
HAL Id: hal-00111292
https://hal.science/hal-00111292

Submitted on 20 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the stability of rate-dependent solids with
application to the uniaxial plane strain test

Miroslav Nestorović, Yves Leroy, Nicolas Triantafyllidis

To cite this version:
Miroslav Nestorović, Yves Leroy, Nicolas Triantafyllidis. On the stability of rate-dependent solids with
application to the uniaxial plane strain test. Journal of the Mechanics and Physics of Solids, 2000,
48, pp.1467-1491. �10.1016/S0022-5096(99)00094-0�. �hal-00111292�

https://hal.science/hal-00111292
https://hal.archives-ouvertes.fr


On the stability of rate-dependent solids with
application to the uniaxial plane strain test

M.D. Nestorovica, Y.M. Leroyb, N. Triantafyllidisa,*
aDepartment of Aerospace Engineering, The University of Michigan, Ann Arbor, USA

bLaboratoire de Mécanique des Solides, Ecole Polytechnique CNRS UMR 7649, Palaiseau, France

The linear stability criterion, proposed for structural models in an earlier paper, is now 
extended for a general class of elastic±viscoplastic continua. The time-dependent 
trajectories, whose stability is under investigation, are functions of two characteristic times: 
the relaxation time of the viscous solid and the rate of the applied loading, with their ratio 
denoted by T. It is assumed that the loading conditions of the trajectory are not modi®ed 
by the perturbation. The criterion predicts that a solid is initially unstable if there exists a 
unit norm perturbation in the velocity ®eld whose time derivative is positive. This condition 
is equivalent to ®nding a positive eigenvalue in the self-adjoint part of the operator relating 
the initial ®rst and second rate of the displacement perturbations. If the dominant 
eigenvalue is obtained from the non self-adjoint operator, the change in sign of its real part 
is a su�cient condition for instability. For solids with an associated ¯ow rule, it is shown 
that the exclusion of instability in a trajectory, in the limit of vanishing T, coincides with 
stability of the corresponding rate-independent solid in the sense of Hill. The theory is 
applied to the analysis of a ®nitely strained rectangular block under uniaxial tension and 
compression, for di�erent elastic±viscoplastic solids of the von Mises and Drucker±Prager 
type.
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1. Introduction

A linear stability criterion is proposed for elastic±viscoplastic solids, based on

the analysis of the initial evolution of small perturbations, and is a generalization

of the criterion for the structural models presented by Massin et al. (1999), to be

referred hereafter as paper 1. This criterion captures the onset of instability in

time-dependent paths (trajectories) of strain-rate sensitive, cohesive and frictional

materials which undergo ®nite straining. Stability at a ®nite time is not studied

thereafter, and the interested reader is referred to paper 1 for a critical review of

this question and some illustrative examples.

The motivation for the development of this linear stability criterion is discussed

extensively in paper 1 and need not be repeated here, save for the main points.

The di�culty in solving the perturbation equations for elastic±viscoplastic solids

stems from their non-autonomous nature and spatial discontinuities of their

coe�cients, due to unloading. Hence, two approaches have emerged: the ®rst

extends the work of Hutchinson (1974) on rate-independent solids and consists of

following the development of an initial imperfection (e.g. Tvergaard, 1985). Such

analyses almost invariably require detailed numerical calculations. The second

approach is often analytical and consists of ignoring the time-dependence of the

coe�cients in the perturbation equations (e.g. Clifton, 1978; Leroy, 1991 and

Molinari, 1997). The validity of this so-called frozen coe�cients method requires

that the perturbation rate is much larger in magnitude than the rate of the

fundamental solution. This requirement is not met at the stability transition, as

pointed out by Anand et al. (1987).

The ®rst step towards the development of a general linear stability criterion for

elastic±viscoplastic solids, presented in paper 1, uses two versions of Shanley's

column (Shanley, 1947). There, the stability transition was de®ned by the change

in sign of the second time-derivative of the column's angular position evaluated at

the onset of perturbation. Two characteristic times have been identi®ed: the ®rst is

the relaxation time of the viscous supports and the second is the rate of the

applied loading. The ratio of these two times de®nes the dimensionless number T,

which vanishes if the structure is in equilibrium. It was found that the stability

transition for principal equilibria (i.e., for the straight con®guration of the

columns) occurs at the reduced modulus load, which is the classical critical load

for rate-independent columns, if the stability criterion is based on the maximum

dissipation (Nguyen and Radenkovic, 1975). If the proposed criterion is used to

investigate the principal trajectories for arbitrary values of T, and for adequately

small values of the initial perturbation to avoid initial unloading, the stability

transition occurs at a critical load named the rate-dependent tangent modulus

load. This critical load is a decreasing function of T, converging to the classical

tangent modulus load in the limit of inviscid plastic ¯ow, i.e., in the limit of

vanishing T.

The objective of this paper is to generalize the above described linear stability

criterion for the case of strain-rate dependent, frictional, cohesive continua under

®nite strains, assuming that the perturbation does not modify the loading
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conditions of the trajectory under investigation. The role of the column rotation

rate from paper 1 is now played by the norm of admissible perturbations in the

velocity ®eld. The transition to instability is marked by the change in sign from

negative to positive of the maximum initial time-derivative of the norm of all

admissible velocity perturbations. The possibility of an elastic unloading at the

onset of perturbation, which was also studied in paper 1, is postponed for the

sequel of this work.

The contents of this paper are as follows: Section 2 pertains to the presentation

of the linear stability criterion. First, the governing equations for a general class

of rate-dependent solids are recorded, followed by the derivation of the conditions

prevailing at the end of the perturbation sequence, called the onset. Subsequently,

the equations governing the time evolution of the perturbation are obtained from

the ®rst and second time-derivatives of the principle of virtual work. The linear

stability criterion requires the search for the maximum derivative with respect to

time of the perturbation velocity norm, a positive sign signaling the initial

instability. This task is identical to ®nding a maximum eigenvalue of the self-

adjoint part of the operator relating the initial ®rst and second rate of the

displacement perturbations. A su�cient condition for linear instability is given by

a positive real part of the maximum eigenvalue of the non self-adjoint operator.

Section 3 pertains to the limit of inviscid plastic ¯ow, attained for vanishing T. It

is found, for the case of a rate-independent solid with an associated ¯ow rule, that

the exclusion of instability in a trajectory implies the positive de®niteness of the

quadratic stability functional for the elastic±plastic comparison solid. Hence, the

linear stability criterion coincides with the result given by Hill (1958) for the same

class of rate-independent solids. For simplicity, all the calculations in Sections 2

and 3 are presented in the context of small strain, moderate rotations. The

generalization to ®nite strains is outlined in Appendix A.

