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Abstract

BEM-FEM coupling is desirable for three-dimensional pexhk involving specific features such
as (i) large or unbounded media with linear constitutivepamies, (ii) cracks, (iii) critical parts of
complex geometry requiring accurate stress analyses. Hower cases with a BEM discretiza-
tion involving a large numbeNgem Of degrees of freedom, setting up the BEM contribution to
the coupled problem using conventional techniques is aeresipeO(N3g),) task. Moreover, the
fully-populated BEM block entails @(Ngg),) storage requirement and® N3g),) contribution to
the solution time via usual direct solvers. To overcomedftfalls, the BEM contribution is for-
mulated using the fast multipole method (FMM) and the codiglquations are solved by means
of an iterative GMRES solver. Both the storage requiremants the solution times are found
to be close taD(Ngem). A preconditioner based on the sparse approximate inverfgedBEM
block is shown to improve the convergence of the GMRES soNemerical examples involving
Ngem = O(10° — 10%) unknowns, run on a PC computer, are presented; they inchedEghelby
inclusion (as a validation example), a many-inclusion gpnfition, and a dam structure.

Key words: BEM-FEM coupling, Fast multipole method, sparse approxairaverse

1 Introduction

The finite element method (FEM) and the boundary element odleBEM)
are important numerical tools for computing the solutiohsmany engineering
problems. FEM is appropriate for very large classes of sibag, including e.g.
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those with heterogeneous or non-linear constitutive ptagse or finite deforma-
tions. On the other hand, BEM is useful for modelling spesitlations such as
very large or unbounded domains, geometrical singular{geg. cracks) or to ob-
tain very accurate results in regions of complicated shape €.g. [1, 5, 6]). Cou-
pling the BEM and the FEM allows to exploit their complementadvantages
when the geometrical configuration warrants it.

The topic of BEM-FEM coupling has been studied since a lamg tiand many
such coupled formulations have been proposed and analygédlh particular,
since the traditional collocation BEM (CBEM) formulatiolesad to unsymmetric
systems of coupled BEM-FEM equations, a number of invetiga have been
directed towards either forcing the symmetry of the CBEMMFE&quations (like in
e.g. [3,15]), or use a symmetric Galerkin BEM (SGBEM) foratidn in order to
obtain naturally a symmetric system of BEM-FEM equatioree(s.g. [7,13,19,
25]). The latter approach is well suited to optimally expltirect solvers.

As the problem size grows, direct solvers applied to couple-FEM equa-
tions become impractical or infeasible with respect to batmputing time and
storage, even using specific implementation strategiels asiout-of-core proce-
dures, mainly because of the fully-populated nature of tB®&Bnatrices, whose
build-up computational cost and storage requirement atie dborderO(Nagy ),
where Ngepm denotes the number of degrees of freedom (DOFs) supportéaeby
BEM mesh, not to mention th@(N3g,,) growth of the solution time. To overcome
these pitfalls, one needs to resort to iterative solutigo@hms for linear systems,
together with an acceleration technique for computing tB& R ontribution to the
residual of the matrix BEM-FEM equation.

Coupled SGBEM-FEM formulations usually lead to governingtmces that
are symmetric but not sign-definite. In such cases, itexaddivers do not take
advantage of the symmetry (in contrast with e.g. the coripigeadient technique
applied to positive definite problems). Hence the final symnynef the coupled
problem is not as important as in connection with direct sy Since CBEM is
simpler and less costly to set-up, a good case can be maderisidering the
unsymmetric CBEM-FEM approach.

In this article, a simple CBEM-FEM coupled approach leading system
of equations solved by means of the generalized minimadues{GMRES) itera-
tive algorithm [8, 22] is presented. The BEM part of the cédtion is accelerated
by means of the Fast Multipole Method (FMM), a method orifinantroduced
by Rokhlin [20] and further discussed in e.g. [10] and in tkeent review arti-
cle by Nishimura [18]. When applied to elastostatic BEM,ribyades a reduction
of both storage requirements and computational coék(i¥ggyv ). These improve-
ments make BEM a viable tool (either on a stand-alone basisugled with FEM)
for large problems. In addition, a preconditioning techu@dknown as the SParse
Approximate Inverse (SPAI) technique is implemented fopiiaving the conver-
gence (i.e. reducing the number of iterations) of GMRES. dittiele is organized
as follows. In section 2, CBEM and FEM formulations are ow#tl and the coupled
problem is presented. Then, the FMM treatment of the BEM &gpusiis presented
in section 3. The solution technique, and especially thegrditioning strategy, is



discussed in section 4. Finally, numerical examples arenéed in section 5.

