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Delia Kesner

October 9, 2006

Abstract

Calculi with explicit substitutions are widely used in different areas of com-
puter science such as functional and logic programming, proof-theory, theorem
proving, concurrency, object-oriented languages, etc. Complex systems with ex-
plicit substitutions were developed these last 15 years in order to capture the good
computational behaviour of the original system (with meta-level substitutions) they
were implementing.

In this paper we first survey previous work in the domain by pointing out the
motivations and challenges that guided the developement of such calculi. Then we
use very simple technology to establish a general theory of explicit substitutions
for the lambda-calculus which enjoys all the expected properties such as simulation
of one-step beta-reduction, confluence on meta-terms, preservation of beta-strong
normalisation, strong normalisation of typed terms and full composition. Also, the
calculus we introduce turns out to admit a natural translation into Linear Logic’s
proof-nets.
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1 Introduction

This paper is about explicit substitutions (ES), an intermediate formalism that - by
decomposing the β rule into more atomic steps - allows a better understanding of the
execution models of λ-calculus.

We first survey previous work in the domain, by pointing out the motivations that
were guided the developement of such calculi as well as the main challenge behind
their formulations. The goal of our work is to move back to previous works and results
in the domain in order to establish a general and simple theory of explicit substitutions
being able to capture all of them by using very simple technology.

Explicit substitutions

In λ-calculus, the evaluation process is modelled by β-reduction and the replacement of
formal parameters by its corresponding arguments is modelled by substitution. While
substitution in λ-calculus is a meta-level operation described outside the calculus it-
self, in calculi with ES it is internalised and handled by symbols and reduction rules
belonging to the proper syntax of the calculus. However the two formalisms are still
very close: let s{x/u} denote the result of substituting all the free occurrences of x in
s by u, then one defines β-reduction as

(λx.s) v −→β s{x/v}

where the operation s{x/v} can be defined modulo α-conversion 1 by induction on
s as follows:

x{x/v} := v
y{x/v} := y if x 6= y
(t u){x/v} := (t{x/v} u{x/v})
(λy.t){x/v} := λy.(t{x/v}) if x 6= y and y 6∈ fv(v)

Then, the simplest way to specify a λ-calculus with explicit substitution is to ex-
plicitly encode the previous definition, so that one still works modulo α-conversion,
yielding the calculus known as λx which is shown in Figure 1.

(λx.t) v −→ t[x/v]
x[x/v] −→ v
x[y/v] −→ x if x 6= y
(t u)[x/v] −→ (t[x/v] u[x/v])
(λx.t)[y/v] −→ λx.(t[y/v]) if x 6= y and x 6∈ fv(v)

Figure 1: Reduction rules for the λx-calculus

1Definition of substitution modulo α-conversion avoids to explicitly deal with the variable capture case
as one obtains it for free. Thus, for example (λx.y){y/x} =α (λz.y){y/x} =def λz.y{y/x} = λz.x.
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This reduction system corresponds to the minimal behaviour that can be found in
most of the well-known calculi with ES appearing in the literature: substitutions are
incorporated into the language and manipulated explicitly, β-reduction is implemented
in two stages, first by the application of the first rule, which activates the calculus of
substitutions, then by propagation of the substitution until variables are reached. More
sophisticated treatment of substitutions considers also a composition operator allowing
interactions between them.

1.1 Related Work

In these last years there has been a growing interest in λ-calculi with explicit substi-
tutions. They were defined in de Bruijn notation [ACCL91a, HL89, Les94, KR95,
Kes96, FKP96], or level notation [LRD95], or via combinators [GL99], or simply by
named variables notation as shown above [Lin86, Lin92, Ros92, BR95a].

An abstract presentation of such calculi can be found in [Kes96, Kes00], where a
(syntactic) axiomatisation is used to define and study them.

In any case, all these calculi were all introduced as a bridge between the clas-
sical λ-calculus and concrete implementations of functional programming languages
such as CAML [Oca], SML [MTH90], Miranda [Tur85], Haskell [HPJP92] or proof-
assistants such as Coq [Coq], PVS [PVS], HOL [HOL], LEGO [LEG], Maude [Mau]
et ELAN [ELA].

Now, the implementation of the atomic substitution operation by several elementary
explicit steps comes at a price. Indeed, while λ-calculus is perfectly orthogonal 2,
calculi with ES suffer at least from the well-known diverging example

t[y/v][x/u[y/v]] ∗←−((λx.t) u)[y/v] −→∗ t[x/u][y/v]

Different solutions were adopted by the calculi in the literature in order to close this
diagram. If no new rewriting rules are added to those in Figure 1, then reduction turns
out to be confluent on terms but not on metaterms 3. If naive rules for composition are
also considered, then one recovers confluence on metaterms but paying an important
price: there exist terms which are strongly normalisable in λ-calculus but not in the
corresponding explicit version of the λ-calculus. This phenomenon, known as Melliès’
counter-example [Mel95], shows a flaw in the design of calculi with ES in that they are
supposed to implement their underlying calculus (in our case the λ-calculus) without
losing its good properties. More precisely, let us call λZ a λ-calculus with ES and let
consider a mapping toλ from λ-syntax to λZ-syntax (sometimes this mapping is just
the identity). We identify the following list of properties:

(SIM) Any evaluation step in λ-calculus can be implemented by λZ: If t −→β t′, then
toλ(t) −→∗

λZ
toλ(t′).

(CR) The refined reduction relation λZ is confluent: If u ∗
λZ
←−t −→∗

λZ
v, then there

is t′ such that u −→∗
λZ

t′ ∗
λZ
←−v.

2Does not have critical pairs.
3Terms with metavariables used to represent incomplete proofs
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(PSN) The reduction relation λZ preserves β-strong normalisaion: If t ∈ SN β , then
toλ(t) ∈ SN λZ

.

(SN) Strong normalisation holds for λZ-typed terms: If t is typed, then t ∈ SN λZ
.

(FC) Full composition can be implemented by λZ: t[x/u] λZ-reduces to t{x/u} for an
appropriate (and natural) notion of substitution on λZ-terms.

The result of Melliès has revived the interest in ES since after his counterexample
there was a clear challenge to find a calculus having all the good properties mentioned
above.

There are several propositions that give (sometimes partial) answers to this chal-
lenge, they are summarised in Figure 2.

Calculus CR SN PSN SIM FC
λυλsλtλuλxλdλdnλeλf No Yes Yes Yes No
λσλσSP λσ⇑λseλL Yes No No Yes Yes
λζ Yes Yes Yes No No
λws Yes Yes Yes Yes No
λλlxr Yes Yes Yes Yes Yes

Figure 2: Summarising previous work in the field

In other words, there are many ways to avoid Melliès’ counter-example in order
to recover the PSN property. One of them is to simply forbid the substitution oper-
ators to cross lambda-abstractions [LM99, For02]; another consists of avoiding com-
position of substitutions [BBLRD96]; another one imposes a simple strategy on the
calculus with explicit substitutions to mimic exactly the calculus without explicit sub-
stitutions [GL98]. The first solution leads to weak lambda calculi, not able to ex-
press strong beta-equality, which is used for example in implementations of proof-
assistants [Coq, HOL]. The second solution is drastic as composition of substitutions
is needed in implementations of HO unification [DHK95] or functional abstract ma-
chines [HMP96]. The last one exploits very little of the notion of explicit substitutions
because they can be neither composed nor even delayed.

In order to cope with this problem David and Guillaume [DG01] defined a calculus
with labels called λws, which allows controlled composition of explicit substitutions
without losing PSN and SN [DCKP00]. But the λws-calculus has a complicated syntax
and its named version [DCKP00] is even less readable.

The strong normalisation proof for λws given in [DCKP00] reveals a natural seman-
tics for composition of explicit substitutions via Linear Logic’s proof-nets, suggesting
that weakening (explicit erasure) and contraction (explicit duplication) can be added
to the calculus without losing termination. These are the starting points of the ideas
proposed by the λlxr-calculus [KL05], which is in some sense a (complex) precursor
of the λes-calculus that we present in this work. Indeed, λ-terms can not be viewed
directly as λlxr-terms, so that we prefer to adopt λx-syntax for λes, thus avoiding
special encodings in order to explicitly incorporate weakening and contractions inside
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λ-terms. Moreover, the reduction system of λlxr is defined via 6 equations and 19
rewriting rules, thus requiring an important amount of combinatory reasoning when
showing its properties.

Another calculi with safe notions of compositions appear for example in [SFM03,
Sak]. The first of them lacks full composition and confluence on metaterms. The sec-
ond of them specifies commutation of independent substitutions by a rewriting rule
(instead of an equation), thus leading to complicated notions and proofs of its under-
lying normalisation properties. Here, we choose to make a minimal (just one) use of
equational reasoning to axiomatise commutation of independent substitution. This will
turn out to be essential to achieve the definition of a simple language being easy to un-
derstand, which can be projected into another elementary system like proof-nets, and
whose properties can be proved with simple and natural proof techniques.

Last but not least, confluence on metaterms of both calculi in [KL05] and [Sak] on
metaterms is only conjectured but not yet proved.

The logical meaning of explicit substitutions

Cut elimination is a logical evaluation process allowing to relate explicit substitution
to a more atomic process. Indeed, the cut elimination process can be interpreted as the
elimination of explicit substitutions. For example, let us consider the following sequent
proof:

D

Γ ` A Γ, A ` A (axiom)
(cut)

Γ ` A

If we want to eliminate the last cut rule used in this proof, it is sufficient to take the
proof

D

Γ ` A

which proves exactly the same sequent Γ ` A but without the last cut rule. That is,
in the cut elimination process, the first proof reduces to the second one. Now, let us
interpret proofs by terms and propositions by types as suggested by the Curry-Howard
correspondence. We then get

Γ ` v : A Γ, x : A ` x : A (proj)
(subs)

Γ ` x[x/v] : A

which suggests that the process of cut elimination consists in reducing the term x[x/v]
to the term u, exactly as in the Var rule of the calculus λx written as

(Var) x[x/v] −→ v

These remarks put in evidence the fact that explicit substitution is a term nota-
tion for the cut rule, and that reduction rules for explicit substitutions behave like cut
elimination rules. However, λ and λx basic (typed) syntax are taken from a natu-
ral deduction logical system, where application annotates implication elimination and
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abstraction annotates implication introduction. That means that λx (typed) syntax is
based on a logical system mixing natural deduction with sequent calculus such that
the meta-level operation in the normalisation process is replaced by a more elementary
concept of cut elimination.