In Section 4, the criterion is applied to the analysis of the ®nite plane strain

tension and compression of a rectangular block composed of a rate-dependent

version of either a von Mises solid or a Drucker±Prager frictional, cohesive

material. Two di�erent models of rate-dependence are considered, a linear

overstress and a power-law type model. The details of the stability analysis are

found in Appendix B. The results are presented in terms of critical strains and

stresses, i.e., quantities evaluated at the stability transition, as functions of T. The

in¯uence of geometry, constitutive law and dimensionless number T on the

stability results is discussed at the end of Section 4.

2. Linear stability analysis

The objective of this section is the concise presentation of the proposed linear

stability analysis for strain-rate dependent solids. In the interest of algebraic

simplicity, the theory is presented without loss of generality, in the context of

small strain, moderate rotations. In this form, the stability criterion is applicable
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to structural problems such as beams, plates and shells. The generalization to

®nite strains is outlined in Appendix A.

This section is divided into three parts. The governing equations are recorded

®rst, followed by the perturbation analysis. The formulation of the eigenvalue

problem, the key element of the linear stability analysis, is discussed in the third

part.

2.1. Governing equations

Consider a solid occupying the volume V bounded by the surface @V: The

inertia e�ects are disregarded and in the absence of body forces, for equilibrium

to be satis®ed, the principle of virtual work dictates:

�

V

sss:dEEE dV �

�

@V

T � du dS, �1�

where sss is the Cauchy stress tensor, EEE is its work conjugate strain measure (a

function of the displacement u� and T is the traction prescribed on a subset of the

domain's boundary @V: A dot and a colon denote the classical inner products of

vectors and second-order tensors, respectively, �a � b � aibi, A:B � AijBij for any

vectors a and b, and any second-order tensors A and B in a Cartesian coordinate

system). The following non-linear kinematics relation is adopted:

EEE �
1

2
�ur � ru� ru � ur�, �2�

where the symbol r is the gradient operator1. The strain tensor EEE is decomposed

into an elastic (reversible) and a plastic (irreversible) part, the latter denoted by EEEp:

The stress is related to the elastic strain by:

sss � Le:�EEEÿ EEEp�, �3�

where Le is the fourth-order linear elasticity tensor. A constitutive model with a

single internal variable �g, the equivalent plastic strain) is adopted for simplicity,

according to which the orientation of the plastic strain rate in stress space is along

the normal to the ¯ow potential c�sss�,

dEEEp

dt
�

dg

dt

@c

@sss
: �4�

The accumulated plastic strain rate is written as

dg

dt
�

1

tR
H
�

F
ÿ

f�sss�, g�g�, tR
��

, �5�

1 In a Cartesian basis fei g, r is equal to ei@=@x i such that ra and ar are the tensors: ai, jej 
 ei and

ai, jei 
 ej, respectively, for any vector a: A comma in the subscript denotes partial di�erentiation.
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where the function F has for arguments: f�sss�, g�g� and tR which are an equivalent

stress, a hardening function of the accumulated plastic strain g and the relaxation

time of the material, respectively. Note that the Heaviside function H in Eq. (5) is

equal to zero if the function F is negative, signaling an elastic response of the

material. The time-dependency of the material response has resulted in the

introduction of a relaxation time tR in Eq. (5). The details of its de®nition depend

on the choice of a viscosity function, but all de®nitions should share the common

feature that tR tends to zero for vanishing viscosity. In that instance, F tends also

to zero, providing the yield criterion of the corresponding rate-independent

material, i.e., the equivalent stress f�sss� is then equal to g�g�:

By controlling tractions or displacements on the boundary, the solid described

above sustains a time-dependent deformation process which is referred to as the

fundamental trajectory and is denoted by an ``o'' in subscript. The fundamental

trajectory, whose stability is the goal of this investigation, depends on the rate at

which the loading is applied, thus introducing a characteristic time tL: The ratio of

the two characteristic time scales is the dimensionless number T

T �
tR

tL
, �6�

which has a zero value either for a zero viscosity or for a loading independent of

time. In both cases, the zero value of T signals a fundamental equilibrium

solution. Henceforth, all equations are written in terms of the dimensionless time

t, de®ned by t � t=tL, and all derivatives with respect to t are represented by a

superposed dot.

2.2. Perturbation analysis

The objective of this subsection is to determine the initial evolution of the

perturbation. First, the structure of the perturbation sequence is explained,

resulting in the initial conditions for the perturbation problem. Second, the

boundary value problem for the initial evolution of the perturbation is derived in

terms of the initial velocity of perturbation and its rate.

The perturbation of the fundamental solution starts at time t� ÿ Dt and lasts

for a duration Dt, and is realized by a modi®cation of the applied boundary

tractions. These boundary tractions remain constant in time beyond t�, which is

referred to as the ``onset'' in the rest of the paper. The physical time interval of

the perturbation is assumed to be small compared to the two time scales of the

problem, i.e., Dt � 1 and Dt � T: The symbol D is used to denote the di�erence

between quantities estimated along the fundamental trajectory and the perturbed

one, namely: DA�t� � A�t� ÿ Ao�t�, in which A is a generic name for any ®eld

variable.

The initial conditions for the evolution problem are now derived assuming

continuity in time of all the ®eld variables during the perturbation sequence.

The perturbation in plastic strain and in the internal variable are found to be at
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time t�

DEEEp�t� � �

�t�

t�ÿDt

DÇEEEp�t� dt �
Dt

T

�

F,f

@c

@sss

@f

@sss
� F

@2c

@sss@sss

�

:Dsss� O

"

�

Dt

T

�2
#

,

Dg�t� � �

�t�

t�ÿDt

D_g�t� dt �
Dt

T
F,f

@f

@sss
:Dsss� O

"

�

Dt

T

�2
#

:

�7�

The above results are obtained by applying the mean value theorem to the

integrals and by subsequently replacing the rates of perturbation D_g and DÇEEEp by

their asymptotic expansions, in terms of the small parameter Dt=T, which are

obtained by linearizing the constitutive relations (4) and (5). The stress

perturbation is then found by inserting these results into the linearized form of

Eq. (3),

Dsss�t� � � L
e:DEEE� O

�

Dt

T

�

: �8�

These calculations lead to the conclusion that the perturbation in stress at time

t� can be approximated, to the ®rst order in Dt=T, by the elastic response of the

solid. The perturbations in plastic strain (7) are thus disregarded compared to the

strain perturbations, since they are of higher order in the small parameter Dt=T: It

should be stressed that Eq. (8) does not imply that the system has unloaded

elastically during the perturbation. On the contrary, the perturbation is assumed

to preserve the loading condition satis®ed along the fundamental trajectory. Note

that the details of the perturbation sequence are nevertheless unimportant for

determining the conditions at the onset.