2 Coupled CBEM-FEM formulation

Consider a solid occupying a three-dimensional reddorm\ coupled BEM-
FEM model of the solid (Figure 1) is defined on the basis of &tjpan 2 = QgUSE,
whereodfg (the boundary of2g) and()r respectively support boundary element and
finite element discretizations. L&t =0Qg N 02 denote the BEM-FEM interface,
while Sg and Sk are the remaining surfaces such th&tz = S, U Sg ando2r =
S| U Sg. Both subregion$lg, 2 are here endowed with linear elastic properties:

0ij = Cijreur,e  (inQg) 0ij = Chpune  (in Q) (1)

wherew,; ando;; denote the Cartesian components of displacements andestres
and Cjjiy, O]M are the components of the fourth-order elasticity tensorsach
region. Besides, homogeneous and isotropic propertiesssumed iflg, i.e.

Cijre = 2M<1 6zj6k€ + Oix0je + 5i£6jk) (2

(wherey, andv are the shear modulus and the Poisson ratio) wherea@stheneed
not be subjected to such restrictions. The isotropy assomt 2z is also not
mandatory, but is kept here for simplicity and definitend$g interface need not
be simply connected, arfy or S may be empty (the case of emgty corresponds
to a FEM region embedded in an infinite medium).

CBEM equations. The governing equation fof)g is taken here as the usual
Somigliana displacement integral equation

col@ @) + [ Ti@yuw)ds,~ [ Us@y)m)ds,
- / (z,y)dS, (3)

wheret; = o;;n; denote the Cartesian components of traction vector defimed i
terms of the components; of the unit normal vector directed away frofos.

Qr s

Qg

Fig. 1. FEM-BEM coupling: geometry and notation.



The kerneldJ;;(x, y) andT;;(x, y) are the components of the Kelvin fundamen-
tal displacement and traction, whose expressions are ¢@fenin equations (14)
and (17). The last integral with kerné}(x, y) arises when a known gravitational
load is considered. Thizee-termc;;(x) is ¢;;(x) = 0,;/2 if 0 is smooth at
the collocation pointz, and its value is also known it is located on an edge or
corner ofo(2g [12, 16]. On introducing isoparametric boundary elemeatsiddel
geometry and boundary fields, considering in turn all mestiesaas collocation
points, and performing the necessary numerical quad{@t&] and singular in-
tegrations using a direct algorithm [12], equation (3) ggethe collocation BEM
(CBEM) matrix equation

[H{u} =[Gt} = {P} (4)

where [H] and [G] are coefficient matrices{u} and {¢} collect nodal values of
boundary displacements and tractions, §MJ} contains the contribution of the
gravitational load.

FEM equations. In Qf the standard set of displacement-based FEM discretized
equations is considered, i.e.

Kiuy ={F} +{T} ()

wherew collects all displacement DOFs i (including those orb)); [K] is the
elastic stiffness matrix{F} gathers the nodal generalized forces associated with
known loads applied t6)r (e.g. gravitational body forces, prescribed tractions on
Sk); and{7} collects the nodal generalized forces associated withidrasalong

the BEM-FEM interface, i.e. the values of

(T ={[ rwewes,}  (1<i<s aen ©

where¢® is the trace o, of the FEM shape function associated with nadef

S) and the setV, collects the numbers of all FEM nodes lying Sn The stiffness
matrix [KC] is symmetric, positive semidefinite and sparse; it is pesitiefinite if
the boundary conditions ofi do not allow any rigid-body motion o2 consid-
ered in isolation. Here, a skyline storage[&f has been used to take advantage of
symmetry and sparsity. No attempt at optimizing the stoafgéC] through node
renumbering has been made, although this would certainiysbéul.

Coupled formulation. Finally, the coupled formulation must include relation-
ships between the displacement and tractionsspassociated witlf2g and €2¢.
Here, only the usual perfect bonding condition is considgie.:

ui(y) =v;(y) and (y)=t(y) (yes) (7)

having conventionally defined the traction vector from bsittes ofS; in terms of
the same unit normal vector, namely that pointing away ffasnin the discretized



formulations, these conditions can be imposed in a wealesbnsugh the relations
[ [2w) — uf(w)lo" () dS, = 0

e (a € N) ®)

[1P) ~ E@)e(w) ds, = 0
allowing the use of FEM and BEM interpolations whose traces$\oare not con-
forming, whereas the strong coupling conditions on the healaes

u(y®) =uf(y"), LYY =ty") (acM) 9)

require conforming interpolations o$| (interpolations are said to be conforming
on S, if the BEM mesh and the trace o%) of the FEM mesh (i) coincide, and
(ii) are associated with the same interpolation functiohsjhis article, the strong
coupling conditions (9) are adopted, but weak coupling p&t{8) could be easily
considered as well.

