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The dynamics of discrete mechanical systems
with perfect unilateral constraints

PATRICK BALLARD

Abstract

The dynamics of discrete mechanical systems with perfect unilateral constra-

ints is formulated in a very general setting. The well-posedness of the resulting

evolution problem is studied. It is proved that existence and uniqueness of a maxi-

mal solution is ensured provided strong assumptions on the regularity of the data:

they are supposed to be analytic. Simple examples show that this regularity as-

sumption may not be relaxed. Sufficient conditions to ensure that the maximal

solution is defined for all time are supplied. The continuous dependence of the

solution on initial conditions is also studied and the numerical computation of the

solution is evocated.

1. Introduction

The aim of the Dynamics of Discrete Mechanical Systems (sometimes called

Rational Mechanics or, after Lagrange, Analytical Mechanics) is the prediction

of the motion of collections of bodies supposed to be perfectly indeformable. The

theory classically distinguishes two types of interactions between the bodies them-

selves and between the bodies and the rest of the universe: the efforts and the con-

straints. The constraints are kinematical specifications of the motion with which

some efforts are associated. A constraint is said perfect or ideal if the associated ef-

forts do not dissipate energy. A constraint is said bilateral (respectively unilateral)

if the kinematical specification gives rise to equalities (respectively inequalities).

A typical occurrence of unilateral constraints is the handling of non-penetration

conditions.

When all the constraints are bilateral and perfect, the motion is classically gov-

erned by a second-order ordinary differential equation on a finite dimensionnal rie-

mannian manifold. When the data are smooth enough, Cauchy-Lipschitz theorem

guarantees that a unique motion is associated with any given initial state of the

system.
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When dealing with the dynamics of discrete mechanical systems with uni-

lateral constraints, there is no such a theorem, although many steps towards this

direction have been made during the past twenty years. To my knowledge, the

first investigation of this question using modern mathematical tools (i.e. intro-

ducing motions whose acceleration is a measure with respect to time) is that of

Schatzman [18]. She studied the particular case where the configuration space is

R
d equipped with its canonical euclidean structure and the admissible configura-

tion set is convex. Her setting was also limited to the elastic impact constitutive

equation. Using Yosida type regularization and compactness arguments, she was

able to prove the existence of solutions under very weak regularity assumptions.

She also discussed uniqueness but proved it only in a very specific case. Further

investigation on uniqueness was performed by Percivale in [14] and [15]. He is

the first to introduce analyticity hypothesis in this respect. But, his results apply

also only to very specific cases. The formulation of the problem with completely

inelastic impacts has been extensively studied by Moreau [12]. An existence result

was proved by Monteiro-Marques [10] in the particular case in which the configu-

ration space is euclidean R
d and the unilateral constraints are described by a single

smooth function. Very recently, Schatzman [19] studied the general one degree-of-

freedom problem with arbitrary impact constitutive law. In this case, she proved

uniqueness under analyticity assumption on the data.

None of these results has the generality required by Mechanics. The existence

and uniqueness results are proved under assumptions which are obviously not ful-

filled in most of discrete mechanical systems which may generally be encountered,

except the last result of Schatzman, but it is limited to the one degree-of-freedom

problem.

In this paper, the dynamics of discrete mechanical systems with perfect unilat-

eral constraints is formulated in a very general setting. To reach full generality, the

configuration space is supposed to be an arbitrary riemannian manifold instead of

an euclidean space. However, only the most elementary level of differential geom-

etry is needed. The resulting general evolution problem is studied. The existence

and uniqueness of a solution associated with given initial condition is proved pro-

vided the data are analytic.

In section 2, we give a precise mathematical definition of what we call discrete

mechanical system and system of bilateral constraints. We also recall some basic

results connected to these definitions that we shall use subsequently.

In section 3, a formulation of the equations of the dynamics of discrete me-

chanical systems with perfect unilateral constraints is presented. The content of

this section follows very closely the work of Moreau [12]. It is included since

Moreau restricts himself to completely inelastic impacts. More generality, includ-

ing the case of elastic impacts, is obtained here with no supplementary difficulty.

In section 4, we prove a local existence and uniqueness result concerning the

general problem of the dynamics of discrete mechanical systems with perfect uni-

lateral constraints, under the single assumption that the data are analytic. Existence

and uniqueness of a maximal solution follows immediately. A sufficient condition

to ensure that this maximal solution is defined for all time is also presented.
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In section 5, three examples are discussed. One is due to Moreau and another

one to Schatzman. They are included for sake of completeness. The aim of these

examples is to show that the regularity assumptions made in the previous section

are, in some sense, minimal.

In section 6, we illustrate the generality of the theorems of section 3 in applying

them to simple examples issuing from Mechanics.

In section 7, the continuous dependence of the solution on initial conditions is

discussed. Dependence on initial conditions is seen to be not continuous in general.

However, a restrictive case where continuity holds is exhibited.

In section 8, the numerical computation of the solution is discussed. Problems

arise in connection with non-continuous dependence on initial conditions. How-

ever, we recall an algorithm, which was first described by Moreau, and prove its

convergence in some restrictive cases.

The main results in this paper were announced in Ballard [3].

2. Discrete mechanical systems and perfect bilateral constraints

The aim of this section is to give a precise definition of what we call a discrete

mechanical system, to introduce notations and to recall some basic results that

we shall use later on. For a comprehensive presentation, the reader is referred to

Arnold [2] and Abraham & Marsden [1].

2.1. Discrete mechanical systems

Definition 1 A discrete mechanical system is:

– A Hausdorff, smooth (of class Cp with 2 ≤ p ≤ ∞) connected manifold Q of
dimension d whose topology has a countable basis.
Q is called the configuration space of the discrete mechanical system. d is
its number of degrees of freedom. The tangent bundle TQ of Q is called the
phase space or the state space. A point q of Q is a configuration of the system
and a point of TQ a state of the system. T ∗Q denotes the cotangent bundle,
ΠQ : TQ → Q and Π∗

Q : T ∗Q → Q the natural projections. TqQ is, as usual,
the tangent space at q and, to designate an element v of TQ, we shall often
use the redundant notation (q, v) where q = ΠQ(v) and v ∈ TqQ. A curve
on Q (i.e. a continuous mapping from a real interval I to Q) is also called a
motion of the system. If a motion q : I → Q admits a tangent vector at t, it will
be denoted by (q(t), q̇(t)). This notation is an abuse consecrated by tradition.
The dot will also be used in general to denote a derivative with respect to time.
A local chart on Q is also called a local parametrization of the system.

– A riemannian metric on Q denoted by (·, ·)q . The mapping

K

{
TQ → R

+

(q, v) �→ 1
2 (v, v)q = 1

2 ‖v‖2q
(1)

is the kinetic energy of the system.
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– A real interval I and a smooth (of class Cp′
with 1 ≤ p′ ≤ p) mapping

f : TQ× I → T ∗Q such that:

∀(q, v) ∈ TQ, ∀t ∈ I, Π∗
Q (f(q, v; t)) = ΠQ(q, v) = q.

The mapping f is called virtual power of internal, external and inertial efforts
acting on the system or, in short, the efforts mapping. We will denote by 〈·, ·〉q
the local duality product on T ∗

q Q × TqQ and � (and � = �−1 its inverse) the
isomorphism of vector bundles from TQ onto T ∗Q canonically associated with
the riemannian metric on Q.

The Fundamental Principle of Dynamics asserts that any motion of the system

is of class C2 and has to satisfy:

∀t ∈ I, �
Dq̇(t)

dt
= f(q(t), q̇(t); t) (2)

where D
dt denotes the operator of covariant derivation along q(t) canonically asso-

ciated with the riemannian metric of Q.

In the sequel, for (U,ψ) a local chart on Q, (e1(q), e2(q), · · · , ed(q)) and(
e1(q), e2(q), · · · , ed(q)) will denote the dual basis of TqQ and T ∗

q Q naturally

associated with the considered chart. ψ(q), that we shall abusively continue to de-

note by q, is an element
(
q1, q2, · · · , qd) of Rd. If q(t) is a smooth motion on Q,(

q̇1(t), q̇2(t), · · · , q̇d(t)) will be the components of its tangent vector (also said

velocity) in the local basis:

q̇(t) = q̇i(t)ei(q(t)),

where Einstein’s summation convention applies. It will always apply unless ex-

plicitly stated. No confusion induced by this notation should be expected since:

∀i ∈ {1, 2, · · · , d} , q̇i(t) =
d

dt
qi(t).

In general, we shall use the same notation to denote a function and its representa-

tive in a chart. As usual, gij(q) will denote the covariant components of the metric

in the considered chart and gij(q) its contravariant components. Γ i
jk(q) will be the

associated Christoffel symbols:

Γ i
jk(q) =

1

2
gih(q)

(
∂ghk
∂qj

(q) +
∂gjh
∂qk

(q)− ∂gjk
∂qh

(q)

)
. (3)

Proposition 2 (Lagrange) Let (U,ψ) be a local chart and q(t) a C2 motion on
Q. One has:

�
Dq̇(t)

dt
=

(
d

dt

∂

∂q̇i
K(q(t), q̇(t))− ∂

∂qi
K(q(t), q̇(t))

)
ei(q(t)).
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Proof. It is straightforward since:

�
Dq̇

dt
= gij

(
d

dt
q̇j + Γ j

klq̇
kq̇l
)
ei,

= gij

(
d

dt
q̇j +

1

2
gjh
(
∂ghl
∂qk

+
∂ghk
∂ql

− ∂gkl
∂qh

)
q̇kq̇l

)
ei,

=

(
gij

d

dt
q̇j +

1

2
δhi

(
∂ghl
∂qk

+
∂ghk
∂ql

− ∂gkl
∂qh

)
q̇kq̇l

)
ei,

=

(
gij

d

dt
q̇j +

∂gij
∂qk

q̇j q̇k − 1

2

∂gjk
∂qi

q̇j q̇k
)
ei,

=

(
d

dt

∂

∂q̇i

(
1

2
q̇jgjkq̇

k

)
− ∂

∂qi

(
1

2
q̇jgjkq̇

k

))
ei.

��

Coming back to the equation of motion (2), suppose we are given in supple-

ment an element t0 of I , said initial instant, and an element (q0, v0) of TQ, said

initial state. Then, we obtain the following Cauchy problem C on Q:

C
⎧⎨
⎩ �

Dq̇

dt
= f (q(t), q̇(t); t)

(q(t0), q̇(t0)) = (q0, v0) .

Cauchy-Lipschitz theorem guarantees existence and uniqueness of a maximal C2

solution (Jm, qm) where Jm is an open subinterval of I including t0 and qm a C2

motion defined on Jm. This expresses the fact that any other solution (J, q) of C is

necessarily a restriction of qm:

J ⊂ Jm and qm|J = q

This result allows us to associate with any discrete mechanical system a dynamical

system, that is a two real parameters collection Fs,t of mappings from TQ into TQ
such that:

Ft3,t2 ◦ Ft2,t1 = Ft3,t1 and Ft,t = Id.

To illustrate these basic definitions and results, we give a simple example that

we shall reuse later on in a slightly different context. Consider a plane system

of two homogeneous rigid bars 1 and 2. The bar 1, of length l1 and mass m1 is

connected to a fixed support by means of a perfect ball-and-socket joint equipped

with a spiral spring of stiffness k1. The bar 2, of length l2 and mass m2 is connected

to the free extremity of the bar 1 by means of another ball-and-socket joint also

equipped with a spiral spring of stiffness k2. A force acts on the free extremity of

the bar 2. This force remains parallel to the direction of the bar 2 and is of constant

magnitude λ > 0 (see figure 2.1). With this system is associated the following

discrete mechanical system:



6 Patrick BALLARD

l , m11 1q

1k

k2

l , m22

2qλ

Fig. 1. Geometry of the double pendulum.

– The configuration space is R
2 equipped with its canonical structure of C∞

manifold (it is not the 2-torus since the spiral springs impose to be able to

count the ‘number of turns’). This manifold may be represented by a single

chart; in other terms, there exists a global parametrization of the system. In the

sequel, we shall only use the chart (q1, q2) defined by the angular measures

associated with each of the joints.

– The kinetic energy is:

K =
1

2

∫ l1

0

m1

l1
s2
(
q̇1
)2

ds

+
1

2

∫ l2

0

m2

l2

(
l21
(
q̇1
)2

+ s2
(
q̇2
)2

+ 2l1s cos
(
q1 − q2

)
q̇1q̇2

)
ds

=
1

2

(
1

3
m1l

2
1

(
q̇1
)2

+m2l
2
1

(
q̇1
)2

+
1

3
m2l

2
2

(
q̇2
)2

+m2l1l2 cos
(
q1 − q2

)
q̇1q̇2

)
.

This kinetic energy defines a riemannian structure on the configuration space.

The expression of the metric tensor in the considered chart is:

g11
(
q1, q2

)
=
(m1

3
+m2

)
l21,

g12
(
q1, q2

)
=

1

2
m2l1l2 cos

(
q1 − q2

)
= g21

(
q1, q2

)
,

g22
(
q1, q2

)
=

1

3
m2l

2
2.

– The efforts mapping has for expression in the considered chart:

f(q, q̇; t) =
[
λl1 sin

(
q1 − q2

)− (k1 + k2) q
1 + k2q

2
]
e1(q)
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+
[
k2q

1 − k2q
2
]
e2(q).

Proposition 2 allows us to form easily the equation of motion in the considered

chart:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
m1

3 +m2

)
l21 q̈

1 + 1
2m2l1l2 cos

(
q1 − q2

)
q̈2 + 1

2m2l1l2 sin
(
q1 − q2

) (
q̇2
)2

= λl1 sin
(
q1 − q2

)− (k1 + k2) q
1 + k2q

2

1
2m2l1l2 cos

(
q1 − q2

)
q̈1 + 1

3m2l
2
2 q̈

2 − 1
2m2l1l2 sin

(
q1 − q2

) (
q̇1
)2

= k2
(
q1 − q2

)
(4)

The deterministic conclusion of Cauchy-Lipshitz theorem on the dynamic evo-

lution of the system is illusive. Indeed, if we add to the differential system (4) the

initial condition:

q1(0) = q2(0) = q̇1(0) = q̇2(0) = 0,

it is easily seen that the maximal solution is the identically vanishing function on

the real line. But, Poincaré-Lyapunov theory shows that this solution is unstable for

some value of λ and the real motion will differ in this case from this trivial solution.

The correct analysis of the motion should in this case refer to some investigation of

topological nature on the dynamical system generated by the equation of motion.

In any case, one has to abandon the objective of predicting exactly the motion of

the system. One has to accept to obtain only partial information on this motion:

this is a consequence of the over-idealization made during the modelling process.

However, Cauchy-Lipschitz theorem is at the basis of any further analysis which

has to be performed on the equation of motion. This fact will be discussed with

more details in section 7 in the context of the dynamics of discrete mechanical

systems with perfect unilateral constraints.

2.2. Bilateral constraints

One may introduce on discrete mechanical system another type of efforts, not

taken into account by the efforts mapping f . Indeed, one may specify some efforts

by their kinematical effects: one speaks of constraint. A constraint induces a re-

striction on the admissible motions of the system which is expressed by means of

a finite number n of smooth real functions defined on Q:

∀i ∈ {1, 2, · · · , n} , ϕi(q) = 0 (5)

The word constraint in the singular will be used indifferently to speak either of

a constraint specifically associated with a single function ϕi or of the constraint

associated with all the functions ϕi. In this terminology, a set of constraints is still

a constraint. In formula (5), the constraint is said holonomic (because it applies on

the configuration and not on the state), scleronomic (because it does not depend

explicitly on time) and bilateral (because it is expressed only by equalities and not

inequalities). We denote by S the following subset of Q:

S = {q ∈ Q ; ∀i ∈ {1, 2, · · · , n} , ϕi(q) = 0} ,
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and we add the assumption that the functions ϕi are functionally independent:

for all q in S, the dϕi(q) (i ∈ {1, 2, · · · , n}) are linearly independent in T ∗Q.

As a consequence, S is a submanifold of Q of dimension d − n. The realization

of kinematical specifications (5) necessarily involves a virtual power of reaction

efforts mapping R taking values in T ∗Q. It is a priori unknown.

Now, consider an initial instant t0 in I and an initial state (q0, v0) compatible

with the constraint (i.e. (q0, v0) ∈ TS ⊂ TQ). The evolution problem associated

with the discrete mechanical system with bilateral constraint is: find T > t0, q ∈
C2 ([t0, T [;Q) and R ∈ C0 ([t0, T [;T

∗Q) such that:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∀t ∈ [t0, T [, �
Dq̇(t)

dt
= f(q(t), q̇(t); t) +R(t),

∀t ∈ [t0, T [, q(t) ∈ S,

(q(t0), q̇(t0)) = (q0, v0).

These equations fail to determine the motion of the system: one has to precise

the mapping R by means of a phenomenological assumption on the way the con-

straint acts. A constraint will be said perfect if the associated reaction efforts do

not produce work in any virtual velocity compatible with the constraint:

∀v ∈ {v ∈ TqM ; ∀i ∈ {1, 2, · · · , n} , 〈dϕi(q), v〉q = 0} � TS, 〈R, v〉q = 0.

As a result:

∃ (λi)i=1,2,···,n ∈ R
n R =

n∑
i=1

λidϕi(q).

Therefore, if the bilateral constraint is perfect, the evolution problem may be writ-

ten as: find T > t0, q ∈ C2 ([t0, T [;Q) and (λi)i=1,2,···,n ∈ (C0 ([t0, T [;T
∗Q)

)n
such that:

EQ

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∀t ∈ [t0, T [, �
DQq̇(t)

dt
= f(q(t), q̇(t); t) +

n∑
i=1

λi(t)dϕi(q(t)),

∀t ∈ [t0, T [, q(t) ∈ S,

(q(t0), q̇(t0)) = (q0, v0),

where
DQ

dt is the operator of covariant derivation on Q.

Let q be a point of Q, v a vector of TqQ, and E a subspace of TqQ. The orthog-

onal projection of v on E for the scalar product of TQ induced by the riemannian

structure of Q will be denoted by Projq [v;E]. Similarly, Proj∗q [v
∗;E∗] will de-

note the orthogonal projection of the 1-form v∗ on the subspace E∗ of T ∗
q Q. Then,

consider the evolution problem ES : find T > t0 and q ∈ C2 ([t0, T [;S) such that:

ES

⎧⎨
⎩∀t ∈ [t0, T [, �

DS q̇(t)

dt
= Proj∗q(t)

[
f(q(t), q̇(t); t);T ∗

q(t)S
]
,

(q(t0), q̇(t0)) = (q0, v0),

where T ∗
q S is considered as a subspace of T ∗

q Q and DS

dt is the operator of covariant

derivation on S equipped with the riemannian structure inherited from that of Q.

We have:
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Proposition 3 Problems EQ and ES are equivalent: any solution of EQ generates
a solution of ES and reciprocally. Moreover, if Q and the functions ϕi are of class
Cp (p ≥ 2), and f of class Cp−1 then the unique maximal solution of EQ and ES
is of class Cp. If Q, f and the ϕi are analytic functions then so is the maximal
solution of EQ and ES .

Proof. First, let us identify TqS and T ∗
q S to subspaces of TqQ and T ∗

q Q. One

has T ∗
q S = � (TqS). T

∗
q S and

⊕n
i=1 R dϕi(q) are complementary orthogonal sub-

spaces of T ∗
q Q and (Chavel [7], p. 54):

DS q̇

dt
= Projq

[
DQq̇

dt
;TqS

]
.

Now, let q be a solution of EQ:

Proj∗q

[
�
DQq̇

dt
;T ∗

q S

]
= Proj∗q

[
f(q, q̇; t) +

n∑
i=1

λidϕi(q);T
∗
q S

]
.

But,

Proj∗q

[
f(q, q̇; t) +

n∑
i=1

λidϕi(q);T
∗
q S

]
= Proj∗q

[
f(q, q̇; t);T ∗

q S
]
,

and,

Proj∗q

[
�
DQq̇

dt
;T ∗

q S

]
= �Projq

[
DQq̇

dt
;TqS

]
= �

DS q̇

dt
,

which show that q is a solution of ES .

Reciprocally, let q be a solution of ES . From:

�
DS q̇

dt
= �

DQq̇

dt
+

n∑
i=1

αidϕi(q),

Proj∗q
[
f(q, q̇; t);T ∗

q S
]
= f(q, q̇; t) +

n∑
i=1

βidϕi(q),

we deduce the existence of n functions λi : [t0, T [→ R such that:

�
DQq̇

dt
= f(q, q̇; t) +

n∑
i=1

λidϕi(q)

It follows that:

⎛
⎜⎜⎝

...

λi

...

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

...

· · · (dϕi(q), dϕj(q))q · · ·
...

⎞
⎟⎟⎠

−1
⎛
⎜⎜⎜⎝

...(
�
DQq̇
dt − f(q, q̇; t), dϕi(q)

)
q

...

⎞
⎟⎟⎟⎠
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where the Gram matrix is invertible because of the assumption on the functions

ϕi. This shows that the function λi are uniquely determined and that they are

continuous. Therefore, q generates a solution of EQ.