The second objective of this subsection is to determine the relations between the

perturbation in displacement Du and its rates D Çu and D Èu: These relations are

obtained from the linearized version of the principle of virtual work and its ®rst

and second derivatives with respect to time. All equations displayed subsequently

are evaluated at t�, the onset of perturbation, unless otherwise stated.

The linearized version of the principle of virtual work (1) together with the

initial conditions (7) and (8) gives

�

V

dur:L:Dur dV �

�

@V

DT � du dS,

where L � Le � S and Sijkl � sojldik:

�9�

To obtain these results, an updated Lagrangian description of motion has been

adopted by introducing the simplifying assumption that the displacement along

the fundamental trajectory uo, and thus its gradient ruo, have been set to zero at

time t�:
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A similar expression to Eq. (9) is now derived to relate the perturbations in

displacement and velocity at the onset. For that purpose, the rate form of the

principle of virtual work, obtained from Eq. (1) by di�erentiation with respect to

the dimensionless time t and linearization, yields:

�

V

D Çsss:dEEE� Çssso:DdEEE� Dsss:dÇEEE� ssso:DdÇEEE dV � 0: �10�

Note that the rate of traction perturbation does not appear on the right-hand side

of Eq. (10) since that quantity is assumed to be constant in time, once the

perturbation sequence has ended.

The following expression is found for the perturbation in plastic strain rate:

DÇEEEp �
1

T
M:Dsss, where M � F,f

@c

@sss

@f

@sss
� _goT

@2c

@sss@sss
, �11�

and is obtained by linearization of the constitutive equation (4) and perturbation

of the internal variable in (7)2. The fourth-order tensor M has the major

symmetry if associated ¯ow rules are considered (i.e., if f � c). Note that M is

invertible if the second term on the right-hand side of (11)2 di�ers from zero, a

condition always respected along the fundamental trajectory for non-zero values

of T.

The result in Eq. (11) permits us to rewrite the linearized rate of the principle of

virtual work (10) as

�

V

dur:�L:D Çur � A:rDu� dV � 0, �12�

where the fourth-order tensor A is de®ned by:

A � ÿLe:
M

T
:Le � ÇRo � Le � r Çuo � Çuor � Le, �13�

with Rijkl � Sijlk: Note in Eq. (13) that even though the values of uo and uor

along the fundamental trajectory are set to zero at the onset, their rates cannot be

disregarded in the updated Lagrangian formulation of the problem.

As for Shanley's column analysis in paper 1, the operator Le characterizes the

instantaneous response of the solid, and hence Eq. (12) does not provide any

information of interest until the elastic Euler load is approached. For this reason,

it is necessary to turn our attention to the second rate of the principle of virtual

work to obtain a relation between the perturbation in velocity D Çu and its rate of

change D Èu: The ®rst step is the linearization of the second derivative with respect

to time of the equilibrium equation (1),

�

V

D Èsss:dEEE� Èssso:DdEEE� 2�D Çsss:dÇEEE� Çssso:DdÇEEE� � Dsss:dÈEEE� ssso:DdÈEEE dV � 0: �14�

The procedure to follow is similar to the one considered to obtain Eq. (12), but
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the details of the calculation are rather cumbersome. A single intermediate result

on the perturbation of the second rate of plastic strain, counterpart of Eq. (11), is

recorded

DÈEEEp �
1

T
�M:D Çsss� N:Dsss�,

where N � F,ff

@f

@sss
: Çssso

@c

@sss

@f

@sss
� _gog,g

�

F,g

@2c

@sss@sss
� F,gf

@c

@sss

@f

@sss

�

� _goT
@3c

@sss@sss@sss
: Çssso � F,f

�

@f

@sss
: Çssso

@2c

@sss@sss
�

@c

@sss

@2f

@sss@sss
: Çssso

�
@2c

@sss@sss
: Çssso

@f

@sss
�

1

T
F,gg,g

@c

@sss

@f

@sss

�

:

�15�

With the help of Eq. (15) we obtain the ®nal result relating the zeroth, ®rst and

second time-derivatives of the perturbation, i.e.,

�

V

dur:�L:D Èur � B:rD Çu� C:rDu� dV � 0, �16�

where the fourth-order tensors B and C are found to be:

B � ÿLe:
M

T
:Le � 2

ÿ

ÇRo � Le � r Çuo � Çuor � Le
�

,

C � Le:

�

M

T
:Le:

M

T
ÿ

N

T

�

:Le � ÈRo � Èuor � Le � Le � r Èuo

� 2 Çuor � Le � r Çuo ÿ Le:
M

T
:Le � r Çuo ÿ 2 Çuor � Le:

M

T
:Le:

�17�

With this last result, the stage is ready for studying the initial evolution in time of

the perturbation added at t� to the system with a known time dependent

trajectory.

2.3. Stability criterion

The Eqs. (9), (12) and (16) govern the linearized initial perturbation of a given

trajectory and can be rewritten as:

E�Du� � T�DT�,

E�D Çu� �A�Du� � 0, �18�

E�D Èu� �B�D Çu� � C�Du� � 0,
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in terms of the linear integro-di�erential operators, whose de®nitions are clear

from the structure of the corresponding equations. If the operator A is invertible,

a condition guaranteed by the properties of M discussed after Eq. (11), we ®nd a

linear operator L

D Èu � L�D Çu�, �19�

by combining the last two equations in (18). The only exception foreseen for the

existence of this operator is if the operator E, associated with the elastic response

of the system, is not invertible. However, no such case is expected here since the

instability occurs at loads which are a fraction of the structure's Euler load. Note

also that for T 6� 0, the operator L is not in general self-adjoint, even for

associated plasticity models, as revealed by inspection of Eqs. (13) and (17).