It is worth noticing that one can either define an explicit substitution calculus inter-
preting cut-elimination, in such a way to have a perfect Curry-Howard correspondence
between them, as is done by Hugo Herbelin in [Her94]: there terms encode proofs,
types encode propositions and reduction encodes cut-elimination in intuitionistic se-
quent calculus. So that the ideas we present in this paper can also be adapted to se-
quent calculus notation. We refer the reader to [Len06] for a systematic study of cut
elimination in intuitionistic sequent calculus via proof-terms.

1.2 Linear logic and proof-nets

Linear Logic decomposes the intuitionistic logical connectives, like the implication,
into more atomic, resource-aware connectives, like the linear implication and the ex-
plicit erasure and duplication operators given by the exponentials which provide a more
refined computational model that the one given by the λ-calculus. However, sequent
presentations of Linear Logic can contain a lot of details that are uninteresting (or bu-
reaucratic). The main idea of proof-nets is to solve this problem by providing a sort
of representative of an equivalence class of proofs in the sequent calculus style that
differ only by the order of application of some logical or structural rules. Cut elimina-
tion over proof-nets is then a kind of normalisation procedure over these equivalence
classes. Using different translations of the λ-calculus into Proof Nets, new abstract
machines have been proposed, exploiting the Geometry of Interaction [Gir89, AJ92],
culminating in the recent works on optimal reduction [GAL92, Lam90].

Some calculi with explicit substitutions [DCKP03, KL05] have been already put in
relation with natural extended notions of proof-nets. In particular, one defines a typed
version of the calculus and shows how to translate it into Proof Nets and how to estab-
lish, using this translation, a simulation of the reduction rules for explicit substitutions
via cut elimination in Proof Nets. As an immediate consequence of this simulation,
one proves that a simply typed version of the calculus is strongly normalizing. An im-
portant property of the simulation is that each step in the calculus with ES is simulated
by a constant number of steps in proof-nets: this shows that the two systems are very
close, unlike what happens when simulating the λ-calculus. This gives also a powerful
tool to reason about the complexity of β-reduction.

We apply this idea to the λes-calculus that we introduce in this paper so that we
obtain strong normalisation for typed λes-terms via simulation of reduction in proof-
nets.

1.3 Summary

We present a calculus with ES using the named variable presentation, which makes
some essential properties of explicit substitutions more apparent, by abstracting out the
details of renaming and updating of de Bruijn notation. The main ideas and results of
the paper can be summarised by the following points:
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• We define a simple calculus with explicit substitutions using named variables and
called λes. There is no use of explicit contraction and weakening.

• We show simulation of one-step β-reduction, confluence on metaterms, preser-
vation of β-strong normalisation, strong normalisation of typed terms and imple-
mentation of full composition.

• We establish connections with untyped λ-calculus and typed λ-calculus.

• We give a natural translation into Linear Logic’s proof-nets.

• We give some ideas for future work and applications.

The rest of the paper is organised as follows. Section 2 introduces syntax for λes-
terms as well as appropriate notions of equivalence and reduction. We show there
some fundamental properties of the calculus such as full composition and termination
of the substitution calculus alone. In Section 3 we develop a proof of confluence for
metaterms. This proof uses an interpretation method based on the confluence property
of a simpler calculus that we define in the same section. Preservation of β-strong
normalisation is studied and proved in Section 4. The proof is based on the terminating
properties of other calculi that we introduce in the same section. Relations between
reduction in λes and λ-calculus are established in Section 5. The typing system for λes
is presented in 6 as well as the subject reduction property. Relations between typing in
λes and λ-calculus are established in Section 7. Section 8 introduces proof nets and
gives the translation from typed λes-terms into proof nets that is used to obtain strong
normalisation of typed λes. Finally, a simpler proof of strong normalisation based on
the main result of Section 4 is given in Section 9.

We refer the reader to [Kes06] for detailed proofs and to [BN98] for standard no-
tions from rewriting that we will use throughout the paper.

2 Syntax

We introduce here the basic notions concerning syntax, α-conversion, reduction and
congruence.

The set of λes-terms can be defined by the following grammar

t ::= x | (t t) | λx.t | t[x/t]

A term x is called a variable, (t u) an application, λx.t an abstraction and t[x/u]
a closure. The syntactic object [x/u], which is not a term itself, is called an explicit
substitution. We do not write the parenthesis of applications if they are clear from the
context.

The syntax can also be given as a HRS [Nip91], with types V and T for variables
and (raw)terms respectively, and four function symbols to be used as constructors:

var: V → T sub: (V → T )→ (T → T )
lam: (V → T )→ T app: T → (T → T )
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Thus, for example the λes-term (x y)[x/λz.z] is represented as the HRS-term
sub(x.app(var(x), var(y)), lam(z.var(z))). We prefer however to work with the syn-
tax given by the grammar above which is the one usually used for calculi with ES.

A term is said to be pure if it has no explicit substitutions.
The terms λx.t and t[x/u] bind x in t. Thus, the set of free variables of a term t,

denoted fv(t), is defined in the usual way as follows:

fv(x) := {x}
fv(t u) := fv(t) ∪ fv(u)
fv(λx.t) := fv(t) \ x
fv(t[x/u]) := (fv(t) \ x) ∪ fv(u)

As a consequence, we obtain the standard notion of α-conversion on higher-order
terms which allows us to use Barendregt’s convention [Bar84] to assume that two dif-
ferent bound variables have different names, and no variable is free and bound at the
same time.

Besides α-conversion we consider the following equation and set of reduction rules:

Equations :
t[x/u][y/v] =C t[y/v][x/u] if y /∈ fv(u) & x /∈ fv(v)

Reduction Rules :
(λx.t) u −→B t[x/u]
x[x/u] −→Var u
t[x/u] −→Gc t if x /∈ fv(t)
(t u)[x/v] −→App

1
(t[x/v] u[x/v]) if x ∈ fv(t) & x ∈ fv(u)

(t u)[x/v] −→App
2

(t u[x/v]) if x /∈ fv(t) & x ∈ fv(u)
(t u)[x/v] −→App

3
(t[x/v] u) if x ∈ fv(t) & x /∈ fv(u)

(λy.t)[x/v] −→Lamb λy.t[x/v] if y /∈ fv(v) & x 6= y
t[x/u][y/v] −→Comp

1
t[y/v][x/u[y/v]] if y ∈ fv(u) & y ∈ fv(t)

t[x/u][y/v] −→Comp
2

t[x/u[y/v]] if y ∈ fv(u) & y /∈ fv(t)

Figure 3: Equations and reduction rules for λes

It is worth noticing that this presentation uses conditional rules, but non conditional
rules could be used to specify this system when using for example proof-nets (Sec-
tion 8) or director strings [KS88]. Also, rules {App1, App2, App3} could be gathered
into the single rule (App) (t u)[x/v] −→ (t[x/v] u[x/v]) while rules {Comp1, Comp2}
could be replaced by the more compact version (Comp) t[x/u][y/v] −→ t[y/v][x/u[y/v]],
where y ∈ fv(u). While this change seems to be sound w.r.t. the properties of the cal-
culus 4 (c.f. Section 10), the translation to proof-nets does not work (c.f. Section 8.3).
We thus prefer to work with this version of the calculus all along the paper to simplify
into a one single presentation all the material presented here.

4While the weaker rule for composition given by t[x/u][y/v] −→ t[x/u[y/v]], where y /∈ fv(t), is
well-known [BG99] to affect strong normalisation and preservation of β-strong normalisation.
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The rewriting system containing all the previous rewriting rules except B is denoted
by s. We write Bs for B ∪ s. The equivalence relation generated by the conversions
α and C is denoted by Es. The reduction relation generated by the reduction rules s
(resp. Bs) modulo the equivalence relation Es is denoted by −→s /Es or −→es (resp.
−→Bs /Es or −→λes (for equational s substitution), the e is for for equational and the
s for substitution. More precisely

t −→es t′ iff there are s, s′ s.t. t =Es s −→s s′ =Es t′

t −→λes t′ iff there are s, s′ s.t. t =Es s −→Bs s′ =Es t′

The equivalence relation preserves free variables and the reduction relation does
not increase them. Indeed, one can easily show by induction on terms the following
property.

Lemma 2.1 (Free variables do not increase) If t −→λes t′, then fv(t′) ⊆ fv(t).
More precisely,

• If t =Es t′, then fv(t) = fv(t′).

• If t −→Bs t′, then fv(t′) ⊆ fv(t).

The (sub)calculus of substitutions es, which is intended to implement (meta-level)
substitution can be shown to be terminating.

Lemma 2.2 (Termination of es) The reduction relation es is terminating.

Proof. For each term s we define a size and a multiplicity by structural induction.

S(x) := 1 Mx(z) := 1
S(λx.t) := S(t) Mx(λy.t) := Mx(t) + 1
S(t u) := S(t) + S(u) Mx(t u) := Mx(t) + Mx(u) + 1
S(t[x/u]) := S(t) + Mx(t) · S(u) Mx(t[y/u]) := Mx(t) If x /∈ fv(u)

Mx(t[y/u]) := Mx(t) + My(t) · (Mx(u) + 1) If x ∈ fv(u)

Remark that Mx(s) ≥ 1 and S(s) ≥ 1 for every term s and every variable x.