Gathering equations (4), (5) and (9) leads to the coupled B set of
linear equations

Asg —Ggi Hei 0 2B Bs
Ag —Gi Hu 0 t\_ )5 (10)
0 Dy K Kal| |w Fi
0 0 K Kee| |ue Fr

having introducing partitions of the DOFs so that, v} gathers the unknown
traction and displacement DOFs 61 {zg} collects all unknown traction and dis-
placement DOFs 0A5 (i.e. thosenot prescribed by the boundary conditions), and
{ug} gathers the displacements at all nodespfnot lying on.S;. The number
Ngem of unknown DOFs on the BEM mesh (including the BEM-FEM indes)

is the cumulated length dfzg, ,, u }, while the numbetVg of internal DOFs on
the FEM mesh is the length ¢f.r}. The first two rows of (10) are obtained by (i)
partitioning the CBEM equation (4) according to whether ¢odocation pointe
belongs toSg or ), and (i) performing the usual column-switching according
the boundary conditions ofk, with the right-hand sideBg, 15, gathering all con-
tributions from prescribed data &#%. The last two rows of (10) correspond to the
subsets of FEM equations obtained by taking the shape dmeassociated with
nodes onS, and inside)g, respectively, as trial functions. In addition, the strong
coupling assumption implies that tractionsgrare modelled using the shape func-
tions ¢* associated with the BEM discretization 8f, so that the load vectdi7 }

in (5) becomes (in terms of the above partiti¢d)} = [D,]{t}, where the entries
of the matrix|D, | are

D] =[5 [ @) @ds,|  (1<ii<3. @b eMxM) (D

Solution strategy. In the system (10), the blocks generated by the CBEM equa-
tions are fully populated and nonsymmetric, whereas thelslagontributed by the



FEM equations are sparse and symmetric. For problems of rat&size, direct
solvers may be applied to the system (10). This usually isntaime sort of con-
densation, in order not to build explicitly the whole matihich features blocks
of zeros). Alternative BEM-FEM formulations based on thensyetric Galerkin
BEM instead of the CBEM lead to symmetric variants of the eys(10).

As the problem size grows, direct solvers become impractcanfeasible
with respect to both computing time and storage, mainly dubé fully-populated
nature of the BEM block&j] and[H], and iterative solvers are used instead. In the
present case of non-symmetric coupled equations, thersydi@) is solved using
the generalized minimal residual (GMRES) algorithm [8,,2@fich is applicable
to general invertible square matrices. Such algorithmsased on matrix-vector
evaluations, and therefore do not require actual storagfeeaiatrix in (10).

In this context, traditional quadrature methods mean thaheevaluation of
the BEM contribution to the matrix-vector product in (1Q%.iof the residuals

[Agg]{z8} — [Gai]{ti} + [Hai[{w}
[Ai]{zs} — [Gu]{ti} + [Hul{w}

is aO(Njgy) task, and BEM numerical quadratures are usually time-ooirsy
(i.e. the coefficient ofD(N3gy) is expected to be fairly large). To accelerate the
computation of the residuals (12), the Fast Multipole MetkieMM) is adopted.
In the present context of elastostatics, choosing this adetlogy allows to reduce
the computational burden of this task@j Nggyw ). Detailed descriptions of FMM-
based algorithms can be found in [9, 10, 18]. Besides, the BEffhess matrix
[K] is evaluated only once, stored (in sky-line fashion) anadh tineoked at every
GMRES iteration. The computation of the sparse mdilx] is very inexpensive
and is therefore done for every GMRES iteration (72 ] is not stored).

The methodology and formulae pertaining to FMM applied ®3omigliana
integral equation (3) are concisely reviewed in section i, section 4 will ad-
dress the preconditioning strategy used in connection th#gtGMRES algorithm.

(12)

3 Fast Multipole Method (FMM)
3.1 Multipole expansions for 3D elasticity

The FMM used in this article follows closely the treatmerggented in [24]
for solving the hypersingular CBEM for elastostatic cracklgems. The latter is
based on the following series expressing the inverse of istartter = |y — x|
between two pointgy andz, expanded about two poled andx’:

400 n 400 n’
1: Z Z anm(@) Z Z (_1)n n+n’,m+m/(r0)Rn’,m/(i') (13)

r n=0m=—n n'=0m/=—n’

having puty = y — 9%, & =  — 2 andr® = y° — z°, and where the overbar
indicates complex conjugation. The (complex-valusdld harmonicsR,, ,,,(z),



Fig. 2. Geometrical notation for the multipole expansion.

Sn.m(z) can be evaluated by means of the recursive formulae (A.1A.%) @iven
in the appendix. For fixed polag’ andz", expansion (13) is convergent for all
andz such thaty| < |z — y°| and|z| < |y — 2°| (Figure 2).

