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PLASTIC HETEROGENEITIES OF A COPPER

MULTICRYSTAL DEFORMED IN UNIAXIAL TENSION:

EXPERIMENTAL STUDY AND FINITE ELEMENT

SIMULATIONS

F. DELAIRE, J. L. RAPHANEL{{ and C. REY}

LPMTM-CNRS, Institut GalileÂ e, UniversiteÂ Paris-Nord, Avenue J.-B. CleÂ ment, 93430 Villetaneuse,
France

Abstract: A copper sample made of a single layer of grains is plastically deformed by uniaxial tension at 
room temperature and low strain rate. The deformation field is measured by means of grids deposited on the 
polished surface of the undeformed specimen and local orientations are recorded using electron back 
scattering diagrams in a scanning electron microscope. These measures are compared with simulations 
made by a finite element code using a physically based model for the deformation and hardening of face 
centered cubic crystals. A good agreement is found between measured and computed values. The simu-
lations give access to much more detail about the history of glide in each grain and help establish which 
systems are active at a local level. They also provide the evolution of internal variables such as dislocation 
densities. A new insight into intergranular accommodation as well as intragranular heterogeneities is 
provided. 

Résumé: Un échantillon de cuivre constitué d'une seule couche de grains est déformé dans le domaine 
plastique par traction uniaxiale à température ambiante et à faible vitesse de déformation. Le champ de 
déformation est mesuré à l'aide de grilles déposées sur la surface polie de l'échantillon non déformé et 
les orientations locales sont enregistrées par traitement des diagrammes d'électrons rétrodiffusés dans un 
microscope électronique à balayage. Ces mesures sont comparées à des simulations effectuées avec un 
code aux éléments finis qui utilise un modèle physique pour la déformation et l'écrouissage des cristaux 
de structrure cubique à faces centrées. Un bon accord est trouvé entre valeurs mesurées et calculées. 
Les simulations donnent accès à plus de détails de l'histoire de la déformation par glissement dans 
chaque grain et aident à établir quels systèmes sont actifs à un niveau local. Elles fournissent aussi 
l'évolution de variables internes, comme les densités de dislocations. Une nouvelle approche peut ainsi 
être faite de l'accommodation intergranulaire et de l'hétérogénéité intragranulaire. 
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1. INTRODUCTION

The plastic response of crystalline materials is in

general anisotropic and heterogeneous, which leads

to the development of deformation textures and

intragranular microstructures. These may be re-

sponsible for localization or loss of ductility of the

material. It is thus important to gain a better

understanding of how an imposed macroscopic

stress or strain is accommodated at the local level

of a grain interacting with its immediate neighbors.

The many models of crystalline plasticity do not

speci®cally address this matter: the interaction

between grains is at best taken in an average sense.

For instance, the relaxed Taylor models [1, 2] use

arguments based on grain shapes and the self-con-

sistent schemes [3±5] place the grain in interaction

with a continuum, the equivalent homogeneous

medium. This approach is justi®ed since the pur-

pose of these models is the prediction of macro-

scopic properties, such as deformation textures and

overall mechanical response. This class of models

includes at their core an averaging scheme in order

to allow the transition from the microscale (i.e. the

grain scale) to the macroscale.
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The aim of this paper is to present an attempt to

calculate by ®nite element techniques the complete

strain and stress ®elds in aggregates with a small

number of grains and to apply the numerical simu-

lation to the case of a copper multicrystal which

has been experimentally tested. The use of ®nite el-

ements in crystalline plasticity has been rapidly

growing with the growth of the computing power

of the average workstation. Finite element tech-

niques were ®rst used to evaluate the state of stress

and strain of bi- and tricrystals [6, 7]. Monotonic,

but also cyclic loadings have been investigated [8].