We can now show, by induction on the definition of =Es and −→s, that size is
compatible with α and C equality and each s-reduction step strictly decreases the size:

1. If s =Es s′, then S(s) = S(s′).

2. If s −→s s′, then S(s) > S(s′).

We then conclude that es-reduction is terminating on all λes-terms by application
of the abstract theorem A.1 : E is =Es , R1 is the empty relation, R2 is −→s, K is
the relation given by the function S( ) and S is the standard well-founded order > on
natural numbers.
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We now address the property of full composition. For that, we introduce the fol-
lowing notion of substitution on λes-terms.

Given λes-terms t and u, the result of substituting all the free occurrences of x in
t by u is defined by induction, and modulo α-conversion, as follows:

x{x/v} := v
y{x/v} := y if x 6= y
(t u){x/v} := (t{x/v} u{x/v})
(λy.t){x/v} := λy.(t{x/v}) if x 6= y and y 6∈ fv(v)
t[y/u]{x/v} := t{x/v}[y/u{x/v}] if x 6= y and y 6∈ fv(v)

It is easy to show by induction on λes-terms that t{x/u} = t if x /∈ fv(t).

Lemma 2.3 (Full Composition) Let t and u be λes-terms. Then t[x/u] −→∗
λes t{x/u}.

Proof. By induction on t.

3 Confluence on metaterms

Metaterms are terms containing metavariables which are usually used to denote incom-
plete programs and/or proofs in higher-order unification [Hue76]. Each metavariable
should come with a minimal amount of information in order to guarantee that some
basic operations such as instantiation (replacement of metavariables by metaterms) is
sound. Thus, we now consider a countable set of raw metavariables X, Y, . . . that we
decorate them with sets of variables Γ, ∆, . . ., thus yielding decorated metavariables
denoted by XΓ, Y∆, etc.

We now extend the primitive grammar for λes-terms to obtain the λes-metaterms:

t ::= x | X∆ | (t t) | λx.t | t[x/t]

We add to the definition of free variables in Section 2 the case fv(X∆) = ∆. Even
if this new definition is using to completely specify the free variables of a metaterm,
which may sound contradictory with the concept of metaterm, it is worth noticing
that the partial specification of the set of (free) variables of an incomplete proof says
nothing about the structure of the incomplete proof itself as this structural information
remains still unknown. The minimal information inside metavariables given by deco-
ration of set of variables guarantees that different occurrences of the same metavariable
inside a metaterm are never instantiated by different metaterms. Indeed, given the (raw)
metaterm t = λy.y X (λz.X), the instantiation of the (raw) metavariable X by a term
containing a free occurrence of z would be unsound (see [Muñ97, DHK00, FdK] for
details).

From now on, we use ŷ to denote, indistinctly, a variable y or a metavariable Y∆.
Remark that decorated metavariables X∆ in λes can be viewed as HRS-terms of

the form X(x1, . . . , xn) where ∆ = {x1, . . . , xn} and X is just a simply a variable
that can only be instantiated by a closed strict (meta)term. Thus for example Yx,z

can be instantiated by x[y/z] but not by x. As a consequence, all the standard con-
cepts on HRS-terms, such as α-conversion, reduction, etc, extend to our notion of
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λes-metaterms. In particular, α-conversion is perfectly well-defined on metaterms by
extending the renaming of bound variables to the decoration sets. Thus for example
λx.Yx =α λz.Yz.

Towards confluence by composition of substitutions The idea behind calculi with
explicit substitutions having composition is to implement what is known in λ-calculus
as the substitution lemma: for all λ-terms t, u, v and variables x, y such that x 6= y and
x /∈ fv(v) we have

t{x/u}{y/v} = t{y/v}{x/u{y/v}}

It is well-known that confluence on metaterms fails for calculi with ES without
composition (as for example λx) as the following example shows

s = t[y/v][x/u[y/v]] ∗←−((λx.t) u)[y/v] −→∗ t[x/u][y/v] = s′

Indeed, while this diagram can be closed for terms without metavariables [BR95a],
there is no way to find a common reduct between s and s′ whenever t is or contains
metavariables and no reduction rule is allowed to mimic composition. Remark that this
is true not only for raw but also for decorated metavariables.

It is evident that the reduction system λes cover all the cases of the substitution
lemma: indeed,

If y ∈ fv(u) and y ∈ fv(t), then

t[x/u][y/v] −→Comp
1

t[y/v][x/u[y/v]]

If y ∈ fv(u) and y /∈ fv(t), then

t[x/u][y/v] −→Comp
2

t[x/u[y/v]] Gc←−t[y/v][x/u[y/v]]

If y /∈ fv(u) and y ∈ fv(t), then

t[x/u][y/v] =Comp t[y/v][x/u] Gc←−t[y/v][x/u[y/v]]

If y /∈ fv(u) and y /∈ fv(t), then

t[x/u][y/v] −→Gc t[x/u] ∗
Gc←−t[y/v][x/u[y/v]]

Proof techniques to show confluence While most of the calculi with explicit sub-
stitutions in the literature are only specified by rewriting rules, λes-reduction is de-
fined by a notion of reduction modulo an equivalence relation. We then need to prove
confluence of a non-terminating reduction relation modulo, for which the published
techniques [Hue80, Ter03, Ohl98, JK86] known by the author fail. More precisely, the
untyped λes-calculus is trivially non-terminating (as it is able to simulate β-reduction),
so these techniques cannot be applied to our case since they require the reduction rela-
tion to be terminating.

The solution we adopt in this paper consists in using a power version of the in-
terpretation technique [Har87]. Thus, we infer confluence of λes from confluence of
λnss, a calculus with flattened or simultaneous substitutions whose reduction process
does not make use of any equivalence relation.

12



3.1 A calculus with simultaneous substitutions

We consider here a total order on the set of variables X . We then define ss-metaterms
as metaterms with n-ary substitutions used to denote simultaneous substitutions. The
grammar can be given by:

t ::= x | X∆ | (t t) | λx.t | t[xk1
/t, . . . , xkn

/t]

where substitutions [xk1
/uk1

. . . , xkn
/ukn

] are non-empty (so that n ≥ 1) and and
xk1

, . . . , xkn
are all distinct variables.

Remark that no order exist in the general syntax between the distinct variables of a
simultaneous substitution.

We use letters I, J, K to denote non-empty lists of indexes for variables and I@J
to denote concatenation of the lists I and J . If I is the list k1 . . . kn, then we write
[xi/ui]I for the list [xk1

/uk1
, . . . , xkn

/ukn
]. We might also use the notation [lst]

for any of such (non-empty) lists and [cs[[x/t]]i]I for a simultaneous substitution of
I elements containing x/t at position i ∈ I . Given [xi/ui]I , we use the notation
[xi/ui]I+ to denote the substitution where an element has been added at the end of the
list xk1

/u1, . . . , xkn
/un and [xi/ui]+I to denote the substitution where an element has

been added at the beginning of the list.
If j ∈ I and |I | ≥ 2, we write [xi/ui]I\j for the list [xk1

/uk1
, . . . , xkn

/ukn
] whose

element xj/uj has been erased. Thus for example x[x2/z, x3/w] can be written as
x[xi/ui][2,3] with k1 = 2, k2 = 3, u2 = z and u3 = w and x[xi/ui][2,1]\2 denotes the
term x[x3/w].

For any permutation π(I), the notation [xi/ui]π(I) denotes the (permutated) list
[xπ(k1)/uπ(k1), . . . , xπ(kn)/uπ(kn)]. Thus for example, if I = k1 . . . kn and sort(I) =
j1 . . . jn, [xi/ui]sort(I) means [xj1/uj1 , . . . , xjn

/ujn
].

Definition 3.1 (Free and bound variables) Free and bound variables of ss-metaterms
are defined by induction as follows:

fv(x) := {x}
fv(X∆) := ∆
fv(t u) := fv(u) ∪ fv(u)
fv(λx.t) := fv(t) \ {x}
fv(t[xk1

/uk1
, . . . , xkn

/ukn
]) := fv(t) \ {xk1

, . . . , xkn
} ∪ fv(uk1

) . . . ∪ fv(ukn
)

bv(x) := ∅
bv(X∆) := ∅
bv(t u) := bv(u) ∪ bv(u)
bv(λx.t) := bv(t) ∪ {x}
bv(t[xk1

/uk1
, . . . , xkn

/ukn
]) := bv(t) ∪ {xk1

, . . . , xkn
} ∪ bv(uk1

) . . . ∪ bv(ukn
)

As before, we work modulo alpha conversion so we assume all bound variables are
distinct and no variable is bound and free at the same time. As a consequence, for any
term of the form t[xk1

/uk1
, . . . , xkn

/ukn
] we have xki

/∈ fv(ukj
) for all 1 ≤ i, j ≤ n.

13



(t u)[lst] −→fl1 t[lst] u[lst]
(λx.t)[lst] −→fl2 λx.t[lst]
t[xi/ui]I [yj/vj ]J −→fl3 t[xi/ui[yj/vj ]J , yj/vj ]I@J

t[xi/ui]I −→fl4 t[xi/ui]sort(I) if I is not sorted

Figure 4: Reduction rules for F

The following reduction system F is used to transform successive depending unary
substitutions into one single (flattened) simultaneous substitution.

Note that by α-conversion there is no capture of variable in the rules fl2 and fl4.
As an example we have

(x[x4/x3, x2/z] y)[x3/w] −→fl1

(x[x4/x3, x2/z][x3/w] y[x3/w]) −→fl3

(x[x4/x3[x3/w], x2/z[x3/w], x3/w] y[x3/w]) −→fl4

(x[x2/z[x3/w], x3/w, x4/x3[x3/w]] y[x3/w])

The system F can be considered as a functional specification thanks to the follow-
ing property.

Lemma 3.1 The system F is confluent and terminating on ss-metaterms.

Proof. Confluence can be shown using the development closed confluence tech-
nique in [Ter03]. Termination can be shown using for example a semantic (for the
sorting) Lexicographic Path Ordering [Ter03].

