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Abstract – We analytically derive the relaxation spectra of a two-phase isotropic material whose phases are isotropic Maxwell media, according to the 
classical and to the generalized self-consistent schemes. Whereas these spectra are continuous in both cases, they exhibit strong differences which can be 
associated with the different underlying morphology, either symmetrical (polycrystal-type) in the first case or asymmetrical (composite-type) in the 
second case. The treatment is extended to the (N + 1)-phase model which allows us to deal with coated inclusions or with an interphase between the 
matrix and the inclusions: the interphase is shown to strongly modify the resultant spectrum. More general cases are then considered for different kinds 
of constitutive behaviour as well as for coated fibre reinforced composites. As a whole, the spectral analysis method appears to be an efficient tool for the 
investigation of the connection between structural morphology and the overall behaviour of viscoelastic heterogeneous materials.

spectral analysis / structural morphology / heterogeneous materials

1. Introduction

The influence of internal morphological characteristics on the overall behaviour of micro-inhomogeneous
materials is a matter of increasing work and interest. Up to now, this topic has been mainly developed in
the framework of linear elasticity (since Kröner, 1977). Basic questions such as the way to take into account
the inclusion/matrix morphology of composite materials or the disordered constitution of polycrystals have
been given satisfying practical answers in this case, especially through the classical self-consistent scheme
(C.S.C.S., Hershey, 1954) on the one hand, for intricate morphologies where no phase plays any specific
morphological role, and through the composite spheres (or cylinders) assemblage (Hashin, 1962) and the
associated generalized self-consistent scheme (G.S.C.S. or three-phase model, Christensen and Lo, 1979) on
the other hand, when one phase is disposed as a well-connected matrix and the other ones are dispersed in it.
The latter case has been generalized in different ways, either by taking multilayered inclusions into account
through so-called (N + 1)-phase models in order to deal with coated particles or fibres (Hervé and Zaoui,
1993; Hervé and Zaoui, 1995) or by considering arbitrary composite patterns as basic units of heterogeneous
materials through ‘morphological pattern-based’ bounding or estimating treatments (Bornert et al., 1996).

Nevertheless the generalization of such approaches to nonlinear behaviour has to overcome strong difficulties
which originate in the fact that the linearized (either secant or tangent) moduli of the phases cannot be treated
as uniform per phase (Zaoui, 1997). Whereas many current works are devoted to rigorous or approximate
treatments of this problem, this paper proposes to explore another route within the same general field in
order to enlarge the knowledge of the connection between micro-morphology and the overall behaviour of
heterogeneous materials. This approach is based on the extension of known treatments for the case of linear
elasticity to linear (non ageing) viscoelasticity. The difficult coupling of elasticity and viscosity, which makes
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straightforward extensions of Green’s techniques inefficient due to the simultaneous occurrence of derivatives
of different orders of the mechanical variables in the considered constitutive equations, can then be easily
treated with the help of the Laplace transformation technique and the associated ‘correspondence principle’
(Mandel, 1966, Laws and McLaughlin, 1978): this principle allows one to transform an inhomogeneous
viscoelastic problem into a symbolical elastic one which may have a known solution and to go back to
real variables by inversion of the Laplace transformation. Such a method makes it possible to study actual
viscoelastic heterogeneous materials, such as reinforced polymer matrices or polymer blends, to investigate the
mechanical influence of interphases between (possibly coated) inclusions and the matrix or to serve as a basis
for further extensions to nonlinear viscoelasticy or rate-dependent elastoplasticity. An additional interest can be
found in the use of the spectral analysis of the overall behaviour through the derivation of the relaxation spectra
of such materials which is expected to give access to significant information on the micro-morphology.

This point can be illustrated as follows: we consider a multiphase material consisting of Maxwellian
constituents with local constitutive equations of the form

ε̇ = a : σ + b : σ̇ (1)

with ε andσ the strain and strain tensors anda and b material constant fourth order tensors. Whereas the
overall behaviour is known to be linear viscoelastic, it is no more Maxwellian due to the coupling between
elasticity and viscosity and the associated ‘long range memory effect’. The overall constitutive equations are
expected in the form (Suquet, 1987):

Ė=Aeff :6 +Beff : 6̇ +
∫ t

0
J(t − τ) : 6̇(τ )dτ, (2)

whereE and6 are the macroscopic strain and stress tensors,Aeff andBeff are the macroscopic (or effective)
analogues ofa and b and J(t − τ) is an interaction kernel which reflects the complexity of the delayed
mechanical interactions between the phases.

How can this kernel be represented by relaxation spectra? How does it depend on the considered
morphology? What do the associated relaxation spectra look like according to this morphology? How can
they be attached to a polycrystal-type or to a composite-type morphology? How does an interphase affect the
shape of the relaxation spectra? What happens when coated particles or fibres are considered? These are the
main questions which are addressed in the following, through the use of the C.S.C.S., of the G.S.C.S. and of
the (N + 1)-phase model for simple linear viscoelastic constituents. This is performed through the use of the
Laplace(–Carson) transformation technique in order to convert the analysis of the coupling of elasticity and
viscosity into the resolution of a symbolical linear elastic problem.

