Equation (9).
Equations (9), (11) and (12) can be summarized as follows:

B 4
Q(Z)+ZD(2)+V¥(Z2) = —E(MIZI)O‘I(Z) onZ,2,232,Zs, (13)

where I (Z) denotes the characteristic function of the arc Z,7Z3Z, :

1 if Z e Z2Z3Z4,

1(Z) = { 0 ifZ ¢ 2,77, (14

The problem is to find complex potentials ®(Z), W(Z) analytical in the physical domain and
satisfying conditions (13) on Z,Z,Z3Z4Z5 and (8) at infinity.

3. Conformal mapping — the problem in the z-plane

Mouchrif (1994) has provided the expression of the conformal mapping which maps the lower
half IT~ of some z-plane onto the exterior of a kinked crack composed of a principal semi-
infinite branch and an extension of unit length making an arbitrary angle mm (—1 <m < +1)
with the principal branch in some Z-plane (Figs. 1a and 1b). The expression of this conformal
mapping is

1 m 1 1_ m
F=w() = Al — 29 <i> . A= (—m> . (15)

z—1 1—m?2\1+m

Defining



Z=Q0@) =@ =(@ow)(z) =7", (16)

where n is a parameter such that % < n <1, we ‘open the principal branch of the crack’ and
thus obtain, in the Z-plane, the geometry we are interested in, with a notch of aperture angle
2(mr — ) and a crack of unit length making an angle ¢ with the bisecting line of the notch
(Figs. 1b and 1c). The a priori free parameters m and n must be chosen in order for the angles

and ¢ to take the desired values. It is evident that Y = n7; furthermore the point 73 = e'™*
in the Z-plane becomes z3 = ™" = ¢'% in the z-plane, which implies that ¢ = mnz. Thus
the parameters m and n are given by

n=—:m=2-2% (17)

4 ni

We shall need the expression of the quantity 2(7)/<2'(¢) for t € R in the sequel. After a
somewhat lengthy but straightforward calculation, one gets

20 _ o0l +j©)], Vi eR, (18)
(1)
where
0@) = ol (19)
2(t — m)
and
e ?/n —1 ift <—1
=1 e¥/n —1 if —1 <1t <+1 (20)

etV /n —1 ift> +1.

(Note that the quantity Q(#)[1 + j(#)] is continuous at the points t+ = =1 in spite of the
discontinuities of j(¢), since Q(t) vanishes there.)
In the z-plane, Equation (13) takes the form

() + 250 + T = ——QrIQWDi() . ViR
() Q,—(l‘)(p o 27 ’

where ¢(z) = ®(Z), ¥ (z) = W(Z) and i (¢) denotes the characteristic function of the interval
(—1, +1). By Equation (18), this equation reads

S ¥
)+ 0 () + 0 j)e' (t) + ¥ (1) = —E(hlﬂ(t)l)"‘i(t), vt e R. (21)
Furthermore, by Equations (8), (15) and (16),
p@) =0 (lzZI”") , Y@ =0 (|z2|) for|z| > +ooc. (22)

The problem is reduced to finding some complex potentials ¢(z), ¥ (z) analytical in the lower
half-plane 1~ and satisfying conditions (21) on R and (22) at infinity.

4. Solution of the problem

4.1. REDUCTION OF THE PROBLEM TO AN INTEGRAL EQUATION

Let us define the function



1 [ @ = 1j@e (0)dr

I —— dr _
X(Z)=E/oo Q)¢ W) — = 1 . T G—moG—o Veell™ (23)

where m™ = m — ie, € > 0, ¢ — 0. (Note that the integrand behaves like |¢t|~2"*~! for
t — *00; hence, since n and « are positive, the integral is convergent at infinity. It appears
essential here to have removed the tractions imposed from infinity to the crack lips; otherwise
the integrand would behave like |#|>"*~! for t — oo, and the integral would diverge at
infinity). By Plemelj’s formula,

Xt —xt)=00jMe' ), VteR

where tT =t + i€, € > 0, € — 0. Also, let us define the function

1 [t os . dr _
(@) == —QrIQMOD ——, Vzell. (24)
2im J_, 2w t—z
Then Plemelj’s formula again yields
_ ] a:
yah) —y@) = EQﬂIQ(f)I) i(t), VieR.

These elements and the obvious property Q(¢) = Q(¢), Vt € R, imply that Equation (21)
may be written as

M)+ 0N () +xtT) —xE )+ Y@ +yEH) —y@E) =0, VieR.