The second part of Proposition 3 follows from standart results on ordinary

differential equations (see for example Coddington & Levinson [8]).

The moral of Proposition 3 is that adding a perfect bilateral constraint to a

discrete mechanical system generates another discrete mechanical system with

smaller number of degrees of freedom.

3. Discrete mechanical system with perfect unilateral constraints

This section deals with the formulation of the equation of motion of a discrete

mechanical system when some perfect unilateral constraints are added. All the

basic ideas of this section are due to Moreau [12]. It is included since Moreau re-

stricts himself to the special case of completely inelastic impacts and also because

Moreau does not consider the general case of an arbitrary configuration manifold

equipped with an arbitrary riemannian structure.

3.1. Kinematical setting

Consider a discrete mechanical system according to section 2.1 and suppose

that a finite number n of unilateral constraints are taken into account:

∀i ∈ {1, 2, · · · , n} , ϕi(q) ≤ 0, (6)

where the ϕi : Q → R are C1 functions. The closed subset A of Q defined by:

A = {q ∈ Q ; ∀i ∈ {1, 2, · · · , n} , ϕi(q) ≤ 0}
is called the admissible configuration set. We define the mapping J by:

J

{
Q → P ({1, 2, · · · , n})
q �→ J(q) = {i ∈ {1, 2, · · · , n} ; ϕi(q) ≥ 0}

where P ({1, 2, · · · , n}) denotes the set of all subsets of {1, 2, · · · , n}. The set

J(q) is called the set of all active constraints in the configuration q. As in the case

of bilateral constraints, a functionally independence assumption is made on the

functions ϕi:

∀q ∈ A, (dϕi(q))i∈J(q) is linear independent in T ∗
q Q (7)

As an easy consequence of the regularity assumptions made on the functions ϕi,

the boundary ∂A and the interior
◦
A of A in Q are such that:

∂A ⊂ ⋃n
i=1 ϕ

−1
i ({0}) , (8)

◦
A= J−1 ({∅}) (9)
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Consider a motion in A (i.e. a continuous mapping from a real interval I to A)

and assume that a right velocity q̇+(t) ∈ Tq(t)Q exists for all instant t of I . We

necessarily have:

∀i ∈ {1, 2, · · · , n} , ∀t ∈ I, ϕi(q(t)) = 0 =⇒ 〈dϕi(q(t)), q̇
+(t)〉q(t) ≤ 0

or, equivalently,

∀i ∈ {1, 2, · · · , n} , ∀t ∈ I, ϕi(q(t)) = 0 =⇒ (∇ϕi(q(t)), q̇
+(t)

)
q(t)

≤ 0

where ∇ϕi(q) is the gradient of ϕi at q defined by:

∇ϕi(q) = � (dϕi(q)) .

Thus, if the system has configuration q, then the right velocity q̇+ is necessarily in

the closed convex cone V (q) of TqQ defined by:

V (q) = {v ∈ TqQ ; ∀i ∈ J(q), 〈dϕi(q), v〉q ≤ 0} .

V (q) is called the cone of admissible right velocities at the configuration q. In

particular,

q ∈ ◦
A (i.e. J(q) = ∅) =⇒ V (q) = TqQ.

Similarly, if a left velocity q̇− ∈ TqQ exists, then,

q̇− ∈ −V (q)

3.2. Equation of motion

As for bilateral constraints, the realization of the constraints induces some re-

action effort R. The following hypothesis are made:

– H1: the unilateral constraints are of type contact without adhesion:

∀v ∈ V (q), 〈R, v〉q ≥ 0

– H2: the unilateral constraints are perfect:

∀v ∈ {v ∈ TqM ; ∀i ∈ J(q), 〈dϕi(q), v〉q = 0} , 〈R, v〉q = 0.

There results from hypothesis H1 and H2 and Farkas’ lemma (see e.g. Rockafellar

[16], p. 200) that:

∃ (λi)i=1,2,···,n ∈ R
n R =

n∑
i=1

λidϕi(q),

i ∈ J(q) ⇒ λi ≤ 0,

i �∈ J(q) ⇒ λi = 0.
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Thus, the reaction effort R ∈ T ∗Q must be such that:

−R ∈ N∗(q) def
=

{
n∑

i=1

λidϕi(q) ; ∀i ∈ J(q), λi ≥ 0, ∀i �∈ J(q), λi = 0

}
.

(10)

N∗(q) is a closed convex cone of T ∗
q Q and it is the polar cone of V (q) in the

duality
(
TqQ, T ∗

q Q
)
. We will also have to consider the polar cone N(q) of V (q)

for the euclidean structure of TqQ:

N(q) =

{
n∑

i=1

λi∇ϕi(q) ; ∀i ∈ J(q), λi ≥ 0, ∀i �∈ J(q), λi = 0

}
.

Now, consider a motion q(t) starting at q0 ∈ ◦
A at time t0 with velocity v0.

Assumed to be continuous, q(t) remains in
◦
A on a right neighbourhood of t0. By

formula (10), the reaction effort R vanishes as long as q(t) is in
◦
A and the motion

is governed by the ordinary differential equation:⎧⎨
⎩ �

Dq̇

dt
= f(q, q̇; t),

(q(t0), q̇(t0)) = (q0, v0).

Suppose that the solution of this Cauchy problem meets ∂A at some instant greater

than t0. Denote by T the smallest of these instants. The motion admits a left veloc-

ity vector v−T at time T . Of course, there may happen: v−T �∈ V (q(T )). In this case,

no differentiable prolongation of the motion can exist in A for t greater than T .

The requirement of differentiability has to be dropped. An instant such T is called

an instant of impact. However, we are going to still require the existence of a right

velocity vector q̇+(t) ∈ V (q(t)) at every instant t. The right velocity need not to

be a continuous function of time and the equation of motion

�
Dq̇+

dt
= f(q, q̇+; t) +R,

should be understood in sense of Schwartz’s distribution. Actually, we require R
to be a vector valued measure rather than a general distribution. We denote by

MMA(I;Q) (motions with measure acceleration) the set of all absolutely contin-

uous motions q(t) from a real interval I to Q admitting a right velocity q̇+(t) at

every instant t of I and such that the function q̇+(t) has locally bounded variation

over I . Naturally, bounded variation is classically defined only for functions tak-

ing values in a normed vector space. However, for any absolutely continuous curve

q(t) on a riemannian manifold, parallel translation along q(t) classically provides

intrinsic identification of the tangent spaces at different points of the curve and so,

the definitions can easily be carried over to this case. The precise mathematical

setting is postponed to the appendix. The reader will notice from the appendix that

with any motion q ∈ MMA(I;Q) is intrinsically associated the covariant Stieljes

measure Dq̇+ of its right velocity q̇+. The equation of motion takes the form:

�Dq̇+ = f(q, q̇+; t) dt+R,
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where dt denotes the Lebesgue measure. We have to give a precise meaning to

condition (10) with R being a vector valued measure. By convention, we shall

write:

R ∈ −N∗(q(t))

to mean: if θ ∈ L1
loc (I, q, |R| ;T ∗Q) is the density of measure R with respect to

its modulus measure |R| defined by proposition 25 of the appendix, then, one has:

θ(t) ∈ −N∗(q(t)) for |R| -a.a. t ∈ I. (11)

This requirement is easily seen to be equivalent to the requirement of the existence

of n nonpositive real measures λi such that:

R =
∑n

i=1 λi dϕi(q(t)),

∀i ∈ {1, 2, · · · , n} , Suppλi ⊂ {t;ϕi(q(t)) = 0} .
(12)

Using this convention, the final form of the equation of motion is:

R = �Dq̇+ − f(q(t), q̇+(t); t) dt ∈ −N∗(q(t)) (13)

3.3. The impact constitutive equation

We begin this section by an example. Consider the one degree-of-freedom me-

chanical system whose configuration space is R equipped with its canonical eu-

clidean structure. The efforts mapping f vanishes identically and the unilateral

constraint is represented by the single function ϕ1(q) = q so that the admissi-

ble configuration set A is R−. At initial time t0 = 0, we consider an initial state

(q0, v0) such that q0 < 0 and v0 > 0. It is readily seen from the equation of mo-

tion (13) that an impact necessarily occurs at time t = −q0/v0. At this time, the

left velocity is v0. But, the right velocity can take any negative value and whatever

it is, it is compatible with the equation of motion.

The reason for this indetermination lies in the phenomenological nature of the

interaction of the system with the obstacle. Thus, we are led to make the general

following hypothesis:

– H3: the interaction of the system with the obstacle at time t is completely de-

termined by the present configuration q(t) and the present left velocity q̇−(t).
In other terms, we postulate the existence of a mapping F : TQ → TQ de-

scribing the interaction of the system with the obstacle during an impact:

∀t, q̇+(t) = F (q(t), q̇−(t)) (14)

To ensure compatibility with the equation of motion (13), the mapping F should

satisfy:

∀q ∈ A, ∀v− ∈ −V (q),
F (q, v−) ∈ V (q),
F (q, v−)− v− ∈ −N(q).

(15)

First, consider the particular case of a motion with no more than one active

constraint at any time (∀t, CardJ(q(t)) ≤ 1). The normal cone N(q(t)) is either
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{0} or a half-line and hypothesis H3 is equivalent to postulate the existence of an

impact function φ : TQ → R such that:

∀t, q̇+(t) = q̇−(t)− [1 + φ
(
q(t), q̇−(t)

)]
Projq(t)

[
q̇−(t);N(q(t))

]
. (16)

Equation (16) admits the equivalent form:

q̇+(t) = Projq(t)
[
q̇−(t);V (q(t))

]− φ
(
q(t), q̇−(t)

)
Projq(t)

[
q̇−(t);N(q(t))

]
.

(17)

For the general case where more than one constraint may be active at a time,

we recall the following (Moreau [11]):

Lemma 4 (Moreau) Let V and N be two closed convex polar cones of a real
Hilbert space H . Then,

∀x ∈ H, x = Proj[x;V ] + Proj[x;N ] and (Proj[x;V ], Proj[x;N ])H = 0

As a consequence, the ‘impact constitutive equations’ (16) and (17) still make

sense and are still equivalent when more than one constraint may be active at a

time. Therefore, it is natural to retain only the particular forms (16) and (17) of the

general impact constitutive equation (14). As a result of this further hypothesis,

the phenomenology of the interation of the system with the obstacle during an

impact is described by the single impact function φ : TQ → R. The impact

function is also often called ‘restitution coefficient’. Naturally, the impact function

φ cannot be arbitrary and has to satisfy some consistency conditions. For example,

the normality condition in (15) requires:

∀q, q̇−, φ
(
q, q̇−

) ≥ −1.

But, this is not enough, we have to impose supplementary conditions on φ in order

to ensure:

q̇− ∈ −V (q) =⇒ q̇+ ∈ V (q). (18)

With respect to this, we have:

Proposition 5 Let V and N be two closed convex polar cones of a real Hilbert
space H . Consider v− ∈ −V such that Proj[v−;N ] �= 0 and φ ∈ R. Then,[

v+ = v− − (1 + φ)Proj[v−;N ] ∈ V
]⇐⇒ [φ ≥ 0]

Proof. For the ‘if’ part, suppose φ ≥ 0. By lemma 4, one gets:

Proj[v−;N ] = v− − Proj[v−;V ] ∈ −V.

But,

v+ = Proj[v−;V ] + φ
(−Proj[v−;N ]

)
,

and therefore, v+ ∈ V , since V is a convex cone.
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For the ‘only if’ part, we have by hypothesis,

Proj[v−;V ]− φProj[v−;N ] ∈ V.

Evaluating the scalar product with Proj[v−;N ] and using lemma 4, one gets:

−φ
∥∥Proj[v−;N ]

∥∥2
H

≤ 0,

and therefore the desired conclusion φ ≥ 0. ��
There results from proposition 5, that we have to require that the impact func-

tion φ should be nonnegative. This consistency assumption ensures that condi-

tions (15) and (18) will automatically be fulfilled.

At this stage, it should be underlined that hypothesis H3 implies the general

forms (16) or (17) for the impact constitutive equation only in the restrictive case

where only at most one constraint is active at a time. In case of multiple impacts,

the choice we made is only motivated by aesthetic considerations and also to fix

ideas, since the concept of restitution coefficient is so firmly anchored in minds.

We shall discuss more completely the relevance of that choice in section 6.4.

Now, let us examine another example. Consider the one degree of freedom

discrete mechanical system whose configuration space is R equipped with its

canonical structure of riemannian manifold. The efforts mapping is supposed to

be constant: f(q, q̇; t) ≡ 2. To this discrete mechanical system, we add the unilat-

eral constraint described by the single function ϕ1(q) = q. Thus, A = R
−. The

impact constitutive equation is given by formula (16) where the impact function

is supposed to be the constant 1/2: φ ≡ 1/2. This mechanical system is a for-

mal description of the physical occurence of a single particle subjected to gravity

and bouncing on the floor. Consider the initial instant t0 = 0 and the initial state

(q0, v0) = (−1, 0). It is readily seen that the function q : R+ → R
− defined by:

∀t ∈ [0, 1], q(t) = t2 − 1,

∀t ∈ [1, 2], q(t) = t2 − 3t+ 2,

∀t ∈ [3− 1
2n−1 , 3− 1

2n

]
, q(t) = t2 +

(−6 + 3
2n

)
t+
(
3− 1

2n−1

) (
3− 1

2n

)
,

∀t ∈ [3,+∞[, q(t) = 0

(n ∈ N) belongs to MMA(R+;R−), satisfies the equation of motion (13) and also

the impact constitutive equation (16). Note, by the way, that this motion exhibits

an infinite number of impacts on a compact time subinterval. It could easily be

proved that no motion, defined on [0,∞[, with finite number of impact on every

compact interval can exist. Now, we are going to analyse what happens when the

flow of time is reversed. Let define q′ by:

q′
{
[0, 4] → R

−

t �→ q(4− t)

Considering the initial state (q0, v0) = (0, 0) at t0 = 0, it is easily seen that q′

satisfies both the equation of motion and the impact constitutive equation as soon
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as the impact function is replaced by φ′ ≡ 2. But, q′′ ≡ 0 is also seen to satisfy the

same initial condition, the equation of motion and the impact constitutive equation.

To eliminate this pathology of non-uniqueness, we are led to add the following

hypothesis:

– H4: the kinetic energy of the system can not increase during an impact:

∀t, 1

2

∥∥q̇+(t)∥∥2
q(t)

≤ 1

2

∥∥q̇−(t)∥∥2
q(t)

. (19)

Taking into account the impact constitutive equation (16), condition (19) can be

rewritten as:

Projq
[
q̇−;V

]2
+ φ2Projq

[
q̇−;N

]2 ≤ Projq
[
q̇−;V

]2
+ Projq

[
q̇−;N

]2
,

which implies φ ≤ 1 as soon as Projq [q̇
−;N ] �= 0.

The final form of the impact constitutive equation is therefore:

∀t, q̇+(t) = q̇−(t)− [1 + φ
(
q(t), q̇−(t)

)]
Projq(t)

[
q̇−(t);N(q(t))

]
,

where the impact function φ is an arbitrary function from TQ to [0, 1]. The two

extreme cases φ ≡ 0 and φ ≡ 1 are called respectively the completely inelastic

and the elastic impact function.

3.4. Formulation of the evolution problem

In this subsection, the results of the previous subsections are brought together

in order to formulate the resulting evolution problem which will be studied in the

subsequent sections. We add an assumption on the regularity of the data: they are

supposed to be real-analytic. This assumption will be motivated by the counterex-

amples of section 5. The precise mathematical setting is:

– Q is an analytic riemannian manifold of dimension d.

– ϕi (i = 1, 2, · · · , n) are n real analytic functions defined on Q. One defines:

J(q) = {i ∈ {1, 2, · · · , n} ; ϕi(q) ≥ 0}
A = {q ∈ Q ; ∀i ∈ {1, 2, · · · , n}, ϕi(q) ≤ 0}

V (q) = {v ∈ TqQ ; ∀i ∈ J(q), 〈dϕi(q), v〉q ≤ 0}
TA+ = {(q, v) ∈ TQ ; q ∈ A and v ∈ V (q)}
TA− = {(q, v) ∈ TQ ; q ∈ A and v ∈ −V (q)}

N∗(q) =

{
n∑

i=1

λidϕi(q) ; ∀i ∈ J(q), λi ≥ 0, ∀i �∈ J(q), λi = 0

}

N(q) =

{
n∑

i=1

λi∇ϕi(q) ; ∀i ∈ J(q), λi ≥ 0, ∀i �∈ J(q), λi = 0

}

The functions ϕi are assumed to be functionally independent in the sense that:

∀q ∈ A, (dϕi(q))i∈J(q) is linearly independent in T ∗
q Q (20)
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– The impact function φ is an arbitrary function from TA− into [0, 1]. No regu-

larity assumption is made on φ.

– I is a real interval and O an open neighbourhood of TA+ in TQ and the efforts

mapping is supposed to be an analytic mapping from O×I into T ∗Q such that:

∀(q, v) ∈ O, ∀t ∈ I, Π∗
Q (f(q, v; t)) = ΠQ(q, v) = q.

– We are given an initial time t0 in I such that I contains a right neighboorhood

of t0 and an initial state (q0, v0) in TA+.

According to the previous subsections, the evolution problem associated with

the dynamics of discrete mechanical systems with perfect unilateral constraints

can be formulated as:

Problem P: find T ∈ I ∪ {+∞} , T > t0 and q ∈ MMA([t0, T [;Q) such that:

• (q(t0), q̇+(t0)) = (q0, v0) (21)

• ∀t ∈ [t0, T [
(
q(t), q̇+(t)

) ∈ TA+ (22)

• R = �Dq̇+ − f
(
q, q̇+; t

)
dt ∈ −N∗(q) for |R| -a.a. t ∈ [t0, T [ (23)

• ∀t ∈]t0, T [, q̇+ = q̇− − [1 + φ(q, q̇−)
]

Projq
[
q̇−;N(q)

]
(24)

where equation (23) is to be understood in the sense of convention (11).

The existence and uniqueness of solutions for problem P will be studied in

section 4. Before studying this question, let us state two almost obvious results.

Proposition 6 Any solution (T, q) of problem P satisfies:

– SuppR ⊂ {t ∈ [t0, T [; q(t) ∈ ∂A}
– For all open subinterval J of [t0, T [ such that q(J) ⊂ ◦

A, q|J is analytic and:

�
Dq̇(t)

dt
= f (q(t), q̇(t); t) , ∀t ∈ J.

Proof.

– Let J be an open subinterval of [t0, T [ such that q(J) ⊂ ◦
A. By equality (9), one

has:

∀t ∈ J, N∗(q(t)) = {0}.
As a consequence of relation (23) and convention (11), we get:

∀ϕ ∈ C0
c

(
J, q|J ;TQ

)
,

∫
J

〈ϕ(t), dR〉q(t) = 0,

which is R|J = 0 or SuppR ⊂ [t0, T [\J . The first item of proposition 6

follows.
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– We have:

�Dq̇+|J = f(q, q̇+; t) dt,

which is,

Dq̇+|J = � ◦ f(q, q̇+; t) dt.
There results from proposition 28 that q̇+|J is locally absolutely continuous,

and, therefore,

∀t ∈ J, q̇+(t) = q̇−(t) = q̇(t),

by proposition 32. We get

�
Dq̇

dt
= �

Dq̇+

dt
= f(q, q̇; t), for dt-a.a. t ∈ J,

again by proposition 28. The conclusion follows by use of classical results on

ordinary differential equations. ��
Proposition 7 (Energy inequality) Any solution (T, q) of problem P satisfies:

∀t1, t2 ∈ [t0, T [, t1 ≤ t2, K
(
q(t2), q̇

+(t2)
)−K

(
q(t1), q̇

+(t1)
)
=

1

2

∥∥q̇+(t2)∥∥2q(t2) − 1

2

∥∥q̇+(t1)∥∥2q(t1) ≤
∫ t2

t1

〈f (q(s), q̇+(s); s) , q̇+(s)〉q(s)ds
Proof. We have the following equality between real measures:(

q̇+(t) + q̇−(t)
2

, Dq̇+
)

q(t)

=

〈 q̇
+(t) + q̇−(t)

2
, f
(
q(t), q̇+(t); t

)〉q(t) dt+ 〈 q̇
+(t) + q̇−(t)

2
, R〉q(t).

Integrating over ]t1, t2] and using propositions 30 and 32, one gets:

1

2

∥∥q̇+(t2)∥∥2q(t2) − 1

2

∥∥q̇+(t1)∥∥2q(t1) = (25)∫
]t1,t2]

〈 q̇
+(t) + q̇−(t)

2
, f
(
q(t), q̇+(t); t

)〉q(t) dt+
∫
]t1,t2]

〈 q̇
+ + q̇−

2
, dR〉q.

Consider

D =

{
t ∈]t1, t2] ; q̇+(t) + q̇−(t)

2
�= q̇+(t)

}
.