To take advantage of expansion (13), it is convenient to @ae the elasto-
static Kelvin fundamental displacement in the form

L 01
3|8 W~ Gy = =) (14)

r i

whereA = 87 (1 — v). Introducing (13) into the above formula yields the series

expansion
1 +oo n . . 0r .
Ugla,y) = 5 7 2 2 B (@—1")Rum(@)+ G (& 1) Ram(@) (15)
n=0m=-n
having put

(e = Y

n'=0m'=

n+n’,m+m/’ (’r0>

. N 0 .
(3 — A1) Ry v () — (25 — T?)@—%Rn/,m'(w) (16)
m, TL a A
Gz Z Z n+n/,m+m/ (ro)an/,m/ ("D)
n/ 0 m/_in/ 7
Then, the Kelvin traction vectd;;(x, y) is defined by
0
Tij(z, y) = ijk(inp(y)a—w(]ik(wa Y) (7)

and therefore admits the series representation

1 mn -~
Ta.9) = 5 Comamy(w) S 32 {FL" & = )2 Ron(3)

n=0m=—n
0

FE@ ) (@) | (8

The iterative GMRES solver requires repeated evaluatidriseoresidual of
the displacement integral equation (3) for known trial $iols (u;, ¢;). With that



purpose in mind, let the surfacig be split into two complementary partgz°)
and S(x°), where S(z°) containsz® as an interior point. The residual of equa-
tion (3) for a trial solution(w;, t;) is recast in the form

cy@puy(@)+ [ Tolw y)y)dS,— [ Uyl y),(y)d5, + L) (19)
having omitted for simplicity the body force term and wh&yérx), defined by
Ti(x) = t;i(y)dsS, — Tii(x,y)u;(y)d 20
@)= [, Vsl w)t@)ds, — [ Ty@ypu(y)ds, (20

collects the far-field contributions relative to or z°. With respect to decompo-
sition (19), near-field element integrals (i.e. those for elements lyingd"))
are to be evaluated by means of the usual numerical integregchniques classi-
cally used for BEMs [3, 5], while théar-field contributionZ; (x) will be evaluated
with the help of the multipole expansions. Accordingly, dieposition (19) is only
considered for collocation points lying inside S(z°) in such a way that(z°)
includes the support of all singular element integrals. @inect algorithm [12] is
chosen here for the evaluation of the latter, because deasitign (19) is not well
suited to using an indirect regularization based on a rigdy identity.

On introducing the series representations (15) and (18heffindamental
kernels into (20)Z;(x) takes the form

L@ = gp 3 3 (R =) M2 0) - M0
G @ - ) M2, ") - 2,00} @)

where themultipole momentare defined by

M) = [, Bam(@)ti(y) 05,
MEL() = [, 0B (@)(9) 65,
ul 0 9 ~ (22)
MJ nm(y ) = Chpje /5*(1;0) a—an,m(y)uk(y)np(y) ds,
a9 /. .
M) = e [, om0 Rn() s () () 05,

Further, introducing expressions (16) into (21), rearraggummations by switch-
ing dummy summation indicesn, n) and(m’, n’), Z;(x) takes the form

1 +00 n . A a .
T@) = 57 2 3 {848 Run(@) = (y=18) 5 R (@) L (@)

n=0m=—n

_|_

0 o
S (@)L (@) | (29



where thdocal expansiongre related to the multipole moments by the following
“multipole-to-local” (M2L) relations:

] n m Z Z n—l—n’ m—i—m’( ) |:M]tln m/ MJUEII;, m/ } (y(])
n/=0m/=—n’

(24)

+o0 n’
= Z Z Sn+n/7m+m’ (7‘0) |:M2217m/ - Mrl:?’m/ (y(]):| (yo)

n'=0m'=—n/

3.2 Outline of FMM algorithm

Traditional methods for evaluating the residual of intégguation (3) require
that all element integrals be recomputed each time a newaailbn pointzx is
considered, hence th@(N3g),) overall complexity of such operation. In contrast,
equation (23) shows that treameset of local expansions;.,, ,,(x°), L3, ,.(z°)
allows the treatment of not one but a cluster of collocatiom{s lying sufficiently
close to a polec’.

If there is a positive numbeR such thatz < R and|r® +¢| > 2R, the

truncation error estimate

1
2r+H1R

(25)

1 LA R
; - z_:o Z Z Z Sn—i—n’ m+m’ )Rn’,m’ (33) <

- n/=0m'=

for the multipole expansion (13) [10] implies that the lartiee radius of the cluster

of collocation points, the smaller the size of the far-fieldfaceS (z°).