Now, 7(1) = f(2) denoting the conjugate of f(z) in the sense of Muskhelishvili, one has
x(tT) = x(t7) = X (¢~) and similarly y(t*) = y(t=) = y(7), so that the preceding
equation may be re-written as

() —x@) =y ) ==-00)¢' @) —=x@) -y @) —y™), ViekR (25)

We shall now make use of the following classical result, the (elementary) proof of which
is given for instance in Mouchrif’s (1994) thesis:

Lemma. Let f(z) and g(z) denote two functions defined and continuous on I1~ U R, analytic
on I1™, bounded at infinity and such that f(t) = g(t), YVt € R. Then f(z) and g(z) are
constant and conjugate to each other.

It is straightforward, though somewhat tedious, to check that all the hypotheses of this
lemma are verified by the left- and right-hand sides of Equation (25). (Here again, it appears as
essential to have removed the remote tractions from infinity to the lips of the crack; otherwise
¢(z) would be O(|z]*"¥) for |z| — 400 so that the left-hand side of Equation (25) would not
be bounded at infinity). Hence the lemma yields

@) —x@)—y@) =0 = ¢ =x@+y, Vzell, (26)

the additive constant being zero in the present case since by Equations (22);, (23) and (24), all
functions ¢(z), x(z), ¥ (z) vanish at infinity. Differentiating Equation (26), and accounting
for the expressions (23),, (24) of the functions y (z) and y (z), one gets the following integral
equation on the unknown potential ¢’(z) :
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Figure 2. Figure 2. Integration paths in the z-plane.

R G N OTIOLL
t—2?% 4d4in ). oo (t—m )t —2)?

, 1 +1 /S
¢/(2) = E/_I —erI2)

Vzell™, (27)

where, by Equations (15) and (16),

n 2\n 141 "

()| = A" (1 —1t°) (:) , VYte(—=1,+1). (28)

The function j(¢) is constant over each interval (—oo, —1), (—1,4+1), (41, 4+00) (see
Equation (20)). Furthermore, for any real ¢, ¢'(tf) = ¢'(t); hence ¢'(t) may be replaced by
¢’ (1) in the second integral of the right-hand side of Equation (27). Provided that this replace-
ment is made, the integrand corresponding to each interval (—oo, —1), (—1, +1), (+1, +00)
is then analytic over the upper half-plane TT*. Hence these intervals may be displaced within
IT* : see Fig. 2. Thus the interval (—oo, —1) may be replaced by the half-straight line A}
of equation Re(A) = —1, Im(A) > 0, oriented from —1 + ioco to —1; indeed the integral
over the great quarter of a circle which closes the integration path is zero since the integrand
is O(|A|~272"*). Similarly, the interval (+1, +00) may be replaced by the half-straight line
A:r :Re(A) = +1, Im(X) > 0, oriented from +1 to +1 + ico. Finally, the interval (—1, +1)
may be replaced by the semi-circle I'" : [A| = 1, Im(X) > 0, oriented from —1 to +1 (since
the pole at m™~ is not crossed in the process). Hence the second integral in the right-hand side
of Equation (27) may be written as

e/n —1 on Af
, jW={e¥/n —1 on Tt | (29

et /n —1 on Af,

02— DiF (o
L =g ). o= mo =




where C* denotes the path A} UTT U A, oriented like A, I'" and A;F. Similarly, taking
advantage of the fact that the function (I — A2)"® ((1 + 1)/ (1 — A))™ is analytic on IT*,
one may write the first integral of the right-hand side of Equation (27), using Equation (28),
in the form

0(2) : P A"(1 =AD" L2\ _dh (30)
= — — |27 — .
P =5 J 2 T—a (h—2)?
The integral equation (27) on the potential ¢’(z) can therefore be written as
9'(2) =@ + LY'(2) , Yz eTT™ 3D

where the integral operator £ and the function ¢((z) are defined by Equations (29) and (30).
4.2. SOLUTION IN THE FORM OF AN INFINITE SERIES

The solution of the integral equation (31) is unique and can be written as
+00
¢'@) = L)), (32)
p=0

where L7 denotes the p-th iterate of the integral operator £ defined by Equation (29), pro-
vided that this operator is contractant, that is, that it reduces some norm (for instance the || ||
norm) of the function it is applied on. Since it involves the function j(A) (defined on C* by
Equation (29),), the contractant character will be ensured by the smallness of this function.
Now j (1) is small when v is close to 7 (sharp notch) and ¢ close to O (crack lying almost
along the bisecting line of the notch); indeed, by Equation (17);, n is then close to 1 so that
eV /n —1,e*/n —1, et?¥ /n —1 are all small. Hence the convergence of the series (32)
is guaranteed under these conditions. Numerical experience (see Section 5 below) confirms
that convergence can indeed be achieved except when v is close to /2 (‘open notch’) and ¢
large (crack lying away from the bisecting line).