D is (at most) countable and therefore Lebesgue-negligible. There results:

–
∫
D

〈 q̇
+(t) + q̇−(t)

2
, f
(
q(t), q̇+(t); t

)〉q(t) dt = 0

– Similarly: ∫
]t1,t2]\D

〈 q̇
+(t) + q̇−(t)

2
, f
(
q(t), q̇+(t); t

)〉q(t) dt =∫ t2

t1

〈q̇+(t), f (q(t), q̇+(t); t)〉q(t) dt
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– Let us denote by θR the density of measure R with respect to its modulus

measure |R| provided by proposition 26. Since:

∀t ∈]t1, t2] \D,
q̇+(t) + q̇−(t)

2
= q̇+(t) = q̇−(t),

we get:∫
]t1,t2]\D

〈 q̇
+(t) + q̇−(t)

2
, dR〉q(t) =

∫
]t1,t2]\D

〈q̇+(t), θR(t)〉q(t) d |R|

=

∫
]t1,t2]\D

〈q̇−(t), θR(t)〉q(t) d |R| (26)

But:

θR(t) ∈ −N∗(q(t)) for |R| -a.a. t ∈]t1, t2] \D,

and therefore the second integral in equation (26) is nonnegative whereas the

third is nonpositive since V (q(t) and N∗(q(t)) are polar cones. As a conse-

quence: ∫
]t1,t2]\D

〈 q̇
+(t) + q̇−(t)

2
, dR〉q(t) = 0

– The following integral:∫
D

〈 q̇
+(t) + q̇−(t)

2
, dR〉q(t) =

∫
D

(
q̇+(t) + q̇−(t)

2
, Dq̇+

)
q(t)

=
1

2

∑
t∈D

(∥∥q̇+(t)∥∥2
q(t)

− ∥∥q̇−(t)∥∥2
q(t)

)

is nonpositive by virtue of hypothesis H4.

The proposition results from equation (25) and from the estimation of these four

integrals. ��

4. Existence and uniqueness of solutions for problem P

This section is devoted to prove existence and uniqueness of a maximal so-

lution for problem P . Sufficient conditions to ensure that this maximal solution

is defined for all time are also given. More precisely, we are going to prove the

following results.

Theorem 8 There is local existence and uniqueness of solution of problem P in
the sense that:

– there exists a solution (T, q) of problem P . Actually, there exists T > t0 and
an analytic function q : [t0, T [→ Q which is a solution of problem P .

– if (T1, q1) and (T2, q2) are two solutions of problem P , then:

∃T, t0 < T ≤ min{T1, T2}, q1|[t0,T [ = q2|[t0,T [
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Then, a standart argument yields:

Corollary 9 Problem P admits a unique maximal solution (Tm, qm) (t0 < Tm ≤
+∞) in the sense that if (T, q) denotes an arbitrary solution of problem P , then:

T ≤ Tm and q = qm|[t0,T [ .

Moreover, for each t ∈ [t0, Tm[, there exists a right neighbourhood [t, t + η[ of t
such that the restriction of qm to [t, t+ η[ is analytic.

We shall say that the maximal solution of problem P is global if it is defined on

I ∩ [t0,+∞[.

Theorem 10 Assume that the configuration space Q is a complete riemannian
manifold and that the efforts mapping f admits the estimate:

∀(q, v) ∈ TA+, for dt-a.a. t ∈ I ∩ [t0,+∞[,

‖f(q, v; t)‖q ≤ l(t)
(
1 + d(q, q0) + ‖v‖q

)
,

where l(t) is a (necessarily nonnegative) function of L1
loc(R;R). Then, the maxi-

mal solution of problem P is global.

Let us say a word of how the proof of these results is going to be structured.

First, we construct Ta > t0 and an analytic function qa : [t0, Ta[→ Q such that

(Ta, qa) is a solution of problem P: this is the object of section 4.1. In section 4.2,

we prove that if q ∈ MMA([t0, T [;Q) is any other solution, then q and qa coin-

cide identically on a right neighbourhood of t0. This is the most difficult part to

prove but it is also the crucial one. For the proof of theorem 10, we first notice that

for q ∈ MMA([t0, T [;Q) (T finite) satisfying the equation of motion (23), bound-

edness of q̇+ implies finiteness of Var (q̇+; [t0, T [): this is the object of proposi-

tion 18 of section 4.3. Note that the impact constitutive equation (24) plays no role

in this property. Then, theorem 10 is deduced from the energy inequality (propo-

sition 7) and Gronwall-Bellman lemma.

In the proof of these results, we shall use the following notations. If J is any

subset of {1, 2, · · · , n}, Gram(J) will be the Gram matrix:

Gram(J) =

⎛
⎜⎜⎝

...

· · · (∇ϕi(q0),∇ϕj(q0))q0 · · ·
...

⎞
⎟⎟⎠

i,j∈J

.

If x is an arbitrary element of RJ whose components are xi with i ∈ J , then

(xi)i∈J will denote the columm matrix:

(xi)i∈J =

⎛
⎜⎜⎝

...

xi

...

⎞
⎟⎟⎠

i∈J

,

and T(xi)i∈J the associated row matrix:

T(xi)i∈J =
( · · · xi · · ·

)
i∈J

,
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4.1. Proof of local existence

Local existence is rather easy to prove in the setting of analytic data. The proof

is a little bit lengthy but involves no specific difficulty. We begin by technical

lemmas.

Let X(t) be a C∞ vector field along a C∞ curve q(t) on Q. The covariant

derivative D
dtX(t) of X along q defines a C∞ vector field along q. So, one may

consider its covariant derivative along q which will be denoted by D2

dt2X(t). By

induction, we get the definition of Di

dtiX(t) (i ∈ N
∗). One has:

Lemma 11 Let X be a C∞ vector field on Q and qI , qII two C∞ curves on Q.
m being a nonnegative integer, one assumes:

qI(t0) = qII(t0), q̇I(t0) = q̇II(t0),

and:

∀i ∈ {1, 2, · · · ,m} , Di

dti
q̇I(t0) =

Di

dti
q̇II(t0)

Then,

∀i ∈ {1, 2, · · · ,m+ 1} , Di

dti
X(qI(t0)) =

Di

dti
X(qII(t0))

Proof. Consider a local chart at qI(t0) = qII(t0). If q(t) is either qI(t) or qII(t):

q̇(t) = q̇i(t)ei(q(t)),

X(q(t)) = Xi(q(t))ei(q(t)),

D

dt
X(q(t)) =

[(∇Xi(q(t)), q̇(t)
)
q(t)

+ Γ i
jk(q(t))X

j(q(t))q̇k(t)
]
ei(q(t)).

Then,

D2

dt2X(q(t)) =
[(

D
dt∇Xi(q(t)), q̇(t)

)
q(t)

+
(∇Xi(q(t)), D

dt q̇(t)
)
q(t)

+
(
∇Γ i

jk(q(t)), q̇(t)
)
q(t)

Xj(q(t))q̇k(t)

+ Γ i
jk(q(t))

(∇Xj(q(t)), q̇(t)
)
q(t)

q̇k(t)

+ Γ i
jk(q(t))X

j(q(t))

((
Dq̇(t)
dt

)k
− Γ k

lm(q(t))q̇l(t)q̇m(t)

)

+ Γ i
jk(q(t))

(
DX(q(t))

dt

)j
q̇k(t)

]
ei(q(t)),

which gives the desired conclusion for the case m = 1. For arbitrary m, an easy

induction based on the same type of computation in a local chart shows the exis-

tence of functions hi : (TQ)
i−1 → TQ independent on the considered curve q(t)

and such that:

DiX(q(t))

dti
= hi

(
q(t), q̇(t),

Dq̇(t)

dt
, · · · , D

i−1q̇(t)

dti−1

)
.

��
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Exactly the same technique applies to prove

Lemma 12 Let X : TQ× I → TQ a C∞ mapping such that: ΠQ (X(q, v; t)) =
ΠQ(q, v) = q, where I denotes a real interval containing t0. Let m be an arbitrary
nonnegative integer and qI , qII two C∞ curves on Q such that:

qI(t0) = qII(t0), q̇I(t0) = q̇II(t0),

and:

∀i ∈ {1, 2, · · · ,m} , Di

dti
q̇I(t0) =

Di

dti
q̇II(t0)

Then,

∀i ∈ {1, 2, · · · ,m} , Di

dti
X
(
qI(t0), q̇

I(t0); t0
)
=

Di

dti
X
(
qII(t0), q̇

II(t0); t0
)

Lemma 13 Consider (q0, v0) ∈ TA+ and J ⊂ J(q0) an arbitrary subset of:

{i ∈ J(q0); 〈dϕi(q0), v0〉q0 = 0} .
We denote by qu and qc some local solutions of problems:

Eu

⎧⎨
⎩ �

Dq̇u
dt

= f(qu, q̇u; t)

(qu(t0), q̇u(t0)) = (q0, v0)

Ec

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�
Dq̇c
dt

= f(qc, q̇c; t) +
∑

i∈J(q0)

λi(t)dϕi(qc)

∀i ∈ J ϕi(q) ≡ 0

∀i ∈ J(q0) \ J λi(t) ≡ 0

(qc(t0), q̇c(t0)) = (q0, v0)

furnished respectively by Cauchy-Lipschitz theorem and proposition 3. Then:

Gram(J(q0)) (λi(t0))i∈J(q0)
=

(
d2

dt2
ϕi(qc(t0))− d2

dt2
ϕi(qu(t0))

)
i∈J(q0)

Morover, if:

∃m ∈ N∗, ∀i = 0, 1, · · · ,m− 1, ∀j ∈ J(q0),
di

dti
λj(t0) = 0,

then:

Gram(J(q0))

(
dm

dtm
λi(t0)

)
i∈J(q0)

=

(
dm+2

dtm+2
ϕi(qc(t0))− dm+2

dtm+2
ϕi(qu(t0))

)
i∈J(q0)
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Proof. First, from:

(qu(t0), q̇u(t0)) = (qc(t0), q̇c(t0)) = (q0, v0),

it follows:

∀i ∈ J(q0),
D

dt
∇ϕi(qu(t0)) =

D

dt
∇ϕi(qc(t0)),

on one hand, and:

D

dt
q̇u(t0)− D

dt
q̇c(t0) = −

∑
i∈J(q0)

λi(t0)∇ϕi(q0),

on the other hand. Therefore:

∀i ∈ J(q0),
d2

dt2
ϕi(qc(t0))− d2

dt2
ϕi(qu(t0))

=

(
D

dt
∇ϕi(qc(t0)), v0

)
q0

+

(
∇ϕi(qc(t0)),

D

dt
q̇c(t0)

)
q0

−
(
D

dt
∇ϕi(qu(t0)), v0

)
q0

−
(
∇ϕi(qu(t0)),

D

dt
q̇u(t0)

)
q0

,

=
∑

j∈J(q0)

λj(t0) (∇ϕi(q0),∇ϕj(q0))q0 ,

which is the announced result.

Second, assume:

∀j ∈ J(q0), ∀i = 0, 1, · · · ,m− 1,
di

dti
λj(t0) = 0.

An easy induction based on lemmas 11 and 12 gives:

∀i = 1, 2, · · · ,m,
Di

dti
q̇u(t0) =

Di

dti
q̇c(t0),

Dm+1

dtm+1
q̇u(t0) =

Dm+1

dtm+1
q̇c(t0)−

∑
j∈J(q0)

dm

dtm
λj(t0)∇ϕj(q0),

and,

∀j ∈ J(q0), ∀i = 1, 2, · · · ,m+ 1,
Di

dti
∇ϕj(qu(t0)) =

Di

dti
∇ϕj(qc(t0)).

Therefore:

∀i ∈ J(q0),
dm+2

dtm+2
ϕi(qc(t0))− dm+2

dtm+2
ϕi(qu(t0))

=
∑

j∈J(q0)

dm

dtm
λj(t0) (∇ϕi(q0),∇ϕj(q0))q0 .

��
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Proposition 14 Considering the data of problem P , we denote by P ′ the following
evolution problem.
Problem P ′: find T ∈ I (T > t0), an analytic curve q : [t0, T [→ Q and n analytic
functions λi : [t0, T [→ R such that:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∀t ∈ [t0, T [, �
Dq̇(t)

dt
= f(q(t), q̇(t); t) +

n∑
i=1

λi(t)dϕi(q(t)),

∀t ∈ [t0, T [,
∀i = 1, 2, · · · , n, λi(t) ≤ 0, ϕi(q(t)) ≤ 0, λi(t)ϕi(q(t)) = 0

(q(t0), q̇(t0)) = (q0, v0)

Then, problem P ′ admits a solution (T, q, λ1, · · · , λn) unique in the sense that any
other solution is either a restriction or an analytic extension of (T, q, λ1, · · · , λn).

Proof. First, let us precise once for all that the meaning of an analytic function on

a non necessarily open set S is that there is an analytic extension to an open set O
containing S.

Step 1. Construction of some functions q and λi.
Define:

J0 = {i ∈ {1, 2, · · · , n} ; ϕi(q0) = 0 and 〈dϕi(q0), v0〉q0 = 0} ,
and I0 = K0 = ∅. We denote by q(1) a solution of the cauchy problem:

C(1)

⎧⎨
⎩ �

Dq̇(t)

dt
= f(q(t), q̇(t); t),

(q(t0), q̇(t0)) = (q0, v0).

Define:

C(1) =
{
(λ∗

i ) ∈ R
J0 ; ∀i ∈ J0, λ∗

i ≤ 0 and ∀i ∈ K0, λ∗
i = 0

}
= (R−)J0

C(1)′ =
{
(μ∗

i ) ∈ R
J0 ; ∀i ∈ I0, μ∗

i = 0 and ∀i ∈ J0, μ∗
i ≤ 0

}
= (R−)J0

Let
(
λ
(1)
i

)
i∈J0

∈ C(1) be the solution of the variational inequality:

∀ (λ∗
i )i∈J0

∈ C(1), T
(
λ
(1)
i

)
i∈J0

Gram(J0)
(
λ∗
i − λ

(1)
i

)
i∈J0

≥ T

(
− d2

dt2
ϕi(q

(1)(t0))

)
i∈J0

(
λ∗
i − λ

(1)
i

)
i∈J0

furnished by Lions-Stampacchia theorem (see [9]). Let
(
μ
(1)
i

)
i∈J0

∈ C(1)′ be

defined by:

(
μ
(1)
i

)
i∈J0

= Gram(J0)
(
λ
(1)
i

)
i∈J0

+

(
d2

dt2
ϕi(q

(1)(t0))

)
i∈J0

(27)
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and I1, J1, K1 by:

I1 = I0 ∪
{
i ∈ J0 ; λ

(1)
i < 0 and μ

(1)
i = 0

}
,

J1 =
{
i ∈ J0 ; λ

(1)
i = 0 and μ

(1)
i = 0

}
,

K1 = K0 ∪
{
i ∈ J0 ; λ

(1)
i = 0 and μ

(1)
i < 0

}
,

Now suppose q(n),
(
λ
(n)
i

)
,
(
μ
(n)
i

)
, In, Jn and Kn are constructed. Then,

q(n+1) is defined to be a local solution of the Cauchy problem:

C(n+1)

⎧⎪⎨
⎪⎩

�
Dq̇(t)

dt
= f(q(t), q̇(t); t) +

∑
j∈J0

n∑
i=1

λ
(i)
j

(t− t0)
j−1

(j − 1)!
dϕj(q(t)),

(q(t0), q̇(t0)) = (q0, v0).

C(n+1) =
{
(λ∗

i ) ∈ R
J0 ; ∀i ∈ Jn, λ∗

i ≤ 0, and ∀i ∈ Kn, λ∗
i = 0

}
,

C(n+1)′ =
{
(μ∗

i ) ∈ R
J0 ; ∀i ∈ In, μ∗

i = 0, and ∀i ∈ Jn, μ∗
i ≤ 0

}
.(

λ
(n+1)
i

)
i∈J0

∈ C(n+1) is defined to be the solution of the variational inequality:

∀ (λ∗
i )i∈J0

∈ C(n+1), T
(
λ
(n+1)
j

)
i∈J0

Gram(J0)
(
λ∗
i − λ

(n+1)
i

)
i∈J0

≥ T

(
− dn+2

dtn+2
ϕi(q

(n+1)(t0))

)
i∈J0

(
λ∗
i − λ

(n+1)
i

)
i∈J0(

μ
(n+1)
i

)
i∈J0

∈ C(n+1)′ is defined by:

(
μ
(n+1)
i

)
i∈J0

= Gram(J0)
(
λ
(n+1)
i

)
i∈J0

+

(
dn+2

dtn+2
ϕi(q

(n+1)(t0))

)
i∈J0

and In+1, Jn+1, Kn+1 by:

In+1 = In ∪
{
i ∈ Jn ; λ

(n+1)
i < 0 and μ

(n+1)
i = 0

}
,

Jn+1 =
{
i ∈ Jn ; λ

(n+1)
i = 0 and μ

(n+1)
i = 0

}
,

Kn+1 = Kn ∪
{
i ∈ Jn ; λ

(n+1)
i = 0 and μ

(n+1)
i < 0

}
,

Thus, the sequences q(n),
(
λ
(n)
i

)
i∈J0

,
(
μ
(n)
i

)
i∈J0

, In, Jn and Kn are defined

by induction for n ∈ N
∗ and for all n in N

∗, In, Jn, Kn is a partition of J0.

Moreover, one has:

∀n ∈ N,

In ⊂ In+1,

Jn+1 ⊂ Jn,

Kn ⊂ Kn+1.
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Define:

I =

∞⋃
n=0

In, J =
∞⋂

n=0

Jn, K =
∞⋃

n=0

Kn.

It is readily seen that I , J , K form a partition of J0. We denote by (q, (λi)i∈I) a

local solution of the evolution problem:

C

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�
Dq̇(t)

dt
= f(q(t), q̇(t); t) +

∑
i∈I

λi(t)dϕi(q(t)),

∀i ∈ I, ϕi(q(t)) ≡ 0,

(q(t0), q̇(t0)) = (q0, v0),

furnished by proposition 3. The functions q and λi are analytic. For any i in

{1, 2, · · · , n} \ I , the functions λi are defined to be the identically vanishing func-

tion:

∀i ∈ {1, 2, · · · , n} \ I, λi ≡ 0.

Step 2. We have:

∀j ∈ J0, ∀i ∈ N,
di

dti
λj(t0) = λ

(i+1)
j ,

∀j ∈ J0, ∀i ∈ N,
di+2

dti+2
ϕj(q(t0)) = μ

(i+1)
j .

Indeed, applying lemma 13 to Cauchy problems C(1) and C yields, thanks to equa-

tion (27),(
μ
(1)
j − d2

dt2
ϕj(q(t0))

)
j∈J0

= Gram(J0)
(
λ
(1)
j − λj(t0)

)
j∈J0

But, by definition of I ,

I1 ⊂ I ⊂ J0 \K1,

and, so,

∀j ∈ I, μ
(1)
j = d2

dt2ϕj(q(t0)) = 0,

∀j ∈ J0 \ I, λ
(1)
j = λj(t0) = 0.

Therefore,

T
(
λ
(1)
j − λj(t0)

)
j∈J0

Gram(J0)
(
λ
(1)
j − λj(t0)

)
j∈J0

= 0,

and the conclusion follows for i = 0, since the Gram matrix is positive definite.

For i ≥ 1, we only have to apply successively lemma 13 to Cauchy problems

C(i+1) and C.

Step 3. The functions q and λi define a solution of problem P ′.
Indeed, by construction of the real numbers λ

(j)
i and μ

(j)
i and by step 2, we have:

∀i ∈ I, ∃ni ∈ N,
dni

dtni
λi(t0) < 0 and ∀n < ni,

dn

dtn
λi(t0) = 0,
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and,

∀i ∈ K, ∃ni ≥ 2,
dni

dtni
ϕi(q(t0)) < 0 and ∀n < ni,

dn

dtn
ϕi(q(t0)) = 0,

∀i ∈ J0 \K, ∀n ∈ N,
dn

dtn
ϕi(q(t0)) = 0.

Each function λi(t) and ϕi(q(t)) being real-analytic, there results:

∃α > 0, ∀t ∈ [t0, t0 + α[, ∀i ∈ J0, λi(t) ≤ 0, and ϕi(q(t)) ≤ 0.

Actually, α > 0 is assumed to be sufficiently small to ensure:

∀i ∈ {1, 2, · · · , n} \ J0, ∀t ∈]t0, t0 + α[, ϕi(q(t)) < 0,

which is possible simply by continuity.

Now, it is easily seen that
(
t0 + α, q, (λi)i∈{1,2,···,n}

)
defines a solution of

problem P ′.
Step 4. Uniqueness part of the proposition.
By Cauchy-Lipshitz theorem, q is uniquely determined by the functions λj (j =
1, 2, · · · , n). Being analytic, these functions λj are uniquely determined by the

collection of real numbers
diλj(t0)

dti , (i ∈ N, j ∈ {1, 2, · · · , n}). Therefore, to

prove uniqueness, one has only to show that these real numbers are determined by

the data of the evolution problem.

Consider an arbitrary analytic solution (T, q, λ1, · · · , λn) of problem P ′. A

repeated use of lemma 13, similar to the one of step 2 yields:

∀j ∈ J0, ∀i ∈ N,
di

dti
λj(t0) = λ

(i+1)
j .