In the first part (Section 2), we determine the shape of the shear relaxation spectra when each phase has
only one relaxation time, as a function of the morphology, by comparing the predictions of the ‘classical’ and
the ‘generalized’ self-consistent models. We then consider (Section 3) the ‘(N + 1)-phase model’ which is
based on the configuration of a multilayered spherical inclusion surrounded by the equivalent homogeneous
medium. Each phase may have several relaxation times. Thus the existence of an interphase located between
the inclusions and a continuous matrix can be taken into account. The comparison of the relaxation spectra
indicates an impressive ‘signature’ of the interface. Other applications are suggested. Finally, we report similar
results for cylindrical geometry (Section 4).
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2. Shear relaxation spectra of two-phase isotropic Maxwellian materials

Assuming local isotropy and incompressibility for the sake of simplicity, we write the constitutive equations
for each phase in the form:

ė= ais+ bi ṡ, i = 1,2, (3)

whereai and bi are scalar constants ands and e are the stress and strain deviators. After Laplace–Carson
transformation, defined by

f ∗(p)= p
∫ ∞

0
f (t)e−pt dt, (4)

we get:

s∗(p)= 2µ∗i (p)e
∗(p), µ∗i (p)=

p

2bi(p+ 1/ti)
, (5)

with p the complex variable,ti = bi/ai the (single) relaxation time of phase (i) with the intensity 1/2bi . The
two-phase material is supposed to be isotropic too. Due to incompressibility, it is completely defined by the
overall shear relaxation modulusµeff(t). According to the theory of spectral analysis, we are looking for this
modulus in the form

µeff(t)=
∫ ∞

0
geff(τ )e−t/τ dτ, (6)

wheregeff(t) gives access to the effective shear relaxation spectrum — which reduces for each phase (i) to
one single line att = ti with the intensity 1/2bi . Two self-consistent models will be considered concurrently,
the classical and the generalized ones. Owing to the correspondence principle,µeff∗(p) is obtained fromµ∗1(p)
andµ∗2(p) through the same equations as those which relateµeff, µ1 andµ2 in the elastic case. These classical
quadratic equations have the form:

A.X2+B.X+C = 0, (7)

whereX = µeff/µ1. For the C.S.C.S. we have:

A= 1, B = 2− 5c

3

µ2

µ1
+ 5c− 3

3
, C =−2

3

µ2

µ1
(8)

with c the volume fraction of phase (2). For the G.S.C.S., with phase (1) as the continuous matrix,A, B and
C are second order polynoms in (µ2/µ1) and tenth order polynoms inc1/3 (see Appendix 1). For the sake of
simplicity, we defineA such that it is non-negative for anyc. In both cases, equation (7) has only one real
positive root.

For the present viscoelastic case, we defineX∗(p) as:

X∗(p)= µ
eff∗(p)
µ∗1(p)

. (9)

NowX∗(p) is a solution of an equation of the form (Rougier et al., 1993):

A∗X∗2+B∗X∗ +C∗ = 0, (10)
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whereA∗, B∗ andC∗ depend onµ∗2(p)/µ∗1(p) andc in the same way asA, B andC depend onµ2/µ1 andc.
As a result,µeff∗(p) can be expressed as the sum of two terms:

µeff∗(p)= f ∗1 (p)± f ∗2 (p), f ∗1 (p)=−
pB∗

4b1(p+ 1/t1)A∗
, f ∗2 (p)=

p(B∗2− 4A∗C∗)1/2

4b1(p+ 1/t1)A∗
. (11)

The first termf ∗1 (p) is a rational fraction inp, so thatf1(t) is a sum of decreasing exponential functions: two
for the C.S.C.S., contributing to the spectrum by two single lines at timest1 andt2, but three for the G.S.C.S.,
contributing to the spectrum by three single lines, one at the matrix relaxation timet1 and two other ones at
timesθ1 andθ2 which lie somewhere betweent1 and t2. Note for the moment that their respective intensities
may be negative according to the value ofc.

After some reduction using (9) and (11),f ∗2 (p) can be written for the C.S.C.S. as:

f C∗2 (p) = kCp[PC(p)]1/2
(p+ 1/t1)(p+ 1/t2)

, P C(p)= (p+ 1/τ1)(p+ 1/τ2),

kC =
√
(2− 5c)2b2

1+ 2(6− 5c)(5c+ 1)b1b2+ (5c− 3)2b2
2

12b1b2
,

(12)

whereτ1 andτ2 are positive times lying betweent1 andt2. For the G.S.C.S., we get:

f G∗2 (p) = kGp[PG(p)]1/2
(p+ 1/t1)(p+ 1/θ1)(p+ 1/θ2)

,

PG(p) = (p+ 1/τ ′1
)(
p+ 1/τ ′2

)(
p+ 1/τ ′3

)(
p+ 1/τ ′4

)
,

(13)

whereτ ′1, τ ′2, τ ′3 andτ ′4 are positive times such thatτ ′1, τ ′2 ∈ [t1, θ1] andτ ′3, τ ′4 ∈ [θ1, θ2] andkG is a constant given
in Appendix 1.