From now on, we denote by F(t) the F-normal form of t.
Observe that t −→F t′ implies fv(t) = fv(t′) so that fv(F(t)) = fv(t).
The following property will be useful in the rest of this section, it can be shown by

induction on ss-metaterms.

Lemma 3.2 (F-normal forms) The set nf(F) of ss-metaterms that are in F-normal
form can be characterised by the following inductive definition.

• If ui ∈ nf(F) for all i ∈ I and ŷ is a variable or a metavariable, then
ŷ[xi/ui]I ∈ nf(F).

• If u ∈ nf(F), then λx.u ∈ nf(F)

• If u, v ∈ nf(F), then (u v) ∈ nf(F)

3.2 A calculus with normal simultaneous substitutions

The λnss-metaterms are defined as the subset of the ss-metaterms that are inF-normal
form. The λnss-calculus is defined by the following set of reduction rules on λnss-
metaterms.
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(λx.t) u −→n1 F(t[x/u])
xj [xi/ui]I −→n2 uj j ∈ I
t[xi/ui]I −→n3 t[xi/ui]I\j j ∈ I & xj /∈ fv(t)
t[x/u] −→n4 t x /∈ fv(t)

Figure 5: Reduction rules for the λnss-calculus

Note that the n4 is a particular case of n3, but we have to specify it separately
because we choose to avoid the use of empty substitutions.

The λnss-reduction relation is defined by induction as follows.

• If t −→n1,n2,n3,n4 t′, then t −→λnss t′.

• If t −→λnss t′, then λx.t −→λnss λx.t′.

• If t −→λnss t′, then (t u) −→λnss (t′ u) and (u t) −→λnss (u t′).

• If u −→λnss u′ and j ∈ I , then y[cs[[x/u]]j ]I −→λnss y[cs[[x/u′]]j ]I and
y∆[cs[[x/u]]j ]I −→λnss y∆[cs[[x/u′]]j ]I .

As expected, the reduction system is well-defined in the sense that t ∈ nf(F) and
t −→λnss t′ implies t′ ∈ nf(F).

Lemma 3.3 F-normal forms are stable by λnss.

Here is an example of λnss-reduction, where we assume y < x.

(λx.x ((λy.y) w)) z −→n1

x[x/z] ((λy.y[x/z]) w[x/z]) −→n1

x[x/z] y[y/w[x/z], x/z[y/w[x/z]]] −→n2

x y[y/w[x/z], x/z[y/w[x/z]]] −→n4

x y[y/w[x/z], x/z] −→n3

x y[y/w[x/z]] −→n2

x w[x/z] −→n4

x w

As expected, the λnss-calculus enjoys confluence

Theorem 3.4 (λnss is confluent) The relation λnss is confluent on metaterms.

Proof. Confluence can be shown using the development closed confluence theorem
in [Ter03].
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3.3 Relating λes and λnss

We now establish a correspondence between λes and λnss-reduction which will be
used in the interpretation proof of confluence for λes.

We first need the following lemma.

Lemma 3.5 Let v and ui (i ∈ I) be ss-terms.

1. If j ∈ I , where |I | ≥ 2 and xj /∈ fv(v), thenF(v[xi/ui]I) −→
+
λnss F(v[xi/ui]I\j).

2. If x /∈ fv(v), then F(v[x/u]) −→+
λnss F(v).

Proof. We can reason by induction on v.

The λnss-reduction relation is stable by closure followed by flattening, that is,

Lemma 3.6 Let v be a ss-terms and t1, t2 be F-normal forms. If t1 −→λnss t2, then

1. F(t1) −→
+
λnss F(t2)

2. F(t1[x/v]) −→+
λnss F(t2[x/v])

3. F(v[cs[[x/t1]]i]I) −→
+
λnss F(v[cs[[x/t2]]i]I).

Proof. We can show the first and second properties by induction on λnss and the
third one by induction on v.

We are now ready to simulate λes-reduction into the system λnss via the flattening
function F :

Theorem 3.7 If t −→λes t′, then F(t) −→∗
λnss F(t′) .

Proof. We proceed by induction. If the reduction is internal, and t is an application
or an abstraction, then the proof is straightforward. If t = t1[x/v] is a closure and
t′ = t2[x/v], then F(t1) −→∗

λnss F(t2) by i.h. and F(t) = F(F(t1)[x/v]) −→∗
λnss

F(F(t2)[x/v]) holds by Lemma 3.6:2. If t = v[x/t1] is a closure and t′ = v[x/t2],
thenF(t1) −→∗

λnss F(t2) by i.h. andF(t) = F(v[x/F(t1)]) −→∗
λnss F(v[x/F(t2)])

holds by Lemma 3.6:3. If the reduction is external we have to inspect all the possible
cases.

We can then conclude

Corollary 3.8 If t −→∗
λes t′, then F(t) −→∗

λnss F(t′).
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3.4 Relating λnss and λes

We have projected λes-reductions steps into λnss-reduction steps but we also need
to prove that the projection in the other way around is possible too. This will be the
second important ingredient of the interpretation proof of confluence that we present at
the end of this section.

In order to translate λnss into λes we define the following sequentialisation func-
tion.

seq(x) := x
seq(t u) := seq(t) seq(u)
seq(λx.t) := λx.seq(t)
seq(t[xi/ui]I) := seq(t) if every xi /∈ fv(seq(t))
seq(t[xi/ui]I) := seq(t)[xi/seq(ui)]K

where K is the biggest non empty sublist of I such that for all k ∈ K the variable
xk is free in seq(t).

We remark that fv(seq(t)) ⊆ fv(t).
As expected, the system seq can be used to projectF-reduction (Theorem 3.9) and

λnss-reduction (Theorem 3.10) into λes-reduction.

Theorem 3.9 If s and s′ are ss-terms such that s −→F s′, then seq(s) −→∗
λes

seq(s′).

Proof. By induction on the reduction F . If the reduction is internal the property is
straightforward. Otherwise we have to inspect all the possible cases.

Theorem 3.10 If s −→λnss s′, then seq(s) −→∗
λes seq(s

′)

Proof. By induction on −→λnss. The cases where the reduction is internal are
straightforward so we have to inspect the cases of external reductions.

We can now conclude this section with one of the main results of the paper.

Corollary 3.11 The system λes is confluent on metaterms.

Proof. Let t ≡ t′, t −→∗
λes t1 and t′ −→∗

λes t2. By Theorem 3.7 we have
F(t) = F(t′) and F(t) −→∗

λnss F(t1) and F(t′) −→∗
λnss F(t2). Theorem 3.4 gives

confluence of λnss on F-normal forms so that there is an F-normal form t3 such
that F(t1) −→∗

λnss t3 and F(t2) −→∗
λnss t3. Now, t1 −→∗

F F(t1) and t2 −→∗
F

F(t2) imply seq(t1) −→∗
λes seq(F(t1)) and seq(t2) −→∗

λes seq(F(t2)) by Theo-
rem 3.9. But seq(t1) = Gc(t1) and seq(t2) = Gc(t2) so that t1 −→

∗
λes seq(t1) and

t2 −→∗
λes seq(t2). Theorem 3.10 allows us to conclude seq(F(t1)) −→∗

λes seq(t3)
and seq(F(t2)) −→∗

λes seq(t3) which closes the diagram.
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F(t) = F(t′)
seq(t2)* *

*

* * seq(F(t2))

t3

t =Es
t′

t2

F(t1)
* *

*
t1

F(t2)
*

*

*

seq(t1)

seq(F(t1))

* *
seq(t3)

*

Figure 6: Confluence proof for λes on metaterms

4 Preservation of β-strong normalisation

Preservation of β-strong normalisation (PSN) in calculi with explicit substitutions re-
ceived a lot of attention (see for example [ACCL91b, BBLRD96, BR95a, KR95]),
starting from an unexpected result given by Melliès [Mel95] who has shown that there
are β-strongly normalisable terms in λ-calculus that are not strongly normalisable
when evaluated by the reduction rules of an explicit version of the λ-calculus. This
is for example the case of λσ [ACCL91b] or λσ⇑ [HL89].

This phenomenon shows a flaw in the design of these calculi with explicit substi-
tutions in that they are supposed to implement their underlying calculus without losing
its good properties. However, there are many ways to avoid Melliès’ counter-example
in order to recover the PSN property. One of them is to simply forbid the substitu-
tion operators to cross lambda-abstractions [LM99, For02]; another consists of avoid-
ing composition of substitutions [BBLRD96]; another one imposes a simple strategy
on the calculus with explicit substitutions to mimic exactly the calculus without ex-
plicit substitutions [GL99]. The first solution leads to weak lambda calculi, not able to
express strong beta-equality, which is used for example in implementations of proof-
assistants [Coq, HOL]. The second solution is drastic as composition of substitutions
is needed in implementations of HO unification [DHK95] or functional abstract ma-
chines [HMP96]. The last one exploits very little of the notion of explicit substitutions
because they can be neither composed nor even delayed.

In order to cope with this problem David and Guillaume [DG01] defined a calculus
with labels, called λws, which allows controlled composition of explicit substitutions
without losing PSN. These labels can be also seen as special annotations induced by
a logical weakening rule. Another solution, called λlxr, has been introduced latter
by Kesner and Lengrand [KL05], the idea is the complete control of resources, so
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that not only for weakening, but also for contraction. Anyway, both calculi can be
translated to Linear Logic’s proof-nets [DCKP03, KL05], underlying in this way the
key points where composition of substitutions must be controlled. The calculus λws

as well as λlxr introduces new syntax to handle composition. The claim of this pa-
per is that explicit resources as weakening and contraction are not necessary to define
composition correctly. Indeed, while λlxr-reduction is defined via 6 equations and
19 rewriting rules, λes only uses an equation for commutativity of substitutions and 9
natural rewriting rules.

