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On the determination of elastic coefficients from indentation
experiments

N Tardieu and A Constantinescu
Laboratoire de Mécanique des Solides, (CNRS UMR 7649, Polytechnique, Mines, Ponts and
Chaussées), 91128 Palaiseau cedex, France

Abstract. The main result of this paper is the extension of the adjoint state method to variational
inequalities. This is done for the Signorini contact problem (Kikuchi N and Oden J T 1988
Contact Problems in Elasticity: a Study of Variational Inequalities and Finite Element Methods
(Philadelphia: SIAM)) and used for the identification of elastic coefficients from an indentation test.
The result is obtained by two independent approaches based on the penalized and respectively, mixed
formulations of the direct problem, a Signorini contact problem. An important and astonishing
result is that the obtained adjoint problem is a linear problem with Dirichlet boundary conditions.
This is expected for problems described with variational equalities (Bui H D 1993 Introduction Aux
Problèmes Inverses en Mécanique des Matériaux (Paris: Eyrolles) (Engl. Transl. (Boca Raton,
FL: CRC Press)), Lions J L 1968 Contrôle Optimal des Systèmes Gouvernés par des Équations
aux Dérivées Partielles (Dunod)), but is a new result for problems described with variational
inequalities. As an application, the elastic coefficients of an isotropic body have been identified
from the knowledge of a displacement–force curve measured during an indentation test. The
efficiency of the method is illustrated on numerical examples for the identification of a bimaterial
and a functional gradient material.

1. Introduction

The indentation test consists in pressing a punch of arbitrary shape (conical, spherical,
pyramidal, etc) into a material sample (figure 2) and recording the penetration depth versus
the reaction force (figure 1). The underlying identification problem seeks to recover the
material coefficients of the constitutive law from the knowledge of an indentation test result.
The importance of this testing method stems from its experimental simplicity. However, the
interpretation of the test results is not complete in spite of the large amount of interest shown
by the engineering community over the last decades.

From a mathematical point of view, the direct indentation problem of a linear elastic
material corresponds to an elliptic partial differential equation with unilateral constraints.
The variational formulation of this problem therefore conducts to the use of variational
inequalities with variables in closed convex sets [15]. The associated inverse problems inherit
this mathematical complexity.

The existing solutions to the identification problem of the material parameters (i.e.
coefficients of the associated partial differential equation) from indentation tests are on the one
hand semi-empirical formulae in some particular cases of material behaviour [5,8,13,14,18].
On the other hand, one finds attempts to solve a related minimization problem for a given cost
functional without any reference to a gradient computation [10, 11, 16]. The minimization
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Figure 1. Indentation curve.
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Figure 2. Indentation test (direct problem (P)).

approach is obviously of primal interest and would be enhanced by the possibility to compute
the gradient of the cost functional with respect to the material parameters.

The purpose of this paper is to show that the gradient of the cost functional can be
determined for an inverse elastic indentation problem. With this aim, the adjoint state method
has been modified to apply to variational inequalities. As a consequence, an exact gradient
is obtained from the knowledge of the solutions to the direct and the adjoint problems. The
adjoint problem has been deduced using two different approaches based on the penalized and
respectively, mixed variational formulations of the Signorini contact problem. An important
and astonishing result is that the obtained adjoint problem is a linear problem with Dirichlet
boundary conditions. This is expected for problems described with variational equalities [2,17],
but is a new result for problems described with variational inequalities.

In section 2, the direct contact problem is presented using three different weak
formulations [15]: primal, penalized and mixed. In section 3, the inverse problem is expressed
as a constrained minimization problem.

In section 4, the application of the adjoint state method for variational inequalities is
presented. The direct and adjoint problems are obtained as sufficient conditions for the
stationarity of a Lagrangian functional.