Moreover,

∀j ∈ {1, 2, · · · , n} \ J0, ∀i ∈ N,
di

dti
λj(t0) = 0,

and the conclusion follows. ��

Proof of the local existence part of theorem 8.
Let (Ta, qa, λ

1
a, · · · , λn

a) be an analytic solution of problem P ′. It is readily

seen that (Ta, qa) is a local solution of problem P . ��

4.2. Proof of local uniqueness

Local uniqueness is the most difficult part of theorem 8. First, we recall a

standart result:
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Lemma 15 (Gronwall-Bellman) Consider two functions m1 ∈ BV ([0, T ];R)
and m2 ∈ L1(0, T ;R) such that:

for a.a. t ∈]0, T [, m2(t) ≥ 0.

Let φ ∈ BV ([0, T ];R) such that:

∀t ∈ [0, T ], φ(t) ≤ m1(t) +

∫ t

0

m2(s)φ(s) ds

Then,

∀t ∈ [0, T ], φ(t) ≤ m1(t) +

∫ t

0

m1(s)m2(s)e
∫ t
s
m2(σ) dσ ds

We have the following corollary of Gronwall-Bellman lemma :

Lemma 16 Let m be a nonnegative integer, and ψ : [0, T ] → R an integrable
function. If φ : [0, T ] → R is any absolutely continuous function such that φ(t) =
o(tm+1) when t tends towards 0 and such that there exists a nonnegative real
constant C such that:

for dt-a.a. t ∈]0, T [, t
d

dt
φ(t) ≤ (1 +m+ Ct)φ(t) + tm+2ψ(t),

then,

∀t ∈ [0, T ], φ(t) ≤ tm+1eCt

∫ t

0

ψ(s)e−Csds.

Proof. This is almost obvious. Dividing each member of the inequality by tm+2,

we obtain:

for dt-a.a. t ∈]0, T [, d

dt

(
φ(t)

tm+1

)
≤ C

φ(t)

tm+1
+ ψ(t).

After integration, Gronwall-Bellman lemma yields:

∀t ∈]0, T ], φ(t)

tm+1
≤
∫ t

0

ψ(s) ds+

∫ t

0

CeC(t−s)

∫ s

0

ψ(σ) dσ ds.

Then, an integration by part gives the desired conclusion. ��
Proof of the local uniqueness part of theorem 8.

Consider, on one hand, the analytic solution (Ta, qa, λ
1
a, · · · , λn

a) of problem P
supplied by proposition 14, and on the other hand, an arbitrary solution (T, q) of

problem P . We have to prove that q and qa identically coincide on a right neigh-

bourhood of t0.

Step 1. Parametrization of the problem and notations.
Consider a local chart ψ : U ⊂ Q → R

d on Q centered at q0 such that the

cardJ(q0) first components of ψ(q) are (ϕi(q))i∈J(q0)
. Recall that such a chart
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exists since (dϕi(q0))i∈J(q0)
is linearly independent in T ∗

q0Q. We choose α > 0,

sufficiently small to have:

• ∀t ∈ [t0, t0 + α], qa(t) ∈ U, q(t) ∈ U,

• ∀i ∈ J(q0), ∀t ∈ [t0, t0 + α],
d

dt
ϕi(qa(t)) = 〈dϕi(qa(t)), q̇a(t)〉qa(t) ≤ 0

• ∀i ∈ {1, 2, · · · , n} \ J(q0), ∀t ∈ [t0, t0 + α], ϕi(qa(t)) < 0, ϕi(q(t)) < 0.
(28)

Such a choice for α is possible because:

– the functions qa(t) and ϕi(qa(t)) are real analytic,

– the functions q(t) and ϕi(q(t)) are continuous.

We denote by fi the components of f in the natural basis (ei) associated with the

chart under consideration. Since qa is an analytic local solution of problem P , we

have:

∀i ∈ {1, 2, · · · , d} , ∀s ∈ [t0, t0 + α],{
gij(qa)

(
q̈ja + Γ j

kl(qa)q̇
k
a q̇

l
a

)
− fi(qa, q̇a; s)

}
= λi

a(s), (29)

after appropriate renumbering of the functions λi
a. In the sequel, d0 will stand for

cardJ(q0). There results from these choices that:

∀i > d0, λi
a ≡ 0.

We denote by |.| the standart euclidean norm on R
d. Confusing (abusively) q and

ψ(q), we shall write:

|q|2 =

d∑
i=1

(
qi
)2

,

and: ∣∣q̇+∣∣2 =
d∑

i=1

(
q̇+i
)2

.

Step 2. There exists some positive real constants C1 and C2 such that the following
estimate:

∀t ∈ [t0, t0 + α],

∫ t

t0

(
|q − qa|2 (s) +

∣∣q̇+ − q̇a
∣∣2 (s)) ds ≤

− 1

C1

∫ t

t0

eC2(t−s)

∫ s

t0

d0∑
i=1

λi
a(σ)q̇

+i(σ) dσ ds. (30)

holds.
To prove this assertion, we first write the equation of motion (23) in the chart

under consideration using proposition 29:

∀i ∈ {1, 2, · · · , d}, ∀t ∈ [t0, t0 + α],

gij(q)
(
dq̇+j + Γ j

kl(q)q̇
+kq̇+ldt

)
= fi(q, q̇

+; t) dt+

d0∑
j=1

δijμj ,



30 Patrick BALLARD

where the μj are nonpositive real measures. But, by propositions 29 and 30,

d

(
1

2

(
q̇+i − q̇ia

)
gij(q)

(
q̇+j − q̇ja

))
=(

q̇−i + q̇+i

2
− q̇ia

)
gij(q)

(
dq̇+j − q̈ja dt+ Γ j

kl(q)q̇
+k
(
q̇+l − q̇la

)
dt
)
.

Therefore,

d

(
1

2

(
q̇+i − q̇ia

)
gij(q)

(
q̇+j − q̇ja

))
=

(
q̇+i − q̇ia

)
fi(q, q̇

+; t)dt− (q̇+i − q̇ia
)
gij(q)

(
q̈ja + Γ j

kl(q)q̇
+kq̇la

)
dt

+

d0∑
j=1

(
q̇−j + q̇+j

2
− q̇ja

)
μj .

But,

∀j ∈ {1, 2, · · · , d0} , ∃i ∈ J(q0), ∀t ∈ [t0, t0 + α],

q̇ja(t) =
d

dt
ϕi(qa(t)) ≤ 0,

by formulae (28), and,

d0∑
j=1

q̇−j + q̇+j

2
μj = 〈 q̇

− + q̇+

2
, R〉q,

which is a nonpositive real measure by proposition 7. Therefore,

d

(
1

2

(
q̇+i − q̇ia

)
gij(q)

(
q̇+j − q̇ja

)) ≤((
q̇+i − q̇ia

)
fi(q, q̇

+; t)− (q̇+i − q̇ia
)
gij(q)

(
q̈ja + Γ j

kl(q)q̇
+kq̇la

))
dt,

in the sense of ordering of real measures. Integrating over ]t0, t] (t ∈ [t0, t0 + α]),
we get:

1

2

(
q̇+i − q̇ia

)
gij(q)

(
q̇+j − q̇ja

) ≤∫ t

t0

((
q̇+i − q̇ia

)
fi(q, q̇

+; s)− (q̇+i − q̇ia
)
gij(q)

(
q̈ja + Γ j

kl(q)q̇
+kq̇la

))
ds.

The term within the integral sign is an analytic function of the three variables q,

q̇+ and s. Therefore, it is also an analytic function of the three variables q − qa,

q̇+ − q̇a and s. It is written under the form:(
q̇+i − q̇ia

)
Fi(q − qa, q̇

+ − q̇a; s).
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But, each function Fi can be decomposed under the form:

Fi(q − qa, q̇
+ − q̇a; s) = Fi(0, 0; s) +Gi(q − qa, q̇

+ − q̇a; s),

where the Gi are analytic and Gi(0, 0; s) ≡ 0. Hence, there exists d positive con-

stants Mi such that:

∀t ∈ [t0, t0 + α],
∣∣Gi(q(s)− qa(s), q̇

+(s)− q̇a(s); s)
∣∣ ≤

Mi

√
|q(s)− qa(s)|2 + |q̇+(s)− q̇a(s)|2

Defining M to be the maximum of the constants Mi, we have proved:

∀t ∈ [t0, t0 + α],
1

2

(
q̇+i − q̇ia

)
gij(q)

(
q̇+j − q̇ja

) ≤∫ t

t0

{(
q̇+i − q̇ia

) (
fi(qa, q̇a; s)− gij(qa)

(
q̈ja + Γ j

kl(qa)q̇
k
a q̇

l
a

))

+Md
∣∣q̇+ − q̇a

∣∣√|q − qa|2 + |q̇+ − q̇a|2
}
ds.

Moreover, by a compactness argument:

∃C1 > 0, ∀t ∈ [t0, t0 + α],

1

2

(
q̇+i − q̇ia

)
gij(q)

(
q̇+j − q̇ja

) ≥ C1

∣∣q̇+ − q̇a
∣∣2 ,

and therefore:

∀t ∈ [t0, t0 + α],
∣∣q̇+(t)− q̇a(t)

∣∣2 ≤
1

C1

∫ t

t0

(
q̇+i − q̇ia

) (
fi(qa, q̇a; s)− gij(qa)

(
q̈ja + Γ j

kl(qa)q̇
k
a q̇

l
a

))
ds

+
Md

C1

∫ t

t0

∣∣q̇+ − q̇a
∣∣√|q − qa|2 + |q̇+ − q̇a|2ds.

Moreover, by use of Cauchy-Schwartz inequality:

∀t ∈ [t0, t0 + α], |q(t)− qa(t)|2 ≤ α

∫ t

t0

∣∣q̇+(s)− q̇a(s)
∣∣2 ds.

We obtain:

∀t ∈ [t0, t0 + α], |q − qa|2 (t) +
∣∣q̇+ − q̇a

∣∣2 (t) ≤(
Md

C1
+ α

)∫ t

t0

(
|q − qa|2 (s) +

∣∣q̇+ − q̇a
∣∣2 (s)) ds

− 1

C1

∫ t

t0

d0∑
i=1

λi
a(s)

(
q̇+i − q̇ia

)
ds, (31)
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where formulae (29) have been used. We define:

C2 =
Md

C1
+ α.

Notice that, actually:

∀i ∈ {1, 2, · · · , d0} , λi
aq

i
a ≡ 0,

and, so, by the analyticity of functions qia and λi
a:

∀i ∈ {1, 2, · · · , d0} , λi
aq̇

i
a ≡ 0.

Multiplying both terms of inequality (31) by e−C2t and integrating, we get:

∀t ∈ [t0, t0 + α],

∫ t

t0

(
|q − qa|2 (s) +

∣∣q̇+ − q̇a
∣∣2 (s)) ds ≤

− 1

C1

∫ t

t0

eC2(t−s)

∫ s

t0

d0∑
i=1

λi
a(σ)q̇

+i(σ) dσ ds,

which is nothing but estimate (30).

Step 3. Estimate (30) implies that the function t �→ ∑d0

i=1 λ
i
a(t)q̇

+i(t) vanishes
identically on a right neighbourhood of t0

Indeed, by estimate (30):

∀t ∈ [t0, t0 + α],

∫ t

t0

e−C2s

∫ s

t0

d0∑
i=1

λi
a(σ)q̇

+i(σ) dσ ds ≤ 0,

which is, after integration by part:

∀t ∈ [t0, t0 + α],∫ t

t0

e−C2s
d∑

i=1

λi
a(s)q

i(s) ds ≤
∫ t

t0

e−C2s

∫ s

t0

d0∑
i=1

qi(σ)λ̇i
a(σ) dσ ds. (32)

But, since,

∀i ∈ {1, 2, · · · , d0} , ∀s ∈ [t0, t0 + α], λi
a(s) ≤ 0 and qi(s) ≤ 0,

the two members of inequality (32) are nonnegative and, therefore, the inequality

is preserved when taking the absolute value of each member. We get:

∀t ∈ [t0, t0 + α],∫ t

t0

e−C2s
d0∑
i=1

λi
a(s)q

i(s) ds ≤
∫ t

t0

e−C2s

∫ s

t0

d0∑
i=1

∣∣qi(σ)∣∣ ∣∣∣λ̇i
a(σ)

∣∣∣ dσ ds,

≤
∫ t

t0

∫ s

t0

e−C2σ
d0∑
i=1

∣∣qi(σ)∣∣ ∣∣∣λ̇i
a(σ)

∣∣∣ dσ ds.
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We define:

Qi(s) = −e−C2(s+t0)qi(s+ t0),

Li(s) = −λi
a(s+ t0).

With these notations, we obtain:

∀t ∈ [0, α],

∫ t

0

d0∑
i=1

Li(s)Qi(s) ds ≤
∫ t

0

∫ s

0

d0∑
i=1

∣∣∣L̇i(s)
∣∣∣Qi(s) dσ ds, (33)

where the Li are nonnegative real-analytic functions and the Qi are nonnegative

continuous functions which all vanish at t = 0 and which are differentiable at the

origin. We are going to prove that inequality (33) implies that:

∃β ∈]0, α], ∀t ∈ [0, α], ∀i ∈ {1, 2, · · · , d0} , Li(t)Qi(t) = 0.

The functions Li being nonnegative real-analytic, there exists nonnegative integers

n1 < n2 < · · · < nm, a partition I1, I2, · · · , Im of {1, 2, · · · , d0}, and nonnegative

real-analytic functions Gi such that:

∀k ∈ {1, 2, · · · ,m}, ∀i ∈ Ik, Li(s) = snkGi(s),

with either Gi(0) > 0 or Gi ≡ 0. Inequality (33) may be rewritten as:

∀t ∈ [0, α],

∫ t

0

m∑
k=1

∑
i∈Ik

σnkGi(σ)Qi(σ) dσ ≤
∫ t

0

∫ s

0

m∑
k=1

∑
i∈Ik

nkσ
nk−1Gi(σ)Qi(σ) dσ ds

+

∫ t

0

∫ s

0

m∑
k=1

∑
i∈Ik

σnk

∣∣∣Ġi(σ)
∣∣∣Qi(σ) dσ ds.

But, by the analyticity of the functions Gi:

∃β > 0, ∃N > 0, ∀i ∈ J(q0), ∀σ ∈ [0, β],
∣∣∣Ġi(σ)

∣∣∣ ≤ NGi(σ).

Therefore,

∀t ∈ [0, β],

∫ t

0

m∑
k=1

∑
i∈Ik

σnkGi(σ)Qi(σ) dσ ≤
∫ t

0

∫ s

0

m∑
k=1

∑
i∈Ik

nkσ
nk−1Gi(σ)Qi(σ) dσ ds

+Nt

∫ t

0

∫ s

0

m∑
k=1

∑
i∈Ik

σnk−1Gi(σ)Qi(σ) dσ ds.
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Integrating by part the left member of the inequality, we obtain:

∀t ∈ [0, β], t

∫ t

0

m∑
k=1

∑
i∈Ik

σnk−1Gi(σ)Qi(σ) dσ ≤
∫ t

0

∫ s

0

m∑
k=1

∑
i∈Ik

(nk + 1)σnk−1Gi(σ)Qi(σ) dσ ds

+Nt

∫ t

0

∫ s

0

m∑
k=1

∑
i∈Ik

σnk−1Gi(σ)Qi(σ) dσ ds. (34)

Since each function Gi(σ)Qi(σ)/σ is bounded over [0, β], there exists a nonneg-

ative real constant H such that:

∀k ∈ {1, 2, · · · ,m}, ∀t ∈ [0, β],∫ t

0

∫ s

0

∑
i∈Ik

σnk−1Gi(σ)Qi(σ) dσ ds ≤ Htnk+2.

Inequality (34) gives:

∀t ∈ [0, β], t

∫ t

0

∑
i∈I1

σn1−1Gi(σ)Qi(σ) dσ ≤

(1 + n1 +Nt)

∫ t

0

∫ s

0

∑
i∈I1

σn1−1Gi(σ)Qi(σ) dσ ds+H1t
n2+2,

where H1 is a non negative real constant. As a consequence of lemma 16, we

obtain: ∫ t

0

∫ s

0

∑
i∈I1

σn1−1Gi(σ)Qi(σ) dσ ds = O(tn2+2).

Coming back to inequality (34), we get:

∀t ∈ [0, β], t

∫ t

0

2∑
k=1

∑
i∈Ik

σnk−1Gi(σ)Qi(σ) dσ ≤

(1 + n2 +Nt)

∫ t

0

∫ s

0

2∑
k=1

∑
i∈Ik

σnk−1Gi(σ)Qi(σ) dσ ds+H2t
n3+2.

Applying once more lemma 16, we obtain:

∫ t

0

∫ s

0

2∑
k=1

∑
i∈Ik

σnk−1Gi(σ)Qi(σ) dσ ds = O(tn3+2).

Proceeding inductively, we obtain:

∫ t

0

∫ s

0

m−1∑
k=1

∑
i∈Ik

σnk−1Gi(σ)Qi(σ) dσ ds = O(tnm+2).
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But, by inequality (34),

∀t ∈ [0, β], t

∫ t

0

m∑
k=1

∑
i∈Ik

σnk−1Gi(σ)Qi(σ) dσ ≤

(1 + nm +Nt)

∫ t

0

∫ s

0

m∑
k=1

∑
i∈Ik

σnk−1Gi(σ)Qi(σ) dσ ds.

Using a last time lemma 16, we get:

∀t ∈ [0, β],

∫ t

0

∫ s

0

m∑
k=1

∑
i∈Ik

σnk−1Gi(σ)Qi(σ) dσ ds = 0,

which implies:

∀i ∈ {1, 2, · · · , d0} , ∀t ∈ [0, β], Gi(σ)Qi(σ) = 0,

which is nothing but:

∀i ∈ {1, 2, · · · , d0} , ∀t ∈ [t0, t0 + β], λi
a(σ)q

i(σ) = 0.

But, the analyticity of the functions λi
a implies:

∀i ∈ {1, 2, · · · , d0} , ∀t ∈ [t0, t0 + β], λi
a(σ)q̇

+i(σ) = 0,

and the assertion of step 3 is proved.

Step 4. Conclusion of the proof of local uniqueness.
Bringing together the results of steps 2 and 3, we get:

∀t ∈ [t0, t0 + β],

∫ t

t0

(
|q − qa|2 (s) +

∣∣q̇+ − q̇a
∣∣2 (s)) ds ≤ 0,

which gives the desired conclusion:

∀t ∈ [t0, t0 + β], q(t) = qa(t).

��

4.3. Global solutions: proof of theorem 10

First, we recall a classical lemma whose proof may be found for example in

[5], p. 157.

Lemma 17 Let m be in L1(0, T ;R) such that m(t) ≥ 0 for almost all t in ]0, T [
and a be a real nonnegative constant. Consider φ ∈ BV ([0, T ];R) such that:

∀t ∈ [0, T ],
1

2
φ2(t) ≤ 1

2
a2 +

∫ t

0

m(s)φ(s) ds,

then:

∀t ∈ [0, T ], |φ(t)| ≤ a+

∫ t

0

m(s) ds.
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Proposition 18 The riemannian manifold Q is assumed to be complete. Let (T, q)
be a solution of problem P such that:

– T ∈◦
I (and ,in particular, T �= +∞),

– ‖q̇+(t)‖q(t) is bounded:

∃Vm, ∀t ∈ [t0, T [,
∥∥q̇+(t)∥∥

q(t)
≤ Vm,

then q̇+ has bounded variation over [t0, T [:

Var
(
q̇+; [t0, T [

)
< ∞.

Proof. We denote by d the distance function associated with the metric space Q.

Since,

– ∀s1, s2 ∈ [t0, T [, s1 ≤ s2, d (q(s1), q(s2)) ≤
∫ s2

s1

∥∥q̇+(σ)∥∥
q(σ)

dσ,

– ∀σ ∈ [t0, T [, ‖q̇+(σ)‖q(σ) ≤ Vm,
– Q is complete,

we deduce that limt→T− q(t) exists in Q. It is denoted by:

qT = lim
t→T−

q(t).

Let (U,ψ) a local chart at qT on Q such that the cardJ(qT ) first components of

ψ(q) in R
d are (ϕi(q))i∈J(qT ). Consider a compact neighbourhood K of qT in Q

such that:

– K ⊂ U,
– ∀q ∈ K, J(q) ⊂ J(qT ).

One defines:

t′0 = min {t ∈ [t0, T [ ; ∀s ∈ [t, T [, q(s) ∈ K} .
Since [t0, t

′
0] is compact, one has:

Var
(
q̇+; [t0, t

′
0]
)
< ∞,

therefore, it remains only to prove:

Var
(
q̇+; ]t′0, T [

)
< ∞.

λmax (resp. λmin) will denote the maximum (resp. the minimum) of the greatest

(resp. least) eigenvalue of the matrix (gij(q))i,j=1,2,···,d when q wanders in K.

With these notations, one obtains immediately:

∀i ∈ {1, 2, · · · , d} , ∀t ∈ [t′0, T [,

∣∣gij(q(t))q̇+j(t)
∣∣ ≤ √

λmaxVm,

∣∣q̇+i(t)
∣∣ ≤ Vm√

λmin
.