Preservation of β-strong normalisation is quite difficult to prove in calculi with
composition (see for example [Blo97, DG01, ABR00, KL05, KOvO01]). This is
mainly because the so-called decent terms are not stable by reduction : a term t is
said to be decent in the calculus Z if every subterm v appearing as body of some sub-
stitution (i.e. appearing in some subterm u[x/v] of t) is Z-strongly normalising. As an
example, the term x[x/(y y)][y/λw.(w w)] is decent in λes since (y y) and λw.(w w)
are λes-strongly normalising, but its Comp2-reduct x[x/(y y)[y/λw.(w w)] is not since
(y y)[y/λw.(w w)] is not λes-strongly normalising.

In this paper we prove that λes preserves β-strong normalisation by using a proof
technique based on simulation. The following steps will be developed

1. We define a new calculus λesw (section 4.1).

2. We define a translation K( ) from λes-terms to λrxw such that

(a) t ∈ SN β implies K(t) ∈ SN λrxw (Corollary 4.15)).

(b) K(t) ∈ SN λesw implies t ∈ SN λes (Corollary 4.6).

4.1 The λesw-calculus

We introduce here the λesw-calculus, an intermediate language between λes and λlxr [KL05],
which will be used as technical tool to prove PSN.

The grammar of λesw-terms is given as follows:

t ::= x | λx.t | (t t) | t[x/t] | Wx(t)

We will only consider here strict terms: every subterm λx.t and t[x/u] is such that
x ∈ fv(t) and every subtermWx(t) is such that x /∈ fv(t). We use the abbreviation
WΓ(t) forWx1

(. . .Wxn
(t)) whenever Γ = {x1, . . . , xn}. In the particular case Γ is

the empty set the notationW∅(t) = t.
Besides α-conversion we consider the equations and and reduction rules in Fig-

ure 7.
The rewriting system containing all the previous rewriting rules except B is denoted

by sw. We write Bsw for B∪sw. The equivalence relation generated by all the equations
is denoted by Esw. The relation generated by the reduction rules sw (resp. Bsw) modulo
the equivalence relation Esw is denoted by −→sw /Esw or −→esw (resp. −→Bsw /Esw or
−→λesw). More precisely

t −→esw t′ iff there are s, s′ s.t. t =Esw s −→sw s′ =Esw t′

t −→λesw t′ iff there are s, s′ s.t. t =Esw s −→Bsw s′ =Esw t′
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Equations :
t[x/u][y/v] =C t[y/v][x/u] if y /∈ fv(u) & x /∈ fv(v)
Wx(Wy(t)) =WC Wy(Wx(t))
Wy(t)[x/u] =Weak1 Wy(t[x/u]) if x 6= y & y /∈ fv(u)
Wy(λx.t) =WAbs λx.Wy(t) if x 6= y
Reduction Rules :
(λx.t) u −→B t[x/u]
x[x/u] −→Var u
Wx(t)[x/u] −→Gc Wfv(u)\fv(t)(t)
(t u)[x/v] −→App

1
(t[x/v] u[x/v]) if x ∈ fv(t) & x ∈ fv(u)

(t u)[x/v] −→App
2

(t u[x/v]) if x /∈ fv(t) & x ∈ fv(u)
(t u)[x/v] −→App

3
(t[x/v] u) if x ∈ fv(t) & x /∈ fv(u)

(λy.t)[x/v] −→Lamb λy.t[x/v] if y /∈ fv(v)& x 6= y
t[x/u][y/v] −→Comp

1
t[y/v][x/u[y/v]] if y ∈ fv(u) & y ∈ fv(t)

t[x/u][y/v] −→Comp
2

t[x/u[y/v]] if y ∈ fv(u) & y /∈ fv(t)
(Wy(t) u) −→WPush (t u) if y ∈ fv(u)
(Wy(t) u) −→WPush (Wy(t u)) if y /∈ fv(u)
(tWy(u)) −→WPush (t u) if y ∈ fv(t)
(tWy(u)) −→WPush (Wy(t u)) if y /∈ fv(t)
Wy(t)[x/u] −→WPush t[x/u] if y ∈ fv(u)
t[x/Wy(u)] −→WPush Wy(t[x/u]) if y /∈ fv(t)
t[x/Wy(u)] −→WPush t[x/u] if y ∈ fv(t)

Figure 7: Equations and Reduction rules for λesw
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The following lemma can be proved by induction on terms.
The following property can be shown by induction on terms.

Lemma 4.1 The λesw-reduction relation preserves strict terms.

From now on, we only work with strict terms.
We proceed now to show that esw is a terminating system. We will do this in two

steps: first we show that −→esw minus −→WPush is terminating (Lemma 4.2), then we
show that −→WPush / =Esw is terminating (Lemma 4.3). All this allows us to conclude
(Corollary 4.4) that the whole system −→esw is terminating.

We will need the following measure for terms.

Definition 4.1 For each λesw-term s we define a size and a multiplicity by structural
induction.

S(x) := 1 Mx(z) := 1
S(Wx(t)) := S(t) Mx(Wy(t)) := Mx(t)

Mx(Wx(t)) := 1
S(λx.t) := S(t) Mx(λy.t) := Mx(t) + 1
S(t u) := S(t) + S(u) Mx(t u) := Mx(t) + Mx(u) + 1
S(t[x/u]) := S(t) + Mx(t) · S(u) Mx(t[y/u]) := Mx(t) If x /∈ fv(u)

Mx(t[y/u]) := Mx(t) + My(t) · (Mx(u) + 1) If x ∈ fv(u)

Remark that Mx(s) ≥ 1 and S(s) ≥ 1 for every term s and every variable x.
This measure enjoys the following property:

Lemma 4.2 Let s, s′ be λrxw-terms.

1. If s =Esw s′, then S(s) = S(s′).

2. If s −→WPush s′, then S(s) = S(s′).

3. If s −→sw\WPush s′, then S(s) > S(s′).

Proof. The proof is by induction on−→esw.

Lemma 4.3 −→WPush /Esw is a terminating system.

Proof. For each term s we define a measure P(s) by induction as follows:

P(x) := 1
P(t u) := 2 · P(t) + 2 · P(u)
P(λx.t) := P(t) + 1
P(Wx(t)) = P(t) + 1
P(t[x/u]) := P(t) + 2 · P(u)

Remark that P(s) ≥ 1 for every s.
Now, given s we consider 〈nbw(s), P(s)〉, where nbw(s) is the number of weaken-

ings in s. We show that s −→WPush/Esw s′ implies 〈nbw(s), P(s)〉 >lex 〈nbw(s′), P(s′)〉.
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The proof proceeds by induction on−→WPush /Esw.
We can then conclude that {WPush}/Esw-reduction is terminating on all λesw-terms

by application of the abstract theorem A.1 : E is =Esw , R1 is the empty relation, R2 is
−→WPush, K is the relation given by the measure 〈nbw( ), P( )〉 and S is >lex which is
the standard (well-founded) lexicographic order on N× N.

In order to conclude with that the whole system esw is terminating on all λesw-
terms we apply again Theorem A.1: E is Esw, R1 is the relation −→WPush (so that
−→WPush /Esw is well-founded by Lemma 4.3), K is the relation given by the function
S( ), R2 is the relation −→sw\{WPush} which strictly decreases the measure S( ) by
Lemma 4.2 and S is the standard well-founded order > on N.

Corollary 4.4 The reduction relation esw is terminating.

4.2 Relating λes and λesw

The aim of this section is to relate λes and λesw-reduction in order to infer thatλesw-
normalisation implies λes-normalisation.

We start by giving a translation from λes-terms to λesw-terms which introduces as
many weakening constructors as is necessary to build strict λesw-terms.

Definition 4.2 (From λes-terms to (strict λesw-terms) The translation from λes-terms
to strict λesw-terms is defined by induction as follows:

K(x) = x
K(u v) = K(u) K(v)
K(λx.t) = λx.K(t) If x ∈ fv(t)
K(λx.t) = λx.Wx(K(t)) If x /∈ fv(t)
K(u[x/v]) = K(u)[x/K(v)] If x ∈ fv(t)
K(u[x/v]) = Wx(K(u))[x/K(v)] If x /∈ fv(t)

Remark that fv(K(t)) = fv(t).
The relevant point to relate now λes and λesw-reduction consists in pulling out

weakening constructors:

Lemma 4.5 If s −→λes s′, then K(s) −→+
λesw Wfv(s)\fv(s′)(K(s

′)).

Proof. By induction on −→λes.

It is worth noticing that we really need in this proof Weak1 and WAbs as equations
and not as rewriting rules.

We can then now conclude this part with the main result of this section.

Corollary 4.6 If K(t) ∈ SN λesw, then t ∈ SN λes.
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4.3 The ΛI-calculus

Definition 4.3 The set ΛI of terms of the λI-calculus [Klo80] is defined by the follow-
ing grammar:

M ::= x | (M M) | λx.M | [M, M ]

We only consider strict terms: every subterm λx.M satisfies x ∈ fv(M).
We use [N, 〈M〉] or [N, M1, M2, . . . , Mn] to denote the term [. . . [[N, M1], M2], . . . , Mn]

assuming that this expression is equal to N when n = 0. The term M and the notation
〈M〉 inside [N, 〈M〉] must not be confused.

As in the λ-calculus, the following property is straightforward by induction on
terms.

Lemma 4.7 (Substitutions [Klo80]) For all ΛI-terms M, N, L, we have M{x/N} ∈
ΛI and M{x/N}{y/L} = M{y/L}{x/N{y/L}} provided there is no variable cap-
ture.

In what follows we consider two reduction rules on ΛI -terms:

(λx.M) N −→β M{x/N}
[M, N ] L −→π [M L, N ]

Figure 8: Reduction rules for ΛI

The reduction relation βπ on ΛI -terms preserves free variables.

Lemma 4.8 (Preservation of free variables) Let t ∈ ΛI . Then t −→βπ t′ implies
fv(t′) = fv(t).

Proof. By induction on t using the fact that any abstraction in t is of the form λx.u
with x ∈ fv(u).

As a consequence βπ-reduction preserves strict ΛI -terms.