In the integral defining the operator £ (see Equation (29),), the only values of the function
¢'(z) it acts on which are involved are those on the conjugate C~ of the arc C* (see Fig. 2).
Therefore the values of the successive iterates ¢ (z), L (2), £2<p(’)(z), etc. can be calculated
(numerically) inductively on the sole arc C~, and the values of the unknown potential ¢’(z)
on the same arc follow from there and application of Equation (32). The value of ¢'(z) at any
point z € I1™ can then be obtained from Equation (31).

4.3. STRESS INTENSITY FACTORS

The values of the SIFs at the crack tip K, = L,(¥, ¢) (p = I, II) can finally be deduced
from Andersson’s (1969) formula, which involves the value of the potential ¢’ at that point
73 = m in the z-plane corresponding to the crack tip Z3 = €'¢ in the physical Z-plane (see
Fig. 1):

K —iKi;=Li(y,9) —iLi (¥, ) =27 e 2[Q" (m)]72¢ (m).

The value of ¢’(m) here can be obtained as explained above. Calculation of the quantity Q2" (m)
leads to the following final expression:

. 2w o
Li(Y. @) =il (¥, @) = —iy 7(1 —m?) e o' (m) . (33)



Table 1. Value of L} as a function of ¥ (1st row) and ¢ (1st column)

=90° 100° 110° 120° 130° 140° 150° 160° 170°

=0 199 129 099 086 082 083 087 093 098
10° 1.95 127 097 08 081 082 08 092 097
20° 1.83 120 093 081 078 0.79 084 089 094
30° 1.65 1.10 086 076 0.73 075 0.79 0.84 0.89
40° - 098 078 069 067 069 073 078 0.82
50° - - 068 061 060 062 066 070 0.74
60° - - - 053 052 054 058 0.62 0.65
70° - - - - 044 046 050 053 0.56

Table 2. Value of L as a function of ¥ (I1st row) and ¢ (1st column)

=90° 100° 110° 120° 130° 140° 150° 160° 170°

=0 0 0 0 0 0 0 0 0 0

10° 0.19 0.12 0.09 008 0.07 007 007 0.08 0.08
20° 0.36 023 017 015 0.14 014 0.14 0.15 0.16
30° 0.48 031 024 020 019 019 020 022 023
40° - 036 028 025 024 024 025 027 029
50° - - 030 027 026 027 029 031 033
60° - - - 027 027 029 031 033 035
70° - - - - 027 028 031 034 036

5. Numerical calculation of the functions L ,(v/, ¢)

In order to perform the numerical integrations, the arc C* is divided into 400 intervals: 100 on
each half-straight line A, AT (numerical integration being ‘cut off’ on these half-lines at a
distance of 100 from the x-axis) and 200 on the semi-circle I'*. The ‘mesh’ is refined near the
singular points +1 and enlarged near ‘infinity’ on the half-straight lines A}, AT. Gaussian
integration is used, with 2 Gauss points in each interval (which makes a total of 800 Gauss
points). The values of the successive iterates ¢;(z), £L¢,(z), £2(p(’)(z), etc., are calculated at
the conjugates (lying on C~) of the Gauss points of the arc C*. The number of terms in the
series (32) which is necessary to reach convergence is highly dependent upon the values of
the angles v and ¢ : it varies from just a few ones when ¥ is close to  and ¢ to 0 to several
hundreds when v is closer to /2 and ¢ larger.

Tables 1 and 2 show the results derived in that way for the functions L ,(¥, ) (p =1, 1),
for 90° < ¢ < 170° and 0° < ¢ < 70°. Blank spaces correspond to those cases (involving
values of i close to 90° and large values of ¢) where satisfactory convergence of the series
(32) could not be achieved. Results corresponding to negative values of the angle ¢ can also
be obtained using the fact that for obvious symmetry reasons, L; (¥, ¢) and L;; (¥, ¢) are
even and odd functions, respectively, of this argument. The (absolute) accuracy is better than
1072, and in many cases than 1073,

10



Of course, these results could also be obtained through more conventional techniques, such
as the finite element method. The advantages of the approach used here are three-fold. First,
the numerical accuracy which can be achieved is better than that currently encountered when
using the finite element method, except in those cases where convergence of the series (32) is
difficult to obtain, that is, when  is close to 7 /2 and ¢ large. Second, the computation time is
shorter, except in the same cases as before. Third, changing the values of ¢ and ¢ only requires
to modify the values of the input parameters of the program instead of demanding a new mesh
to be designed for each case. On the other hand, the versatility of the finite element method is
obviously superior since it can deal with finite bodies; but consideration of an infinite one is
sufficient to obtain the values of the functions L; (v, ¢) and L;; (1, ¢) looked for here.