(35)
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We denote by Bq(0, Vm) the closed ball of TqQ with radius Vm and centered at

the origin. Considering the following compact subset K ′ of TQ:

K ′ =
⋃
q∈K

Bq(0, Vm),

we define the following nonnegative real constant:

F = max
i∈{1,2,···,d}

max
(q,v;t)∈K′×[t′0,T ]

|fi(q, v; t)| ,

and:

G = max
i,j,k∈{1,2,···,d}

max
q∈K

∣∣∣∣∂gij(q)∂qk

∣∣∣∣ .
Writing inclusion (23) in the local chart (U,ψ), we obtain:

∀i ∈ {1, 2, · · · , d} , gij(q)
(
dq̇+j + Γ j

kl(q)q̇
+kq̇+l dt

)
= fi(q, q̇

+; t) dt+ λi,

where the λi are d nonpositive real measures on ]t′0;T [. Expressing the Christoffel

symbols in terms of the metric, one has:

∀i ∈ {1, 2, · · · , d} , (36)

gij(q)dq̇
+j +

∂gij(q)

∂qk
q̇+j q̇+k dt− 1

2

∂gkl(q)

∂qi
q̇+kq̇+l dt = fi(q, q̇

+; t) dt+ λi,

or, equivalently,

∀i ∈ {1, 2, · · · , d} , (37)

d
(
gij(q)q̇

+j
)
=

1

2

∂gkl(q)

∂qi
q̇+kq̇+l dt+ fi(q, q̇

+; t) dt+ λi.

One deduces:

∀i ∈ {1, 2, · · · , d} , ∀s1, s2 ∈ [t′0, T [, s1 < s2,∫
]s1,s2]

(−λi) = gij(q(s1))q̇
+j(s1)− gij(q(s2))q̇

+j(s2)

+

∫ s2

s1

(
fi(q, q̇

+; t) +
1

2

∂gkl(q)

∂qi
q̇+kq̇+l

)
dt

≤ 2
√
λmaxVm +

(
F +

d2GV 2
m

2λmin

)
(s2 − s1). (38)

There results that the λi are d bounded measures on ]t′0, T [. Thanks to equa-

tion (36), it is readily seen that the measures dq̇+i are also bounded measures

on ]t′0, T [. Therefore, the d functions q̇+i :]t′0, T [→ R have bounded variation

over the interval ]t′0, T [. By proposition 29, there results that q̇+ has also bounded

variation over ]t′0, T [. ��
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Proof of theorem 10. We assume that the maximal solution q of problem P is

defined on [t0, T [ with T in
◦
I and try to obtain contradiction. By proposition 7,

this maximal solution satisfies:

∀t ∈ [t0, T [,
1

2

∥∥q̇+(t)∥∥2
q(t)

− 1

2
‖v0‖2q0 ≤

∫ t

t0

〈f(q(s), q̇+(s); s), q̇+(s)〉q(s)ds.

Thus,

∀t ∈ [t0, T [,

1

2

∥∥q̇+(t)∥∥2
q(t)

≤ 1

2
‖v0‖2q0 +

∫ t

t0

∥∥f(q(s), q̇+(s); s)∥∥
q(s)

∥∥q̇+(s)∥∥
q(s)

ds.

By lemma 17, we obtain:

∀t ∈ [t0, T [,
∥∥q̇+(t)∥∥

q(t)
≤ ‖v0‖q0 +

∫ t

t0

∥∥f(q(s), q̇+(s); s)∥∥
q(s)

ds,

which gives, using the hypothesis of the theorem:

∀t ∈ [t0, T [,∥∥q̇+(t)∥∥
q(t)

≤ ‖v0‖q0 +
∫ t

t0

l(s)
(
1 + d(q(s), q0) +

∥∥q̇+(s)∥∥
q(s)

)
ds.

But,

∀t ∈ [t0, T [, d(q(t), q0) ≤
∫ t

t0

∥∥q̇+(s)∥∥
q(s)

ds,

therefore,

∀t ∈ [t0, T [, d(q(t), q0) +
∥∥q̇+(t)∥∥

q(t)
≤

‖v0‖q0 +
∫ t

0

l(s) ds+

∫ t

t0

(1 + l(s))
(
d(q(s), q0) +

∥∥q̇+(s)∥∥
q(s)

)
ds.

By Gronwall-Bellman lemma (lemma 15), one gets:

∀t ∈ [t0, T [,

d(q(t), q0) +
∥∥q̇+(t)∥∥

q(t)
≤
(
‖v0‖q0 +

∫ t

0

l(s) ds

)
e
∫ t
t0

(1+l(s)) ds
,

which shows that the function t �→ ‖q̇+(t)‖q(t) is bounded over [t0, T [. By the

completeness of Q, we deduce, on one hand that

qT = lim
t→T−

q(t)

exists in Q and, on the other hand, that

Var
(
q̇+; [t0, T [

)
< ∞,
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thanks to proposition 18. Thus,

(qT , v
−
T ) = lim

t→T−
(q(t), q̇+(t)) exists in TQ.

Define:

vT = v−T − [1 + φ(qT , v
−
T )
]

ProjqT
[
v−T ;N(qT )

]
.

Then, theorem 8 furnishes T ′ ∈ I with T ′ > T and a prolongation of q on [T, T ′[
such that q ∈ MMA ([t0, T

′[;Q) is a solution of problem P . But, this contradicts

the definition of T . ��

5. Three counterexamples

The existence and uniqueness of solution for problem P has been proved under

the assumption of functional independence for the constraint and of analyticity for

the data. The three examples which are developed in this section aim at showing

that these assumptions cannot be weakened very much. In example 1, we show

that, in case that the functional independence of the constraints does not hold, the

existence of solution may be lost. For the question of the regularity assumptions on

the data, the existence of solution can be proved with much weaker assumptions.

However, the uniqueness of solutions is generally lost in such a case as seen in

examples 2 and 3. In these examples, the data are supposed to have only regularity

C∞ and two different solutions can be exhibited.

Example 1 is extracted from Moreau [12] and example 2 is due to Schatzman

[18], but an earlier counterexample in the same spirit is also to be found in Bressan

[4].

5.1. Example 1

Consider a discrete mechanical system whose configuration space is euclidean

R
3. The unilateral contraints are kinematically described by the three following

functions (n = 3):

ϕ1(q) = −q1,

ϕ2(q) = q1 − q2.q3,

ϕ3(q) = −q2 − q3,

where q = (q1, q2, q3) ∈ R
3. The initial instant is supposed to be t0 = 0 and the

initial state is given by q0 = (0, 0, 0) and v0 = (0, 2,−1). It follows that:

J(q0) = {1, 2, 3} ,
V (q0) =

{
v = (v1, v2, v3) ∈ R

3 ; v1 = 0 and v2 + v3 ≥ 0
}
.

It is readily seen that v0 belongs to V (q0).
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Let now α > 0 be an arbitrary positive real number. Any motion q(t) in

MMA([0, α[;R3) compatible with this initial data may be written as:

q1(t) = o(t)

q2(t) = 2t+ o(t)

q3(t) = −t+ o(t)

Therefore:

ϕ1(q(t)) + ϕ2(q(t)) = 2t2 + o(t2),

which can not be compatible with:

∀t ∈ [0, α[ ϕ1(q(t)) + ϕ2(q(t)) ≤ 0.

We deduce that no motion in MMA([0, α[;R3) can be compatible with this initial

data whatever α > 0 is.

Note that in this particular case: dϕ1(q0) = −dϕ2(q0) and the unilateral con-

straints are not functionally independent.

5.2. Example 2

Consider a discrete mechanical system whose configuration space is R equip-

ped with its canonical structure of riemannian manifold. This is the configuration

space of a particle with unit mass constrained to move along a line. A fixed obsta-

cle at the origin is taken into consideration. It gives rise to a unilateral constraint

kinematically described by the single function (n = 1):

ϕ1(q) = q

Therefore, the admissible configuration set is A = R
−. It is assumed that the

impact constitutive equation is the elastic one: φ (q, q̇−) ≡ 1 and that the efforts

mapping f does not depend on the state but only on time. It will be denoted by

f(t). The initial instant is t0 = 0 and the initial state is (q0, v0) = (0, 0). Denoting

by RCLBV (I;R) the space of right continuous functions with locally bounded

variation from a real interval I to R, problem P admits here the equivalent formu-

lation:

find T > 0 and v ∈ RCLBV ([0, T [;R) such that:

• v(0) = 0,

• q(t) =

∫ t

0

v(s) ds ∈ R
−, ∀t ∈ [0, T [,

• R = dv − f(t) dt is a nonpositive real measure such that:

SuppR ⊂ {t ∈ [0, T [ ; q(t) = 0}

• ∀t ∈]0, T [,
{
q(t) �= 0 ⇒ v(t) = v−(t)

q(t) = 0 ⇒ v(t) = −v−(t)
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We investigate uniqueness under the assumption that f is of class C∞. Sup-

pose, in addition, that f is nonnegative:

∀t ∈ R
+, f(t) ≥ 0.

It is readily seen that the null function v ≡ 0 on R
+ is a solution of problem P

whatever is the nonnegative C∞ function f . Now, we are going to construct an

explicit example of such a function f in such a way that the associated problem P
admits another solution, different from the identically vanishing one.

First, let define a function ρ by:

ρ

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R → R

x �→

∣∣∣∣∣∣∣∣
0 if x ∈]−∞, 0] ∪ [1,+∞[

e
1

x(x−1)∫ 1

0
e

1
x(x−1) dx

if x ∈]0, 1[

We have:

ρ ∈ C∞(R;R+)

Suppρ = [0, 1]

∀n ∈ N,
dn

dxn
ρ(0) =

dn

dxn
ρ(1) = 0

2

∫ 1

0

(1− s)ρ(s) ds = 1

(39)

The last assertion comes from the fact that:∫ 1

0

sρ(s) ds =

∫ 1

0

(1− s)ρ(s) ds,

so, ∫ 1

0

sρ(s) ds =
1

2

∫ 1

0

ρ(s) ds =
1

2

Consider also the real convergent serie:[
(n+ 5)2

(n+ 1)(n+ 2)(n+ 3)(n+ 4)

]
n∈N

We define:

T =
∞∑

n=0

(n+ 5)2

(n+ 1)(n+ 2)(n+ 3)(n+ 4)
> 0

an =
∞∑
i=n

(i+ 5)2

(i+ 1)(i+ 2)(i+ 3)(i+ 4)
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Clearly, a0 = T and the sequence (an)n∈N
decreases strictly and converges to-

wards 0 when n tends toward infinity. Actually,

an ∼ 1

n
when n → +∞ (40)

by a very classical and elementary argument. We denote by (δn)n∈N
, (fn)n∈N

,

(vn)n∈N
the real sequences defined by:

δn =
n+ 5

(n+ 1)(n+ 2)(n+ 4)
(i.e. δn =

n+ 3

n+ 5
(an − an+1) < an − an+1 ),

fn =
1

n!
,

vn = − 1

(n+ 3)!
,

and by f(t), v(t) the functions from [0, T [ to R defined by:

f(0) = 0

f(t) =

∣∣∣∣∣∣
0 if t ∈ [an+1, an+1 + δn[
fn
2
ρ

(
t−an+1−δn

an−an+1−δn

)
if t ∈ [an+1 + δn, an[

(41)

and:

v(0) = 0

v(t) =

∣∣∣∣∣∣
vn+1 if t ∈ [an+1, an+1 + δn[

vn+1 +
fn
2

∫ t

an+1+δn

ρ

(
s−an+1−δn

an−an+1−δn

)
ds if t ∈ [an+1 + δn, an[

(42)

First, we claim that the function f belongs to C∞ ([0, T [;R).
Proof. The only thing which is not obvious is that f is C∞ at 0. Since:

∀t ∈ [an+1, an] |f(t)| ≤ fn
2

max
s∈[0,1]

|ρ(s)| ,

then, limt→0+ f(t) = 0 and f is continuous at 0. Now, we are going to prove:

∀r ∈ N lim
t→0+

1

t

dr

dtr
f(t) = 0 (43)

which will imply by an easy induction that f ∈ C∞ ([0, T [;R) and:

∀r ∈ N,
dr

dtr
f(0) = 0.

Let fix an arbitrary r in N, we have:

∀t ∈ [an+1, an] ,

∣∣∣∣1t dr

dtr
f(t)

∣∣∣∣ ≤ fn
2an+1

(n+ 5)r

2r (an − an+1)
r max

s∈[0,1]

∣∣∣∣drρ(s)dtr
(t)

∣∣∣∣ .
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Therefore, to prove (43), it suffices to verify:

lim
n→∞

fn(n+ 5)r

an+1 (an − an+1)
r = 0,

but, by estimate (40), one has:

fn(n+ 5)r

an+1 (an − an+1)
r ∼ n3r+1

n!
.

��
Second, we claim that:

– v ∈ RCLBV([0, T [;R)

– dv − f(t) dt is a real nonpositive measure on [0, T [ whose support is {0} ∪
{an;n ∈ N

∗}
– v is continuous on [0, T [\ {an;n ∈ N

∗}and: ∀n ∈ N
∗ v(an) = −v−(an)

Proof. It is clear that v is continuous on each interval ]an+1, an[ and right contin-

uous on [0, T [. Moreover:

v−(an) = vn+1 +
fn
2

∫ an

an+1+δn

ρ

(
s− an+1 − δn
an − an+1 − δn

)
ds

= vn+1 +
fn
2

(an − an+1 − δn)

= − 1

(n+ 4)!
+

1

n!

n+ 5

(n+ 1)(n+ 2)(n+ 3)(n+ 4)

=
1

(n+ 3)!

= −v(an)

Since v is nondecresing on each interval [an+1, an[:

Var(v; [0, T [) =
∞∑

n=0

(∣∣v(an+1)− v−(an+1)
∣∣+ ∣∣v(an+1)− v−(an)

∣∣)

=
∞∑

n=0

(−3vn+1 − vn)

= 3
∞∑

n=0

1

(n+ 4)!
+

∞∑
n=0

1

(n+ 3)!
< +∞

Denoting δt the dirac measure located at t, one has:

dv − f(t) dt = −2

∞∑
n=1

δan

(n+ 3)!
,

which is a (bounded) nonpositive measure whose support is {0} ∪ {an;n ∈ N
∗}.

��
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Third, we claim that: if q is defined by:

∀t ∈ [0, T [ q(t) =

∫ t

0

v(s) ds,

then:

∀t ∈ [0, T [ q(t) ≤ 0,

{t ∈ [0, T [; q(t) = 0} = {0} ∪ {an;n ∈ N
∗} .

Proof. An easy calculation using last assertion of formulae (39) shows:∫ an

an+1

v(s) ds = 0

∀t ∈]an+1, an[

∫ t

an+1

v(s) ds < 0

��
We deduce, that making the choice described by relations (41) for the function

f , then the function v defined by relations (42) is a solution of the corresponding

problem P whereas the identically vanishing function is also a solution. Therefore,

the uniqueness of solution does not hold in general if f and the functions ϕi are

supposed to be of class C∞ only.

5.3. Example 3

In example 2, we considered a particle at rest at the initial instant and in con-

tact with the obstacle. Then, a force acts on the particle, constantly pushing it

against the obstacle (f ≥ 0). For the particular choice of the function f we made,

immobility is a possible motion whereas a bouncing motion is also possible. It

is intuitively clear that the assumed elastic impact constitutive equation plays a

central role in such a phenomenon. The question arises to know whether such a

pathology is possible with the completely inelastic impact constitutive equation
φ(q, q̇−) ≡ 0.

Sticking to notations of example 2, the evolution problem takes in this case the

form:

find T > 0 and v ∈ RCLBV([0, T [; R) such that:

• v(0) = 0

• q(t) =

∫ t

0

v(s) ds ∈ R
− ∀t ∈ [0, T [

• R = dv − f(t) dt is a nonpositive real measure such that:

SuppR ⊂ {t ∈ [0, T [ ; q(t) = 0}

• ∀t ∈]0, T [,
{
q(t) �= 0 ⇒ v(t) = v−(t)

q(t) = 0 ⇒ v(t) = 0
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If we still assume in this case that f is nonnegative, then it is easy to see that
the only possible motion is immobility.
Indeed, if, ∃t2, q(t2) < 0, define t1 = inf {t ∈ R

+; ∀s ∈]t, t2] q(s) < 0}. Then,

by continuity of q: t1 < t2 and q(t1) = 0. By the completely inelastic impact

constitutive equation, one gets: v(t1) = 0, and, so: q(t2) =
∫ t2
t1

∫ t

t1
f(s) ds dt ≥ 0,

which is absurd.

Nevertheless, we are going to construct an example similar to example 2,

which shows that even in case of the completely inelastic impact constitutive equa-

tion and f of class C∞, we can obtain multiple solutions for the corresponding

problem P . Of course, f should not be of constant sign.

The function f is searched under the form:

f(0) = 0

f(t) =

∣∣∣∣∣∣∣∣∣∣∣∣

−f1,nρ

(
t− 1

n+1

δ1,n

)
if t ∈

[
1

n+1 ,
1

n+1 + δ1,n

[
0 if t ∈

[
1

n+1 + δ1,n,
1
n − δ2,n

[
f2,nρ

(
t− 1

n + δ2,n

δ2,n

)
if t ∈ [ 1n − δ2,n,

1
n

[
(44)

where n ∈ N
∗. (f1,n)n∈N∗ , (f2,n)n∈N∗ , (δ1,n)n∈N∗ and (δ2,n)n∈N∗ are positive

real sequences which are to be determined. We demand:

δ1,n ≤ 1

2

(
1

n
− 1

n+ 1

)
and δ2,n ≤ 1

2

(
1

n
− 1

n+ 1

)

These sequences are to be determined in such a way that the corresponding prob-

lem P admits two distinct solutions vI and vII . We demand that vI , vII and the

corresponding functions qI , qII are such that :

qI
(
1
n

)
= 0

vI
(
1
n

)
= 0

qII
(
1
n

)
= −qn

vII
(
1
n

)
= vn

if n is even,

qI
(
1
n

)
= −qn

vI
(
1
n

)
= vn

qII
(
1
n

)
= 0

vII
(
1
n

)
= 0

if n is odd,

where (qn)n∈N∗ and (vn)n∈N∗ are positive real sequences which are to be deter-

mined.

Consider the time interval [ 1
n+1 ,

1
n ] for some n ≥ 2. Under the action of f on

[ 1
n+1 ,

1
n+1 + δ1,n], the position of a particle which is at q = −qn+1 with velocity

v = vn+1 at time t = 1
n+1 should increase from −qn+1 to 0. This is written as:

−qn+1 + vn+1δ1,n − 1

2
f1,nδ

2
1,n = 0,
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where δ1,n has to be the smallest root of this second degree equation:

δ1,n =
vn+1 −

√
v2n+1 − 2f1,nqn+1

f1,n
(45)

We have also to express that, under the action of f on [ 1
n+1 ,

1
n ], a particle at rest

with position q = 0 at time t = 1
n+1 should have position q = −qn and velocity

v = vn at time t = 1
n . That is:

vn = −f1,nδ1,n + f2,nδ2,n,

−qn = − 1
2f1,nδ

2
1,n − f1,nδ1,n

(
1

n(n+1) − δ1,n

)
+ 1

2f2,nδ
2
2,n,

which is:

vn = −f1,nδ1,n + f2,nδ2,n,

−qn = 1
2f1,nδ

2
1,n − f1,nδ1,n

1
n(n+1) +

1
2f1,nδ1,nδ2,n + 1

2vnδ2,n.
(46)

Now, let us try to make the following choice:

∀n ∈ N
∗, qn =

1

n42n
, vn =

1

2n
, f1,n =

n3

2n
. (47)

There results from formula (45) that, for sufficiently great n:

δ1,n =
1

2n3

(
1−

√
1− 4n3

(n+ 1)4

)
(48)

which gives the estimate:

δ1,n ∼ 1

n4
when n → ∞ (49)

Equations (46) allow us to determine δ2,n and f2,n:

δ2,n =
2n2

n+1δ1,n − n3δ21,n − 2
n4

1 + n3δ1,n
,

f2,n = f1,n
δ1,n
δ2,n

+
vn
δ2,n

,

which provide the estimates:

δ2,n ∼ 2

n3

f2,n ∼ n3

2n+1

when n → ∞ (50)
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From estimates (49) and (50), one gets:

∃n0, n ≥ 0 ⇒
0 < δ1,n <

1

2n(n+ 1)

0 < δ2,n <
1

2n(n+ 1)

We define T = 1
n0

. In exactly the same way as for example 2, it is readily seen

from estimate (50) that: f ∈ C∞([0, T [;R). Define:

uI(0) = 0, uII(0) = 0, and for n ≥ n0:

uI(t) =

∣∣∣∣∣∣∣
vn+1 − f1,n

∫ t

1
n+1

ρ

(
s− 1

n+1

δ1,n

)
ds if t ∈ [ 1

n+1 ,
1

n+1 + δ1,n[

0 if t ∈ [ 1
n+1 + δ1,n,

1
n [

uII(t) =

∣∣∣∣∣∣∣∣∣∣∣∣

−f1,n

∫ t

1
n+1

ρ

(
s− 1

n+1

δ1,n

)
ds t ∈ [ 1

n+1 ,
1

n+1 + δ1,n[

−f1,nδ1,n t ∈ [ 1
n+1 + δ1,n,

1
n − δ2,n[

−f1,nδ1,n + f2,n

∫ t

1
n−δ2,n

ρ

(
s− 1

n+δ2,n

δ2,n

)
ds t ∈ [ 1n − δ2,n,

1
n [

and:
vI(0) = 0, vII(0) = 0,

vI(t) = uI(t)

vII(t) = uII(t)
if t ∈ [ 1

2p+1 ,
1
2p [ (2p ≥ n0)

vI(t) = uII(t)

vII(t) = uI(t)
if t ∈ [ 1

2p ,
1

2p−1 [ (2p− 1 ≥ n0)

Proceeding as in example 2, it is readily seen that the two functions vI and vII

belong to RCLBV ([0, T [;R) and furnish two distinct solutions of the problem P
associated with the C∞ function f defined by equations (44).