Finally, a series of numerical examples illustrates the efficiency of the method by
identifying coated and functional gradient materials from an indentation test with a conical
punch.
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2. The direct contact problem

Let us consider an axisymmetric body, with its section occupying in its reference configuration
an open subset � ⊂ R

2 with smooth boundary � (figure 2). The boundary is partitioned in
three parts � = �D ∪�F ∪�C : the part �D where displacements are imposed, the free surface
�F and the surface �C where contact might occur. We shall denote by �eff

C ⊂ �C the part
where contact is effective.

The problem considered in what follows is the indentation of the body � by a rigid punch,
whose profile is characterized by the gap g (the distance between the punch and the surface
�C). The contact is considered without friction. One can note that the effective contact region
�eff

C is not known in advance, causing the nonlinearity of the direct problem.
In order to simplify the presentation without restricting the generality of the method, the

configuration is supposed axisymmetric and no body forces or imposed surface tractions are
considered.

The real and the virtual displacement fields u, v belong to the following functional space:

V = {v ∈ (H 1(�))2 | u = 0 on �D}. (1)

Under the assumptions of small strains and an elastic constitutive law, the displacement vector,
the second-order strain and stress tensors are subject to the following set of equations:

ε(u) = 1
2 (∇u + ∇T u) (2)

σ(u) = A(c) : ε(u) (3)

where A(c) is the fourth-order tensor of elastic moduli depending of a vector of material
parameters c ∈ L, a closed subset of R

n (n � 1). The stress tensor σ also satisfies the
equilibrium equations:

divσ(u) = 0. (4)

Using the previous notations, we will recall three classical variational formulations of the
frictionless contact problem between a rigid punch of arbitrary shape and an elastic foundation,
denoted as the Signorini problem (for a detailed presentation see Kikuchi and Oden [15]).

2.1. Primal formulation (P)

This problem is driven by the indentation depth U exp and is written as follows:
find u ∈ K such that∫

�

σ(u) : ε(v − u) d� � 0

∀v ∈ K = {v ∈ V | v2 � g + U exp on �C}.
(5)

The resultant force F on the indenter is computed from the solution u of the contact
problem by

F =
∫

�C

σ22(u) d�. (6)

Within this formulation, the contact conditions are directly imposed to the solution u by
searching it in the closed convex set K. This causes a certain number of difficulties from
a numerical point of view and therefore equivalent formulations on vector spaces are to be
preferred.
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2.2. Penalized formulation (Pε)

For an arbitrary small ε > 0, we consider the following problem:
find uε ∈ V such that∫

�

σ(uε) : ε(v) d� +
1

2ε

∫
�C

〈uε2 − g − U exp〉2
+v2 d� = 0 ∀v ∈ V (7)

where 〈·〉+ denotes the positive part.
The reaction force Fε on the punch is defined as

Fε = − 1

2ε

∫
�C

〈uε2 − U exp − g〉2
+ d�. (8)

In this case, one can consider in a rough interpretation that the contact conditions are
replaced by a nonlinear contact force proportional to the allowed interpenetration and inverse
proportional to ε. Some convergence properties are proven: uε converges strongly to u in V

and Fε converges to F in R. Formally, this means that, as ε → 0, the solution to the penalized
problem (Pε) converges to the solution to the primal problem (P).

2.3. Mixed formulation (Pm)

This formulation has the following expression:
find (u, p) ∈ V × N such that∫

�

σ(u) : ε(v) d� −
∫

�C

p · v2 d� = 0 ∀v ∈ V∫
�C

(q − p) · (u2 − U − g) d� � 0 ∀q ∈ N .

(9)

The contact condition have been relaxed in this case by the introduction of the Lagrange
multiplier p. The displacement field u is now supposed to belong to the vector space V and
the Lagrange multipliers p to the convex cone N = {q ∈ (H 1/2(�C))′|q � 0}, where (.)′

denotes the dual of (.).
The Lagrange multiplier p ∈ N shows up to be the pressure distribution under the punch.