In these papers, however, the overall deformation

remained small and no attempt at re-orienting the

crystal was performed. Some other ®nite element

codes using crystalline plasticity have aimed directly

at describing the polycrystalline behavior, focusing

on the development of anisotropy [9], or of defor-

mation textures [10] including, in some instances,

temperature and strain rate e�ects [11]. In most

cases, an ideal polycrystal is imagined and relatively

few attempts have been made to simulate the beha-

vior of an actual sample [12, 13], one of the reasons

being that for a sample with more than one layer of

grains, if surface observations provide a lot of detail

about the strains and crystal orientation in the sur-

face layer, the boundary conditions imposed by the

deeper layers of material cannot be assessed. The

problem of number of through thickness grains is

addressed in the work by Buchheit et al. [14], but

on an ideal polycrystal. Most of these simulations

use a hardening rule derived from Asaro and

Needleman [15], where quantities similar to critical

shear rates are linearly related to glide velocities

through a constant hardening matrix which in its

simplest form has only two di�erent kinds of term,

the diagonal term for self-hardening and the o�-di-

agonal for latent hardening.

The originality of the approach presented here, is

to perform the simulation on an actual aggregate

made of a single layer of grains and conduct the ex-

periment on the same sample. Moreover, the model-

ing uses the framework of large deformations and

accounts for step by step re-orientation of the crys-

talline material with a physically motivated harden-

ing rule based on evolution of dislocation densities,

so that the hardening matrix is no longer constant

but is recalculated and updated at each step.

The special aggregate that we consider shall be

called a multicrystal and the material is OFHC cop-

per. It has been possible to grow by the Bridgman

technique a multicrystal of about ten grains of milli-

metric sizes which provided a sample for uniaxial

tension made of a single layer of grains with grain

boundaries almost orthogonal to the free surfaces.

The geometry of the sample and the experimental

techniques are described in the next section. The

scale of observation and simulation is not that of

individual dislocations but rather that of the collec-

tive behavior of dislocations or in experimental

terms, the scale of the scanning electron microscope

(SEM), rather than the transmission electron micro-

scope (TEM). The model and its implementation in

the ®nite element code are detailed in Section 3.

One assumes an elasto-viscoplastic behavior of the

aggregate, with plastic deformation taking place

solely by intragranular dislocation glide on crystal-

lographic slip systems. One attempts to compare

quantitatively results of experiments and simu-

lations. The quantities obtained by both methods

are the strain tensor (at least some of its com-

ponents) and the local crystal orientations at prede-

termined levels of the overall deformation. The

simulations are the only means to evaluate the ac-

tivity of slip systems, the stress ®eld and the dislo-

cation densities. The experimental quantities are

computed over a rectangular grid of 1� 1 mm2

squares in the undeformed state and the simulated

ones at each integration point of the ®nite element

mesh. One shall not only consider the various ®elds

over the sample but also focus at certain selected

points in order to illustrate how, within the same

grain, di�erent material points undergo di�erent

histories of stress and strain and the consequences

of these for the heterogeneity of the deformed crys-

tal.

2. SAMPLE AND EXPERIMENTAL PROCEDURE

The multicrystal has been taken from an ingot

obtained by the Bridgman technique. The sample is

made of a thin slice of the ingot, machined so that

each surface has almost the same topology and a

single layer of grains is present, with grain bound-

aries almost orthogonal to the free surfaces. The

shape of the specimen, with an active length of

29 mm, a width of 16 mm and a thickness of 3 mm

is chosen so that its ends, which are held by the

grips of a tensile machine, do not deform noticeably

during the uniaxial tensile test. The specimen is

made of a total of 11 grains, with a central grain

entirely surrounded by six neighbors (see Fig. 1).

The initial orientations of the grains are deter-

mined by the EBSD (electron back scattered dia-

gram) technique performed in a scanning electron

Fig. 1. Sketch of the multicrystal and numbering of its 11
grains.
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microscope (SEM). A microgrid of 1� 1 mm2

squares is deposited on one side of the sample. The

uniaxial tensile test takes place at constant cross-

head velocity of 4� 10ÿ4=s:The test is stopped at

some intervals and the sample observed in the SEM

in order to measure local orientations by EBSD

and to record the displacements of the nodes of the

deformed grid. The slip plane traces are also

observed and recorded.

2.1. Measurements of displacements

The measurements are performed in a SEM. The

in-plane displacements are obtained by the displace-

ment of the stage along two orthogonal axes. The

third component is given by a focusing length read

on the SEM. The intersections of the grid with the

grain boundaries are initially recorded from photo-

graphs of the undeformed sample. The position of

these points at any later stage, are then estimated

by a cubic spline interpolation using the position of

the neighboring grid points. A direct measure

becomes impossible owing to the contrast values

near a grain boundary in the deformed state. The

overall precision is 1 mm for in-plane displacements

and about 50 mm for out-of-plane measurements.