6. Illustrative examples and comments

6.1. Punctual particle subjected to gravity and bouncing on the floor.
Accumulation of impacts.

Let us come back to the example of section 3.3. The configuration space is R

equipped with its canonical structure of riemannian manifold, the unilateral con-

straint is described by the single function ϕ1(q) = q (which gives A = R
−). The

efforts mapping is supposed to be constant: f(q, q̇; t) ≡ 2 and the impact function



48 Patrick BALLARD

(restitution coefficient) is the constant 1/2: φ ≡ 1/2. Considering the initial in-

stant t0 = 0 and the initial state (q0, v0) = (−1, 0), we have seen in section 3.3

that the function q : R+ → R
− defined by:

∀t ∈ [0, 1], q(t) = t2 − 1,

∀t ∈ [1, 2], q(t) = t2 − 3t+ 2,

∀t ∈ [3− 1
2n−1 , 3− 1

2n

]
, q(t) = t2 +

(−6 + 3
2n

)
t+
(
3− 1

2n−1

) (
3− 1

2n

)
,

∀t ∈ [3,+∞[, q(t) = 0

(∀n ∈ N) belongs to MMA(R+;R−) and is readily seen to be the maximal solu-

tion, according to corollary 9, of the corresponding problem P . The solution q(t)
is represented on figure 6.1. It is seen that infinitely many impacts accumulate in

any left neighbourhood of instant t = 3.

t3

q(t)

... ...

f

Fig. 2. Motion of a punctual particle subjected to gravity and bouncing on the floor.

However, as predicted by corollary 9, for each instant t ∈ R
+, there exists

a right neighbourhood [t, t + η[ of t, such that the restriction of q to [t, t + η[ is

analytic. A straightforward and general consequence of this is the following.

Proposition 19 Let q be the maximal solution of problem P furnished by corol-
lary 9. Although infinitely many impacts can accumulate at the left of a given in-
stant, this phenomenon can never occur at the right of any instant. Morover, in the
particular case where the impact constitutive equation is the elastic one (φ ≡ 1),
the instants of impact are isolated and therefore in finite number in any compact
interval of time.

Proof. Since for each instant t ∈ [t0, T [, there exists a right neighbourhood [t, t+η[
of t, such that the restriction of q to [t, t + η[ is analytic, we get the first part of

the proposition. For the second part, let τ be an arbitrary instant in ]t0, T [ and

consider the problem P associated with the initial condition (q(τ),−q̇−(τ)), the

elastic constitutive impact equation and the effort mapping g(q, v; t) defined by:

g(q, v; t) = f(q,−v; τ − t)
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which is analytic. By theorem 8, there exists an analytic function qa : [0, Ta[→
Q which is a solution of this problem P . Another solution of problem P co-

incides with qa on a right neighbourhood of t = 0. Actually, as seen in the

proof of local uniqueness (section 4.2), a little bit more is proved: any function

q′ ∈ MMA([0, T [;Q) satisfying the initial condition (21), the unilateral con-

straint (22), the equation of motion (23) and the energy inequality (proposition 7)

has to coincide with qa on a right neighbourhood of t = 0. But, it is readily seen

that the function

q′(t) = q(τ − t), t ∈ [0, τ − t0[

fulfill these requirements. Thus, q′ can not have right accumulation of impacts at

t = τ and, therefore, q can not have left accumulation of impacts at t = τ and the

instants of impact are isolated. Of course, if q is the maximal solution defined on

[t0, T [, impacts can still accumulate at the left of T , as seen on simple examples.

QED.

The fact that infinitely many impacts can accumulate at the left of a given in-

stant but not at the right is a specific feature of the analytical setting that is lost

in the C∞ setting as seen in counterexamples 2 and 3. Actually, these counterex-

amples show that pathologies of nonuniqueness in the C∞ setting are intimately

connected to the possibility of right accumulations of impacts. The fact that the

analytical setting prevents from such right accumulations is the thorough reason

why we could prove uniqueness in this case.

6.2. The double pendulum

In this section, we come back to the double pendulum described in section 2.1

but we add to the system a rigid obstacle on the vertical coordinate axis as repre-

sented on figure 6.2. This obstacle may be represented by two analytic functions

whose expressions in the global chart of Q described in section 2.1 is:

ϕ1(q
1, q2) = −l1 sin q

1 ≤ 0,

ϕ2(q
1, q2) = −l1 sin q

1 − l2 sin q
2 ≤ 0.

It is readily seen that, except in the particular case where l1 = l2, these con-

straints are functionally independent:

∀q ∈ A, (dϕi(q))i∈J(q) is linear independent in T ∗
q Q

These unilateral constraints are assumed to be perfect and we consider an impact

function φ supposed to be constant on TA−:

∀(q, v−) ∈ TA−, φ(q, v−) ≡ φ ∈ [0, 1].

The constant φ is often called restitution coefficient (of normal velocities). We

recall that the particular cases φ = 0 and φ = 1 describe the completely inelastic

and the elastic impact constitutive equations.

An initial state (q0, v0) ∈ TA+ is given at time t0 = 0. This initial state is rep-

resented in the considered chart by four real numbers (q10 , q
2
0 ; v

1
0 , v

2
0). According

to section 3, the motion of the system is governed by the evolution problem:
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l , m11 1q

1k

k2

l , m22

2qλ

Fig. 3. Double pendulum with obstacle.

find T ∈]0,+∞] and q ∈ MMA([0, T [;Q) such that:

• (q(0), q̇+(0)) = (q0, v0),

• ∀t ∈ [0, T [, (q(t), q̇+(t)) ∈ TA+,

• R = �Dq̇+ − f (q(t), q̇+(t); t) dt,∈ −N∗(q(t)) for |R| -a.a. t ∈ [0, T [,

• ∀t ∈]0, T [, q̇+(t) = q̇−(t)− (1 + φ) Projq(t) [q̇
−(t);N(q(t))] ,

where the riemannian structure on Q and the mapping f are those described in

section 2.1. Corollary 9 ensures existence and uniqueness of a maximal solution.

Now, we are going to check that assuptions of theorem 10 are satisfied so that the

maximal solution is defined all over R+.

First, Q is a complete riemannian manifold since the quotient topology on the

torus T 2 derives from a riemannian structure and T 2 is compact and therefore

complete. Second, we have the estimate:

∀(q, v) ∈ TQ, ‖v‖q ≥ α |(v1, v2)| , (51)

where,

α =

√
1
9m1m2l21l

2
2 +

1
12m

2
2l

2
1l

2
2

1
3m2l22 +

(
m1

3 +m2

)
l21

Indeed,

‖v‖2q ≥ λmin(q)
∣∣(v1, v2)∣∣2
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where λmin(q) is the least eigenvalue of the matrix (gij(q))i,j=1,2. But:

λmin(q) =
1

2

(
1

3
m2l

2
2 +

(m1

3
+m2

)
l21

)

×
⎡
⎣1−

√√√√1− 4
(
1
9m1m2l21l

2
2 +

1
3m

2
2l

2
1l

2
2 − 1

4m
2
2l

2
1l

2
2 cos(q

1 − q2)
)

(
1
3m2l22 +

(
m1

3 +m2

)
l21
)2

⎤
⎦

Using

∀x ∈ [0, 1], 1−√
1− x ≥ x

2
,

we get:

λmin(q) ≥ 1

4

4
(
1
9m1m2l

2
1l

2
2 +

1
3m

2
2l

2
1l

2
2 − 1

4m
2
2l

2
1l

2
2 cos(q

1 − q2)
)

1
3m2l22 +

(
m1

3 +m2

)
l21

≥ α2,

which achieves the proof of estimate (51). Now, let qI , qII be two points of Q
represented by their components in the considered chart (q1I , q

2
I ) and (q1II , q

2
II). Q

being complete, there is a geodesic g : [s1, s2] → Q of minimal length between

them. One has:

d(qI , qII) =

∫ s2

s1

‖ġ(s)‖g(s) ds ≥
∫ s2

s1

α |ġ(s)| ds

≥ α

√
(q1I − q1II)

2
+ (q2I − q2II)

2

Moreover, recalling:

f1(q
1, q2) = λl1 sin(q

1 − q2)− (k1 + k2)q
1 + k2q

2,

f2(q
1, q2) = k2q

1 − k2q2,

one has:

‖f(q)‖2q ≤ 1

λmin(q)
|(f1, f2)|2 .

Therefore,

‖f(q)‖q ≤ 1

α
|(f1, f2)| ,

≤ 1

α

[
λl1 + (k1 + k2)

∣∣q1∣∣+ k2
∣∣q1∣∣+ 2k2

∣∣q2∣∣] ,
≤ 1

α

[
λl1 + 4(k1 + k2)

∣∣(q10 , q20)∣∣+ 4(k1 + k2)
∣∣(q1 − q10 , q

2 − q20)
∣∣] ,

≤ 1

α

[
λl1 + 4(k1 + k2)

∣∣(q10 , q20)∣∣]+ 4(k1 + k2)

α2
d(q, q0), ∀q ∈ Q

By virtue of theorem 10, the motion of the system is defined for all t ∈ R
+.
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6.3. Boltzmann’s gas

Consider a collection of N rigid homogeneous balls of mass m and radius

R in a rigid rectangular box. The balls cannot interpenetrate. The balls are free

of internal or external forces except for the reaction efforts induced by the uni-

lateral constraints. The impact constitutive equation is supposed to be the elastic

one. Such a system was introduced by Boltzmann to model the interactions be-

tween molecules in a gas in order to perform a statistical analysis to connect the

microscopical and macroscopical point of view.

Let us describe the discrete mechanical system associated with this situation.

The configuration space is R
3N . Indeed, any configuration is described by the

coordinates of the center of the balls in the three-dimensional ambiant space equip-

ped with an origin. Strictly speaking, the configuration space should be R
3N ×

(SO3)N to incorporate the possible rotations of the balls. But, in this case, it would

be readily seen that the rotation velocity of any ball in any motion of the system

keeps its value at the initial instant. Therefore, rotations play no role in the motion

of the system and we may consider only the restricted configuration space R
3N

equipped with its canonical riemannian structure. The forces mapping vanishes

identically f(q, q̇+; t) ≡ 0. There are N(N + 11)/2 functions ϕi, since N(N −
1)/2 of them are necessary to express the noninterpenetration constraints:

∀i, j ∈ {1, 2, · · ·N}, i �= j,
(
xi − xj

)2
+
(
yi − yj

)2
+
(
zi − zj

)2 ≥ R2,

and 6N of them are necessary to express that the balls remains inside the box:

∀i, j ∈ {1, 2, · · ·N},
−a+R ≤ xi ≤ a−R,

−b+R ≤ yi ≤ b−R,

−c+R ≤ zi ≤ c−R,

where 2a, 2b and 2c are the lengths of the sides of the box. The functions ϕi are de-

fined by arbitrary numbering. They are easily seen to be analytic and functionally

independent. Adding the elastic impact constitutive equation φ(q, q̇−) ≡ 1, and an

initial condition at time t0 = 0, the corresponding evolution problem turns out to

belong to the class of problem P formulated at the beginning of section 4. Then,

corollary 9 and theorem 10 state that, to any initial condition compatible with the

constraints, there corresponds a unique maximal motion and it is defined all over

R
+. By proposition 19, we may also state that there are at most finitely many im-

pacts on any bounded time interval. As a conclusion, the results developed in this

paper allow us to associate a dynamical system with Boltzmann’s gas.

Related to this question, let us mention Boltzmann’s famous ergodic hypoth-

esis. Roughly speaking, Boltzmann postulated that in any motion of the system,

time averages can be replaced by space averages. The modern mathematical tran-

script is: for almost every initial condition in an energy level set of the phase space,

the associated phase curve spends an amount of time in every measurable piece

of the level set proportional to the measure of that piece. The question to know

whether Boltzmann’s gas is ergodic or not is still an open question. However, a

positive answer was given in 1970 by Sinai ([20]) for a two balls gas in a plane
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rectangular box. Let us underline that this question makes sense only when we are

able to associate a dynamical system with Boltzmann’s gas.

6.4. Newton’s balls and the impact constitutive equation

In section 3.3, it has been derived from the two phenomenological assump-

tions H3 and H4, that the general constitutive impact equation

q̇+ = F (q, q̇−) (52)

should satisfy:

∀q ∈ A, ∀v− ∈ −V (q),

F (q, v−) ∈ V (q)

F (q, v−)− v− ∈ −N(q)

‖F (q, v−)‖q ≤ ‖v−‖q
(53)

In the particular case of a motion no more than one active constraint at any time

(∀t, CardJ(q(t)) ≤ 1), it has been seen in section 3.3 that the general impact

constitutive equation (52) necessarily takes the form:

q̇+ = Projq
[
q̇−;V (q)

]− φ
(
q, q̇−

)
Projq

[
q̇−;N(q)

]
, (54)

with φ an arbitrary function taking values in the interval [0, 1]. Actually, equa-

tion (54) makes sense even in case of multiple impacts and it is a simple example

of an impact constitutive equation satisfying requirements (53). For sake of sim-

plicity, we have adopted this particular form of the impact constitutive equation

even in the case where multiple impacts occur. However, the reader should keep in

mind the arbitraryness of this choice and we shall show that it could be irrelevant in

some cases. A simple occurrence of multiple impact is Newton’s balls experiment.

a cb

Fig. 4. Newton’s balls experiment.

The principle of Newton’s balls experiment is well-known. It is sketched on

figure 6.4a. As a result of this multiple impact experiment, we have the famil-

iar picture drawn of figure 6.4b. But, testing the simple impact constitutive equa-

tion (54) (with φ ≡ 1) to predict the issue of the experiment, we get the situation

drawn on figure 6.4c.
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The question arises to known whether the results of section 4 remain true if

we abandon the simple impact constitutive equation (54) and adopt the general

impact constitutive equation (52) defined by an arbitrary function F fulfilling re-

quirements (53). Actually, a careful examination of the proofs of section 4 shows

that the impact constitutive equation is only used through the energy inequality

(proposition 7). Moreover, it is readily seen that proposition 7 still holds when

the simple impact constitutive equation (24) is replaced by a general one (equa-

tion (52)) provided requirements (53) hold true. As a result, all the results of sec-
tion 4, and in particular, theorem 8, corollary 9 and theorem 10 remain true if
we adopt an arbitrary impact constitutive equation instead of equation 24 in the
definition of problem P .

A general impact constitutive equation will be said elastic if the last require-

ment in (53) is replaced by:

∀q ∈ A, ∀v− ∈ −V (q),
∥∥F (q, v−)∥∥

q
=
∥∥v−∥∥

q
.

It is readily seen that proposition 19 still holds with an arbitrary impact constitutive

equation. In particular, for a solution of problem P with an arbitrary elastic impact

constitutive equation, the impacts are isolated.

7. Continuous dependence on initial conditions

The theory developed in the previous sections allows us to replace the anal-

ysis of the motion of a collection of rigid bodies subjected to perfect constraints

either bilateral or unilateral by the analysis of the motion of a point in a piece

of a d-dimensional manifold bounded by analytic hypersurfaces which intersect

transversally. With appropriate regularity assumptions on the data, the motion is

completely determined by the initial condition.

The picture seems to be fairly good and the generalization of the dynamics

of discrete systems with bilateral constraints to the case of unilateral constraints

seems to be achieved. However, there remains a big difference between unilateral

and bilateral dynamics of discrete systems that we want to underline in this section.

A pleasant feature of a dynamical system generated by the flow of an ordinary

differential equation is that it is smooth. More precisely, if Ft,t0 is the mapping

which associates the state of the system at time t with an arbitrary initial condi-

tion at time t0, then the mapping Ft,t0 is a local diffeomorphism. In particular,

the state of the system at a given instant t depends in a differentiable way of the

state at time t0. Of course, this smooth dependence may be stiff. In such a case, a

small uncertainty on the initial state will produce a big one on the actual state and

the motion of the system may turn out to be quantitatively unpredictable on both

physical and numerical point of view for large time. In certain circumstances, the

theory of smooth dynamical systems allow us to get some qualitative information

on the motion for large time.

As we shall see, the picture is strongly different in the case of the dynamics

of discrete systems with perfect unilateral constraint. The theorems of section 4

allow us to define a mapping Ft,t0 similar to the flow generated by an ordinary



The dynamics of discrete mechanical systems with perfect unilateral constraints 55

differential equation. But, the mapping Ft,t0 is not smooth any more, it is not even

continuous in general. In other terms, the generated dynamical system does not

belong to the large class of topological dynamical systems.

Let us check this assertion on a simple example. Consider as a configuration

space R2 supplied with its canonical structure of riemannian manifold. A configu-

ration is denoted by a pair (x, y). No forces act on the system: f ≡ 0. Consider a

unilateral constraint associated with the two functions:

ϕ1(x, y) = y ≤ 0

ϕ2(x, y) = x+ y ≤ 0

and the elastic impact constitutive equation φ ≡ 1. At time t0 = 0, we consider

the following set of initial conditions:

{(−1 + ε,−1; 1, 1); ε ∈]− 1, 1[}

A straightworward calculation gives the state of the system for all instant in R
+.

In particular, for t greater than 1, one gets:

Ft,0(−1 + ε,−1; 1, 1) = (−1 + ε+ t, 1− t, 1,−1) if ε ∈]− 1, 0[,

Ft,0(−1 + ε,−1; 1, 1) = (1− t, 1− ε− t,−1,−1) if ε ∈ [0, 1[.

It is readily seen on this example that, if t is greater than 1, the mapping Ft,0 is

not continuous at initial condition (−1,−1, 1, 1) (see figure 7). Coming back to

x

y

Fig. 5. The generated dynamical system is not continuous in general.

the two examples of section 6, such a situation occurs if, during the motion of the

double pendulum, the two bars hit the obstacle at the same time. In the case of

Boltzmann’s gas, the pathology occurs when three balls hit at the same time. Let

us underline that if we consider an initial condition such as the one in the above

example, the solution of the associated problem P has no physical meaning. In

such a case, one has to abandon the will of predicting the motion of the system: this

is a consequence of the over-idealization made in the indeformability assumption.



56 Patrick BALLARD

However, in the particular case of the one degree-of-freedom problem, where

no multiple impacts are possible, Schatzman [19] proved that continuous depen-

dence on initial conditions hold. In the general case, her result admits the following

generalization which is proved along the same lines:

Theorem 20 Consider the problem P described in section 3.4. Assume further-
more that the impact function φ is constant. Considering the initial condition
(q0, v0) ∈ TA+ at initial instant t0, we denote by (T, q) the corresponding maxi-
mal solution of problem P . We make the following hypothesis:

∀t ∈ [t0, T [, (dϕi(q(t)))i∈J(q(t)) is orthogonal in T ∗
q(t)Q,

(with the convention that the empty set is orthogonal). Let us onsider a sequence
(q0n, v0n) of elements of TA+ converging towards (q0, v0). For all n, we denote
by (Tn, qn) the maximal solution of the problem P associated with the initial con-
dition (q0n, v0n) at instant t0. Then,

1. lim inf
n→+∞ Tn ≥ T ,

2. qn converges towards q uniformly on every compact subset of [t0, T [:

∀τ ∈ [t0, T [, lim
n→+∞ sup

t∈[t0,τ ]

d(qn(t), q(t)) = 0,

3. (qn(t), q̇
+
n (t)) converges towards (q(t), q̇+(t)) in TQ for almost all t in [t0, T [.

Proof. The proof of theorem 20 is divided into five steps. Before describing these

steps, let us introduce a few notations.

We fix, once for all, an arbitrary τ in [t0, T [ and a compact neighbourhood K ′

of the compact subset q([t0, τ ]) of Q. We define:

V = 1 + sup
t∈[t0,τ ]

∥∥q̇+(t)∥∥
q(t)

,

and,

K =
{
(q, v) ∈ TQ; q ∈ K ′ and ‖v‖q ≤ 4V

}
.

The subset K of TQ is compact in TQ. We define also:

F = 1 + max
(q,v;t)∈K×[t0,τ ]

‖f (q, v; t)‖q

and,

d0 = min
(q′,t)∈∂K×[t0,τ ]

d(q′, q(t)),

and,

δ = min

(
V

F
,
d0
6V

)
.