Therefore, the resultant force F is expressed as

F =
∫

�C

p d�. (10)

3. The inverse problem

The inverse problem addressed here is the identification of the material properties from a
displacement–force measurement curve on the indenter. From a practical point of view, it
is interesting to consider the inverse problem as a minimization problem of the following
form [9, 16]:

find c∗ ∈ L such that

J (c∗) = min
c∈L

J (c) (11)

where J represents a cost functional involving measured and computed quantities. Different
cost functionals can be imagined:

• the difference between measured and computed forces F exp, F for given material
parameter c and a prescribed indentation depth U exp:

J (c) = 1
2 (F − F exp)2 (12)
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• the difference between measured and computed displacements U exp, U for imposed
indentation force F exp:

J (c) = 1
2 (U − U exp)2 (13)

• the reciprocity gap, i.e., the crossed difference between computed and measured forces
and displacements:

J (c) = (U exp − U)(F − F exp). (14)

If the preceding cost functionals have been defined for a single definite indentation depth,
one can also imagine cost functionals as sums or time integrals of these quantities. In this paper,
we shall consider simple cost functionals based on the squared difference between computed
and experimental forces (12).

4. The adjoint state method for variational inequalities

In the previous section, the inverse problem has been expressed as a minimization problem.
In order to solve it using a descent algorithm, the gradient of the cost functional should
be computed. This is not a straightforward operation: on the one hand due to the implicit
dependence of the cost functional with regard to the minimization parameters and on the other
hand due to the direct contact problem involving non-differential relations between different
fields.

One can ask if the non-differentiability relation due to contact implies a non-
differentiability of the cost functional with respect to the material parameters. Non-
differentiability would certainly occur, if the cost functional is minimized with regards to
the parameters of the contact itself as shown in a review paper by Hilding et al [12].

An inspection of some analytical solutions in the classical elastic theory [7,14] shows that
the cost functional is differentiable with respect to elastic moduli, the minimization parameters
in our case. Numerical computations in a series of configurations involving bimaterial or
functional gradient materials exhibit the same conclusion (figure 7).

In the following, we shall propose a gradient computation using the adjoint state method.
The adjoint state method permits one to compute the gradient of a constrained cost functional
using the solution to an auxiliary problem, called the adjoint problem [1,2,17]. This technique
will be adapted to the contact problem using the penalized and mixed formulations of the direct
contact problem.

4.1. The adjoint state method based on the penalized formulation (P−1
ε )

For a small ε > 0, the inverse problem is expressed as follows:

minimize Jε = 1
2 (Fε − F exp)2 with respect to c ∈ L,

where Fε is computed from the solution of (Pε).

As we handle a constrained minimization problem, it is natural to introduce a Lagrangian
Lε , by adjoining to the penalized cost functional Jε the variational equality of the penalized
direct problem (Pε):

Lε(uε, vε, c) = 1
2 (Fε − F exp)2 +

∫
�

σ(uε) : ε(vε) d� +
1

2ε

∫
�C

〈uε 2 − g − U exp〉2
+vε2 d�

(15)

where Fε is given by (8) and (uε, vε, c) ∈ V 2 × L.
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All variables are supposed mutually independent, the virtual displacement field vε plays
the role of a Lagrange multiplier. The construction of the Lagrangian ensures that the saddle
point of the Lε gives the minimum of Jε and that Lε ≡ Jε if uε is a solution to the direct
problem (Pε).

The necessary conditions of stationarity of L can be formally written as(
∂Lε

∂vε

, w

)
=

∫
�

σ(uε) : ε(w) d�

+
1

2ε

∫
�C

〈uε2 − g − U exp〉2
+w2 d� = 0 ∀w ∈ V (16)

(
∂Lε

∂uε

, w

)
=

∫
�

σ(vε) : ε(w) d�

+
1

ε

∫
�C

〈uε2 − g − U exp〉+w2(vε2 − (Fε − F exp)) d� = 0 ∀w ∈ V (17)