The proposed linear stability criterion is de®ned as follows: a trajectory is said

to be stable at t� if the maximum of the time derivative of the L2 norm of all

admissible perturbations in the velocity ®eld is found to be negative, i.e.,

max

(

�

d

dt

ÿ

kD Çuk2
�

�

t�t�

)

< 0 with �kD Çuk�t�t�� 1, �20�

which, in view of Eq. (19), is equivalent to:

LS � max
�

hD Çu,LS�D Çu�it�t�

	

< 0 with �kD Çuk�t�t�� 1, �21�

where L
S denotes the self-adjoint part of the stability operator L: The search for

the maximum in Eq. (21) requires ®nding the dominant eigenvalue LS, the largest

of all eigenvalues, of LS:

Analytical expression for the operator L
S is not easily obtained. Instead, it is

more convenient to search for the dominant eigenvalue L of the operator L in

Eq. (19), de®ned as the eigenvalue with the largest real part of the following

system:

E�D Çu� �A�Du� � 0,

LE�D Çu� �B�D Çu� � C�Du� � 0:

�22�

Since hD Çu,LS�D Çu�i � hD Çu,L�D Çu�i, it follows that LS
rL (the equality holding for

symmetric L� and the existence of L with a positive real part implies the existence

of a positive eigenvalue for L
S, thus proving the linear instability of the system

studied. Consequently, direct study of Eq. (22) provides a su�cient condition for

instability.
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3. Limit of inviscid plastic ¯ow

In this section of interest are the predictions of the proposed linear stability

criterion in the limit of inviscid plastic ¯ow �tR40�: This limit is equivalent to an

in®nitely long characteristic loading time �tL41�: To this end, the corresponding

rate-independent constitutive law need be recorded, for the case of plastic loading.

For tR40, the function F in Eq. (5) must equal zero for the equivalent plastic

strain to remain bounded. This condition, which must hold during the loading

process, provides the consistency requirement _F � 0, from which the equivalent

plastic strain rate is related to the stress rate, i.e.,

_g � ÿ
F,f

F,gg,g

@f

@sss
: Çsss: �23�

Combining this result with Eq. (4) and the rate form of Eq. (3) results in the

incremental constitutive equation for the corresponding inviscid solid

Çsss �
ÿ

Le ÿQH ÿ1P
�

:ÇEEE,

where Q � Le:
@c

@sss
, P �

@f

@sss
:Le and H �

@f

@sss
:Le:

@c

@sss
ÿ

F,g

F,f

g,g:

�24�

According to Hill (1958), an equilibrium path is stable if the quadratic

functional, based on the elastoplastic incremental moduli of (24)1, is positive

de®nite,

�

V

dur:
ÿ

LÿQH ÿ1P
�

:dur dV > 0, �25�

for all admissible du and for an associated ¯ow rule �f � c�: If the minimum

eigenvalue of the functional in Eq. (25) vanishes, a bifurcation away from the

principal equilibrium solution is possible. In the case of frictional, cohesive media

�f 6� c�, a zero minimum eigenvalue also corresponds to a bifurcation. For a class

of cohesive, frictional solids investigated by Triantafyllidis and Leroy (1994), it

was found that in spite of the non-symmetry of the incremental moduli, the

spectrum of the non self-adjoint operator corresponding to Eq. (25) is always real.

It is assumed that this condition holds true here. Hence, a change in sign of the

dominant eigenvalue of Eq. (25) signals instability.

The remainder of this section demonstrates that in the limit T40 the system in

Eq. (22), for L � 0, reduces to Eq. (25) with an equal sign replacing the

inequality. Notice that the fourth-order tensors A, B and C introduced in Eqs.

(13) and (17) can be written as:
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A � ÿ
F,f

T
QP� O�1�,

B � ÿ
F,f

T
QP� O�1�, �26�

C � H

�

F,f

T

�2

QP� O�T ÿ1�,

to the leading order in T, using the de®nitions for P and Q found in Eq. (24).

By inspection, for the asymptotic analysis to proceed, the following expansions

should be satis®ed by Du, D Çu and L

Du � TDu1 � O�T 2�, D Çu � D Çu0 � O�T�, L �
1

T
Lÿ1 � O�1�, �27�

where Du1, D Çu0 and Lÿ1 are independent of T. Introducing Eqs. (26) and (27) into

Eq. (22) and recalling the de®nitions of the linear operators E, A, B and C, one

obtains

�

V

dur:
ÿ

L:D Çu0r ÿ F,fQP:Du1r
�

dV � 0,

�

V

dur:
h

ÿ

Lÿ1Lÿ F,fQP
�

:D Çu0r �H
ÿ

F,f

�2
QP:Du1r

i

dV � 0:

Inserting the ®rst equation in (28) into the second to eliminate the tensor L results

in

�

V

ÿ

dur:QF,f

��

P:
�

ÿ D Çu0r �
ÿ

Lÿ1 �HF,f

�

Du1r
�	

dV � 0: �29�

Note that the ®rst term in parenthesis of the integrand in Eq. (29) is a scalar

quantity. Consequently, for the integral to vanish for any admissible displacement

du, it is necessary that the rest of the integrand be identical to zero, pointwise

over the domain of interest. This condition provides the following relation

between D Çu0r and Du1r:

P:D Çu0r �
ÿ

Lÿ1 �HF,f

�

P:Du1r, �30�

for all x 2 V: Introducing the last result into the ®rst equation in (28), one obtains

�

V

dur:

�

Lÿ
QP

LLLÿ1=F,fff �H

�

:D Çu0r dV � 0: �31�

Comparing the fourth-order tensor entering the linear stability criterion (31) to

the incremental moduli tensor in Eq. (25) for the rate-independent case, we

(28)

11



observe that they are identical at neutral stability �Lÿ1 � 0�: Thus, for the case of

an associated ¯ow rule �f � c�, positive de®niteness of the quadratic form in Eq.

(31) associated with Lÿ1R0 implies stability of the stress state in question, since

for a symmetric operator L � LS:

For the case of a non-associated ¯ow rule �f 6� c�, Lÿ1r0 is a su�cient

condition for the onset of instability, with Lÿ1 � 0 marking the onset of either a

bifurcation or a limit load. For Lÿ1 < 0 (i.e., L < 0), the non-positivity of LS

cannot be guaranteed and hence no de®nite conclusion about the solid's linear

stability can be drawn. However, it is worth noting that for frictional, cohesive

solids, although the operator in Eq. (31) is non self-adjoint, its eigenvalues are

real, see discussion in Triantafyllidis and Leroy (1994), and hence the issue of a

¯utter instability never arises.

4. Application and results

The present section pertains to the application of the proposed linear stability

criterion to the plane strain tension and compression of a rectangular block with

aspect ratio r � L1=L2, whose initial con®guration is depicted in Fig. 1(a). A ®nite

strain formulation of the problem is adopted and the generalization of the

governing equations in Section 2.1 is given in Appendix A. The procedure to solve

the corresponding eigenvalue problem (22) is presented in Appendix B. This

problem is selected because it has the same geometry used to study the bifurcation

of rate-independent solids in either tension (Hill and Hutchinson, 1975) or

Fig. 1. (a) The plane strain boundary value problem consists of a ®nitely strained rectangular block of

initial dimensions 2L1 � 2L2, made of an elastic±viscoplastic material. The block is held between two

lubricated rigid supports and is subjected either to compressive or to tensile loading along the X1-

direction. (b) The uniaxial stress±strain curves are presented for two values of the hardening exponent

m and for the linear overstress �Z � 1� and power-law �Z � 20� viscoplasticity models.