To exploit optimally the acceleration afforded by (23), ararchical oct-tree
structure of elements is introduced. For that purpose, @ cointaining the whole
boundaryo(2g, called ‘level-0 cell’, is divided into eight cubes (levekells), each
of which is divided in the same fashion. A levetell is divided into levelf/+-1)
cells unless it contains less than a preset (relatively I3mamber)/ of boundary
elements (such cells are termedve$. The FMM algorithm then consists of:

e Anupward passvhere multipole moments (22) are first computed for the ldwes
level cells and then recursively aggregated by moving upviiaithe tree until
level 2 (for which there ard x 4 x 4 cells overall) is reached. This operation
requires the so-called “multipole-to-multipole” (M2M)adtities

M](unt)j% Z Rn (yOI - yO)M](?r’Lt)fln’,mfm’(yOI)
n'=0m/=—n'
My z": X Rl )M PO

- (yj, )Mj(unt)ln m—m/’ (yOI):|

to shift the origin from the centey® of a level{/+1) cell to the centeg" of a
level- cell.
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Fig. 3. M2M, M2L and L2L translations

e A downward passvhere local expansions are first computed at lével 2 and
then evaluated at selected lower-level cells by tracingtitbe structure down-
wards. This operation requires the so-called “local-tcald (L2L) identities

n/=0m/=—n'
Li,m(wm) - Z Z Rn—n’7m—m/(a:0, — 330) (27)
n'=0m/=-—n’
|:L721’,m’(w0) - (.CIZ'?, - £U?)le-m/,m/(w0)

to shift the origin from the center® of a level{¢) cell to the centerr” of a
level-(¢+1) cell. At all levels, only interaction between well-sepadhtells are
so evaluated.

e Adirect calculation, which includes all singular integeais, where the near-field
contributions to (19) are evaluated using conventiona&grdation methods.

For BEM formulations of static problems, one computatiomnhaf residual of inte-

gral equation (3) the FMM is found to be(& Nggw) task.

The near-field integrations, as they involve all singulad arearly-singular
integrations, are a costly (albeit(Ng)) task. For that reason, they were not re-
computed for each iteration (i.e. each evaluation of thelued (12)) in the present
implementation. Instead, that part of the matrix block isq@mputed and assem-
bled into a matrix, prior to invoking GMRES. The near-fieldettit influence matrix
thus obtained is sparse, wifh Nggyw) entries, and is of course stored accordingly.

4 Preconditioning strategy

As previously mentioned, the GMRES iterative algorithm sedi for solving
the system (10) of CBEM-FEM equations. The convergenceofaterative solvers
depends strongly on the spectral properties of the coeftiomatrix. These spectral
properties can be improved by means of suitably chosenrlimaasformations,

10



i.e. preconditioning Preconditioning iterative solvers is thus an importasmicpical
issue, to which a great deal of attention is devoted in tleedture [8, 21].
The linear system in equation (10) has the form

[A{X} = {B} (28)

where theV x N matrix [A] is invertible but not symmetric. Preconditioning of (28)
can take any of the forms

[PARX} = [PT{B} (left)
[AIPTRY} = (B}, {X} =[PV} (right) (29)
[PHIAIPRRY Y = [PP{B}Y . {X}=[PRH{Y} (two-sided

where thdeft preconditioner Pt or theright preconditionerf PR] might ideally be
chosen so that the governing matrix of the preconditionstesy of equations is the
identity matrix. Of course, this would amount to solve thgioral system by means
of a direct solver, and therefore be of little practical &l good preconditioning
strategy is such that the matrix of the resulting lineareysbf equations is as close
as possible to the identity matrix. This objective must idiidn be fulfilled within
computing time and storage requirements significantly fpaed growing slower
with N, than those expected for the original system of equations.

Preconditioners are either implicit or explicit. The fommequire the solution
of a linear system for each step of the iterative proceduhe most popular are
based on an incomplete LU decomposition (ILU or ILUD) of tmgmal matrix or
a sparsified version thereof, whereas the latter are basea emplicit evaluation
of the preconditioning matricels*"| and/or[PR]. Such matrices are then usually
chosen to be sparse so as to reduce the storage requirerdeheasomputational
complexity of the preconditioner evaluation.

In this article, a two-sided preconditioning of equatiof)has been adopted,
with the left and right preconditioning matrices defined by

S 8 D(Ags) 0 0 0
0 D(—Guy) O 0
Pt = PR = ! 30
00 0 cCT 0 0 0o Ct

where O X)) denotes the inverse of the main diagonakafld is the identity block
andKCer = CCT denotes the Choleski decomposition/&f. The blockS is con-
structed by computing, in a manner explained later in thetise, the sparse ap-
proximate inverse (SPAI) of th&ggym x Nggm Matrix

ABB _gBI 7_{BI

A|B _gH HH (31)
0 0 Dlag(lC”)

11



and keeping only the first two rows (in the above block notasense) of the result.
The blocksC andCT clearly define an implicit preconditioning o}, while the
preconditioning acting ofizg, t,, u, } is of explicit type.