[
∂Lε

∂c
, d − c

]
=

∫
�

ε(uε) :
∂A

∂c
: ε(vε) · (d − c) d� � 0 ∀d ∈ L (18)

where (. , .) and [. , .] are respectively the duality pairing on V ′ × V and L′ × L.
As expected, the derivation of the Lagrangian with respect to the adjoint variable vε (16)

returns the variational formulation of the penalized direct problem. The derivation of the
Lagrangian with respect to the direct variable uε (17) returns the weak formulation of a elastic
problem called the penalized adjoint problem (Padj

ε ).
Let us choose a point (uε, vε, c). If uε is solution of (Pε), by definition of Lε , we have

Lε ≡ Jε . Moreover if vε is solution of (Padj
ε ) it follows that

∇cJε = ∂Lε

∂c
=

∫
�

ε(uε) :
∂A

∂c
: ε(vε) d�. (19)

Thus the explicit expression of the gradient of Jε has been obtained using the solution to the
direct and the adjoint penalized problems.

The previous result has been established within the penalized formulation. It is interesting
to know how it evolves as ε → 0. Without giving a precise mathematical proof, the following
results can be conjectured.

• The solution vε to the penalized adjoint problem (Padj
ε ) converges to the solution v to the

adjoint problem (Padj) driven by the imposed displacements (F − F exp) on the effective
contact surface �eff

C :
find v ∈ V adj such that∫

�

σ(v) : ε(w) d� = 0

∀w ∈ V adj = {w ∈ V | w2 = (F − F exp)on �eff
C }

(20)

where F , �C
eff are respectively the force on the indenter and the effective contact surface,

computed in the direct contact problem (P).
• The limits and the gradient operations are commutative, i.e.

lim
ε→0

∇cJε = ∇c(lim
ε→0

Jε) = ∇cJ . (21)

As a consequence the gradient of the cost functional can be computed using the following
formula:

∇cJ =
∫

�

ε(u) :
∂A

∂c
: ε(v) d� (22)

where u and v are the solutions to the direct problem (P) and respectively the adjoint problem
(Padj).
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4.2. The adjoint state method based on the mixed formulation (P−1
m )

This problem is expressed as follows:

minimize J = 1
2 (F − F exp)2 with respect to c ∈ L,

where F is computed from the solution to (Pm).

The corresponding Lagrangian is expressed as

L(u, v, p, q, c) = 1
2 (F − F exp)2 −

∫
�

σ(u) : ε(v) d�

+
∫

�C

p · v2 d� +
∫

�C

q · (u2 − U − g) d� (23)

where F is given by (10), (u, v, p, q, c) ∈ V 2 × Q2 × L and Q = {q ∈ (H 1/2(�C))′ | q =
0 on �C/�eff

C }.
Let us remark that, opposite to the classical application of the adjoint state method, q has

not been sought in the closed convex N . If q was in N , the stationarity conditions would turn
out to be a set of coupled variational inequalities, which are ineffective for practical search of
the adjoint state.

With q ∈ Q, the necessary conditions of stationarity of L can be formally written as
follows: (

∂L
∂v

, w

)
=

∫
�

σ(u) : ε(w) d� −
∫

�C

p · w2 d� = 0 ∀w ∈ V (24)

(
∂L
∂u

, w

)
=

∫
�

σ(v) : ε(w) d� −
∫

�C

q · w2 d� = 0 ∀w ∈ V (25)

{
∂L
∂q

, s

}
=

∫
�C

s · (u2 − U − g) d� = 0 ∀s ∈ Q (26)

{
∂L
∂p

, s

}
=

∫
�C

s · (v2 − F exp + F) d� = 0 ∀s ∈ Q (27)

[
∂L
∂c

, d − c

]
=

∫
�

ε(u) :
∂A

∂c
: ε(v) · (d − c) d� � 0 ∀d ∈ L (28)

where {. , .} denotes the duality pairing on Q′ × Q.
In this case, the derivation of the Lagrangian with respect to the adjoint variables v (24)

and q (26) does not return the mixed formulation (Pm) of the direct problem. Nevertheless,
the solutions to (Pm) are also solutions to (24) and (26).