2.2. Strain ®eld computations

Only six components of the transformation gradi-

ent F are determined by the measured displacements

since one associates to a point in the reference con-

®guration its position in the deformed one, namely

M�t0� � �X1, X2�4M�t� � �x 1�t�, x 2�t�, x 3�t��

so that only the ®rst two columns of F may be com-

puted, namely

Fia �
@x i

@Xa

, for i � 1, 2, 3 and a � 1, 2

allowing the computation of three of the Green

Lagrange strain tensor components, E11, E22, E33,

through the well-known relation:

E �
1

2
�FTFÿ 1�:

In order to have an estimate of these strain com-

ponents at any point of the surface, one may con-

sider the grid of measured points as constituting a

mesh in the ®nite element sense (see Fig. 2), and

then use mapping and interpolation functions to

compute the values of the components at any

spatial location on the sample.

2.3. Crystalline orientations

The EBSD technique allows the measurement of

local crystalline orientations in the SEM. To any

material point in the deformed con®guration, one

may thus associate a rotation matrix, which allows

the passage from the macroscopic reference axes

(namely, tensile axis, transverse axis and normal to

the plane of the undeformed sample) to the cubic

directions in the crystal. In this case also, one may

estimate the local orientation at any point by in-

terpolation from the measured ones. For this pur-

pose, the use of the Rodrigues vector [16] is

particularly appropriate, since it is de®ned in a

metric space and can provide a measure of the ``dis-

tance'' between two orientations.

3. MODELING AND SIMULATIONS

The mechanical modeling follows the framework

developed in Teodosiu and co-workers [17]. The

main characteristics of the model and its special

form that is implemented in the computer code are

recalled and outlined in the following subsections.

3.1. Kinematics and constitutive relations

The kinematics of large transformations are used

which are based on the multiplicative decompo-

sition of the deformation gradient into elastic and

plastic parts [18], the velocity gradient L being sub-

sequently expressed as the sum of an elastic part Le

and a plastic part L
p [19, 20]. This requires the

choice of intermediate con®gurations. For crystal-

line plasticity, the most convenient choice is that of

isoclinic, relaxed local con®gurations [21]. In the

case of cubic crystals, one shall simply assume that

Table 1. Schmid and Boas notation

Slip system Plane Direction

A2 ��111� �0�11�
A3 [101]
A6 [110]
B2 (111) �0�11�
B4 ��1 01�
B5 �1�10�
C1 ��1 �1 1� [011]
C3 [101]
C5 �1�10�
D1 �1�11� [011]
D4 ��1 01�
D6 [110]Fig. 2. Deformed sample and grid at 0.30 average axial

logarithmic strain.
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the cubic axes are aligned in the local con®gur-

ations, with the frame of a Cartesian system of

coordinates. For each grain, plasticity is due to

glide on crystallographic slip systems. A system (s )

is de®ned by a glide direction Åg �s� and a glide plane

normal Ån �s� in the isoclinic local con®gurations. In

face centered cubic (f.c.c.) materials such as copper,

these planes and directions are well known as the

{111} planes and h110i directions. There are 12

such slip systems which are referred to by a letter

and a number according to the Schmid and Boas

notation (see Table 1).

One natural way of coupling the elastic behavior

with the ¯ow theory of plasticity is to derive from a

linear elastic law an hypoelastic law by time di�er-

entiation, so that one may express the time deriva-

tive of the Kirchho� stress t in terms of total strain

rates, total rotation rates and plastic rate quantities

_ttt �Ke:D� tttWÿWtttÿ
X

s

_g �s�R�s� �1�

where

R�s� �Ke:D�s� �W�s�tttÿ tttW�s�

with D
(s ) and W

(s ) being, respectively, the sym-

metric and antisymmetric parts of g�s� 
 n�s� and Ke

being simply related to the fourth order elasticity

tensor (see for instance Ref. [22]).

The rate of slip on an activated slip system is re-

lated to the resolved shear by the viscoplastic power

law

_g �s� � _g 0

�

�

�

�

�

t�s�

t
�s�
C

�

�

�

�

�

n

sgn t�s� �2�

where _g 0 is a reference slip rate and the exponent n

is of the order of 100 for copper at room tempera-

ture. The large value of n implies an almost purely

plastic behavior, where _g �s� remains negligible unless

jt�s�j is close to t
�s�
C which plays the role of a critical

shear stress, as in purely plastic models with use of

the Schmid law.