12



compression (Young, 1976), including non-associated ¯ow rules (Needleman,

1979).

The block is composed of a power-law type rate-dependent solid, which is

frequently employed in the studies of elastic±viscoplastic structures, namely

dg

dt
� G0H

2

4

 

f�sss�

g�g�

!Z

ÿ1

3

5, �32�

where G0 and Z are the reference strain rate and the strain rate exponent,

respectively. For metals, typical values of Z range from 20 to 50. Furthermore,

selecting a value of 1 for Z leads to a simple linear overstress model which is

similar to the model used in paper 1. The equivalent stress f�sss�, as in the time-

independent Drucker±Prager yield criterion, equals the sum of the equivalent

shear stress based on the J2 invariant and the mean stress multiplied by the

friction coe�cient m: Note that setting m to zero provides a classical von Mises

yield criterion. The hardening function g�g� is found implicitly from

g

gy
�

�

g

ty

�m

ÿm

�

g

ty

�

�mÿ 1; gr0, �33�

where m, ty and gy are the hardening exponent, the yield stress in pure shear and

the associated shear strain, respectively. The above choice corresponds to a

Ramberg±Osgood uniaxial response.

With the introduction of a speci®c viscosity function in Eq. (32), we are now in

a position to compute the characteristic relaxation time tR, which is chosen to be

the relaxation time from a steady shear ¯ow stress 2t0 to t0, thus giving

tR �
t0

G0G

1

2Z ÿ 1
, �34�

in which G is the elasticity modulus in shear.

The displacement control loading is chosen so that the dimensionless rate of

stretching _l1 equals 1 or ÿ1 for tension and compression, respectively. This choice

is equivalent to setting

tL �
D

v
� 1, �35�

where D is the relative displacement of the two ends of the block and v is the

corresponding velocity.

The numerical values used in the calculations are: the Poisson's ratio n � 0:3,

the yield strain in pure shear gy � 10ÿ3 and the shear stress t0 is set to ty: The

results reported are normalized by ty � 1, which gives a shear modulus of G �

103: The reference strain rate G0 is calculated from the relaxation time tR in Eq.

(34), which is deduced from the value of T since tL is set to 1 in Eq. (35).

With this information, the stress±strain curves are presented in Fig. 1(b) in

13



which t1 is the principal Kirchho� stress and E1 is the principal strain, both in

direction 12. The two values of the hardening exponent m selected are 2.5 and 4.0.

For each value of m, the rate-independent stress±strain curve is shown for T � 0:

The range of the dimensionless number T studied was selected such that at a

strain of 2% the stresses for the two values of the viscosity exponent Z of 1 and

20 are approximately three times larger than their rate-independent counterparts.

The principal solution for the ®nite strain tension and compression of the block,

based on Eqs. (32)±(35) and Appendix A, is obtained numerically using a fourth-

order Runge±Kutta method.

The rest of this section is devoted to the presentation of the stability results, in

the form of the critical stress t1 and the critical logarithmic strain E1, evaluated at

the stability threshold, de®ned for a zero eigenvalue L in Eq. (22). The

corresponding eigenmode in compression is always found to be the long-

wavelength antisymmetric S mode. Results for both, the linear overstress model

and the power-law viscosity model are presented. For the case of the tensile

loading, the corresponding critical eigenmode is always the long-wavelength

symmetric necking-type mode. Only the power-law viscosity model is explored in

tension. Finally, the friction coe�cient set to zero for the earlier calculations is

selected to be m � 0:3, to study the in¯uence of non-associated ¯ow rule on

stability. Further information on the stability analysis is given in Appendix B.

The stability results for the compressive loading of the linear overstress model

�Z � 1� are presented in Figs. 2 and 3. In Fig. 2(a) and (b), the critical strain and

the normalized critical stress are given as functions of the dimensionless number

Fig. 2. (a) The critical logarithmic strain and (b) the normalized critical stress in compression are

plotted as functions of T and r, for the linear overstress viscosity model �Z � 1�: The hardening

exponent m is either 2.5 (solid lines) or 4.0 (dashed lines).

2 Recall that for an updated Lagrangian description the Kirchho� stress tensor ttt is equal to the sec-

ond Piola-Kirchho� stress tensor S, required by our general analysis at ®nite strains.

14



T. The two values of the hardening exponent considered are m � 2:5 depicted by

solid lines and m � 4:0 depicted by dashed lines. Three values of the block aspect

ratio are also studied, the slenderest block corresponding to r � 9 and the

stubbiest to r � 3: In the limit of vanishing T, all the results tend to the critical

stress and strain for the ®rst failure of Hill's stability criterion, in accordance with

the discussion in Section 3. As expected, the critical stress and strain for the block

decrease, as its slenderness increases, i.e., as the ratio r increases. Observe from

Fig. 2(a) that for m � 2:5, the critical strain is ®rst an increasing function of T,

which then passes through a maximum before decreasing. This ®nding is also

clearly seen from Fig. 3(a) in which the stability predictions are superposed to the

stress±strain curves obtained for various values of T. We do observe that the

curve connecting the loci of all the neutral stability thresholds has the maximum

in critical strain, whereas the critical stress keeps increasing with T. Only for the

slenderest block �r � 9�, the critical stress decreases with T after passing through a

maximum, which can be seen in Fig. 2(b) for m � 2:5: This ®nding is not

completely surprising in view of the results obtained in paper 1 for Shanley's

column, which should be indicative here for slender geometry. In paper 1, it was

found that the critical load, called the rate-dependent tangent modulus load, was a

decreasing function of T. Here, we con®rmed that trend only for a certain range

of T.

The dependence of the critical stress and strain on T is sensitive to the value of

the hardening exponent selected, as can be seen by comparing Fig. 3(a) and (b).