The derivation of the Lagrangian with respect to the direct variables u (25) and p (27)
returns an equivalent formulation of the adjoint problem (Padj) (20).

Therefore if (u, p) is solution to the direct problem (P) and (v, q) is solution to the
adjoint problem (Padj), then (24)–(27) are verified. As a consequence, in the penalized case,
the gradient can be expressed as

∇cJ = ∂L
∂c

=
∫

�

ε(u) :
∂A

∂c
: ε(v) d�. (29)

4.3. Remarks on the adjoint problem (Padj)

For problems with Dirichlet or Neumann boundary conditions described by variational
equalities, the application of the adjoint state method leads to a linear adjoint problem described
by variational equalities [1, 2, 17].
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Figure 3. Adjoint problem (Padj).

Table 1. Gradient comparisons between finite difference method (FDM) and adjoint state method
(ASM).

Eexp E ∇J (E) ∇J (E)

GPa GPa (ASM) (FDM)

200 100 −34.609 −34.607
200 170 −10.383 −10.380
200 300 34.609 34.614
200 230 10.383 10.387

20 10 −3.461 −3.461
20 30 3.461 3.461

It is important to point out that, for problems described by variational inequalities, the
obtained adjoint problem (Padj) is linear with Dirichlet boundary conditions (see figure 3),
and therefore described by a variational equality (20).

From a practical point of view, this implies that the overburden of computing the adjoint
problem, and implicitly the gradient of the cost functional, is very small.

5. Numerical examples

The gradient expressions obtained previously have been applied in a series of numerical
examples:

• comparison of gradient evaluations of the cost functional J using the adjoint state method
(ASM) and the finite difference method (FDM) (see table 1).

• identification of the elastic moduli of a bimaterial
• identification of the elastic moduli of a functional gradient material with Young’s moduli

depending linearly on radius or depth.

For the identification problems, all indentation experiments have been simulated by direct
computations.

The direct and the adjoint problems have been programmed in the object oriented language
gibiane of the finite element code CASTEM 2000 [3]. From a numerical point of view the
contact conditions have been treated in an exact manner, i.e. without use of penalization. Four-
noded linear quadrangular elements have been employed and a typical mesh is presented in
figure 4.

As an indenter, spheres of different radiuses and cones with different semi-angles have
been used without changing the quality of the final results.
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Figure 4. An axisymmetric mesh used for identification simulation.

Computations have been performed on HP 9000 workstation, on which a contact
computation for the mesh shown took 30 s CPU time.

In the next examples, two parameters (c1, c2) characterizing the material were identified
from two pairs of displacement–force measurements from the identation curve (see figure 1).
Therefore two cost functionals were defined as follows:

J1(c1, c2) = 1
2 (F − F

exp
1 )2 J2(c1, c2) = 1

2 (F − F
exp
2 )2.

The relaxation algorithm used can be described as follows:

(i) Choose a initial pair (c1, c2) and two identification precisions ε1 > 0, ε2 > 0
(ii) While J1 � ε1 or J2 � ε1:

(a) minimize J1 with respect to c1, until ∂J1
∂c1

< ε2

(b) minimize J2 with respect to c2, until ∂J2
∂c2

< ε2

where the minimization is performed using a Newton method.
This method proved to be more efficient than minimizing directly J1, J2, or J1 + J2 with

respect to both E1 and E2 using a BFGS method [6].

5.1. The bimaterial

Identifications have been performed in the case of a cylinder composed of two perfectly bonded
elastic coatings (figure 5). The thickness of the coating has been considered as a priori known
and only the values of the two Young’s moduli, i.e. c = (E1, E2), have been identified from
simulated measurements.