3.2. Hardening law

One of the advantages of this approach is to use

a physically based argument in order to express

evolution laws for the critical shears. The more

common and more phenomenological approach has

been to relate linearly slip rates and critical shear

through a hardening matrix with constant coe�-

cients, in general limited to a diagonal one charac-

terizing self-hardening and equal o�-diagonal terms

associated with latent hardening (see for instance

Refs [23±25]). Here, the linear structure of the re-

lation is kept, but one considers that the coe�cients

of the hardening matrix are not constant and

depend on internal variables that are related to the

physics of plasticity by dislocation glide.

The model is based on the evolution of dislo-

cation densities [26, 27]. One introduces total dislo-

cation densities on a system (s ), r (s ), whose

evolutions are governed by a production term, fol-

lowing Orowan's law and thus linked to a mean

free path L (s ) and a dynamic recovery term con-

trolled by a critical annihilation length yC. One

writes

_r �s� �
1

b

�

1

L�s�
ÿ 2yCr

�s�

�

�

�

_g �s�
�

� �3�

where the mean free path is related to the density

of point obstacles encountered by the gliding dislo-

cations:

L�s� � K

 

X

u6�s

r�u�
!ÿ1=2

:

The critical shear stress on a system (s ) can be re-

lated to the dislocation densities by the hardening

relation:

t
�s�
C � mb

 

X

u

a�su�r�u�
!1=2

�4�

where m is taken as the shear modulus of an isotro-

pic aggregate made of the same material and a (su )

is a matrix taking into account various types of dis-

location interactions [28]. The di�erentiation of this

relation with respect to time and some computation

lead to the expression of the coe�cients of the

hardening matrix in terms of the total dislocation

densities.

It has been shown by Tabourot et al. [29] that

this model can describe the ®rst three stages of the

hardening curve of copper single crystals initially

oriented for single slip and can also correlate satis-

factorily multislip data.

3.3. Choice of parameters for the model

The model requires few materials parameters in

order to be implemented. Some are well-known

values for a material such as copper, others require

an identi®cation from curves found in the literature.

They fall into the following categories:

elastic anisotropy the moduli c11, c12, c44 for copper
single crystals;

viscoplasticity a reference glide velocity _g 0, the
exponent n of the viscoplastic power
law, an initial critical shear t0C, which
is the same on all the glide systems
and shall also be used in order to
determine an initial dislocation den-
sity r0;
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hardening the annihilation distance (for edge
dislocations) yC, a material parameter
K (needed for the evaluation of the
mean free path), the modulus of the
Burgers vector b, the isotropic shear
modulus m, and the terms of the in-
teraction matrix, a su, which we shall
reduce to two values, one for the di-
agonal terms (self-hardening) and
one for the o�-diagonal terms (latent
hardening).

The values used for our computations are given in

Table 2.

4. FINITE ELEMENT COMPUTATION

The evolution of the deformation process is

described by an updated Lagrangian scheme, that is

to say that the con®guration at time t is taken as

reference con®guration for the time interval �t, t�

Dt�: At the end of this interval, the con®guration

and the internal variables are updated and the new

con®guration is taken as reference for the next time

increment. Let V be the region occupied by the

multicrystal at time t and assume that its boundary

S can be composed into two parts St and Sv, such

that the traction vector t
� is prescribed on St and

the velocity v
� is prescribed on Sv at any time t. In

the particular case of uniaxial tension simulations,

these conditions become:

. no traction on the free surfaces of the sample;

. imposed velocities at the end surfaces, modeling

the grips of the tension machine: one ®xed end

with zero velocity and the other with a constant

axial speed V0.

The position vector x, the velocity ®elds v and dv

are approximated by the same shape functions. The

discretization of the kinematical ®elds leads to the

classic discretization of the principle of virtual

power that in turn leads to the system of linear

algebraic equations:

�K�fDug � fDfg: �5�

After solving the system, the con®guration and the

state variables are updated at each Gauss point by

a simple Euler explicit scheme, except for the glide

increments that are calculated by the forward gradi-

ent approximation [24]. This method presents the

drawback to impose very small time increments,

but has the advantage of allowing a progressive

intragranular lattice reorientaion at each Gauss

point so that the incipience of glide on a new slip

system at any point of the sample is well accounted

for. Attempts at implicit schemes, worked well for

single crystals but were less e�cient for multicrys-

tals.