For m � 4:0, the critical stress is always a monotonically increasing function of T,

independent of the aspect ratio. The decrease of the critical strain with T is less

pronounced for m � 4:0 than for m � 2:5: Moreover, the maximal critical strain

occurs for larger T if m � 4:0:

Fig. 3. The critical stresses and strains in compression are superposed to the stress±strain curves

obtained for di�erent values of T and r. The hardening exponent m is 2.5 in (a) and 4.0 in (b). The

viscosity law is the linear overstress model �Z � 1�: The lower solid curve corresponds to the rate-

independent problem and the solid dots mark the ®rst failure of Hill's stability criterion.
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The results for compression with the power-law viscosity model �Z � 20� are

presented in the same way in Figs. 4 and 5, except that the dimensionless number

T is replaced by its logarithm. The stability predictions are di�erent from the ones

obtained with the linear overstress model and are less sensitive to T. The critical

strain is found to be an increasing function of T for a slender block �r � 6, 9�

regardless of the hardening exponent m. On the other hand, it is for a rather

stubby specimen �r � 3� that the critical strain decreases with T for m � 2:5, as

can be seen in Fig. 4(a). For m � 4:0, the critical strain is also a decreasing

function of T until it reaches a minimum at T1100: Such a result could not be

found in paper 1 since only the linear viscosity function was considered. In

Fig. 5. The critical stresses and strains in compression are superposed to the stress±strain curves

obtained for di�erent values of T and r. The hardening exponent m is 2.5 in (a) and 4.0 in (b). The

viscosity law is the power-law model �Z � 20�: The lower solid curve corresponds to the rate-

independent problem and the solid dots mark the ®rst failure of Hill's stability criterion.

Fig. 4. (a) The critical logarithmic strain and (b) the normalized critical stress in compression are

plotted as functions of the logarithm of T and r, for the power-law viscosity model �Z � 20�: The

hardening exponent m is either 2.5 (solid lines) or 4.0 (dashed lines).
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contrast to the linear overstress model, the critical stress is always increasing with

T, independent of the aspect ratio r or the hardening exponent m.

The stability predictions for the tensile loading of the power-law viscosity model

�Z � 20� are presented in Fig. 6 in which the neutral stability predictions are

superposed to the stress-strain curves obtained for di�erent values of T. Three

aspect ratios are studied, corresponding to r � 1, 2 and 3. The critical strain is

found to be a decreasing function of T for all values of the aspect ratio r and the

hardening exponent m. The critical stress is an increasing function of T except for

Fig. 6. The critical stresses and strains in tension are superposed to the stress±strain curves obtained for

di�erent values of T and r. The hardening exponent m is 2.5 in (a) and 4.0 in (b). The viscosity law is

the power-law model �Z � 20�: The lower solid curve corresponds to the rate-independent problem and

the solid dots mark the ®rst failure of Hill's stability criterion.

Fig. 7. The critical stresses and strains in tension are superposed to the stress±strain curves obtained for

di�erent values of T and r. The hardening exponent m is 2.5 in (a) and 4.0 in (b). The viscosity law is

the power-law model �Z � 20�: The lower solid curve corresponds to the rate-independent problem and

the solid dots mark the ®rst bifurcation of the rate-independent block. The new feature is that the

plasticity model has a non-associated ¯ow rule (Drucker±Prager type) with the friction coe�cient of

m � 0:3:
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m � 2:5 and T < 1: The in¯uence of r remains small, as it is expected in the

presence of the maximum load controlled essentially by the hardening exponent m

in the rate-independent limit.

The last point to be discussed is the in¯uence of the friction coe�cient m which

was set to zero so far. The results presented in Fig. 7 are for m � 0:3 and are

obtained for the tensile loading of the power-law viscosity model �Z � 20�: This

case is considered here as an illustration of the capability of the proposed criterion

to include non-associated plasticity models. For this class of models, our

predictions can be compared to the corresponding self-adjoint case �m � 0� in

Fig. 6. We observe that the critical strain and stress retain the same dependence

on the dimensionless number T, but the in¯uence of the aspect ratio vanishes with

increasing T for m � 0:3:

Finally, note that in all the calculations reported above, the stability eigenvalue

is always found to be a real number at criticality. By continuity, L the dominant

eigenvalue of L in Eq. (19) is also real, which excludes the ¯utter type instability.

Similar results were also obtained by Triantafyllidis and Leroy (1994).

5. Conclusion

The linear stability criterion proposed for rate-sensitive solids and structures

provides su�cient conditions for the initially positive growth of a perturbation in

the time-dependent solution (trajectory) under investigation. The theory is

applicable to a wide range of elastic±viscoplastic solids with non-associated

plasticity laws, which undergo ®nite straining and when inertia e�ects are

negligible. Two relevant characteristic times enter this class of problems: the ®rst

associated with the rate of loading and the second with the material viscosity.

Their ratio denoted by T plays a predominant role in the stability analysis.

The criterion is based on the initial time evolution of the L2 norm of the

perturbation velocity Ð a straightforward, but not unique choice for a measure of

the perturbation. Due to the technical di�culties in calculating the maximum of

the initial time-derivative of this norm, a su�cient condition for linear instability

is given which ensures that if the maximum eigenvalue of the operator relating the

®rst and second initial time-derivatives of the perturbation is positive, then the

maximum time-derivative of the perturbation norm is also positive and hence the

structure is initially unstable.

There are at least two limitations to the proposed method. First, the size of the

perturbation has to be small enough to maintain the loading conditions of the

trajectory. Second, only the initial stability of the trajectory is assessed this way.

The study of stability over a ®nite time interval requires a full solution of the

perturbation problem, frequently possible only by numerical means.

There are however advantages of the proposed method. To start with, the initial

development of the perturbation is calculated exactly, without any of the

assumptions required by the frozen coe�cients method. Moreover, the

methodology is applicable to a general class of materials including non-associated
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¯ow rules. Also, for the dimensionless number T approaching zero and for the

case of associated ¯ow rule, the method reduces to the study of Hill's stability

functional for rate-independent solids, for which the loss of positive de®niteness

signals the onset of instability.

The method was applied to the stability of a ®nitely strained rectangular block

under plane strain tension and compression, starting from a stress-free

con®guration. It is of interest that the critical strains and stresses corresponding to

the ®rst instability are not monotonic functions of the dimensionless number T. In

the limit of T40, the critical stress found coincides with the ®rst bifurcation point

of the equilibrium path.

As previously mentioned, a fundamental assumption in our linear stability

analysis of rate-dependent solids is that, the loading conditions of the principal

trajectory remain unchanged by the perturbation. This assumption precludes the

consideration of arbitrary perturbations and also the study of equilibrium

stability, which is the subject of future research.
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Appendix A. Extension to ®nite strains

The extension of the proposed linear stability criterion to account for ®nite

strains is now outlined using a full Lagrangian formulation and a ®xed Cartesian

coordinate system. In the reference con®guration, a rate-dependent solid occupies

the volume V bounded by the surface @V: The equations of equilibrium, expressed

by the principle of virtual work (no body force), are3

�

V

SijdEij dV �

�

@V

Tidui dS, �A1�

where S, T, E and u are the second Piola±Kirchho� stress tensor, the traction on

part of the surface @V, the Lagrangian strain tensor and the displacement ®eld,

respectively.