We can easily derivef2(t) from (12) or (13) by use of the inverse Laplace–Carson transformation which is
defined in the complex plane by:

f2(t)= 1

2iπ

∫
1

f ∗2 (p)
p

ept dp, (14)

where1, parallel to they-axis, must have all the poles and critical points off ∗2 (p) on the left; it can be taken
here as they-axis itself since all these poles are real negatives.

The theorem of residues can be used after complementing1 with a half-circle centered at the origin and
located in the left half-plane Re(p) 6 0, with a radiusR growing to infinity; in addition, in order to get a
uniform representation off ∗2 (p), one has to define adequate cuts on the real negative axis on[−1/τ1,−1/τ2]
for the C.S.C.S. and on[−1/τ ′1;−1/τ ′2] and [−1/τ ′3;−1/τ ′4], for the G.S.C.S. (figure 1). Suffice it now to
make use of Jordan’s lemma in order to get rid of the integral on the half-circle whenR→∞ and we are
left with f2(t) as a sum of some residues and integrals on the cuts: the residues are associated with decreasing
exponentials, and then with single lines of the spectra, whereas the integrals on the cuts will be responsible for
continuous parts of the spectra.

More precisely, we get (Rougier et al., 1993), witht1< t2:
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(a) (b)

Figure 1. Integration paths used for the inversion of the Laplace transformation (t1< t2); (a) C.S.C.S; (b) G.S.C.S.

− for the C.S.C.S.:

f C2 (t)=±
kC

π

{
−
∫ −1/τ2

−1/τ1

√−PC(x)
(x + 1/t1)(x + 1/t2)

etx dx−π
√
PC(−1/t1)

1/t2− 1/t1
e−t/t1+π

√
PC(−1/t2)

1/t1− 1/t2
e−t/t2

}
, (15)

− for the G.S.C.S.:

f G2 (t)=±
kG

π

{∫ −1/τ ′2

−1/τ ′1

√−PG(x)
(x + 1/t1)(x + 1/θ1)(x + 1/θ2)

etx dx

−
∫ −1/τ ′4

−1/τ ′3

√−PG(x)
(x + 1/t1)(x + 1/θ1)(x + 1/θ2)

etx dx

+π
√
PG(−1/t1)

(1/θ1− 1/t1)(1/θ2− 1/t1)
e−t/t1 − π

√
PG(−1/θ1)

(1/t1− 1/θ1)(1/θ2− 1/θ1)
e−t/θ1

+π
√
PG(−1/θ2)

(1/t1− 1/θ2)(1/θ2− 1/θ1)
e−t/θ2

}
. (16)

With help of the change of variableτ =−1/x, (15) and (16) can be put in the standard form (6) and yield the
expected spectra after addition tof1(t) and determination of the front sign in (15) and (16) according to the
conditionµeff(0)= lim |p|→∞(µeff(p)) > 0. The resulting spectra consist of a continuous part and discrete lines
whose intensity can be checked to be always positive or null.

For the C.S.C.S. we get one continuous spectrum defined by the function

gC(τ)= kCt1t2

π
√
τ1τ2

√
(τ − τ1)(τ2− τ)
τ(τ − t1)(t2− τ) , τ ∈ [τ1, τ2], (17)
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and one or two discrete lines located at τ = t1 with the intensity (3 − 5c)/6b1 for c 6 3/5 and at  τ = t2 with 

the intensity (5c − 2)/6b2 for c > 2/5.

(a)

(b)

Figure 2. Comparison of the relaxation spectra as derived from the two considered models, in the casec= 0.5; b1 = 1; b2 = 10; t1= 1; t2 = 10;
(a) classical self-consistent model; (b) generalized self-consistent model.
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For the G.S.C.S., the continuous spectrum is divided into two parts defined by

gG(τ)= ε(τ)k
Gt1θ1θ2

π
√
τ ′1τ ′2τ ′3τ ′4

√
(τ − τ ′1)(τ − τ ′2)(τ − τ ′3)(τ ′4− τ)
τ(τ − t1)(θ1− τ)(θ2− τ) ,

τ ∈ [τ ′1, τ ′2] ∪ [τ ′3, τ ′4], ε(τ )= 1 if τ ∈ [τ ′1, τ ′2], ε(τ )=−1 if τ ∈ [τ ′3, τ ′4].
(18)

Additional single lines may exist or not att1, θ1 and θ2 depending on the volume fractionc and on the
parameterst1, t2, b1 andb2.

Illustrative examples are reported infigure 2aand 2b for the C.S.C.S. and the G.S.C.S. respectively, for
identical values of the material constantsc, t1, t2, b1 andb2 so as to stress the influence of the sole morphology.