The meshing of the structure had the constraint

to follow the grain boundaries and also to provide

a ®ner mesh in regions where stronger gradients are

expected. The chosen element is a six-node pentahe-

dron, with two integration points. Two layers are

used so that there are four integration points

through the thickness of the sample (see Fig. 3).

The number of elements has been kept relatively

small (469) in order to make the computations in a

reasonable time on a powerful workstation. One

must compute and update a very large number of

variables at each integration point, since in addition

to the local orientation (three angles, but in fact a

3� 3 matrix), one updates the dislocation densities

on each system (12 quantities) and the stresses.

With intermediate quantities used in the compu-

tation, it is a total of 134 values per Gauss point

that are retained and updated. Another mesh with

about the same number of quadratic hexahedral el-

ements has also been tested with very similar nu-

merical results. In order to have a better estimate of

quantities in the high gradient regions, one would

have to go to the next order of magnitude for the

discretization of the structure and consider thou-

sands rather than hundreds of elements. The choice

retained here, while partly dictated by the available

hardware, was also consistent with the scale of the

experimental observations which dealt with milli-

metric grids deposited on the surface of the sample

and manual recording of local orientations.

5. MAIN FEATURES OF A COMPARISON BETWEEN
EXPERIMENT AND SIMULATION

Three stages of the deformation of the multicrys-

tal have been used for comparing experiment and

simulation. They correspond to overall macroscopic

axial logarithmic strains of 0.03, 0.075, and 0.33. At

each stage, the sample is placed in the SEM and

measurements of grid displacements and local orien-

tations are performed. Three grains are analyzed in

detail, which present di�erent patterns of behavior

owing to their initial orientations and position

within the sample. One has selected the two largest

grains near the ends of the sample (grains 1 and 4)

and the central grain (grain 6) completely sur-

rounded by others. For these three grains, the initial

values of the ®ve largest Schmid factors and the

corresponding slip systems are listed in Table 3.

Table 2. Values of the parameters entering the model

c11 � 166� 103 MPa c12 � 120� 103 MPa c44 � 76� 103 MPa
_g 0 � 10ÿ3=s n � 100 r0 � 1200=mm2

b � 2:57� 10ÿ7 mm yC � 0:5� 10ÿ6 mm K � 75
isotropic m � 45� 103 MPa ass � 0:52 asu � 0:72, s 6� u
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One recalls that the Schmid factor is computed

under the assumption of uniaxial tension.

Table 3 indicates that:

. Grain 1 is close to a stable double slip orien-

tation with glide on B4 and C1.

. Grain 4 has an unstable double slip orientation

with glide on B4 and A3. The di�erence between

the Schmid factors is however large enough to

promote mostly single glide on B4.

. Grain 6 is oriented for single slip on B4.

The actual stress state applied at the boundaries

of each grain is not exactly that of a pure tensile

test, owing to interactions between grains and

actual (or simulated) end conditions. However, the

response of the single crystal, initially oriented as

the grain in the aggregate can be used as a reference

for the discussion. We also point out at this stage

that since we deal with a group of crystallites, one

cannot replace an orientation by an equivalent one,

as in the case of single crystals treated separately.

The ®rst grain may be chosen so that B4 is the pri-

mary system for uniaxial tension and then the other

grains are oriented using the EBSD technique in the

SEM, without use of symmetry operations, this pro-

cedure ensures that the grain boundaries retain

their relative orientation with respect to the grains.

A convenient way to represent the initial orien-

tations is to draw the inverse pole ®gure (or its rel-

evant part) which gives the position of the tensile

axis with respect to the crystallographic axes (Fig.

4).

Fig. 3. The ®nite element mesh: two layers of six-node prismatic elements.