As mentioned above, the blo& in (30) results from the computation of a
sparse approximate inverse (SPAI). The concept of SPAIgsrdeed in e.g. [4, 11,
21], where in particular theoretical properties and inality of such precondi-
tioning matrices are discussed. This technique appears &dfbctive even when
applied to unsymmetric matrices and with an imposed spyan§i®7-99%. An ap-
plication of the SPAI preconditioning technique to a BEMnfaation for electro-
magnetic wave problems is presented in [2].

The left sparse approximate inversé€| of a generic square matrix] is de-
fined as the solution of the minimization problem

A = arg min || (1] - [E][A] |2 [E) e RN sparse  (32)

[E]

where||[E]||e= (E.Eq)"/? denotes the Frobenius norm and the sparsity constraint
may either take the form of a predetermined sparsity patitebe founda posteriori

SO as to satisfy some supplementary optimality criteriome Tormer, obviously
simpler, approach is adopted here. The choice of the Frabemyrm allows to
decompose (32) int&/ independent minimization problems for the rows &f|:

{4} = ar%;?ﬂ I {ex} —{E}AIIl  {E} eR™"sparse  (33)

where{e,} and{ A%} are thek™ row of the identity matrix andA?] respectively,
and the trial rowV-vector{ E'} is constrained by the preset sparsity pattern assigned
to thek-th row of [A].

The effectiveness of SPAI-based preconditioners largehedds on the choice
of sparsity pattern fofA*]. This choice should be such that?] provides a good
approximation of the largest entries[ia~!]. A difficulty arises in that the location
of such entries inA~!] is usually not knowra priori. In [11] the sparsity pattern
is found for every row (or column) with an adaptive strategyd the positions of
non-zero entries iNA*] are iteratively modified to minimize the residual in (33). In
[2], four heuristics for selecting priori the sparsity pattern dfA*] are considered.

Here, the sparsity pattern is predetermined by means obtleing strategy.
The numbern < N of nonzero entries in each row §fi¥] is chosen. A sparse
approximatior{A] of [A] is created by assigning fd] them largest entries of each
row of [A], at the same locations, and setting all other entriglsipto zero. The
sparsity pattern ofA] thus defined is then assigned|tt] as well, and the entries
of [A?] are found by solving the minimization problems (33) wjittj replaced with
[A]. Denoting byZ (k) the set of then column indices of nonzero entries in the
k-th row of [A?] or [A], the independent minimization prolems are found to reduce
to the minimization of quadratic functionals overvectors:

() = arg in (| {E}A] | ~2waca (EHA]) +1}  (<ish) (@4

12



BEM

Fig. 4. Inclusion problem: geometry and notation.

where{A?} is them-vector of the nonzero entries of raiof [Af] and[4,] is the
m x m matrix with entrie§ A 4] ,c7(:) pez(a)- The N minimization problems (34) are
of small size, allowing for a relatively inexpensive setafid A*]. Computing|A*]
is therefore aD(m3N) task, while storing A*] requires aO(mN) < N? memory
space. They are well-posed provided the diagonahpfs included in the sparsity
pattern of[A?], i.e. thatk € Z(k) for everyk.

As previously mentioned, the technique outlined above éslder computing
the sparse approximate inverse of the matrix defined by {&iy which the block
S of (30) is then extracted.

5 Numerical examples

Two numerical examples based on the CBEM-FEM coupling ntethescri-
bed above are presented in this section. The first one (se&tl), which concerns
the response of an infinite medium to a uniform temperatupdiegbover an ellip-
soidal region, has an exact solution. The second one (s€st®) concerns a real
dam structure, in order to demonstrate the present coufgeignique on a realistic
problem. For both examples, the stopping criterion for tMRES algorithm was
a backward error less thard =2, i.e.: || {B} — [A[{X} || / || {B} ||< 10° with
the notations of equation (10). All computations were ruradmnux PC computer
equipped with one 3 GHz Pentium 4 CPU unit and 2 GBytes of camany.

5.1 Eshelby solution

This first numerical example involves an infinite elastic pa@dntaining an
ellipsoidal inclusiort, with principal half axesi;, as, a3 (Figure 4). The Cartesian
coordinate system is chosen such that the origin coincidtéghe center of while
the coordinate axes are directed along the principal ax€sfe inclusion and the
surrounding medium have the same elastic moguli’); in addition,€ is endowed
with a constant thermal expansion coefficienT he elastic response of the infinite
body to auniformtemperature incremeX7* applied ovek is such that the stress

13



Table 1
Inclusion problem: meshes, oct-tree parameters and niob&OFs.