4.4 Relating λesw and ΛI

We now introduce a translation from λesw to ΛI by means of the relation I . The
reason to use a relation (and not a function) is that we want to translate the λesw-term
into ΛI-syntax by adding some garbage information which is not uniquely determined.
Thus, each λesw-term can be projected in different ΛI -terms, this will essential in the
simulation property (Theorem 4.10).

Definition 4.4 The relation I between strict λesw-terms and strict ΛI -terms which
is inductively given by the following rules:

x I x

t I T

λx.t I λx.T

t I T u I U

t u I T U

t I T u I U

t[x/u] I T{x/U}
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t I T

t I [T, M ]
M is a ΛI -term

t I T

Wx(t) I T
x ∈ fv(T )

The relation I enjoys the following properties.

Lemma 4.9 Let t be a λesw-term and M be a ΛI-term. If t I M , then

1. fv(t) ⊆ fv(M)

2. M ∈ ΛI

3. x /∈ fv(t) and N ∈ ΛI implies t I M{x/N}

Proof. Property (1) is a straightforward induction on the proof tree as well as Prop-
erty (2) which also uses Lemma 4.7. Property (3) is also proved by induction on the
tree, using Lemma 4.7.

Remark that property 1 in Lemma 4.9 holds since we work with strict terms :
indeed, the rule for substitution does not imply fv(t[x/u]) ⊆ fv(T{x/U}) when x /∈
fv(t) ∪ fv(T ). This is also an argument to exclude from our calculus rewriting rules
not preserving strict terms like

(App) (t u)[x/v] −→ (t[x/v] u[x/v])
(Comp) t[x/u][y/v] −→ t[y/v][x/u[y/v]] if y ∈ fv(u)

Reduction in λesw related to reduction in ΛI by means of the following simulation
property.

Theorem 4.10 (Simulation in ΛI ) Let t be a λesw-term and T be a ΛI -term.

1. If s I S and s =Esw s′, then s′ I S.

2. If s I S and s −→sw s′, then s′ I S.

3. If s I S and s −→B s′, then there is S′ ∈ ΛI such that s′ I S′ and S −→+
βπ S′.

Proof. By induction on the reduction/equivalence step.

We can thus immediately conclude

Corollary 4.11 If t I T and T ∈ SN βπ, then t ∈ SN λesw.

Proof. We apply the abstract theorem A.1: E is =Esw ,R1 is sw,R2 is −→B, K is the
relation I and S is −→βπ which is well-founded on T by hypothesis.
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4.5 Solving the puzzle

In this section we put all the parts of the puzzle together in order to obtain preservation
of β-strong normalisation.

Since we want to relate λ and λes-reduction, we first need to encode λ-terms into
one of the calculi of this section. We proceed as follows.

Definition 4.5 ([Len05]) Encoding of λ-terms into ΛI is defined by induction follows:

I(x) := x
I(λx.t) := λx.I(t) x ∈ fv(t)
I(λx.t) := λx.[I(t), x] x /∈ fv(t)
I(t u) := I(t) I(u)

Theorem 4.12 (Lengrand[Len05]) For any λ-term t, if t ∈ SN β , then I(t) ∈ WNβπ.

Theorem 4.13 (Nederpelt[Ned73]) For any λ-term t, if I(t) ∈ WNβπ then I(t) ∈
SNβπ.

Theorem 4.14 For any λ-term u, K(u) I I(u).

Proof. By induction on u:

• x I x trivially holds.

• If u = λx.t , then K(t) I i(t) holds by the i.h. Therefore, we obtain λx.K(t) I λx.i(t)
in the case x ∈ fv(t) and λx.Wx(K(t)) I λx.[i(t), x] in the case x /∈ fv(t).

• If u = (t v) , then K(t) I i(t) and K(v) I i(v) hold by the i.h. and thus we can
conclude K(t) K(v) I i(t) i(v).

Corollary 4.15 (λesw preserves β-strong normalisation) For any λ-term t, if t ∈
SN β, then K(t) ∈ SN λesw.

Proof. If t ∈ SN β, then I(t) ∈ SNβπ by Theorems 4.12 and 4.13. As K(t) I I(t)
by Theorem 4.14, then we conclude K(t) ∈ SN λesw by Corollary 4.11.

Corollary 4.16 (λes preserves β-strong normalisation) For any λ-term t, if t ∈ SN β ,
then t ∈ SN λes.

Proof. If t ∈ SN β , then K(t) ∈ SN λesw by Corollary 4.15 and t ∈ SN λes by
Corollary 4.6.

5 Recovering the untyped λ-calculus

We establish here the basic connections between λ and λes-reduction. As expected
from a calculus with explicit substitutions, β-reduction can be implemented by λes
(Theorem 5.2) and λes-reduction can be projected into β (Corollary 5.4).
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5.1 From λ-calculus to λes-calculus

We start by a simple lemma stating that explicit substitution can be used to implement
meta-level substitution on pure-terms.

Definition 5.1 The encoding of λ-terms into λes-terms is given by the identity func-
tion.

Lemma 5.1 Let t and u be λ-terms. Then t[x/u] −→+
λes t{x/u}

Proof. By induction on the λ-term t.

The correctness result obtained in the previous lemma enables us to prove a more
general property concerning simulation of β-reduction in λes.

Theorem 5.2 (Simulating β-reduction) Let t be a λ-term such that t −→β t′. Then
t −→+

λes t′.

Proof. By induction on β-reduction.

5.2 From λes-calculus to λ-calculus

We now show how to encode a λes-term into a λ-term in order to project λes-reduction
into β-reduction.

Definition 5.2 Let t be a λes-term. We define the function L(t) by induction on the
structure of t as follows:

L(x) := x
L(λx.t) := λx.L(t)
L(t u) := (L(t) L(u))
L(t[x/u]) := L(t){x/L(u)}

The translation L enjoys fv(L(t)) ⊆ fv(t).

Lemma 5.3 (Simulating λes-reduction)

1. If t =Es u, then L(t) = L(u).

2. If t −→s u, then L(t) = L(u).

3. If t −→B u, then L(t) −→∗
β L(u).

Proof. By induction on λes-reduction.

1. This is obvious by the well-known [Bar84] substitution lemma of λ-calculus
stating that for any λ-terms t, u, v, t{x/u}{y/v} = t{y/v}{x/{u{y/v}}.
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2. All the es-reduction steps are trivially projected into an equality.

3. A B-reduction step at the root of t corresponds exactly to a β-reduction step at
the root of L(t) using the Definition of the translation.

We can finish this part with the following conclusion.

Corollary 5.4 If t −→λes u, then L(t) −→∗
β L(u).

6 The typed λes-calculus

In this section we present the simply-typed λes-calculus for which we show Subject
Reduction in Section 6.2 and Strong Normalisation in Sections 8 and 4.5.

In contrast to standard systems for typed λ-calculus [] and typed λx-calculus [],
for which typing judgements Γ ` t : A are built in such a way that the free variables
of t belong to Γ, we define here more precise typing rules which ensures that every
environment Γ in a typing judgement Γ ` t : A contains exactly the set of free variables
of the term t it types. This property turns out to be essential to obtain tha simple
translation of λes-terms into proof-nets that we given in Section 8.

Simply types are built over a countable set of atomic symbols At by means of the
following grammar:

A ::= σ | A→ A

where σ ∈ At.
An environment is a finite set of pairs of the form x : A. Two environments Γ and

∆ are said to be compatible iff for all x : A ∈ Γ and y : B ∈ ∆, x = y implies
A = B. We denote the union of compatible contexts by Γ ] ∆. Thus for example
(x : A, y : B) ] (x : A, z : C) = (x : A, y : B, z : C).

Set properties on environments are:

Remark 6.1

1. If Γ ⊆ Γ′ and ∆ ⊆ ∆′, then Γ ]∆ ⊆ Γ′ ]∆′.

2. If Γ, ∆ and Π are all compatible, then Γ ] (∆ ]Π) = (Γ ]∆) ] Π.

6.1 Typing Rules

Typing judgements have the form Γ ` t : A where t is a term, A is a type and Γ is an
environment. Derivations of typing judgements can be obtained by application of the
Typing Rules given in Figure 9.

In contrast to standard typing rules for λ-calculus [Bar92] and λx-calculus [LLD+04],
our axiom rule types a variable in a singleton environment. Variables which do not
appear free in terms may be introduced by means of the abs2 or subs2 rule. As a
consequence, the typing system enjoys the following property:
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x : A ` x : A
(axiom)

Γ ` t : A→ B ∆ ` u : A

Γ ]∆ ` (t u) : B
(app)

Γ, x : A ` t : B

Γ ` λx.t : A→ B
(abs1)

Γ ` t : B and x /∈ Γ

Γ ` λx.t : A→ B
(abs2)

Γ ` u : B ∆, x : B ` t : A

Γ ]∆ ` t[x/u] : A
(subs1)

Γ ` u : B ∆ ` t : A and x /∈ Γ

Γ ]∆ ` t[x/u] : A
(subs2)

Figure 9: Typing Rules for λes-calculus

Lemma 6.2 If Γ `λes t : A, then Γ = fv(t).

Proof. by induction on typed derivations.

6.2 Subject Reduction

As expected, the calculus enjoys the subject reduction property. More precisely, the
calculus enjoys a local subject reduction property, that is, no meta-theorem is needed
to show preservation of types.

Lemma 6.3 (Subject Reduction I) If Γ `λes s : A and s =Es s′, then Γ `λes s′ : A.

Proof. By induction on =Es .

Lemma 6.4 (Subject Reduction II) If Π `λes s : A and s −→λes s′, then Π′ `λes

s′ : A for some Π′ ⊆ Π.

Proof. By induction on −→λes.

7 Recovering the typed λ-calculus

We established in Sections 5.1 and 5.2 the connexion between the the two notions of
reduction in λ and λes which gives an untyped understanding of one calculus into the
other one. We define here natural translations from typed λ-calculus to typed λes-
calculus and vice-versa, thus completing the connection between λ and λes in a type
setting.