Table 3. The ®ve highest Schmid factors of the three grains con-
sidered

Grain Schmid factor values and associated glide system

1 0.464 B4 0.440 C1 0.438 A3 0.414 A2 0.315 B2
4 0.491 B4 0.461 A3 0.308 B5 0.233 C1 0.203 A2
6 0.493 B4 0.439 A3 ÿ0.319 B5 0.265 C1 0.211 A2

Fig. 4. Inverse pole ®gure: initial position of the tensile
axis with respect to the crystallographic axes for the 11

grains of the sample.
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5.1. Lagrangian strains and slip system activity

The plastic deformation of the multicrystal may

be studied experimentally by the measure of the sur-

face grid and by the observation of slip plane

traces. The computation yields values of the six

components of the Lagrangian strain and access to

the cumulated glide on every glide system.

5.1.1. Strains. Strain heterogeneities are already

present at an average global strain of 0.03. At lar-

ger global strains, they remain qualitatively

unchanged, even though their extent and magnitude

may have varied. Isovalues of axial strain com-

ponents ignore grain boundaries. The band of local-

ization that goes through grains 9, 4, and 3 is well

predicted by the simulation albeit with a lesser

spread than in the experiment.

At a global strain of 0.03, the axial strain E11 is

already close to 0.06 in a band that stretches across

grains 4, 3, and 9. Grain 4 that is in single slip in-

itially deforms a little faster than its neighbors, es-

pecially grain 9 which is in symmetric double slip.

At larger strains (see Fig. 5), the value of E11 in the

band becomes two to three times larger than the

average value and the band narrows. The exper-

imental or simulated axial strain does not show any

jump when crossing a grain boundary almost paral-

lel to the tensile axis.

The transverse strain however presents jumps

along the grain boundaries parallel to the tensile

axis, namely 4±3 and 4±9. There is a marked di�er-

ence between grain 4 which deforms with a very

small homogeneous transverse strain and grain 1

which has a negative transverse strain, with a gradi-

ent toward and across grain 6.

5.1.2. Crystallographic slip. A good marker of

plastic deformation is provided by the slip plane

traces which appear on the polished surface of the

sample. Their observation allows in most instances

the determination of the corresponding slip system.

The ambiguity about glide direction in a given

plane is resolved by computation of the Schmid fac-

tor in the deformed, i.e. re-oriented state, and in all

cases, the experimental data check with the simu-

lations.

The overall picture is given by Fig. 6 which

shows the sample at an overall axial strain of 0.075.

The grain boundaries are regions where a strong

relief appears, particularly between grains 3 and 4.

The triple points are also regions of fairly high

Fig. 5. Axial strain distribution.
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slopes, in particular the junction 1±5±6. In these

regions, it is di�cult to measure local orientations

and strains. The observation of superimposed sys-

tems of slip lines in some domains cannot be readily

equated with the simultaneous activity of slip sys-

tems, but rather tells about a history of plastic de-

formation. The computed orientations of the slip

plane traces are drawn on Fig. 7 for grains 4, 6,

and 1 and a direct comparison with Fig. 6 shows

the close agreement. Figure 8 is a sketch deduced

from Fig. 6 that outlines the intragranular domains

with di�erent slip activity.

5.1.2.1. Grain 1. Slip line patterns limit four intra-

granular domains. A multiple slip domain in a cen-

tral position where the two expected systems are

active together and three other regions where the

interactions with the neighboring grain boundary

(GB) or triple point play a part: a region with

mostly C1 activity, along the boundary with grain

8; a deep region stretching from the border with

grain 2 with B4 activity and a local zone of A3

near the GB; a region with a sharp relief near the

triple point 6±5±1.

Computed glide quantities agree with these obser-

vations and give an insight into the development of

plastic deformation in the di�erent intragranular

regions. For a given material point and a given slip

system, the plot of the glide quantity with respect

to the macroscopic axial strain (which plays the

part of a time increment) allows us to follow the

local plastic activation of the di�erent slip systems

as the overall deformation proceeds. One has

selected four points for grain 1 which are represen-

tative of the di�erent behaviors (see Fig. 9). There

is a good agreement between the observed slip

plane traces and the most active slip plane, either

B4 or C1 depending on the region considered. One

notices that near GB 1±2 and GB 1±6, the primary

system B4 stops gliding and single glide on C1 then

Fig. 6. Picture of the deformed sample at 0.075 average axial strain.