Other examples would lead to similar conclusions, namely:

– for both models, the resulting spectra are definitely different from Maxwell-type spectra, which would
reduce to discrete lines: the continuous part reflects mainly the ‘long-range memory effect’ and the
complicated underlying viscoelastic interactions between the phase domains as expressed, according to
the self-consistent scheme, by the (simple or composite) inclusion/matrix interactions;

– in addition, the material structural morphology is shown to have a prominent influence on the shape of
the continuous spectrum: whereas the symmetric morphology associated with the C.S.C.S. leads to an
unbroken continuous spectrum, the composite-type morphology which is accounted for by the G.S.C.S.
makes this continuous spectrum split into two separate parts and enhances the mechanical role of the
matrix phase. So, these qualitative differences of the spectrum shapes, which are much more visible than
the differences of the relaxation functions or of the Cole–Cole diagrams (Rougier, 1994), can be suggested
to be used as ‘morphological discriminators’ when analysing experimental data.

3. Generalized Maxwellian bodies: (N + 1)-phase self-consistent modelling

The foregoing analysis may be extended in two (possibly combined) directions: first, more general linear
constitutive equations may be considered so as to deal with generalized Maxwellian constituents which are still
isotropic but can be compressible and exhibit a finite number of relaxation times; second, the (N + 1)-phase
self-consistent model may be used by replacing the two-phase composite sphere of the G.S.C.S. by a composite
sphere with an arbitrary number of concentric shells with different moduli. Such a model has already been
defined in the case of linear elasticity (Hervé and Zaoui, 1993) so that its extension to linear viscoelasticity is
straightforward: it is proposed here in the context of spectral analysis in order to emphasize, as it has been done
above, the influence of the material structural morphology on the overall response.

The corresponding morphology is related to the dispersion of multiply coated inclusions in a continuous
matrix, including the important case of interphases located between the matrix and the inclusions, since the
difficult study of the characteristics and role of such interphases is a matter of intensive research in the field of
polymer science. In addition, the (N+1)-phase self-consistent scheme can be taken as a simplified model when
studying nonlinear composites by approximating the non uniformity of the phase secant or tangent moduli by
a discretized radial variation (Bornert et al., 1994; Beurthey, 1997).

The following treatment is restricted to linear viscoelasticity: it is concerned with the spectral analysis of the
(N + 1)-phase self-consistent model consisting of anN -layered spherical inclusion embedded in an infinite
matrix made of the searched homogenized material. Each phase has an isotropic (generalized)-Maxwellian
behaviour with several relaxation times. We are looking for the overall relaxation spectra, both for the shear
and the bulk moduli, with special attention paid to the case of a two-phase material with a third phase (the
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‘interphase’) located between the inclusions and the matrix. The mathematical treatment is a straightforward 

extension of the preceding one, with some additional help of numerical computations (Beurthey, 1997).

3.1. Shear relaxation spectra

For the sake of simplicity, we restrict ourselves to phases (i) with a constant Poisson ratioνi (i = 1,N).
Their Laplace–Carson-transformed shear modulusµ∗i (p) reads:

µ∗i (p)=
p

2b1
i (p+ 1/t1i )

+ · · · + p

2bnii (p+ 1/tnii )
= pN∗i (p)
(p+ 1/t1i ) · · · (p+ 1/tnii )

, (19)

whereN∗i (p) is a polynom of degree(ni−1) in p. Through the use of the correspondence principle, the overall
shear modulusµeff(N)∗(p) is calculated from the known quadratic equation of the elastic problem (Hervé and
Zaoui, 1993) after replacing real moduli by transformed complex ones (see Appendix 2):

A∗N(p)X
∗2+B∗N(p)X∗ +C∗N(p)= 0, X∗ = µ∗eff(N)(p)/µ∗N(p), (20)

whereA∗N(p), B∗N(p) andC∗N(p) depend onµ∗i (p), νi and on the external radiiRi of the shells (i) located
betweenRi−1 andRi (figure A1). Note that some relaxation times may be common to two adjacent shells (i)
and (i+1): letji,i+1 be the number of such values. The polynomsA∗N(p),B∗N(p) andC∗N(p) are then of degree
dN in p, with dN given by:

dN = 2
N−1∑
i=1

(ni + ni+1− ji,i+1− 1). (21)

Except for these differences, the treatment is quite similar to the preceding one. Instead of (11), we have to set:

µeff(N)∗(p)= f (N)∗1 (p)± f (N)∗2 (p), f
(N)∗
1 (p)=−B

∗
N(p)µ

∗
N(p)

2A∗N(p)
,

f
(N)∗
2 (p)= [B

∗
N(p)

2− 4A∗N(p)C∗N(p)]1/2µ∗N(p)
2A∗N(p)

.