Mesh | Nodes Elements Oct-tree DOFs
BEM FEM | Maxlevel Leaves Nggm N N = Ngem+Nr
1 267 346 979 3 42 1050 276 1326
2 822 1038 3153 3 100 3126 903 4029
3 1362 | 1540 5563 3 103 4632 1770 6402
4 2274 | 2418 9626 4 301 7266 3189 10455
5 5881 | 5200 26602 4 422 | 15612 9837 25449
6 12868 | 9402 61770 5 1175 | 28218 24495 52713
7 20258 | 12842 100200 6 1403 | 38538 41505 80043

inside the inclusion is constant. The exact solution forginess insid¢’, a special
case of the well-known Eshelby solution (see e.g. [17]),nievin. The nonzero
components of the stress insiflare given by

E " :

:1—1/

(no summation over) with

7= 10203 /00 ds
2 o (a2 +8)A(s)

andA(s) = (a? + s)Y2(a + 5)'/%(a2 + s)1/2.

This example is used here to demonstrate some of the corgnabfieatures
of the present BEM-FEM coupling method. The FEM domain igte&s the inclu-
sion, i.e.Qr = &, and the BEM-FEM interface is therefoi, the boundary of the
inclusion. Although in principle this example could be tezhby taking advantage
of the symmetries with respect to the three coordinate glahe entire domain has

Fig. 5. Inclusion problem: longitudinal sectiofx( z)-plane) of mesh 1.
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Fig. 6. Inclusion problem: non-zero stress componentsgaibe majorr-axis within the inclusion.

been modeled. The physical parameters used in the numexigaiples, in consis-
tent Sl units, ardZ = 2u(1+v) = 100, v = 0.1, = 1074, (ay, as, az) = (5, 3,2),
AT* = 10. The interfaceS, and the FEM regiori2s have been modelled using
seven meshes (Figure 5), involving DOFs for displacemen#nd tractiong, at
the interface nodes, and for displacementsat the internal FEM nodes (i.e. ex-
cluding the interface nodes). The BEM and FEM interpolatiare based on linear
three-noded boundary triangular elements and linearhoaied tetrahedral domain
elements, respectively. The problem siZésange between about 1300 (mesh 1)

15



Table 2
Inclusion problem: CPU timing using SPAI-based preconditig.

Mesh | Precond. (s) Time (s) Iters | Total time

BEM FEM | Upw. Downw. Direct Cycle| n (s)

1 10 <1 1 <1 <1 1 37 43

2 36 <1 1 1 <1 2 37 154

3 50 <1 1 2 <1 3 37 202

4 64 3 3 2 1 6 36 277

5 169 18 7 3 1 11 37 721

6 349 101 12 6 2 19 38 1425

7 512 279 18 6 18 42 38 2913

to about 80 000 (mesh 7). Details on the meshes, oct-treenpéees and numbers
of DOFs are provided in Table 1.

In Figure 6 the non-zero stress components, (022 andoss evaluated inside
£ and along the:-axis are plotted against the exact solution (35). The ages¢is
reasonable, with relative errors always less tB#n The comparatively high errors
recorded near the interface even with fine meshes have tochbeds to the FEM
and not to the coupling technique or to the FMM. The same te$isve been in
fact obtained with the traditional CBEM approach.

Table 2 displays for each of the seven meshes the computes tspent in
() the computation of the preconditioning blocks assadatvith the boundary
element and finite element parts of the system (10), (ii) tE®MBmatrix-vector
products performed using FMM for each iteration, and (ing toverall analysis.
In particular, the times recorded for setting up the BEMdabpart of the precon-
ditioner include the computation of the SPAI as explainedention 4. The term

1.E+04
Total Time (sec.)

Cross over point

1.E+03 4

I

1.E+02 4

-4 FMM-CBEM

—A— Traditional CBEM
1.E+01 4

DOFs

1.E+00 T !
1.E+03 1.E+04 1.E+05

Fig. 7. Inclusion problem: analysis tin¥& ') against problem sizé&/ for the traditional and FM-
M-based CBEM-FEM coupling methods.
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Table 3
Inclusion problem: CPU timing using diagonal preconditimnof BEM equations.

Mesh 1 2 3 4 5 6 7
Iters 48 51 53 55 57 58 60
Total time (s)| 63 156 208 315 835 1715 3426