Fig. 7. Computed orientation of the slip plane traces for grains 1, 4, and 6 at about 0.07 average axial
strain.
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appears. On the contrary it is a situation of multiple

slip on B4 and C1 that takes place near GB 1±8

and at larger strains near GB 1±10.

5.1.2.2. Grain 4. This grain is characterized by large

axial deformation taking place in a band not far

from the boundary with grain 6 and which also

extends into its upper and lower neighbors. One

can distinguish three zones: a peripheral zone, GB

4±7, 4±3, 4±6, and 4±5 where few slip lines are

observed and a strong relief is present, a large

domain of mostly B4 activity and a wide band

stemming from GB 4±9 where traces of critical sys-

tem A3 are observed.

The simulations (see Fig. 10) however indicate

that along the grain boundaries as well as in the

grain interior single glide B4 prevails and indeed a

band where glide is fairly large appears, just next to

the boundary with grain 6, in a section where one

®nds grains 9±4±3 in ``parallel''. A closer analysis

of the simulation shows that the axial deformation

starts to increase or ``localize'' in grain 9 which has

a large initial Schmid factor and is oriented for

stable double slip and that subsequently, grain 4

deforms very rapidly. It appears that systems A3

(critical or secondary system) and B5 (tertiary sys-

tem) play a role in accommodating the conditions

imposed by the boundary. The cumulated glides on

these two systems remain small but may be critical

to ensure compatibility.

5.1.2.3. Grain 6. In this central grain, one may dis-

tinguish four regions, namely the top of the grain,

the boundary with grain 4, the bottom of the grain

and the center region with an extension to the

boundary with grain 1. In the ®rst three regions,

one notices mostly single slip, although the sharp

Fig. 8. Domains of di�erent glide activity for grains 1, 4,
and 6.

Fig. 9. Glide activity at four di�erent points of grain 1.
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relief near the GB makes precise observations di�-

cult. In the more central region, A3 and B4 are pre-

sent.

The computations of glide quantities at several

locations within grain 6 support these observations

and allow the analysis of the sequence of events

leading to the observed slip plane traces. The in-

terior of the grain starts in double slip A3±B4, for

axial strains up to 0.1, when the activity of B4

stops and single glide A3 takes place. It is interest-

ing to notice that inside grain 1, we have observed

the same situation near the middle of the GB 1±6,

where glide on B4 stops for E11 � 0:1 and glide on

the secondary system C1 appears. But for grain 1,

plastic glide had initiated on B4 only.

5.2. Orientations

The inverse pole ®gures (Fig. 11) show a good

agreement between experiment and simulation at

least for the intermediate global axial strain of

0.075.

For the central grain however, there is more dis-

persion in the measured orientations than expected

by the simulation. One should emphasize that the

experimental points are surface measurements, since

the electron beam interacts with an area of about

7 mm2 and a depth of 10±50 nm while the computed

orientations are evaluated at the Gauss points of

the mesh which are at least 300 mm below the sur-

face. The grain that presents the largest re-orien-

tation is grain 4, which is the most deformed, with

a band of localization of axial deformation. It is

also a grain that deforms mostly by single slip. As

expected, most of the grain rotates towards a

``stable'' orientation for uniaxial tension, namely

h112i for the tensile axis as one can see on the cor-

responding inverse pole ®gure. The same tendency

is found for grain 1. Not as many points are avail-

able for grain 6, experimentally or in the simu-

lations, and for this grain the agreement is the least

satisfying. Owing to the more complex state of in-

teraction between neighbors and the relatively smal-

ler size of grain 6, the exact spatial position of the

point of measure or of computation may be of

greater importance here, and one also notices that

this is a grain which presents quite important out of

plane deformation, near triple points and bound-

aries.

5.3. Dislocation densities

The dislocation densities are the internal variables

of our plasticity model. One should of course exert

a certain caution in the discussion of the results and

keep in mind that in this respect there may exist a

discrepancy between the actual physical dislocation

density and what the computations yield. In par-

ticular, we have chosen rather arbitrarily an initial

value and a rather phenomenological way of

accounting for dislocation density evolutions. It

appears, however, that at least qualitatively, the

evolutions of the computed quantities may be

linked to evolutions of dislocation densities. The

total dislocation density remains fairly homo-

geneous through the grains, and in this sense does

not show maxima in the band of localized axial de-

formation. It thus appears that two grains such as

grains 1 and 4 present very di�erent axial strains

and glide activities but have almost the same total

dislocation density (see Fig. 12). It may now be

interesting to look at the dislocation density on the

primary glide system. There, again, for the two

grains 1 and 4, we ®nd fairly similar values and this

can be understood by analyzing the evolution law

for dislocation densities, and more particularly, the

Fig. 10. Slip activity in grain 4 at the overall axial strain
of 0.33.
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evolution of the mean free path. Grain 4 is for the