(22)

In all our numerical calculations, the polynomA∗N(p) happened to havedN real negative roots(−1/θk) with
θk ∈ [tmin, tmax], wheretmin andtmax are the smallest and the largest relaxation times of the constituent phases,
so that the rational fractionf (N)∗1 (p) can be decomposed into(dN + nN) simple elements: thus the original
f
(N)
1 (t) is a sum of(dN + nN) decreasing exponential functions with either positive or negative amplitudes,

depending on the material parameters and phase volume fractions. As forf
(N)∗
2 (p), we also found numerically

that the polynom[B∗N(p)2− 4A∗N(p)C∗N(p)] has 2dN real negative roots(−1/τ ′k) with τ ′k ∈ [tmin, tmax] and no
pole inserted between two consecutive roots(τ ′2j−1, τ

′
2j ), so that we can write:

f
(N)∗
2 (p)= µ∗N(p)

K(N)
√
P (N)∗(p)

(p+ 1/θ1) · · · (p+ 1/θdN )
,

K(N) =
√
(B∗N(0)2− 4A∗N(0)C∗N(0))τ ′1 · · ·τ ′2dN

2A∗N(0)θ1 · · ·θdN
,

P (N)∗(p)= (p+ 1/τ ′1) · · · (p+ 1/τ ′2dN ).

(23)
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(a) (b)

Figure 3. (a) Integration path used for the Laplace–Carson inversion; (b) roots location for (1/ti < 1/ti+1).

Here again, we have to definedN cuts on the real negative axis (figure 3) in view of a uniform representation of
the square root in (23).

The same mathematical treatment as above leads to the following expression off
(N)
2 (t):

f
(N)
2 (t)=±K

(N)

π

{
dN∑
j=1

(−1)j+1
∫ −1/τ ′2j

−1/τ ′2j−1

√−P (N)(x)µ∗N(x)
(x + 1/θ1) · · · (x + 1/θdN

)etx dx

+
N∑
i=1

π
√
−P (N)(−1/tnNi )e−t/t

nN
i

2bnNi (1/θ1− 1/tnNi ) · · · (1/θdN − 1/tnNi )

+
dN∑
j=1

(−1)jπ
√
−P (N)(−1/τ ′j )µ∗N(τ ′j )e

−t/τ ′
j

(1/τ ′1− 1/τ ′j ) · · · (1/τ ′j−1− 1/τ ′j )(1/τ ′j+1− 1/τ ′j ) · · · (1/τ ′dN − 1/τ ′j )

}
(24)

with the sign± chosen according to the conditionµeff(0)= lim |p|→∞(µeff(p)) > 0. After addingf (N)1 (t) and
f
(N)
2 (t) and operating in (24) the change of variableτ =−1/x, µeff(N)(t) can be put in the standard form (6).

We get(dN +nN) discrete lines with a positive or null amplitude at timesθj (j ∈ [1, dN ]) andtnNi (i ∈ [1, nN ]),
the latter ones corresponding to the matrix phase(N), and a continuous spectrum split intodN separate parts
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on the intervals[τ ′2j−1, τ
′
2j ] (j ∈ [1, dN ]) with the amplitude:

g(N)(τ )=
∣∣∣∣∣K(N)θ1 · · · θdN
π
√
τ ′1 · · ·τ ′2d

√
−(τ − τ ′1) · · · (τ − τ ′2dN )
τ (τ − θ1) · · · (τ − θdN )

nN∑
k=1

tkN

2bkN (τ − tkN)

∣∣∣∣∣,
τ ∈ [τ ′1, τ ′2] ∪ · · · ∪ [τ ′2j−1, τ

′
2j

]∪ · · · ∪ [τ ′2dN−1, τ
′
2dN

]
.

(25)

Note that in (25) too the matrix phase(N) plays a prominent role with respect to the other ones through the

term(
∑nN
k=1

t k
N

2bk
N
(τ−t k

N
)
).

Now again, it is obvious that the overall behaviour is no more a (generalized) Maxwellian one since the
long range memory effect leads to continuous relaxation spectra. When one relaxation time is added to some
phase, the number of separate parts of the continuous spectrum may be modified through the modification of
dN and the shape of the whole spectrum may be completely changed. When one Maxwellian layer is added,
this gives rise to two additional parts of the continuous spectrum and to two new lines. Among many possible
applications, we have chosen two simple illustrative examples:

– onfigure 4, we use the three-phase self-consistent scheme (N = 2) for the case already treated onfigure 2b
but we give an additional relaxation time to each phase. We find six (instead of two) separate parts for the
continuous spectrum and six (instead of three) discrete lines with a non zero amplitude; it turns out that, if
such a spectrum was got from experiment, it could be used to derive the total number of relaxation times
only if the number of phases and their inclusion/matrix-type morphology is known.