Notice that we have δ > 0.
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Step 1. Consider t1 ∈ [t0, τ [. We denote q(t1) by q1 and q̇+(t1) by v1. Consider
an element (q′1, v

′
1) of TA+ such that:

d(q1, q
′
1) ≤

d0
4

and ‖v′1‖q′1 ≤ 2V.

Then, the maximal solution q′ of the problem P associated with the initial condi-
tion (q′1, v

′
1) at initial instant t1 is defined on an interval containing [t1,min(τ, t1+

δ)] and is such that:

∀t ∈ [t1,min(τ, t1 + δ)],
(
q′(t), q̇′+(t)

) ∈ K.

Proof of step 1. Let us denote by [t1, T
′
1[ the maximal definition interval of q′.

Define:

t′1 = sup
{
t ∈ [t1, T

′
1[; ∀s ∈ [t1, t],

(
q′(s), q̇′+(s)

) ∈ K
}
.

We have to prove:

t′1 ≥ min (τ, t1 + δ) .

Assume the contrary is true:

t′1 < min (τ, t1 + δ) .

By proposition 7 and lemma 17, we have:

∀t ∈ [t1, t
′
1[, ‖q̇′+(t)‖q′(t) ≤ ‖v′1‖q′1 +

∫ t

t1

F ds

≤ 2V + F (t′1 − t1)
≤ 3V

We deduce:

t′1 < T ′
1,

by proposition 18, and:∥∥q̇′+(t′1)∥∥q′(t′1) ≤ ∥∥q̇′−(t′1)∥∥q′(t′1) = lim
t→t′−1

∥∥q̇′+(t)∥∥
q′(t) ≤ 3V,

by proposition 32. Moreover,

d (q′(t′1), q1) ≤ d (q′(t′1), q
′
1) + d (q′1, q1)

≤ 3V (t′1 − t1) +
d0
4

≤ 3

4
d0

By the continuity of the function t �→ d(q′(t), q1) and the right-continuity of the

function t �→ ‖q̇′+(t)‖q′(t), there results:

∃α > 0, ∀t ∈ [t′1, t
′
1 + α],

(
q′(t), q̇′+(t)

) ∈ K.



58 Patrick BALLARD

But, this contradicts the definition of t′1 and achieves the proof of step 1.

Step 2. For n large enough, qn is defined on (an interval containing) the interval
[t0,min(τ, t0 + δ)]. Moreover, there exists a subsequence of (qn), also denoted by
(qn), such that:

– qn converges uniformly on [t0,min(τ, t0+δ)] towards a function qlim belonging
to
MMA([t0,min(τ, t0 + δ)];Q),

– (qn(t), q̇
+
n (t)) converges towards (qlim(t), q̇

+
lim(t)) in TQ for almost all t in

[t0,min(τ, t0 + δ)].

Proof of step 2. For all q in K ′ ∩A, there exists a compact neighbourhood K ′
q of

q which is included in the domain Uq of a local chart (Uq, ψq) at q such that:

– ∀q′ ∈ Uq, J(q′) ⊂ J(q),
– ∀q′ ∈ Uq, the cardJ(q) first components of ψq(q

′) are the ϕi(q
′) (i ∈ J(q)).

Being compact, K ′ ∩ A can be covered by a finite number, say L, of
◦
K ′

ql . We

denote by λmax (resp. λmin) the maximum (resp. the minimum) of the greatest

(resp. least) eigenvalue of the matrix (gij(q))i,j=1,2,···,d when q wanders in K ′
ql

and l in {1, 2, · · · , L}. We define:

G = max
i,j,k∈{1,2,···,d}
l∈{1,2,···,L}

max
q∈K′

ql

∣∣∣∣∂gij(q)∂qk

∣∣∣∣ .

We pick an integer N0, large enough to ensure:

∀n ≥ N0,
d(q0, q0n) ≤ d0

4
‖v0n‖q0n ≤ 2V

.

By step 1, there results:

∀n ≥ N0,
Tn ≥ min (τ, t0 + δ) ,

∀t ∈ [t0,min (τ, t0 + δ)] , (qn(t), q̇
+
n (t)) ∈ K.

By a compactness argument, we have:

∃α > 0, ∀l ∈ {1, 2, · · · , L} , ∀q ∈ ∂Kql , ∃l′, B(q, α) ⊂ K ′
ql′ .

As a consequence, for n larger than N0, the interval [t0,min(τ, t0 + δ)] is the

disjoint union of a finite number, say Nn, of intervals Ini such that:

∀i ∈ {1, 2, · · · , Nn} , ∃l ∈ {1, 2, · · · , L} , qn(Ini) ⊂ K ′
ql .

Moreover, the intervals Ini can be constructed in such a way that:

∀n ≥ N0, Nn ≤ 1 +
4V δ

α
.
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Furthermore, recalling:

∀n, �Dq̇+n = f
(
qn, q̇

+
n ; t
)
dt+

n∑
i=1

λnidϕi(qn(t)), (55)

where the λni are nonpositive real measures on [t0,min(τ, t0+δ)], and performing

the same job as in the proof of proposition 18 (estimate 38), one obtains:

∀n ≥ N0, ∀i ∈ {1, 2, · · ·N} , ∀j ∈ {1, 2, · · ·Nn} ,∫
Inj

(−λni) ≤ 2
√
λmax(4V ) +

(
F +

d2G(4V )2

2λmin

)
δ.

There results:

∀n ≥ N0, ∀i ∈ {1, 2, · · ·N} , (56)∫
[t0,min(τ,t0+δ)]

(−λni) ≤
[
1 +

4V δ

α

] [
2
√
λmax(4V ) +

(
F +

d2G(4V )2

2λmin

)
δ

]

The measures λni are uniformly bounded with respect to n. By the equation of

motion (55), we obtain that the real numbers Var (q̇+n ; [t0,min(τ, t0 + δ)]) are uni-

formly bounded with respect to n, for n larger than N0. The assertion of step 2 is

now a direct consequence of proposition 34.

Step 3. The function qlim constructed in step 2 satisfies the equation of motion:

Rlim = �Dq̇+lim − f
(
qlim, q̇

+
lim; t

)
dt ∈ −N∗(qlim).

Moreover, the real measure 〈Rlim,
(
q̇+lim + q̇−lim

)〉qlim is a nonpositive measure on
the interval [t0,min(τ, t0 + δ)[.

Proof of step 3. We denote by Mb([a, b],R) the Banach space of all bounded

real measures on an interval [a, b]. By estimate 56, we can find N bounded real

measures λilim such that:

lim
n→+∞λin = λilim in Mb([t0,min(τ, t0 + δ)],R) weak*,

where another subsequence has been extracted, if necessary. Writing the equation

of motion (55) in local charts, we have:

lim
n→+∞ dq̇+i

n = dq̇+i
lim in Mb weak*.

Furthermore,

lim
n→+∞ f

(
qn, q̇

+
n ; t
)
dt = f

(
qlim, q̇

+
lim; t

)
dt in Mb weak*,

by Lebesgue’s Dominated Convergence Theorem. Therefore, we obtain easily:

�Dq̇+lim = f
(
qlim, q̇

+
lim; t

)
dt+

n∑
i=1

λilimdϕi(qlim),
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the weak* topology being Hausdorff. Now, by formulae (12) we have to prove:

Suppλilim ⊂ {t ∈ [t0,min(τ, t0 + δ)];ϕi(qlim(t)) = 0} (57)

Consider ]a, b[⊂ [t0,min(τ, t0 + δ)] such that:

∀s ∈]a, b[, ϕi(qlim(s)) < 0.

The interval ]a, b[ is the union of the compact intervals Kj = [a + 1/j, b − 1/j]
(j ∈ N

∗). Fix j ∈ N
∗. For n large enough:

∀s ∈ Kj , ϕi(qn(s)) < 0,

so λin|Kj
= 0. We deduce:

∀g ∈ C0
c (Kj ;R),

∫
Kj

g dλilim = 0

Therefore, λilim|]a,b[ = 0 and this achieves the proof of inclusion (57) and therefore

of the first assertion of step 3.

For the second assertion of step 3, we are going to prove actually:

∀t1, t2 ∈ [t0,min(τ, t0 + δ)[, t1 < t2,

∫
]t1,t2]

〈Rlim,
(
q̇+lim + q̇−lim

)〉qlim
≤ 0.

(58)

Fix such t1, t2 and arbitrary ε > 0. We have:∫
]t1,t2]

〈Rlim,
(
q̇+lim + q̇−lim

)〉qlim
=
∥∥q̇+lim(t2)∥∥2qlim(t2)

− ∥∥q̇+lim(t1)∥∥2qlim(t1)

− 2

∫ t2

t1

〈f (qlim(t), q̇
+
lim(t); t

)
, q̇+lim(t)〉 dt.

By the right-continuity of the function t �→ ∥∥q̇+lim(t2)∥∥qlim(t)
and the results of

step 2, we can find t′1, t
′
2 ∈ [t0,min(τ, t0 + δ)[ (t′1 < t′2) and an integer N0 such

that:

ti ≤ t′i ≤ ti +
ε

8V F
, and

∀n ≥ N0,
∣∣∣∥∥q̇+lim(ti)∥∥2qlim(ti)

− ∥∥q̇+n (t′i)∥∥2qn(t′i)
∣∣∣ ≤ ε

8
(i = 1, 2).

Moreover, by Lebesgue’s Dominated Convergence Theorem, N0 may be assumed

large enough to ensure:

∀n ≥ N0,∣∣∣∣∣
∫ t′2

t′1

{〈f (qlim(t), q̇
+
lim(t); t

)
, q̇+lim(t)〉 − 〈f (qn(t), q̇+n (t); t) , q̇+n (t)〉} dt

∣∣∣∣∣ ≤ ε

8
.
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It is easily deduced that:

∀n ≥ N0,

∣∣∣∣∣
∫
]t1,t2]

〈Rlim,
(
q̇+lim + q̇−lim

)〉qlim
−
∫
]t′1,t

′
2]

〈Rn,
(
q̇+n + q̇−n

)〉qn
∣∣∣∣∣ ≤ ε.

Since ε is arbitrary and
∫
]t′1,t

′
2]
〈Rn, (q̇

+
n + q̇−n )〉qn is nonpositive (proposition 7),

the conclusion (assertion (58)) follows.

Step 4. Consider an arbitrary instant tg ∈]t0,min(τ, t0 + δ)[ such that:

(dϕi(qlim(tg)))i∈J(qlim(tg))
is orthogonal in T ∗

qlim(tg)
Q.

Then, qlim satisfies the impact constitutive equation at instant tg:

q̇+lim(tg) = q̇−lim(tg)− (1 + φ)Projqlim(tg)

[
q̇−lim(tg);N(qlim(tg))

]
.

Proof of step 4. Consider a local chart (U,ψ) centered at qlim(tg) such that:

– the cardJ(qlim(tg)) first components of ψ(q) are αiϕi(q) (i ∈ J(qlim(tg))),
where the αi are some fixed positive real constants.

– ∀q ∈ U, J(q) ⊂ J(qlim(tg)),
– the matrix (gij(lim(tg))) is the identity matrix:

(gij(lim(tg))) = δij

We have to prove:

q̇+i
lim(tg) = −φq̇−i

lim(tg), 1 ≤ i ≤ CardJ(qlim(tg))

q̇+i
lim(tg) = q̇−i

lim(tg), CardJ(qlim(tg)) + 1 ≤ i ≤ d
(59)

First, we are going to prove:

∀ε > 0, ∃N0, η > 0, ∀n ≥ N0, ∀t1, t2 ∈ [tg − η, tg + η], t1 < t2,∣∣q̇+i
n (t2)

∣∣ ≤ ∣∣q̇+i
n (t1)

∣∣+ ε,
(60)

and

∀ε > 0, ∃N0, η > 0, ∀n ≥ N0, ∀t1, t2 ∈ [tg − η, tg + η], t1 < t2,{∀t ∈ [t1, t2], qin(t) < 0
}

=⇒ {∣∣q̇+i
n (t2)− q̇+i

n (t1)
∣∣ ≤ ε

}
.

(61)

Fix ε > 0 arbitrary, and pick a positive real number η small enough and an integer

N0 large enough to ensure:

∀t ∈ [tg − η, tg + η], ∀n ≥ N0, qlim(t) ∈ U and qn(t) ∈ U.

Let V ′ be a positive real constant, large enough to majorize all the quantities∣∣q+i
n (t)

∣∣ and Var
(
q+i
n ; [tg − η, tg + η]

)
,
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when i, t and n wander respectively in the sets {1, 2, · · · , d}, [tg − η, tg + η] and

{n ∈ N ; n ≥ N0}. We may assume that η is small enough and N0 large enough

to ensure:

∀t ∈ [tg−η, tg+η], ∀n ≥ N0, |gij(qn(t))− δij | ≤ min

(
ε

4dV ′ ,
ε2

8dV ′2

)
.

Multiplying the equation of motion (36) by (q̇+i
n + q̇+i

n )/2 and integrating over

]t1, t2], we obtain easily:

∀n ≥ N0, ∀t1, t2 ∈ [tg − η, tg + η], t1 < t2,

1

2

∣∣q̇+i
n (t2)

∣∣2 ≤ 1

2

∣∣q̇+i
n (t1)

∣∣2 + 1

2

(ε
2

)2
+

∫ t2

t1

(
F +

3

2
d2GV 2

) ∣∣q̇+i
n (s)

∣∣ ds,
which gives,

∀n ≥ N0, ∀t1, t2 ∈ [tg − η, tg + η], t1 < t2,∣∣q̇+i
n (t2)

∣∣ ≤ ∣∣q̇+i
n (t1)

∣∣+ ε

2
+ 2η

(
F +

3

2
d2GV 2

)
,

by lemma 17 and the desired conclusion (60) for sufficiently small η. For the sec-

ond assertion (61), suppose we have in addition:

∀t ∈ [t1, t2], qin(t) < 0.

There results that λin vanishes on [t1, t2] and integration of the equation of mo-

tion (37) gives:

∣∣q̇+i
n (t2)− q̇+i

n (t1)
∣∣ ≤ ε

2
+ 2η

(
F +

3

2
d2GV 2

)
,

and, therefore the desired conclusion (61) for sufficiently small η.

Now, let us come back to the proof of assertions (59). Fix i ∈ {1, 2, · · · , d}.

Only the following four cases are possible:

– case 1: CardJ(qlim(tg)) + 1 ≤ i ≤ d
– case 2: 1 ≤ i ≤ CardJ(qlim(tg)) and q̇−i

lim(tg) = 0
– case 3: 1 ≤ i ≤ CardJ(qlim(tg)), q̇−i

lim(tg) > 0 and φ = 0
– case 4: 1 ≤ i ≤ CardJ(qlim(tg)), q̇−i

lim(tg) > 0 and φ > 0

We examine them successively.

– Case 1: CardJ(qlim(tg)) + 1 ≤ i ≤ d.

Fix ε > 0 arbitrary. By assertion (61), we can pick a positive real number η
small enough and an integer N0 large enough to ensure:

∀n ≥ N0, ∀t1, t2 ∈ [tg − η, tg + η], t1 < t2,
∣∣q̇+i

n (t2)− q̇+i
n (t1)

∣∣ ≤ ε,

since

∀t ∈ [tg − η, tg + η], ∀n ≥ N0, qin(t) < 0,



The dynamics of discrete mechanical systems with perfect unilateral constraints 63

by the choice of the chart we made. Actually, η can be assumed small enough

to ensure:
∀t ∈ [tg − η, tg[,

∣∣q̇+i
lim(t)− q̇−i

lim(tg)
∣∣ ≤ ε,

∀t ∈]tg, tg + η],
∣∣q̇+i

lim(t)− q̇+i
lim(tg)

∣∣ ≤ ε,

by proposition 32. By step 2, we can find t1 ∈ [tg − η, tg[ and t2 ∈]tg, tg + η]
such that:

lim
n→+∞ q̇+i

n (tk) = q̇+i
lim(tk) (k = 1, 2)

and, therefore, N0 can be assumed large enough to ensure:

∀n ≥ N0,
∣∣q̇+i

n (tk)− q̇+i
lim(tk)

∣∣ ≤ ε (k = 1, 2).

Then, we have:∣∣q̇+i
lim(tg)− q̇−i

lim(tg)
∣∣ ≤ ∣∣q̇+i

lim(tg)− q̇−i
lim(t2)

∣∣+ ∣∣q̇+i
lim(t2)− q̇−i

n (t2)
∣∣

+
∣∣q̇+i

n (t2)− q̇−i
n (t1)

∣∣+ ∣∣q̇+i
n (t1)− q̇−i

lim(t1)
∣∣

+
∣∣q̇+i

lim(t1)− q̇−i
lim(tg)

∣∣
≤ 5ε.

Since ε is arbitrary, we get the desired conclusion:

q̇+i
lim(tg) = q̇−i

lim(tg)

– Case 2: 1 ≤ i ≤ CardJ(qlim(tg)) and q̇−i
lim(tg) = 0.

Fix ε > 0 arbitrary. By assertion (60), we can pick a positive real number η
small enough and an integer N0 large enough to ensure:

∀n ≥ N0, ∀t1, t2 ∈ [tg−η, tg+η], t1 < t2,
∣∣q̇+i

n (t2)
∣∣ ≤ ∣∣q̇+i

n (t1)
∣∣+ε.

Exactly as in case 1, η is assumed sufficiently small to ensure:

∀t ∈ [tg − η, tg[,
∣∣q̇+i

lim(t)
∣∣ ≤ ε,

∀t ∈]tg, tg + η],
∣∣q̇+i

lim(t)− q̇+i
lim(tg)

∣∣ ≤ ε,

and N0 large enough to have:

∀n ≥ N0,
∣∣q̇+i

n (tk)− q̇+i
lim(tk)

∣∣ ≤ ε (k = 1, 2),

for some t1 ∈ [tg − η, tg[ and some t2 ∈]tg, tg + η]. We get:∣∣q̇+i
lim(tg)

∣∣ ≤ ∣∣q̇+i
lim(tg)− q̇−i

lim(t2)
∣∣+ ∣∣q̇+i

lim(t2)− q̇+i
n (t2)

∣∣+ ∣∣q̇+i
n (t2)

∣∣ ,
≤ ∣∣q̇+i

n (t1)
∣∣+ 3ε,

≤ 5ε,

which gives the desired conclusion

q̇+i
lim(tg) = 0,

since ε is arbitrary.
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– Case 3: 1 ≤ i ≤ CardJ(qlim(tg)), q̇−i
lim(tg) > 0 and φ = 0.

Fix ε arbitrary in ]0, q̇−i
lim(tg)/16]. We pick η and N0 such that both asser-

tions (60) and (61) hold. Actually, η is assumed small enough to ensure:

∀t ∈ [tg − η, tg[,

∣∣∣∣qilim(t)t− tg
− q̇−i

lim(tg)

∣∣∣∣ ≤ ε,

∀t ∈ [tg − η, tg[,
∣∣q̇+i

lim(t)− q̇−i
lim(tg)

∣∣ ≤ ε,

∀t ∈]tg, tg + η],
∣∣q̇+i

lim(t)− q̇+i
lim(tg)

∣∣ ≤ ε,

and, by step 2, N0 is assumed large enough to get:

∀n ≥ N0, ∀t ∈ [tg − η, tg + η],
∣∣qin(t)− qilim(t)

∣∣ ≤ ηε,

∀n ≥ N0,
∣∣q̇+i

n (t1)− q̇+i
lim(t1)

∣∣ ≤ ε,

∀n ≥ N0,
∣∣q̇+i

n (t2)− q̇+i
lim(t2)

∣∣ ≤ ε,

for some fixed t1 ∈ [tg − η/2, tg − η/4] and t2 ∈ [tg + 3η/4, tg + η]. From

these inequalities, it is easily deduced:

−17

16

η

2
q̇−i

lim(tg) ≤ qilim(t1) ≤ −15

16

η

4
q̇−i

lim(tg),

and therefore,

∀n ≥ N0, −10

16
ηq̇−i

lim(tg) ≤ qin(t1) ≤ − 2

16
ηq̇−i

lim(tg). (62)

Furthermore,

q̇+i
n (t1) ≥ q̇+i

lim(t1)− 2ε ≥ 14

16
q̇−i

lim(tg). (63)

Then, by estimates (62) and (63) and assertion (61), it is readily seen that:

∀n ≥ N0, ∃tn ∈]t1, t1 + η[, qin(tn) = 0.

But, since φ = 0, we have:

∀n ≥ N0, q̇+i
n (tn) = 0,

and, therefore,

∀n ≥ N0,
∣∣q̇+i

n (t2)
∣∣ ≤ ε,

by assertion (60). We deduce:

∣∣q̇+i
lim(tg)

∣∣ ≤ 3ε,

and the desired conclusion q̇+i
lim(tg) = 0, since arbitrarily small ε can be chosen.
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– Case 4: 1 ≤ i ≤ CardJ(qlim(tg)), q̇−i
lim(tg) > 0 and φ > 0.