most part of its strain history, in single slip, the

mean free path associated with the primary system

does not change. On the contrary, grain 1 is almost

always in double slip, so that the mean free path as-

sociated with these systems decreases almost like

the square root of the total dislocation density,

hence reducing the corresponding glide quantities.

6. CONCLUSION

The multicrystal, at an intermediate scale between

the single crystal and the polycrystal, is the ®rst

relatively complex structure that yields both to ex-

perimental and numerical studies, in order to pro-

vide a better understanding of the development of

plastic heterogeneities in crystalline materials. The

comparisons between observation, measurements

and simulations have shown a good overall agree-

ment of similar quantities, namely strain and local

orientations. The kinetics of plastic glide has also

been accurately described, with no discrepancy

between methods for the determination of locally

active slip systems. The experimental and the nu-

merical scales have been chosen of the same order,

that is, slightly less than a millimeter. Since the

grains are mostly centimetric, this constitutes the

®rst smaller order necessary for a description of

intragranular heterogeneities.

A ®rst striking result is the analysis of the devel-

opment of a zone of strain concentration which

crosses three grains of the multicrystal. The simu-

lations show that the phenomenon starts at the

beginning of the plastic stage, too early to be

measured by the grid. At ®rst, a grain along the

edge (grain 9) is well oriented for stable double slip

and deforms easily. It favors somewhat the defor-

mation of its immediate neighbor (grain 4) which is

oriented for single slip and rotates toward a stable

orientation. The band of strain concentration pre-

sents a maximum that reaches three times the global

axial strain and ignores grain boundaries aligned

with the tensile axis.

Another important result concerns grain inter-

actions and this can be seen very clearly for grain 6

which is surrounded with neighbors and may thus

be the grain less likely to behave like a homo-

geneous single crystal in uniaxial tension. Grain 6

presents a fairly large gradient of re-orientation,

with a maximum near the boundary with grain 4.

In grain 6, one observes also gradients of axial,

transverse and shear components of strain. It is

placed ``in series'' between two large grains, grains

1 and 4, which behave very di�erently, as can be

seen not only in terms of magnitude but also of

shape of the local strain tensors and it must also ac-

commodate ``in parallel'' grains 3 and 2 on one side

and grain 5 on the other. This accommodation does

not seem to be achieved by a layer at the periphery

Fig. 11. Inverse pole ®gures (tensile axis) for grains 1, 4, and 6 at an axial strain of 0.075 (the larger
dot represents the initial orientation, see also Fig. 4).
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of the grain, with the inside of the grain behaving

somewhat homogeneously. One tends to see intra-

granular bands extending from a grain boundary

and often bounded by lines originating at a triple

point as a virtual extension of a grain boundary.

These results were made possible through the

combination of the experimental and numerical

techniques. The mesh that has been used however

limits the accuracy of our analysis. The use of a

di�erent mesh of the same characteristic coarseness,

with two layers of quadratic hexahedral elements,

does not change dramatically the simulated values,

except for stresses that are more accurately esti-

mated. This shows that signi®cant improvement

requires to go at least one order of magnitude

higher for mesh re®nement, with the corollary that

experimental data should also be gathered at a

smaller scale. Unfortunately, multicrystals are di�-

cult to produce and even more di�cult to reproduce

so that one cannot multiply experiments.

A critical point of the model remains the harden-

ing laws. They are very material, temperature, rate

and grain size dependent. Without changing the

framework presented here, one could envision intro-

ducing a local mean free path, bounded by a dis-

tance to the nearest grain boundary, measured

along a glide direction. This would introduce more

clearly a characteristic length and grain size depen-

dence. It would also be of interest to vary harden-

ing parameters in order to better assess the

in¯uence of each hardening mechanism, but this

would constitute a whole study by itself, albeit a

study made possible by the numerical tool which

has been presented here.
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