– on figure 5, we still start from the same example treated onfigure 2bbut we transform a small part of
the matrix phase into a different Maxwellian material inserted between the matrix and the inclusion as

Figure 4. Shear relaxation spectrum derived from the 3-phase model for phases with two relaxation times:ν1 = ν2 = 0.5; c = 0.5; b1
1 = 10; b2

1 = 5;

b1
2 = 1; b2

2 = 2; t11 = 10; t21 = 5; t12 = 1; t22 = 2.
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Figure 5. Shear relaxation spectrum derived from the 4-phase self consistent model, in the case of an interphase:νi = 0.5; c1 = 0.5; c2 = 0.015;
c3 = 0.485;b1 = t1 = 10; b2= t2 = 5; b3 = t3 = 1.

a thin interphase layer, with the volume fractionc2= 1.5% and material constants intermediate between
those of the two main phases. According to our model (withN = 3), the relaxation spectrum is modified
drastically, exhibiting a well-identified signature of the interphase, whereas at the same time the overall
resulting creep or relaxation functions would be almost unchanged.

Here again, we can suggest from these illustrations that the spectral analysis of available experimental data on
viscoelastic materials could provide useful information on the constitutive micromorphology of these materials
when it is derived in connection with micromechanical models such as the one proposed hereabove.

3.2. Bulk relaxation spectra

The bulk relaxation spectra may be derived much more easily since, in the elastic case (Hervé and Zaoui,
1993), the overall bulk moduluskeff(N) is given in closed form instead of as the root of a quadratic equation.
From that, it can be inferred that the resulting spectra in the viscoelastic case reduce to discrete lines when the
constituent phases are (generalized)-Maxwellian bodies. When Poisson’s ratios are constant in time, we start
from the relation:

k∗i (p)=
2(1+ νi)
3(1− 2νi)

µ∗i (p), i ∈ [1,N]. (26)

Through the use of the elastic solution, of the correspondence principle and of the expression (19) for the shear
moduli, we easily find (see Appendix 2) the Laplace–Carson-transformed effective bulk moduluskeff(N)∗(p) in
the form of the rational fraction

keff(N)∗(p)= S(N)∗(p)
G(N)∗(p)

µ∗N(p), (27)

11



Figure 6. Bulk relaxation spectrum of bulk modulus from the 5-phase self-consistent model (c1= 0.5; c2 = 0.165;c3= 0.2; c4 = 0.135; t1= b1= 10;
t2= 2; t3 = 1.5; t4= b4= 1; b2= b3= 1).

where the polynomsS(N)∗(p) andG(N)∗(p) have the degreedN/2 in p. Numerical computations show that
G(N)∗(p) hasdN/2 negative real roots(−1/ξ`), ` ∈ [1, dN/2], with ξ` ∈ [tmin, tmax]. Consequently we have:

keff(N)(t)=
nN∑
k=1

Fk e−t/t
k
N +

dN/2∑
`=1

E` e−t/ξ` (28)

with Fk,E` > 0. Thus the bulk relaxation spectrum reduces to discrete lines, as illustrated infigure 6 for a
5-phase model with four Maxwellian phases. Note that, for the bulk modulus only, the overall behaviour is a
generalized Maxwellian one, but with relaxation times which, except for the matrix phase, do not coincide with
those of the constituents.

4. Transverse shear relaxation spectra according to the ‘(N + 1)-phase cylindrical self-consistent
model’

A straightforward extension of the foregoing analysis may be performed similarly to what has been done
already in elasticity (Hervé and Zaoui, 1995) by dealing with circular cylindrical instead of spherical geometries
through the ‘(N + 1)-phase cylindrical self-consistent scheme’ so as to consider multiply coated fibre- (instead
of particle-) reinforced composites with phases obeying a transversely isotropic (generalized) Maxwellian
behaviour (which of course includes the case of linear elasticity for elastic fibres). Since the method is
unchanged, we only give in Appendix 3 the new expression of the polynomsA∗N(p), B∗N(p) and C∗N(p)
for the cylindrical geometry when the fibres lie alongx1 from which, through Equations (20)–(25), one can
easily derive the shear relaxation spectra for the transverse shear modulusµ

eff(N)
23 (t) when the Poisson ratios

νi = Ci23(t)/[Ci23(t)+Ci22(t)] actually do not depend on timet (hereCi(t) is the fourth order relaxation tensor

12



of phase (i)). The mathematical structure of these equations indicates that split continuous spectra will be
obtained for the transverse shear modulus, whereas discrete lines only are to be expected for the four other
moduli, as already known for the caseN = 2 (Bourgeois et al., 1996).

5. Conclusion

The foregoing analysis gives an additional unambiguous illustration of the importance of the ‘long range
memory effect’ in viscoelastic heterogeneous materials, resulting in the fact that the overall behaviour is
generally much more complex than the one of the constituents; moreover it leads to suggest to experimentalists
in the field of polymer blends and reinforced polymers to make efforts in order to extract the relaxation
spectra from their experimental data so as to get useful informations on the micromorphology of their materials
(including the question of the presence of an interphase). Since a direct investigation of such spectra presently
seems to be out of reach, this could be done by numerical deconvolution treatments applied to experimental
creep/relaxation or complex moduli data.

In addition, the hereabove defined linear viscoelastic (N + 1)-phase model can be used for a simplified
treatment of the nonlinear behaviour of polymer blends (Beurthey, 1997) or composites, in a way similar to
what has already been done in the field of elastoplasticity (Bornert et al., 1994; Zaoui, 1997).