6. Partial checks on the results

As mentioned in the Introduction, there are four special cases which have been treated by
former authors, thus allowing for a comparison with our results.

The first one corresponds to the situation where v = /2 and ¢ = 0 (edge crack emanating
perpendicularly from a regular, corner-free surface). It that case it is well known that K; (a) ~
1.12 a;’;? ma where a;’;? denotes the remote tensile stress (K;;(a) being zero). Now for this
value of ¥, the ‘exponent of the displacements’ « in the absence of the crack is unity; hence,
by Equation (2), 8 = % and Equations (1) and (4)read K;(a) = L; (Y = /2, ¢ = 0) k/a+
o(Va) = L; (¥ =7/2,¢ =0)oy+/a + o («/a) since the definition of the ‘stress intensity
factor « of the notch’ in the absence of the crack adopted here is such that it reduces to the
uniform tensile stress oy, for ¢ = /2 : see the Introduction. Comparison between these two
expressions of K;(a) yields L; ( = /2, ¢ = 0) >~ 1.12/7 ~ 1.985, which is in excellent
agreement with the value of 1.99 found here (see Table 1).

The second special case is that where ¢ = m but ¢ is arbitrary (semi-infinite crack with a
arbitrarily deviated extension). The comparison can be made only for an initial crack loaded
in pure mode I; indeed this initial crack is considered here as the limit of a sharp notch for

— m, and any notch (with ¥ < m) is always asymptotically loaded in pure mode I (see
Section 2 of Part I). Leblond (1989) has shown that in this case

Ky(@)=F, (0K +0Wa) (p=1,11D), (34)

where K; denotes the mode I SIF of the initial crack, in the absence of the extension. This
formula is of universal value, that is, it applies in all circumstances, whatever the far geom-
etry of the body and whatever the loading. Furthermore, Amestoy and Leblond (1992) have
provided formulae for the functions F), ; (¢) which allow for their evaluation with an accuracy
better than 107, Now for ¢ = 7, a = % so that, by Equation (2), 8 = 0. Hence Equations
(1) and (4) read

Ky@) =L,y =7, ¢ +0a) = L,y =7, 9)K; + 0(a), (35)

where use has been made of the fact that the ‘stress intensity factor « of the notch’ reduces to
the ordinary SIF K in the particular case where the notch becomes a crack (i = ) (see the
Introduction). Comparison between formulae (34) and (35) shows that one must have

L,y =m¢)=F,1(¢), Yo (p=111I). (36)
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Table 3. Comparison between the functions L,(3y = 7, ¢) obtained here and the
functions F), j(¢) provided by Amestoy and Leblond (1992)

LiW=m¢) Fri Ly =m ) Frpi(p)
(this work) (Amestoy and (this work) (Amestoy and
Leblond, 1992) Leblond, 1992)

o=0° 1 1 0 0

10° 0.989 0.989 0.086 0.086

20° 0.955 0.955 0.168 0.168

30° 0.902 0.902 0.240 0.240

40° 0.831 0.831 0.299 0.300

50° 0.748 0.748 0.343 0.343

60° 0.656 0.655 0.369 0.369

70° 0.559 0.559 0.378 0.378

Table 4. Comparison between the functions L, (¥ = 7/2, ¢) found here and provided by Fett
and Munz (1997)

Ly =n/2,¢) Li(Yy=n/2,¢) Ly =n/2,9) Ly =m/2,9)

(this work) (Fett and (this work) (Fett and
Munz, 1997) Munz, 1997)
=0 199 1.99 0 0
10° 1.95 1.94 0.19 0.19
20° 1.83 1.82 0.36 0.37
30° 1.65 1.65 0.48 0.52

Table 3 compares the functions L,(y = m, ¢) obtained here with the functions F, ;(¢)
resulting from the work of Amestoy and Leblond (1992). It can be seen that the discrepancy
between the results is smaller than the numerical accuracy in the calculation of the functions
L p(vf =7, ).

The third particular case corresponds to the situation where ¥ = 7 /2 but ¢ is arbitrary
(oblique edge crack originating from a regular, corner-free surface). The results of several
authors (Wilson, 1969; Sha and Yang, 1985; Aliabadi, 1987) have recently been compiled
and critically compared by Fett and Munz (1997). These authors provide the values of the
functions L, ( = /2, ¢) in the form of tables (Nos. 52 and 53 in their book). (In fact, the
SIFs are given for various crack lengths a, and one must extrapolate the results for a — 0).
Table 4 shows the comparison between the functions L, (y = 7 /2, ¢) obtained here and
those provided by these authors; the agreement is quite good.