We first recall in Figure 10 the typing rules for λ-calculus.
A straightforward induction on typing derivations allows us to show the soundness

of the projection of λ into λes:
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Γ, x : A `λ x : A

Γ, x : A `λ t : B

Γ `λ λx.t : A→ B

Γ `λ t : A→ B Γ `λ v : A

Γ `λ (t v) : B

Figure 10: Typing Rules for λ-calculus

Lemma 7.1 If t is a λ-term s.t. Γ `λ t : A, then Γ ∩ fv(t) `λes t : A.

Proof. By induction on the typing derivation Γ `λ t : A.

The type derivations are also preserved in the other sense around. To show that, we
first state the following known properties of typed lambda calculus (they can be shown
by a straightforward induction on typing derivations).

Lemma 7.2

1. If Γ `λ t : A, then Γ, x : B `λ t : A.

2. If Γ, x : B `λ t : A and Γ `λ u : B, then Γ `λ t{x/u} : A.

We can now conclude with the following.

Lemma 7.3 (L preserves types) If t is a λes-term such that Γ `λes t : A, then Γ `λ

L(t) : A.

Proof. By induction on the typing derivation Γ `λes t : A.

8 Strong normalisation of typed λes-terms

In this section we present a translation of the typed λes-calculus into proof nets. To
do so, we will translate simply types into MELL formulae, typed λes-terms into typed
proof-nets, then we will show that λes-reduction can be simulated by a corresponding
reduction relation on proof-nets which is known to be normalising.

This same technique has been already applied to other calculi with explicit substi-
tutions and resources [DCK97, DCKP03, KL05].

8.1 Linear Logic’s proof-nets

We recall here some classical notions from Linear Logic’s proof-nets. We refer the
interested reader to [Gir87] or [Laf95] for more details.

Let At be a set of atom symbols. The set of formulae of the multiplicative expo-
nential fragment of linear logic (called MELL) is defined by the grammar:

A ::= σ | σ | A⊗A | AOA |?A |!A
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where the atomic symbol σ in the formulae σ and σ belongs to the set At.
The linear negation of a formula A, denoted A⊥ is defined by the following De

Morgan equations:

(σ)⊥ := σ (A⊗B)⊥ := A⊥
OB⊥ (?A)⊥ := !(A⊥)

(σ)⊥ := σ (AOB)⊥ := A⊥⊗B⊥ (!A)⊥ := ?(A⊥)

If Γ is the sequence A1, . . . Am, we denote by ?Γ the sequence ?A1, . . . , ?Am and by
Γ⊥ the sequence A1

⊥, . . . , Am
⊥.

The set of proof-nets, that we denote by PN , is defined inductively in Figure 11
where we use rectangles having rounded corners to denote already defined nets used in
the inductive constructions.

(Axiom) (Cut) (Dereliction) (Contraction)

ax

A A⊥

A ∆A⊥

cut

Γ Γ A

?A

D

Γ ?A ?A

?A

C

(Par) (Times) (Weakening) (Box)

Γ BA

AOB

BA

A⊗B

Γ ∆ Γ ?A

W

A

!A

?Γ

?Γ

Figure 11: MELL Proof-nets

The traditional reduction system for MELL consists in the set of cut elimination
rules appearing in Figure 12.
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cut

A

ax

AA⊥ Γ

−→ax-cut cut

A

ax

AA⊥ Γ

A B B⊥

AOB

cut

A⊥∆ Π

A⊥⊗B⊥

Γ

−→O-⊗

A B B⊥A⊥∆ ΠΓ

cut
cut

W

cut

?A

A⊥

!A⊥

?Γ

?Γ

−→w-b

W

?Γ

∆

cut

?A !A⊥

A⊥ ?Γ

?Γ

D

A

−→d-b cut

∆ A

A⊥ ?Γ

!A⊥

A⊥ ?Γ

?Γ

C

?A ?A

?A

cut

∆

−→c-b

C

A⊥

!A⊥

A⊥

!A⊥

?Γ

?Γ

?Γ

?Γ

?Γ

cut
cut

?A ?A∆

cut

B

!A⊥

A⊥?A

?A

?∆

?∆!B

?Γ

?Γ

−→b-b

cut

B

!B

?∆

?∆

?A
A⊥

!A⊥

?Γ

?Γ

?Γ

Figure 12: Cut elimination rules for MELL Proof-nets
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We also consider an equivalence relation on PN , as in [DCG99], where two equa-
tions ∼A and ∼B are introduced (see Figure 13).

∆

?B

C

?B

C

∼A

?B3?B2?B1 ∆

?B

C

?B

C

?B3?B2?B1

?A ?∆

?A ?A

?A ?A

?A ?∆

?A ?A

?A

∼B

C

C

B

!B

B

!B

Figure 13: Equations for MELL proof-nets

Finally, we shall also use the two extra reduction rules in Figure 14 : U is used to
simplify weakening linked to contraction nodes and V allows weakening links to go
outside boxes in order to bring them together at the top of the proof-nets.

∆?B ∆?B?B

?B

W

C

−→U

?∆

!A ?B

?∆ ?B

?B!A

W W

A

?∆?∆

A

−→V

Figure 14: Extra reduction rules for MELL proof-nets

W call R the system made of rules ax-cut, O-⊗, w-b, d-b, c-b, b-b and U and V. We
shall write∼E for the congruence (reflexive, symmetric, transitive, closed by proof-net
contexts) relation on proof-nets generated by equations A, B. We shall write R/E for
the reduction relation generated by the rules in R and the equations in ∼E , given by
r −→R/E s if and only if there exist r′ and s′ such that r ∼E r′ −→R s′ ∼E s.

The following result is well-known [Pol04] (see also [KL05] for details).

Theorem 8.1 The reduction relation R/E on typed proof-nets is strongly normalising.
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8.2 From λes-terms to Proof-nets

We now present the natural translation from λes-terms to proof-nets. For that, let’s
start by the usual translation of intuitionistic types [Gir87] into MELL formulae given
by :

A∗ := A if A is atomic
(A→ B)

∗
:= ?((A∗)

⊥
) O B∗

Now we can give our translation T ( ) from typed λes-terms to proof-nets, which
is defined by induction on the derivation of typing judgements as shown in Figure 15.
Every proof-net T (Γ ` t : A) has one wire labelled with ?(D∗)⊥ for every D ∈ Γ and
one unique wire labelled with A∗. We shall often write T (t) instead of T (Γ ` t : A)
when Γ and A are clear from the context.
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T (x : A ` x : A) T (Π, Γ, ∆ ` (t u) : A)

A∗⊥

?A∗⊥ A∗

ax

D

?B∗⊥OA∗

!B∗ A∗⊥

?∆∗⊥?Γ∗⊥B∗

A∗ ?Γ∗⊥

?Γ∗⊥

!B∗⊗A∗⊥

?Π∗⊥ ?Γ∗⊥

?∆∗⊥

C

T(u)T(t)

T (Γ ` λx.t : B → C) with Γ, x : B ` t : C T (Γ ` λx.t : B → C) with Γ ` t : C

?Γ∗⊥

B∗ ?C∗⊥

B∗O?C∗⊥

T(t)

?Γ∗⊥ B∗ ?C∗⊥

B∗O?C∗⊥

T(t)

W

T(t)

W

T (Π, Γ, ∆ ` t[x/u] : A) with Π, Γ, x : B ` t : A T (Π, Γ, ∆ ` t[x/u] : A) with Π, Γ ` t : A

?B∗⊥

?∆∗⊥

B∗ ?∆∗⊥

?Π∗⊥

?Γ∗⊥

?Γ∗⊥

?Γ∗⊥

A∗

!B∗

?Γ∗⊥

T(t)

T(u)

C

?B∗⊥

?∆∗⊥

B∗ ?∆∗⊥

?Π∗⊥

?Γ∗⊥

?Γ∗⊥

?Γ∗⊥

A∗

!B∗

?Γ∗⊥

C

T(u)
T(t)

W

Figure 15: Encoding typed λes-terms into MELL proof-nets

Now we can state the main theorem of this section. The proof also justifies the use
of the additional equations A and B as well as the additional reduction rules V and U. In
the following statement, we write C[p] the proof-net obtained from p by adding a finite
number of weakening wires on the top level of p (outside all the boxes).

Theorem 8.2 Let s be a λes-typed term.

1. If s =Es s′, then T (s) ∼e T (s′).
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2. If s −→App
3
,Lamb s′, then T (s) ∼e T (s′).

3. If s −→Bs\{App
3
,Lamb} s′, then T (s) −→+

R/E C[T (s′)].

Proof. The proof proceeds by induction on −→λes. We first show that cases where
s −→λes s′ is an external reduction step, for which we consider all the root reduc-
tion/equivalence cases.

Remark that the only case where we get a non empty context in Lemma 8.2 is when
simulating the rule Gc. This is because Gc is the only rule which looses free variables,
all the other ones preserve the same set of free variables.

Corollary 8.3 (SN for λes-typed terms) If Γ `λes t : A, then t ∈ SN λes.

Proof. We can apply the abstract theorem A.1 : E is Es,R1 is the relation−→App
3
,Lamb

(for which we can trivially show that −→App
3
,Lamb / =E is well-founded), R2 is the

relation −→es\{App
3
,Lamb}, K is the relation given by the translation T ( ), S is the re-

duction relation R/E on proof-nets which is well-founded on typed proof-nets by The-
orem 8.1 and properties (ES),(WS),(SS) hold by Lemma 8.2.

8.3 Discussion

In this section we want to discuss some other alternative typing/reduction rules appear-
ing in the litterature for calculi with ES.

As mentioned in Section 2 one is tempted to replace rules {App1, App2, App3} by
the single rule

(App) (t u)[x/v] −→ (t[x/v] u[x/v])

where no condition is used to distribute the explicit substituton [x/u] w.r.t the ap-
plication (t u).