Appendix 1

• The incompressible G.S.C.S.

CoefficientsA, B abdC in (7) for the elastic incompressible G.S.C.S. (Hervé and Zaoui, 1990) read:

A= 4
[
3(β − 1)c− η3

](
η1c

7/3− 2η2
)− 126η2(β − 1)c

(
1− c2/3)2,

B = 6η1(β − 1)c10/3+ 8η1η3c
7/3− 64.5η2(β − 1)c+ 1.5η2η3+ 252η2(β − 1)c

(
1− c2/3)2,

C =−[4.5(β − 1)c+ η3
](
η1c

7/3+ 9.5η2
)− 126η2(β − 1)c

(
1− c2/3)2

with η1= 9.5(β − 1);η2= 9.5β + 8;η3= 3β + 4.5;β = µ2/µ1.

• Shear relaxation spectrum (G.S.C.S.)

CoefficientkG in (13) reads:

kG = 15
√
(u− αw+ α2y)2− 4704c10/3(α− 1)2(16α+ 19)2

16b21{6[2(c− 1)− α(2c+ 3)][19(c7/3− 1)− α(19c7/3+ 16)] − 63(19+ 16α)(1− α)c(1− c2/3)2}
with u= 38

[
8c10/3− 7− (1+ 14

√
6
)
c
];w = 608c10/3+ 623− 6

(
1+ 14

√
6
)
c,

y = 16
[
19c10/3− 21+ 2

(
1+ 14

√
6
)
c
];α = b2/b1.

Appendix 2

• Shear relaxation spectra

In (19), we suppose thej first relaxation times of phases (i) and (i + 1) to be equal (j = ji,i+1). Coefficients
A∗N(p), B∗N(p) andC∗N(p) in (20) are then given by:
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A∗N(p)= 4R10
N (1− 2νN)(7− 10νN)Z

∗
12+ 20R7

N

(
7− 12νN − 8ν2

N

)
Z∗42+ 12R5

N(1− 2νN)
(
Z∗14− 7Z∗23

)
+20R3

N(1− 2νN)
2Z∗13+ 16(4− 5νN)(1− 2νN)Z

∗
43,

B∗N(p)= 3R10
N (1− 2νN)(15νN − 7)Z∗12+ 60R7

N(νN − 3)νNZ
∗
42− 24R5

N(1− 2νN)
(
Z∗14− 7Z∗23

)
−40R3

N(1− 2νN)
2Z∗13− 8(1− 5νN)(1− 2νN)Z

∗
43,

C∗N(p)=−R10
N (1− 2νN)(7+ 5νN)Z

∗
12+ 10R7

N

(
7− ν2

N

)
Z∗42+ 12R5

N(1− 2νN)
(
Z∗14− 7Z∗23

)
+20R3

N(1− 2νN)
2Z∗13− 8(7− 5νN)(1− 2νN)Z

∗
43

with

Z∗αβ =L(N−1)∗
α1 L

(N−1)∗
β2 −L(N−1)∗

β1 L
(N−1)∗
α2 , (α,β) ∈ [1,4],

L(N−1)∗ =
N−1∏
i=1

M(i)∗

and

M(i)∗ =



ci

3

R2
i (3bi − 7ci)

5(1− 2νi)

−12αi
R5
i

4(fi − 27αi)

15(1− 2νi)R3
i

0
(1− 2νi+1)bi

7(1− 2νi)

−20(1− 2νi+1)αi

7R7
i

−12αi(1− 2νi+1)

7(1− 2νi)R5
i

R5
i αi

2

−R7
i (2ai + 147αi)

70(1− 2νi)

di

7

R2
i (gi + 12αi(7− 10νi+1)− 7ei)

35(1− 2νi)

−5

6
(1− 2νi+1)αiR

3
i

7(1− 2νi+1)αiR
5
i

2(1− 2νi)
0

ei(1− 2νi+1)

3(1− 2νi)


,

ai =−(7− 10νi)(7+ 5νi+1)
(
p+ 1/tj+1

i

) · · · (p+ 1/tnii
)
Ni+1(p)

+(7+ 5νi)(7− 10νi+1)
(
p+ 1/tj+1

i+1

) · · · (p+ 1/tni+1
i+1

)
Ni(p),

bi = 4(7− 10νi)
(
p+ 1/tj+1

i

) · · · (p+ 1/tnii
)
Ni+1(p)+ (7+ 5νi)

(
p+ 1/tj+1

i+1

) · · · (p+ 1/tni+1
i+1

)
Ni(p),

ci = (7− 5νi+1)
(
p+ 1/tj+1

i

) · · · (p+ 1/tnii
)
Ni+1(p)+ 2(4− 5νi+1)

(
p+ 1/tj+1

i+1

) · · · (p+ 1/tni+1
i+1

)
Ni(p),

di = (7+ 5νi+1)
(
p+ 1/tj+1

i

) · · · (p+ 1/tnii
)
Ni+1(p)+ 4(7− 10νi+1)