The last special case is that where ¢ = 0 but i is arbitrary (crack lying on the bisecting
line of an arbitrary notch). This case has again been considered by Fett and Munz (1997), on
the basis of previous works of Gross (1970), Hasebe and Isida (1978) and Iida (1979). Fett and
Munz’ results are given in the form of an approximate but accurate formula for the function
Li(r,0 =0) (L;;(¥, ¢ = 0) being zero) (account being taken of a definition of the ‘stress
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Table 5. Comparison between the functions
Lp(¥, ¢ = 0) found here and provided by Fett
and Munz (1997)

Li,o=0) Li(y,9=0)
(this work) (Fett and

Munz, 1997)
=120° 0.856 0.868
140° 0.829 0.811
160° 0.931 0.928
180° 1 1

intensity factor « of the notch’ differing from that adopted here). Table 5 compares our results
with those of Fett and Munz; a good agreement can again be observed.

7. Conclusion: prediction of the kink angle of the crack extension

Let us finally consider the problem of determining the beginning of the propagation path of
the crack, and more specifically the kink angle x of the crack extension (see Fig. 1 of Part I).
When this extension is still infinitesimal, the SIFs K (p = 1, I1) at its tip are given by the
universal formula (where Einstein’s implicit summation convention over repeated indices is
used)

K,=F,;00Kpa) (p,q=11I) (34°)

which was established by Leblond (1989) and is in fact a mere extension of formula (34) to
the case where some mode II is initially present. The kink angle x can then be deduced from
Goldstein and Salganik’s (1974) principle of local symmetry. This criterion is well-known
and widely accepted and convincing arguments in its favour have been provided by Amestoy
(1987). It stipulates that

Ky = FriiOOK(a) + Frp(x)Kr(a) =0 (37)

the numerical values of the functions F, ,(x) to be used when solving this equation with
respect to x can be deduced for instance from Amestoy and Leblond’s (1992) approximate
but highly accurate formulae for these functions. If a is small, formulae (1) and (4) for the
SIFs K ,(a) can be used and the preceding equation reduces to

FrigGOLi(y, o)+ FrinGOL(W, ) =0. 37)

This equation determines the kink angle x as a function of the sole angles  and ¢, inde-
pendently of the loading. This feature, which may appear surprising at first sight, arises from
the fact that as mentioned above, the notch is always asymptotically loaded in pure mode I,
whatever the loading.

Precisely because of that property, it is intuitively obvious (and is in fact a rigorous con-
sequence of Equation (37')) that the angles ¢ and x are of opposite signs, which means that
the direction of the crack is closer to that of the bisecting line of the notch after the kink than
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Figure 3. Figure 3. The two possible situations after the kink: |x| < ¢ (a); |x| > ¢ (b).
xl/e
Ll~;\\\\
—_ P=15"
\.
1 B

T o
IJ\D (P =30 \.\.\'—.//

0.9 1 \D\O\Q\C"\Q—D”G/Q

\0\’ 0/0

0.8 1 T
M
0.7 t + : + t + + } {

90 100 110 120 130 140 150 160 170 180
V()

Figure 4. Figure 4. The ratio |x|/¢ as a function of the angle v, for various values of the angle ¢.

before it. However, two possibilities remain (Fig. 3): ¢ being for instance taken as positive,
either (a) | x| < ¢, which means that the distance between the crack tip and the bisecting line
of the notch still increases after the kink, although less markedly than before it; or (b) | x| > ¢,
so that this distance decreases after the kink.

Figure 4 shows the ratio | x|/¢ (¢ being taken as positive) as a function of the angle i for
various values of the angle ¢. It can be observed that in most cases, possibility (a) prevails:
the distance from the crack tip to the bisecting line still increases after the kink. However,
possibility (b) seems to occur for values of ¥ and ¢ close to /2 and 0, respectively; then this
distance decreases after the kink. It may nevertheless be remarked that the ratio |x |/¢ is close
to unity then, and that conditions for good convergence of the series (32) are not well fulfilled,
since ¥ is close to /2. Hence the numerical accuracy may not be sufficient to warrant that
the ratio |x|/¢ is really greater than 1. Anyway, since it is close to unity then, and since in
addition ¢ is small, the decrease of the distance from the crack tip to the bisecting line is
marginal: the crack extension almost follows the direction of the bisecting line.
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