For ®nitely strained solids, a convenient form of the constitutive law is given, in

the current con®guration, by the elasticity tensor Le which relates the Jaumann

rate of the Kirchho� stress to the elastic part of the strain rate tensor. In the

3 Here and subsequently, Einstein's summation convention is implied over repeated indexes. Repeated

indexes in parentheses are not summed, unless indicated explicitly.
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reference con®guration, this constitutive law is given by

_Sij � Le
ijkl

�

_Ekl ÿ _E
p

kl

�

� Gijkl
_Ekl, �A2�

in which the elasticity tensor Le and the geometric tensor G have the standard

de®nitions in continuum mechanics (see for example Eqs. (20) and (21) in

Triantafyllidis and Leroy, 1994). In addition, ÇE
p

is the plastic part of the

Lagrangian strain rate tensor ÇE and is given by the following ¯ow rule:

_E
p
ij � _g

@c

@Sij

, �A3�

where the ¯ow potential c�S� is now a function of the second Piola±Kirchho�

stress tensor. The equivalent plastic strain rate _g is governed by Eq. (5), in which

the equivalent stress f�S� is now also de®ned in terms of the second Piola±

Kirchho� stress tensor. The ¯ow potential c and the equivalent stress f are

expressed in terms of the equivalent shear stress Q�S� and the equivalent pressure

P�S� by

c � Q�S� � bP�S� and f � Q�S� � mP�S�,

where Q �

�

1

2
S 0

ijCikCjlS
0
kl

�1=2

and P �
1

3
SijCij; S

0
ij � Sij ÿ PC ÿ1

ij ,

�A4�

in which S 0 is the deviatoric second Piola±Kirchho� stress tensor and C is the

right Cauchy±Green tensor. Also, b and m are the dilatancy parameter and the

friction coe�cient of the material, respectively. Note that in all the calculations

presented in Section 4, the dilatancy parameter b is set to zero.

Following the general methodology presented in Section 2, by linearizing the

®rst and second time-derivatives of the principle of virtual work (A1) and

accounting for (A2)±(A4), we obtain the equations governing the initial evolution

of the perturbation

�

V

dui, j
ÿ

LijklD _uk, l � AijklDuk, l
�

dV � 0,

�

V

dui, j
�ÿ

LLijkl � Bijkl

�

D _uk, l � CijklDuk, l
�

dV � 0:

Finally, to the leading order term in T the tensors A, B and C are

Aijkl � ÿ
F,f

T
Le
ijmn

@c

@Smn

�

@f

@Ekl

�
@f

@Spq

ÿ

Le
pqkl � Gpqkl

�

�

� O�1�,

(A5)
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Bijkl � ÿ
F,f

T
Le
ijmn

@c

@Smn

�

@f

@Ekl

�
@f

@Spq

ÿ

Le
pqkl � Gpqkl

�

�

� O�1�, �A6�

Cijkl � H

�

F,f

T

�2

Le
ijmn

@c

@Smn

�

@f

@Ekl

�
@f

@Spq

ÿ

Le
pqkl � Gpqkl

�

�

� O�T ÿ1�,

where H is identical to the one appearing in Eq. (24), except for the Cauchy stress

tensor now being the second Piola±Kirchho� stress tensor.

Two remarks are now in order. First, it was impossible to present concisely, the

complete expressions for the ®nite strain version of the tensors A, B and C, and

the interested reader is referred to NestorovicÂ (2001). Second, the leading order

term in T of these tensors is necessary for obtaining the ®nite strain version of the

fourth-order tensor entering the linear stability criterion (31), in the limit of

vanishing T. Notice from Eq. (A6) that the ®rst term in brackets �@f=@E� and the

geometric term G would not be present, if the tensors were constructed by direct

generalization of the small strain counterparts to ®nite strain. This slight

di�erence renders impossible an exact comparison of our bifurcation results and

the ones found in the classical analyses of rate-independent solids, evoked at the

beginning of Section 4.

Appendix B. Formulation and solution procedure for a rectangular block

The eigenvalue problem and the solution procedure for the stability of a rate-

dependent rectangular block are provided here. The rectangular block has length

2L1 and width 2L2 in its undeformed stress-free con®guration, depicted in

Fig. 1(a). The block is deformed uniformly so that in the current con®guration the

material occupies the region V de®ned by ÿliRx iR� li, where x i are the current

coordinates of a material point relative to a ®xed Cartesian coordinate system and

li � liLi with li the stretch ratios of the block. The two ends x1 �2l1 are

assumed to remain ¯at and free of shear.

The initial absence of the shear stresses coupled with the initial isotropy of the

material produces principal stresses aligned with the two axes and results in

material orthotropy, which in turn implies that the ``normal-to-shear'' components

of the tensors L, A, B and C are equal to zero. With this simpli®cation, the

governing (Euler±Lagrange) equations in V, obtained from (A5)1 reduce to

L1111D _u1, 11 � L1122D _u2, 21 � L1212D _u1, 22 � L1221D _u2, 12

� A1111Du1, 11 � A1122Du2, 21 � A1212Du1, 22 � A1221Du2, 12 � 0,

L2121D _u2, 11 � L2112D _u1, 21 � L2211D _u1, 12 � L2222D _u2, 22

� A2121Du2, 11 � A2112Du1, 21 � A2211Du1, 12 � A2222Du2, 22 � 0,

while from (A5)2 become

(B1)
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�LL1111 � B1111 �D _u1, 11 � �LL1122 � B1122 �D _u2, 21 � �LL1212 � B1212 �D _u1, 22

� �LL1221 � B1221 �D _u2, 12 � C1111Du1, 11 � C1122Du2, 21 � C1212Du1, 22

� C1221Du2, 12 � 0, �B2�

�LL2121 � B2121 �D _u2, 11 � �LL2112 � B2112 �D _u1, 21 � �LL2211 � B2211 �D _u1, 12

� �LL2222 � B2222 �D _u2, 22 � C2121Du2, 11 � C2112Du1, 21 � C2211Du1, 12

� C2222Du2, 22 � 0:

The requirement that the two ends x1 �2l1 remain ¯at implies that there is no

perturbation in displacement normal to the two edges. The boundary conditions

resulting from Eq. (A5), on the two edges x1 �2l1 are:

Du1, 2 � D _u1, 2 � 0 and D _u2, 1 � Du2, 1 � 0, �B3�

while on the other two traction-free edges x2 �2l2 are:

L1212D _u1, 2 � L1221D _u2, 1 � A1212Du1, 2 � A1221Du2, 1 � 0,

L2211D _u1, 1 � L2222D _u2, 2 � A2211Du1, 1 � A2222Du2, 2 � 0,

�LL1212 � B1212 �D _u1, 2 � �LL1221 � B1221 �D _u2, 1 � C1212Du1, 2 � C1221Du2, 1 � 0,

�LL2211 � B2211 �D _u1, 1 � �LL2222 � B2222 �D _u2, 2 � C2211Du1, 1 � C2222Du2, 2 � 0:

The independent variables x i can be decoupled for the modes Dui and D _ui, and

the governing Eqs. (B1) and (B2) are satis®ed by solutions in the form

�

D _u1
Du1

�

�

�

ÿV1�x2�
ÿU1�x2�

�

sin p1x1,

�

D _u2
Du2

�

�

�

V2�x2 �
U2�x2�

�

cos p1x1,

with p1 �
np

l1
,

�B5�

and also in the form

�

D _u1
Du1

�

�

�

V1�x2 �
U1�x2�

�

cos p1x1,

�

D _u2
Du2

�

�

�

V2�x2�
U2�x2�

�

sin p1x1,

with p1 �

ÿ

nÿ 1
2

�

p

l1
,

�B6�

where Vi�x2� and Ui�x2� �i � 1, 2� are at least twice-di�erentiable functions in x2

and n � 1, 2, . . . are the positive integers. Note that the solution of the form (B5)

is symmetric in x1, while (B6) is antisymmetric in x1: Also, note that these two

(B4)
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choices for modes identically satisfy the boundary conditions (B3) on the two ends

x1 �2l1: The functions Vi�x2� and Ui�x2� introduced in Eqs. (B5) and (B6) are

of the form

V1�x2 � �
X

4

m�1

h

V
�m�
1

ÿ

x�m�S�m� � Z�m�A�m�

�

i

,

V2�x2 � �
X

4

m�1

h

V
�m�
2

ÿ

x�m�A�m� � Z�m�S�m�

�

i

,

U1�x2� �
X

4

m�1

h

U
�m�
1

ÿ

x�m�S�m� � Z�m�A�m�

�

i

,

U2�x2� �
X

4

m�1

h

U
�m�
2

ÿ

x�m�A�m� � Z�m�S�m�

�

i

,

with

S�m��x2 � � exp�r�m�p1x2� ÿ exp�ÿr�m�p1x2�,

A�m��x2 � � exp�r�m�p1x2� � exp�ÿr�m�p1x2�,
�B8�

where the following notations have been employed: The functions S�m��x2� and

A�m��x2� are the symmetric and antisymmetric mode in x2, respectively, while x�m�

and Z�m� are the amplitudes of the mth partial solution. To ensure that the

solution of the form (B5) or (B6) satis®es the governing equations (B1) and (B2),

the scalars r�m� are de®ned as the four positive square roots of the fourth-order

polynomial in r2 of the following 4� 4 matrix:

det

�

L�r� A�r�
LL�r� �B�r� C�r�

�

� 0: �B9�

The above introduced 2� 2 matrices L, A, B and C are symbolically

represented by

www�r� �

�

r2X1212 ÿ X1111 r�X1122 � X1221 �

ÿr�X2112 � X2211 � r2X2222 ÿ X2121

�

, �B10�

where Xijkl stands for the corresponding component of the tensors L, A, B or C:

The unit vector �V�m�, U�m��, which is associated with r�m�, is the normalized

eigenvector of the following 4� 4 matrix:

(B7)
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"

L�r�m� � A�r�m��
LL�r�m� � �B�r�m� � C�r�m��

#"

V�m�

U�m�

#

� 0: �B11�

Finally, by substituting the solution of the form (B5) or (B6) into the remaining

boundary conditions (B4) on the traction-free edges x2 �2l2, we obtain two

decoupled homogeneous systems for x�m� and Z�m�

X

4

m�1

S I
nmx�m� � 0 and

X

4

m�1

S II
nmZ�m� � 0, �B12�

in which the components of the 4� 4 matrices Sa �a � I, II � are given by

S I
1m �

�

L1212V
�m�
1 r�m� � L1221V

�m�
2 � A1212U

�m�
1 r�m� � A1221U

�m�
2

�

A�m��l2�,

S I
2m �

�

L2211V
�m�
1 ÿ L2222V

�m�
2 r�m� � A2211U

�m�
1 ÿ A2222U

�m�
2 r�m�

�

S�m��l2�,

S I
3m �

h

�LL1212 � B1212 �V
�m�
1 r�m� � �LL1221 � B1221 �V

�m�
2 � C1212U

�m�
1 r�m�

� C1221U
�m�
2

i

A�m��l2 �,

S I
4m �

h

�LL2211 � B2211 �V
�m�
1 ÿ �LL2222 � B2222 �V

�m�
2 r�m� � C2211U

�m�
1

ÿ C2222U
�m�
2 r�m�

i

S�m��l2 �, �B13�

S II
1m �

�

L1212V
�m�
1 r�m� � L1221V

�m�
2 � A1212U

�m�
1 r�m� � A1221U

�m�
2

�

S�m��l2�,

S II
2m �

�

L2211V
�m�
1 ÿ L2222V

�m�
2 r�m� � A2211U

�m�
1 ÿ A2222U

�m�
2 r�m�

�

A�m��l2�,

S II
3m �

h

�LL1212 � B1212 �V
�m�
1 r�m� � �LL1221 � B1221 �V

�m�
2 � C1212U

�m�
1 r�m�

� C1221U
�m�
2

i

S�m��l2 �,

S II
4m �

h

�LL2211 � B2211 �V
�m�
1 ÿ �LL2222 � B2222 �V

�m�
2 r�m� � C2211U

�m�
1

ÿ C2222U
�m�
2 r�m�

i

A�m��l2 �:
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The two homogeneous systems in Eq. (B12) are studied independently and have

a non-trivial solution x�m� or Z�m�, respectively, when the corresponding matrix of

constants is singular. Thus, the loss of stability will correspond to the ®rst such

occurrence of a singular matrix Sa �a � I, II � in either of the systems, (at the

critical strain Ec1 for ®xed values of the following: eigenvalue L, characteristic

number T and product p1l2), as the principal strain E1 increases from zero, i.e.,

det
�

Sa
ÿ

L, p1l2, T, E
c
1

��

� 0,

det
�

Sa�L, p1l2, T, E1�
�

6� 0 for 0RE1 < Ec1:
�B14�

Note that the ®rst occurrence of a singular matrix Sa always corresponds to the

positive integer n � 1, in Eqs. (B5) and (B6), thus justifying the statement from

Section 4 that the critical eigenmode is always of the long-wavelength.
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