(
p+ 1/tj+1

i+1

) · · · (p+ 1/tni+1
i+1

)
Ni(p),

ei = 2(4− 5νi)
(
p+ 1/tj+1

i

) · · · (p+ 1/tnii
)
Ni+1(p)+ (7− 5νi)

(
p+ 1/tj+1

i+1

) · · · (p+ 1/tni+1
i+1

)
Ni(p),

fi = (4− 5νi)
(
p+ 1/tj+1

i

) · · · (p+ 1/tnii
)
Ni+1(p)

−(4− 5νi+1)(7− 5νk)
(
p+ 1/tj+1

i+1

) · · · (p+ 1/tni+1
i+1

)
Ni(p),

g∗i = 105(1− νi+1)
(
p+ 1/tj+1

i

) · · · (p+ 1/tnii
)
Ni+1(p),

αi = (p+ 1/tj+1
i+1

) · · · (p+ 1/tni+1
i+1

)
Ni(p)− (p+ 1/tj+1

i

) · · · (p+ 1/tnii
)
Ni+1(p).

• Bulk relation spectra

PolynomsS(N)∗(p) andG(N)∗(p) in (27) are given by:

Q(N−1)∗ =
N−1∏
i=1

T ∗i (Ri),
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T (i)∗(Ri)=


2
(

1+ νi
1− 2νi

)
1∗i + 4.h∗i

4

R3
i

(
h∗i − 1∗i

)
2R3

i

((
1+ νi+1

1− 2νi+1

)
h∗i −

(
1+ νi
1− 2νi

)
1∗i

)
2
(

1+ νi+1

1− 2νi+1

)
h∗i + 4.l∗i

 ,

h∗i =
(
p+ 1/tj+1

i

) · · · (p+ 1/tnii
)
Ti+1(p), S∗(p)= 2

(1+ νN)
(1− 2νN)

R3
NQ

N−1∗
11 − 4QN−1∗

21

l∗i =
(
p+ 1/tj+1

i+1

) · · · (p+ 1/tni+1
i+1

)
Ti(p), G∗(p)= 3

(
R3
NQ

N−1∗
11 +QN−1∗

21

)
.

Appendix 3

(N + 1)-phase model

For the cylindrical(N + 1)-phase model, coefficientA∗N(p), B∗N(p) andC∗N(p) to be used in (20)–(25) are
given by:

A∗N(p)= (3− 4νN) · (Z∗41+Z∗32

)− (3− 4νN)
2Z∗13+Z∗42+Z∗43− 3Z∗13− 3Z∗12,

B∗N(p)= 2.
(
(2νN − 1) · (Z∗41+Z∗32

)− (3− 4νN)Z
∗
13−Z∗42−Z∗43+ 3Z∗13+ 3Z∗12

)
,

C∗N(p)=−Z∗41−Z∗32−Z∗13+Z∗42+Z∗43− 3Z∗13− 3Z∗12,

Z∗αβ =L(N−1)∗
α4 L

(N−1)∗
β1 −L(N−1)∗

β4 L
(N−1)∗
α1 , (α,β) ∈ [1,4],

L(N−1)∗ =
N−1∏
i=1

M(i)∗

Figure A1. TheN -layered spherical inclusion embedded in an infinite matrix.
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and

M(i)∗ =



ai

q2
i

1

q2
i

ρi
1

q2
k

ρi 0

2q4
i bi q4

i ci 2q4
i di −q4

i ρi

−3q2
i ρi 0 q2

i ak q2
i ρi

−6di 3ρi 2bi ci

 ,

ai = (p+ 1/tj+1
i+1

) · · · (p+ 1/tni+1
i+1

)
Ni(p)+ (3− 4νi)

(
p+ 1/tj+1

i

) · · · (p+ 1/tnii
)
Ni+1(p),

bi = (2νk+1− 3)
(
p+ 1/tj+1

i+1

) · · · (p+ 1/tni+1
i+1

)
Ni(p)+ (3− 2νk)

(
p+ 1/tj+1

i

) · · · (p+ 1/tnii
)
Ni+1(p),

ci = (3− 4νk+1)
(
p+ 1/tj+1

i+1

) · · · (p+ 1/tni+1
i+1

)
Ni(p)+ (p+ 1/tj+1

i

) · · · (p+ 1/tnii
)
Ni+1(p),

di = (1− 2νk+1)
(
p+ 1/tj+1

i+1

) · · · (p+ 1/tni+1
i+1

)
Ni(p)+ (2νk − 1)

(
p+ 1/tj+1

i

) · · · (p+ 1/tnii
)
Ni+1(p),

ρi = (p+ 1/tj+1
i

) · · · (p+ 1/tnii
)
Ni+1(p)− (p+ 1/tj+1

i+1

) · · · (p+ 1/tni+1
i+1

)
Ni(p),

qi = Ri

Ri+1
.
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