Fix ε arbitrary in ]0, φq̇−i
lim(tg)/16]. We pick η, N0, t1 and t2 exactly in the

same way as for case 3. As in step 3, we have:

∀n ≥ N0, ∃tn ∈]t1, t1 + η[, qin(tn) = 0,

but, here, it is readily seen that tn is the unique instant in [t1, tg + η] such that

qin(tn) = 0. Now, we obtain:∣∣q̇+i
lim(tg) + φq̇−i

lim(tg)
∣∣ ≤ ∣∣q̇+i

lim(tg)− q̇+i
n (t2)

∣∣+ ∣∣q̇+i
n (t2)− q̇+i

n (tn)
∣∣+

φ
∣∣q̇−i

n (tn)− q̇+i
n (t1)

∣∣+ φ
∣∣q̇+i

n (t1)− q̇−i
lim(tg)

∣∣
≤ 6ε,

by use of assertion (60). Since ε can be arbitrarily small, we have the desired

conclusion:

q̇+i
lim(tg) = −φq̇−i

lim(tg).

This achieves the proof of step 4.

Step 5. Conclusion of the proof of theorem 20
First, we are going to prove:

∀t ∈ [t0,min(τ, t0 + δ)], qlim(t) = q(t). (64)

Define:

t1 = sup {t ∈ [t0,min(τ, t0 + δ)]; ∀s ∈ [t0, t], qlim(s) = q(s)} .
Notice that the set in the above definition is non empty, since it contains t0. By

continuity, we have:

∀t ∈ [t0, t1], qlim(t) = q(t).

Now , assume:

t1 < min(τ, t0 + δ).

By the assumption made on q in the theorem and by step 4, the function qlim is

readily seen to satisfy the impact constitutive equation at instant t1. Therefore,(
qlim(t1), q̇

+
lim(t1)

)
=
(
q(t1), q̇

+(t1)
)
.

Furthermore, we have seen in step 3 that qlim satisfies the equation of motion and

that 〈Rlim,
(
q̇+lim + q̇−lim

)〉qlim
is a nonpositive real measure. But, the proof of local

uniqueness (theorem 8) uses nothing more than that. We deduce that there exists a

right-neighbourhood of t1 on which the functions qlim and q coincide identically.

But, this contradicts the definition of t1 and achieves the proof of assertion (64).

As a result, the function qlim is uniquely determined and the conclusions of step 2

are valid not only for a subsequence but for the whole sequence (qn).
Now, if t0 + δ < τ , we pick t′0 ∈ [t0 + δ/2, t0 + δ[ such that:

lim
n→+∞

(
qn(t

′
0), q̇

+
n (t

′
0)
)
=
(
q(t′0), q̇

+(t′0)
)
.
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Performing the same job for instant t′0 instead of t0, we extend the conclusion to

interval [t0,min(τ, t0 + 3δ/2)]. Processing so inductively a large enough number

of times, we obtain the desired conclusion. ��

Remark. A straightforward modification of the proof of step 4 shows that the

conclusions of theorem 20 hold if we only assume that φ is continuous and constant

on each fiber:

∀q, ∀v1, v2 ∈ TqQ, φ(q, v1) = φ(q, v2).

The conclusions of theorem 20 also hold if φ is only assumed continuous and if,

moreover, we have:

∀t ∈ [t0, T [, CardJ(q(t)) ≤ 1.

8. Indications on the numerical computation of the solutions

Consider the problem P described in section 3.4. Assume furthermore, for

sake of simplicity, that the impact function φ is constant. The maximal solution

associated with the initial condition (q0, v0) at time t0 = 0, is denoted by (Tm, q).
We consider a local chart (U,ψ) at q0 and a positive real number T such that:

∀t ∈ [0, T ], q(t) ∈ U.

By assumption 20, we may assume:

∀q ∈ U, (dϕi(q))i∈J(q) is linear independent in T ∗
q Q,

taking a smaller U if necessary. We consider a sequence of approximants, defining

for every n ≥ 1:

• hn = 2−nT,

• tn,k = khn = k2−nT (k = 0, 1, 2, · · · , 2n),
• (qn,0, vn,0) = (q0, v0),

• qn,k = qn,k−1 + hnvn,k−1 (k = 1, 2, · · · , 2n),
• v′αn,k = vαn,k−1

+
[
gαβ(qn,k)fβ (qn,k, vn,k−1; tn,k)− Γα

βγ(qn,k)v
β
n,k−1v

γ
n,k−1

]
hn

(k = 1, 2, · · · , 2n, α = 1, 2, · · · , d),
• vn,k = v′n,k − (1 + φ) Projqn,k

[v′n,k, N(qn,k)] (k = 1, 2, · · · , 2n),

• vn(t) =

∣∣∣∣∣ vn,k, if t ∈ [tn,k, tn,k+1[ with k = 0, 1, · · · 2n − 1,

vn,2n , if t = T = tn,2n ,

• qn(t) = q0 +
∫ t

0
vn(s) ds.
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Actually, there may happen that the function qn cannot be defined on [0, T ] if

there exists an integer kn such that qn,kn+1 �∈ U . In such a case, the function qn is

defined only on [0, tn,kn ].
This type of algorithm was introduced by Moreau and used without further

justifications. It should be stressed that one cannot hope that the sequence of ap-

proximants (qn) converges in general towards the solution q, since continuous de-

pendence on initial condition does not hold in general. Actually, it is easy to build

an explicit example, in the spirit of the example of section 7, where the sequence

(qn) does not converge pointwisely towards any function at all. However, in the

special case where all the multiple impacts are orthogonal, things behave nicely

and we have:

Theorem 21 Suppose that the solution q is such that all multiple impacts are or-
thogonal:

∀t ∈ [0, T ], (dϕi(q(t)))i∈J(q(t)) is orthogonal in T ∗
q(t)Q,

(with the convention that the empty set is orthogonal). Then, there exists an integer
N0 such that the function qn is well-defined on [0, T ] for n ≥ N0. Moreover, the
sequence (qn) converges uniformly on [0, T ] towards q (or more precisely towards
ψ(q)).

Theorem 21 can be proved along the same steps as those of the proof of theo-

rem 20. The necessary adaptation of the details is left to the reader.

Appendix: the class of motion MMA(I;Q)

In this section, we are going to define the concept of vector field with bounded

variation along a locally absolutely continuous curve on a riemannian manifold.

The definition and basic properties of absolutely continuous functions and func-

tions with bounded variation from a real interval to a finite-dimensional normed

vector space are supposed to be known. The reader is refered to Rudin [17] and

Moreau [13]. These concepts are intimately connected with measure theory. Two

expositions of measure theory compete: the set-theoretic approach (see for exam-

ple Rudin [17]) and the duality approach (see for example Bourbaki [6]). Both ap-

proach are connected by Riesz’s representation theorem. In this paper, we stick to

the duality approach. If I is a real interval and E a real finite-dimensional normed

vector space, C0
c (I;E) will denote the space of continuous functions from I to E

with compact support. A measure on I with values in E (resp. E∗) will be any

linear form μ on C0
c (I;E

∗) (resp. C0
c (I;E)) satisfying the following continuity

property:

∀a, b ∈ I, a < b ∃Ma,b ≥ 0, ∀ϕ with Suppϕ ⊂ [a, b],

|μ(ϕ)| ≤ Ma,b max
t∈I

‖ϕ(t)‖ .

When the constant Ma,b can be found independent on a and b, the measure μ
is said bounded. For all what concerns measure theory, the reader is refered to
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Bourbaki [6] where he will note the definition of the support Suppμ of a measure

μ (Bourbaki [6], p. 64).

The following list of definitions and propositions aims at carrying these con-

cepts over riemannian manifolds. The cornerstone is, of course, the identification

of tangent spaces at different points of a curve by means of parallel translation.

This appendix is also an occasion to state precisely the classical theorems

which are used in this paper.

Definition 22 Let I be a real interval and q : I → Q a curve on Q. q is said lo-
cally absolutely continuous if, for all t in I , there exists a compact neighbourhood
J of t in I and a chart (U,ψ) such that:

– q(J) ⊂ U ,
– ψ ◦ q : J → R

d is absolutely continuous.

Since Q can be covered by a countable collection of chart domains, there re-

sults from Lebesgue’s theorem that q(t) admits a tangent vector q̇(t) ∈ Tq(t)Q for

dt-almost all t in I where dt denotes the Lebesgue measure on the real line (and

also its restriction on I). The riemannian structure on Q and the Cauchy-Lipschitz-

Caratheodory theorem allow us to define classically a parallel translation operator

along q, τt,s : Tq(s)Q → Tq(t)Q (see, for example, Chavel [7], p. 7). τt,s is defined

for all (s, t) ∈ I2.

Definition 23 Let q be a locally absolutely continuous curve from I to Q. One
calls vector (resp. 1-form) field on q(t) any mapping X (resp. X∗) from I to TQ
(resp. T ∗Q) such that:

∀t ∈ I, ΠQ (X(t)) = q(t) (resp. Π∗
Q (X∗(t)) = q(t)).

A vector field X on q(t) (resp. a 1-form field X∗ on q(t)) will be said locally ab-
solutely continuous (resp. absolutely continuous, resp. locally with bounded vari-
ation, resp. with bounded variation) if there exists t0 in I such that the mapping:

θt0

{
I → Tq(t0)Q

s �→ τt0,s(X(s))

(
resp. θ∗t0

{
I → T ∗

q(t0)
Q

s �→ � ◦ τt0,s(� ◦X∗(s))

)
,

is locally absolutely continuous (resp. absolutely continuous, resp. locally with
bounded variation, resp. with bounded variation). If X has bounded variation on
I , its variation over I is by definition:

Var(X(s); I) = Var(τt0,s(X(s)); I). (65)

From the identity:

∀s1, s2, t1, t2 ∈ I,

‖τt1,s1(X(s1))− τt1,s2(X(s2))‖q(t1) = ‖τt2,s1(X(s1))− τt2,s2(X(s2))‖q(t2) ,
it is easily deduced that the above definition is independent on a particular choice

of t0 and so is the real number Var(X(s); I).
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The covariant derivative of a locally absolutely continuous vector field X along

q can be defined for dt-almost all t in I by:

DX(t)

dt
=

d

ds
(τt,s(X(s)))|s=t for dt-a.a. t ∈ I.

Definition 24 Let (I, q) be a continuous curve on Q. We denote by C0
c (I, q;TQ)

(resp. C0
c (I, q;T

∗Q)) the space of continuous functions ϕ from I to TQ (resp.
T ∗Q) with compact support and such that:

∀t ∈ I, ΠQ (ϕ(t)) = q(t) (resp. Π∗
Q (ϕ(t)) = q(t)).

One calls measure on the curve (I, q) taking values in TQ (resp. T ∗Q) any linear
form μ on C0

c (I, q;T
∗Q) (resp. C0

c (I, q;TQ)) enjoying the following continuity
property:

∀a, b ∈ I, a < b ∃Ma,b ≥ 0, ∀ϕ with Suppϕ ⊂ [a, b],

|μ(ϕ)| ≤ Ma,b max
t∈I

‖ϕ(t)‖q(t) .

The real number μ(ϕ) will also be denoted by
∫
I
〈ϕ(t), dμ〉q(t).

Proposition 25 Let (I, q) a continuous curve on Q and μ a measure on q taking
values in T ∗Q. For any nonnegative function f of C0

c (I;R), one defines:

|μ| (f) = sup
g∈C0

c (I,q;TQ)

‖g(t)‖q(t)≤f(t)

∣∣∣∣
∫
I

g(t) dμ

∣∣∣∣ ,

where the supremum is finite thanks to the continuity properties included in the
definition of measures. For arbitrary f in C0

c (I;R), one defines:

|μ| (f) = |μ| (〈f〉+)− |μ| (〈f〉−) ,
where 〈x〉± = max{±x, 0} are the classical positive and negative parts.

Then, the functional |μ| is a real measure called the modulus measure of μ.

The proof is omitted since it is completely identical to the proof of the similar

statement for complex measures (see Bourbaki [6], p. 54).

The support Suppμ of a measure μ on q(t) taking values in T ∗Q is, by defini-

tion, the support Supp |μ| of its modulus measure.

We define L1
loc(I, q, |μ| ;T ∗Q) by the space of functions θ defined for |μ|-

almost all t in I , taking values in T ∗Q and such that:

– Π∗
Q(θ(t)) = q(t) for |μ|-almost all t ∈ I ,

– ∀ϕ ∈ C0
c (I, q;TQ), t �→ 〈ϕ(t), θ(t)〉q(t) ∈ L1(I, |μ| ;R).

Proposition 26 Let μ be a measure on q(t) taking values in T ∗Q. Then, there
exists a unique (class of) function lμ ∈ L1

loc(I, q, d |μ| ;T ∗Q) such that:

– Π∗
Q(lμ(t)) = q(t) for d |μ|-almost all t ∈ I ,
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– ∀ϕ ∈ C0
c (I, q;TQ),

∫
I
〈ϕ(t), dμ〉q(t) =

∫
I
〈ϕ(t), lμ(t)〉q(t)d |μ|.

This fact will be denoted by: dμ = lμd |μ|. We shall say that lμ is the density of
measure μ with respect to measure |μ|.
Proof. For measure taking values in a finite-dimensional vector space, the above

statement is a classical direct consequence of Lebesgue-Radon-Nikodym theorem

(see Rudin [17]). It is readily carried over manifolds by means of a locally finite

partition of unity modelled on chart domains.

Definition 27 Let X be a vector field with locally bounded variation on an ab-
solutely continuous curve (I, q) and t0 an arbitrary element of I . We denote by
dt0X the Stieljes measure (see Moreau [13]) associated to the mapping with lo-
cally bounded variation:

θt0

{
I → Tq(t0)Q

s �→ τt0,s(X(s))
.

For Y ∈ C0
c (I, q;TQ) and Y ∗ ∈ C0

c (I, q;T
∗Q), the linear forms:

Y �→
∫
I

(τt0,s(Y (s)), dt0X)q(t0) and Y ∗ �→
∫
I

(τt0,s(� ◦ Y ∗(s)), dt0X)q(t0)

turns out to be independent on a particular choice of t0 and define measures on
q taking respectively values in T ∗Q and TQ. They are denoted by �DX and DX
and called the covariant and contravariant representative of the covariant Stieljes
measure associated with X .

Proposition 28 If X is a locally absolutely continuous vector field on a locally
absolutely continuous curve from I to Q then:

DX =
DX

dt
dt and �DX = �

DX

dt
dt (66)

Reciprocally, if X is locally with bounded variation and such that its covariant
Stieljes measure DX admits a density with respect to the Lebesgue measure, then
X is locally absolutely continuous and relations (66) hold.

Proof. This is an immediate consequence of definition 27 and of the similar state-

ment for functions taking values in a finite-dimensional normed vector space.

Proposition 28 ensures the consistency of our notations. Let us now turn to

practical calculations in charts.

Proposition 29 Let (U,ψ) be a chart on Q, (I, q) an absolutely continuous curve
on Q such that q(I) ⊂ U and X a vector field on (I, q). The components (Xi) (i =
1, 2, · · · d) of X in the natural chart of TQ associated with ψ are real functions
defined on I . The vector field X is locally absolutely continuous (resp. absolutely
continuous, resp. locally with bounded variation, resp. with bounded variation)
if and only if every function Xi is locally absolutely continuous (resp. absolutely
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continuous, resp. locally with bounded variation, resp. with bounded variation).
Moreover, in such a case, we have:

DX =
(
dXi + Γ i

jk(q(t))X
j(t)q̇k(t) dt

)
ei(q(t)),

�DX = gij(q(t))
(
dXj + Γ j

kl(q(t))X
k(t)q̇l(t) dt

)
ei(q(t)).

Proof. This is an immediate consequence of definition 27.

Proposition 30 Let X be a vector field with locally bounded variation of an abso-
lutely continuous curve (I, q). Then, for any t0 in I , the two limits limt→t−0

X(t)

and limt→t+0
X(t) exist in TQ and are such that:

ΠQ

(
lim
t→t−0

X(t)

)
= ΠQ

(
lim
t→t+0

X(t)

)
= q(t0).

These limits are denoted by X−(t0) and X+(t0) and can be different only on an
at most countable subset of I . The mapping:{

I → R
+

t �→ 1
2 ‖X(t)‖2q(t)

has locally bounded variation and:

d

(
1

2
‖X(t)‖2q(t)

)
=

(
X−(t) +X+(t)

2
, DX

)
q(t)

Proof. It is a direct consequence of the similar statement for functions taking val-

ues in euclidean R
d (see Moreau [13]) and of definition 27.

Definition 31 We denote by MMA(I;Q) (motions with measure acceleration)
the set of all locally absolutely continuous motions q(t) from I to Q such that
the right velocity q̇+(t) exists for all t in I and defines a vector field with locally
bounded variation on q(t).

Proposition 32 Let q be in MMA(I;Q). Then, q̇+ : I → TQ is right continu-
ous:

∀t ∈ I,
(
q̇+(t)

)+
= q̇+(t).

Moreover, q(t) admits a left velocity vector at each instant of I and:

∀t ∈ I, q̇−(t) =
(
q̇+(t)

)−
.

Proof. Use the Mean Value Inequality in a local chart.
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Proposition 33 Let q ∈ MMA(I;Q) with q(I) ⊂ U domain of a chart. Then,

�Dq̇+ =

(
d
∂K(q(t), q̇+(t))

∂q̇+i
− ∂K(q(t), q̇+(t))

∂qi
dt

)
ei(q(t)).

Proof. Reproduce the proof of proposition 2 with the help of proposition 29.

Proposition 34 Let (qn)n∈N
a sequence of elements of MMA([0, T ];Q) such

that:

– there exists a compact subset K of TQ such that:

∀n ∈ N, ∀t ∈ [0, T ], (qn(t), q̇
+
n (t)) ∈ K,

– ∃M > 0, ∀n ∈ N, Var (q̇+n ; [0, T ]) ≤ M.

Then, there exists a subsequence of (qn)n∈N
, also denoted by (qn)n∈N

, such that:

– (qn)n∈N
converges uniformly on [0, T ] for the riemannian metric towards a

function qlim belonging to MMA([0, T ];Q),
– The sequence (qn(t), q̇

+
n (t)) converges towards

(
qlim(t), q̇

+
lim(t)

)
in TQ for al-

most all t in ]0, T [.

Proof. This is a generalization of Helly’s theorem to the case of a riemannian

manifold. The set K ′ = ΠQ(K) being compact, there exists ε > 0 such that (cf

Chavel [7], p. 23):

– for all q in K ′, B(q, ε) (= {q′ ∈ K ′; d(q, q′) < ε}) is the domain of a chart

ψq ,

– for all q in K ′, the distance defined by |ψq(q1)− ψq(q2)| and the riemannian

distance d are equivalent on B(q, ε).

First, we extract a subsequence of (qn), also denoted by (qn), such that:

lim
n→+∞(qn(0), q̇

+
n (0)) = (q0, v0) in TQ,

and there exists N0 ∈ N large enough to have:

∀n ≥ N0, d (q0, qn(0)) <
ε

2
,

Now, by:

∀t ∈ [0, T [, ∀n ∈ N,
∥∥q̇+n (t)∥∥qn(t) ≤ ∥∥q̇+n (0)∥∥qn(0) + Var

(
q̇+n ; [0, T ]

)
,

(67)

there exists α0 (0 < α0 ≤ T ) small enough to have:

∀t0 ∈ [0, T ], ∀t ∈ [t0,min(T, t0 + α0)], ∀n ∈ N, d(qn(t), qn(t0)) <
ε

2
.

Then, it is easily checked that the functions ψq0 (qn(t))|[0,α0]
(n ≥ N0) satisfy

the hypothesis of Helly’s theorem and therefore the conclusion of the proposition

holds on [0, α0].
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Now, choose t1 ∈ [α0/2, α0] such that:

lim
n→+∞

(
qn(t1), q̇

+
n (t1)

)
=
(
qlim(t1), q̇

+
lim(t1)

)
in TQ,

and N1 large enough to have:

∀n ≥ N1, d (qlim(t1), qn(t1)) <
ε

2
.

Performing the same job as above on the chart of domain B(qlim(t1), ε), one ob-

tains that the conclusion of the proposition holds on [0,min(T, 3α0/2)]. Process-

ing so inductively a large enough number of times, we obtain the desired conclu-

sion. ��
Remark. If the riemannian manifold Q is assumed to be complete, the first hy-

pothesis in proposition 34 can be weakened and replaced by:

– there exists a compact subset K0 of TQ such that:

∀n ∈ N, (qn(0), q̇
+
n (0)) ∈ K0,

Indeed, this hypothesis allows us to extract a subsequence of (qn) such that:

lim
n→+∞(qn(0), q̇

+
n (0)) = (q0, v0) in TQ.

By estimate 67, we get:

∃D > 0, ∀t ∈ [0, T ], ∀n ∈ N,
∥∥q̇+n (t)∥∥qn(t) ≤ D, and d (q0, qn(t)) ≤ D.

The riemannian manifold Q being complete, by Hopf-Rinow theorem (cf Chavel

[7], p. 26), the functions (qn, q̇
+
n (t)) take values in a compact subset K of TQ.
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11. J.J. MOREAU, Décomposition orthogonale d’un espace hilbertien selon deux cones
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