In the typing system presented in Section 6.1 this rule would be sound, i.e. subject
reduction holds. However, (App) could not be translated anymore to proof-nets. In-
deed, suppose x is free in u but not in t. Then the proof-net s obtained by translating
the λes-term (t u)[x/v] contains a cut between the wire representing x which is coming
out from the box containing T (u) and the single !-wire coming out from the box con-
taining T (v). It is evident that s does not reduce to the proof-net s′ = T (t[x/v] u[x/v])
since the box containing T (v) in s cannot be duplicated at all to obtain s′.

However, this problem could be solved by using a more standard additive typing
system for explicit substituions [Blo97] where the axioms are weakened, there is a
single rule for abstraction and rules for application and substituion are additive :

Γ, x : A ` x : A
(axiom)

Γ ` t : A→ B Γ ` u : A

Γ ` (t u) : B
(app)

Γ, x : A ` t : B

Γ ` λx.t : A→ B
(abs)

Γ ` u : B Γ, x : B ` t : A

Γ ` t[x/u] : A
(subs)

35



Now, the Lamb-rewrite rule in Figure 3 cannot be translated anymore to R/E-
reduction in proof-nets as subject reduction becomes non local: in order to construct a
typing derivation of λy.t[x/u] from that of (λy.t)[x/u] one needs a weakening meta-
theorem saying that Γ ` u : B implies Γ, y : A ` u : B. It is evident that this kind of
manipulation on proof-nets is not possible during R/E-reduction.

A third possible typing system coming up which makes possible the translation of
the App and Lamb-rewrite rules into proof-nets is the one appearing in [DCK97] : the
subs-typing rule is replaced by

Γ ` u : B Γ, x : B, ∆ ` t : A

Γ, ∆ ` t[x/u] : A

Unfortunately, it is straightforward to verify that rewriting rules Comp1 and Comp2

(not considered in [DCK97]) do not enjoy anymore subject reduction.
Summing up, while the standard additive typing system for ES gives a technical

solution to prove the subject reduction property for λes and its more compact variants
mentioned in Section 2, it does not provide a correct tool to translated λes into proof-
nets.

9 PSN implies SN

We give here a second proof of strong-normalisation for λes-typed terms. The proof-
technique we use here to derive strong normalisation from PSN was suggested by Hugo
Herbelin some years ago.

Theorem 9.1 (Strong Normalisation) Every typable λes-term M is in SNλes.

Proof. Let us define the following translation C() from λes-terms to λ-terms:

C(x) := x
C(MN) := C(M) C(N)
C(λx.M) := λx.C(M)
C(M [x/N ]) := (λx.C(M)) C(N)

Thus for example, C((x[x/y] z)[w/(w1 w2)]) = (λw.((λx.x) y) z)(w1 w2).
We remark that for every λes-term one has C(M) −→∗

λes M . We also remark
that when M is typable in λes, then also C(M) is typable in λes (just change the use
of subs1 and subs2 by abs1 and abs2 followed by app). By Lemma 7.3 the term
L(C(M)) = C(M) is also typable in simply typed λ-calculus and thus it is in SNβ

by Strong Normalisation of typed λ-calculus [Bar92]. As a consequence we have that
C(M) is in SNλes by Theorem 4.16 and thus M is necessarily in SNλes too.

We remark that this proof technique, which is very simple in the case of the λes-
calculus, needs some additional work to be applied to other calculi [Pol04, Arb06].
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10 Conclusion

In this paper we survey some properties concerning explicit substitutions calculi and
we describe work done in the domain during these last 15 years.

As we pointed out in [DCK97], ”the interpretation of explicit substitution via Lin-
ear Logic’s proof-nets suggests that there really exists a typed calculus of explicit sub-
stitution with full composition, being able to simulate any one-step β-reduction and
yet strongly normalizing (thus avoiding Mellies’ counterexample): indeed, the com-
position of substitution is already present in the proof-nets reduction system, as the
box-box reduction, yet strong normalization is not lost.”

We propose here simple syntax and simple equations and rules to modelise a for-
malism enjoying all these good properties, specially confluence on metaterms, preser-
vation of β-strong normalisation, strong normalisation of typed terms and implemen-
tation of full composition.

We believe however that some of our proofs can be simplified. In particular, PSN
and confluence on metaterms might be proved directly without using translations of
λes to other formalisms. We leave this for futur work.

Another interesting issue is the extension of Pure Type Systems (PTS) with explicit
substitution systems in order to improve the understanding of proof systems based on
them. Some work already done in this direction uses sequent calculi [LDM06], some
other [KL04, Muñ97] use an intermediate formalism between natural deduction and
sequent calculi, which is obtained by adding a system with ES to λ-calculus. The main
contribution of λes w.r.t these formalisms previously mentioned would be our sound
notion of composition which is necessary to obtain a system preserving types [KL04].

It is also legitimate to ask whether λes is minimal w.r.t. the number of rewriting
rules as one is tempted to gather the rules {App1, App2, App3} (resp. {Comp1, Comp2})
into one single rule for application (resp composition). The resulting calculus would
be given by

Equations :
t[x/u][y/v] =C t[y/v][x/u] if y /∈ fv(u) & x /∈ fv(v)

Reduction Rules :
(λx.t) u −→B t[x/u]
x[x/u] −→Var u
t[x/u] −→Gc t if x /∈ fv(t)
(t u)[x/v] −→App (t[x/v] u[x/v])
(λy.t)[x/v] −→Lamb λy.t[x/v] if y /∈ fv(v) & x 6= y
t[x/u][y/v] −→Comp t[y/v][x/u[y/v]] if y ∈ fv(u)

Note that λes-reduction can be translated to the correspondent notion of reduction
in this calculus : thus for example App1 can be obtained by App followed by Gc. Be-
sides that, strong normalisation of this calculus, which we conjecture to hold, cannot
be obtained via a standard translation to Girard’s proof-nets (c.f. discussion in Sec-
tion 8.3).

Another interesting question is whether we can extract from λes a pure rewriting
system (without equations) verifying the same properties than λes. We believe that
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simultaneous substitutions will be needed for that, even if translation to proof-nets will
be much more intricated. Also, a total order > on variables would be necessary in
order to obtain canonical representatives for simultaneous substitutions. The first ideas
of such a solution could be found in the ss-calculus defined in Section 3.1. A more
elementary representation of a calculus with simultaneous substitutions and controlled
composition could be given by

Terms
t ::= x | (t t) | λx.t | t[s] | t(s)

Substitutions
s ::= id | x/u.s | s ◦ s

Reduction Rules
(λx.t) u −→ t[x/u]
(t u)[s] −→ (t[s] u[s])
(λx.t)[s] −→ λx.t[s]
x[(x/u).s] −→ u
t[(x/u).s] −→ t[s] If x /∈ fv(t)
t[s][p] −→ t[s ◦ p]
(s ◦ p) ◦ q −→ s ◦ (p ◦ q)
id ◦ s −→ s
x[id] −→ x
(x/u.s) ◦ p −→ x/u(t).(s ◦ p)
u(id) −→ id
u(y/v.s) −→ u[y/v](s) If y ∈ fv(u)
u(y/v.s) −→ u(s) If y /∈ fv(u)
y/v.x/u.s −→ x/u.y/v.s If x < y

Then, one can verify for example that the critical pair

t[y/v.id][x/u[y/v.id].id] ∗←−((λx.t) u)[y/v.id] −→∗ t[x/u.id][y/v.id]

can be closed by t[x/u[y/v.id].y/v.id] when y ∈ fv(u), or by t[x/u.y/v.id] when
y /∈ fv(u), if x < y holds in the total order on variables which is necessary to obtain a
canonical order between simultaneous substitutions.
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A Appendix: An abstract theorem

Theorem A.1 Let R1,R2 (resp. E) be two relations (resp. equivalence relation) over
O such thatR1/E is well-founded. Let consider a relation K onO ×P such that
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(ES) t E t′ and t K T implies t′ K T

(WS) t R1 t′ and t K T implies there is T ′ such that t′ K T ′ and T S∗ T ′

(SS) t R2 t′ and t K T implies there is T ′ such that t′ K T ′ and T S+ T ′

Then, if t K T and S is a well-founded relation on T , then (R1 ∪ R2)/E is well-
founded on t.

Proof. Suppose (R1∪R2)/E is not well-founded on t. SinceR1/E is well-founded
by hypothesis, then there is an infinite sequence onO of the form

t −→∗
R1/E−→R2

t1 · · · −→
∗
R1/E−→B ti −→

∗
R1/E−→B · · ·

By hypothesis there are T1, . . . , Ti, . . . ∈ P such that t K T, t1 K T1, . . . , ti K Ti, . . .
and the following infinite S-reduction sequence exists

T S+ T1 S
+ . . .S+ Ti S

+ · · ·

This leads to a contradiction with the fact that S is well-founded on T .
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port, PPS laboratory, Université Paris 7, March 2005. available at
http://hal.ccsd.cnrs.fr/ccsd-00004358.

[Len06] S. Lengrand. Normalisation and Equivalence in Proof Theory and Type
Theory. PhD thesis, University Paris 7 and University of St Andrews,
November 2006.

[Les94] P. Lescanne. From λσ to λυ , a journey through calculi of explicit substitu-
tions. In Proceedings of the 21st Annual ACM Symposium on Principles
of Programming Languages (POPL), pages 60–69. ACM, 1994.

[Lin86] R. Lins. A new formula for the execution of categorical combinators.
In 8th International Conference on Automated Deduction, volume 230
of Lecture Notes in Computer Science, pages 89–98. Springer-Verlag,
August 1986.

43



[Lin92] R. Lins. Partial categorical multi-combinators and Church Rosser theo-
rems. Technical Report 7/92, Computing Laboratory, University of Kent
at Canterbury, May 1992.

[LLD+04] S. Lengrand, P. Lescanne, D. Dougherty, M. Dezani-Ciancaglini, and
S. van Bakel. Intersection types for explicit substitutions. Information
and Computation, 189(1):17–42, 2004.
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[Muñ97] C. Muñoz. Un calcul de substitutions pour la reprsentation de preuves
partielles en thorie de types. PhD thesis, Université Paris 7, November
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