The two values choosen from the complete indentation curve (U exp(t), F exp(t)),
correspond to indentation depths smaller and respectively larger than the coating (U exp

1 =
0.2 mm and U

exp
2 = 2.0 mm).

From a mechanical point of view, this means that the load will be carried in different
proportions by the coating and the substrate. This can be observed from the shape of the cost
functionals J1(E1, E2) and J2(E1, E2): in figure 7, we observe that both cost functionals
present a narrow valley and that J1 is essentially sensitive to variations of E1 (substrate) and
that J2 is essentially sensitive to variations of E2 (coating).

In all tested cases, the identification converges after some 30 iterations (figure 6) with
identified moduli within 0.001% of the experimental values. A series of results corresponding
to different starting points are presented in table 2.
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Figure 6. Convergence of the normalized elastic coefficients for the bimaterial.

Table 2. Identification results for the bimaterial.

Starting Final Reference
(E1, E2) (E1, E2) (E1, E2)
(105 MPa) (105 MPa) (105 MPa)

(0.4, 0.4) (1.200, 2.801) (1.200, 2.800)
(0.4, 4.0) (1.200, 2.801) (1.200, 2.800)
(4.0, 0.4) (1.200, 2.799) (1.200, 2.800)
(4.0, 4.0) (1.200, 2.799) (1.200, 2.800)

5.2. The functional gradient materials

Identifications have been performed for a cylinder with Young’s modulus depending on depth
(E(r, z) = E1z + E2) or on radius (E(r, z) = E1r + E2).

The previous identification strategy has been used for these problems.
In all cases, the identification converges after some 30 iterations with identified moduli

within 0.001% of the experimental values. Identification results corresponding to different
starting points are show in tables 3 and 4.

In the case of a Young’s modulus depending on depth z, convergence required more
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Figure 7. Contourplots of J1 for a deep (U exp = 0.2 mm) and J2 for a small indentation (U exp =
2.0 mm).

Table 3. Identification results for the radius functional gradient material.

Starting Final Reference
(E1, E2) (E1, E2) (E1, E2)
105 (MPa m−1, MPa) 105 (MPa m−1, MPa) 105 (MPa m−1, MPa)

(0.4, 0.4) (1.200, 2.801) (1.200, 2.800)
(0.4, 4.0) (1.200, 2.801) (1.200, 2.800)
(4.0, 0.4) (1.201, 2.798) (1.200, 2.800)
(4.0, 4.0) (1.200, 2.799) (1.200, 2.800)

Table 4. Identification results for the depth functional gradient material.

Starting Final Reference
(E1, E2) (E1, E2) (E1, E2)
105 (MPa m−1, MPa) 105 (MPa m−1, MPa) 105 (MPa m−1, MPa)

(0.4, 0.4) (1.199, 2.805) (1.200, 2.800)
(0.4, 4.0) (1.199, 2.806) (1.200, 2.800)
(4.0, 0.4) (1.201, 2.791) (1.200, 2.800)
(4.0, 4.0) (1.200, 2.797) (1.200, 2.800)

iterations than in the radius dependency case (50 iterations) and results were slightly less
accurate. This can be explained by the important radial strain under a blunt conical
indenter [7, 14].

6. Conclusion

This paper presented the application of the adjoint state method to variational inequalities,
through the identification of elastic coefficients from an indentation test. Using two different
reasonements, based on the mixed and penalized formulations of the contact Signorini problem,
it has been shown that the adjoint problem is completely linear with Dirichlet boundary
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conditions on the effective contact area. The effective contact area has been previously detected
in the direct problem.

The effectiveness of the method is illustrated on numerical examples using the finite
element method. An extension of the method to evolution equations, corresponding to
nonlinear constitutive laws and large strains is also possible. An application for viscoplastic
materials is currently under development [4, 19].

In spite of promising numerical results, the presented method needs a precise mathematical
proof. Other fundamental questions related to the indentation identification problem, such as
uniqueness, stability, choice of a convex cost functional etc, are also open problems.
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