“Cycle” refers to the overall time spent in one BEM matrixet@ products, while
“Direct” stands for the computer time spent in reading tharse direct influence
matrix (see end of section 3) and performing the matrix-eproduct with the
trial solution. The depth of the oct-tree structure was ghaha leaf should contain
at leastM = 25 elements. Setting up the preconditioners appears to egqbiout
25% of the overall analysis computing time for all meshagdly because comput-
ing the SPAI of (31) is a relatively time-consuming operat{aote in passing that
the recorded SPAI computation times are roughlyV), as expected). The overall
analysis timel'( V) also appears to increase in a roughly linear fashion withn
addition,T'( V) obtained using either conventional or FMM-based FEM-BEM-co
pling is plotted agains¥ in Figure 7. The conventional FEM-BEM coupling entails
aO(Nagy) storage requirement which prevented to actually perforenathalyses
for meshes 5, 6 and 7. Hence, this part of the graph, matexthkvith a dashed
line, is theO(N3gy) extrapolation of the values @f(N) recorded for meshes 1 to
4. A cross-over point appears aroung, ~ 310 The value ofN, is however
expected to be strongly problem-, mesh- and implementatependent. In most
cases, the total computing time reported in Table 2 exceestoRd+ Cyclex Iters
because of other tasks which are not reported in the tabld five exception of
mesh 4, most likely as a consequence of elementary timingg beunded off).

The same problem has been run for the seven meshes usinglarginmgezon-
ditioning strategy involving a diagonal preconditioninigtee BEM equations, i.e.
with [P*] defined by

ld0 0 O
PL:OIdOO
001Id O
000CT

while the definition (30) fof PR| is retained. Table 3 displays, for each of the seven
meshes, the overall computing time spent and the iterabantc A comparison of
tables 2 and 3 reveals that the SPAI-based preconditiorang ko reduced overall
analysis times and stable iteration counts, whereas tregida counts entailed by
the simpler preconditioner are higher and slowly increagé e problem size.
The sharp increase of “Direct” CPU time between meshes 6 aadikely due to
the fact that in the latter case the sparse direct influend¢exhtauld not be held in
the core memory.

Finally, to further demonstrate that the FMM-based CBEMVFEoupling
procedure can be applied to large problems, an arra§ »f8 x 8 = 256 iden-
tical spherical inclusions (diameter 1 m, centers placeth@inodes of a regular
cubical grid with node intervals of 3 m along the three pnoatidirections) em-
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Table 4
Many-inclusion problem: discretization parameters.

Nodes Elements Oct-tree DOFs
BEM FEM | Max.level Leaves Nggm Ng N = Ngem + Nr
93227 | 122880 326493 5 7176 | 374784 92289 467073
Table 5
Many-inclusion problem: CPU timing.
Precond. (s) Time (S) Iters | Total time
BEM FEM | Upw. Downw. Direct Cycle| n (s)
6609 19 47 48 84 180 | 147 39656

bedded in the infinite elastic medium, subjected to unifdrermal load, has been
considered. The other physical parameters are the samewas. dtihe BEM-FEM
mesh, whose main characteristics are reported in Tablatyres 480 three-noded
triangular boundary elements on each inclusion-matrierfate, about 1200 linear
four-noded tetrahedral domain elements in each inclusiod)N = 467073 DOFs
overall. The many-inclusion aspect of this problem makesjtecially well-suited
to FMM, which is here used for the evaluation of geometricaliell-separated
contributions (interaction terms between distinct in@as). In this example, the
truncation parameter = 5 was used in the FMM expansions and the depth of the
oct-tree structures was such that a leaf should contairaat D0 elements. Only
m = 25 non-zero terms for every row have been adopted for the aactein of the
sparsified preconditioner. Figure 8 displays a verticatisamf the array together
with the displacement magnitude displacement. The redacdsputing times and
iteration count are presented in Table 5 in the same forneatigusly used for the
single-inclusion problem.

j 01176
l010485
0.08211

- 0079367

- 0066625

0053882
004114
0028347
0.014655
0.0029134

Fig. 8. Many-inclusion problem: displacement magnitud@idr on a vertical section of the array
of spherical inclusions
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Fig. 9. Solid model of the Pian Telessio dam and rock foudati
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Fig. 10. Pian Telessio dam: mesh 3.

5.2 Pian Telessio dam

This second example involves the Pian Telessio dam, anravetgconcrete
structure located in the north-west of Italy. The main chaeastics of the dam
are: maximum height 80 m, crest lenght 515 m, crest maxintaudé 1919 m
above sea level, maximum storage level 1917 m above sea teselvoir volume
23.5105 m3. The structure and a large portion of the surrounding rockttation
around the dam have been subdivided into three zones, ashsekei Figure 9:
the dam, the concrete layer, and the rock foundation. Thadeny conditions are
Table 6

Pian Telessio dam: discretization parameters for the tQBEM-FEM meshes (1,2,3) and the
ABAQUS FEM comparison model (A).

Mesh | Nodes Elements Oct-tree DOFs
BEM FEM Max. level Leaves Ngewm Ne Total
1 25443 | 21684 (T3) 73569 (T4) 9 8953 | 38118 43797 81915
2 23433 | 7726 (T6) 10307 (T10 8 3548 | 50490 46773 97263
3 51978 | 15296 (T6) 14462 (T10 8 6786 | 96636 64152 160788
A 406035 — 279742 — — — — 1218105
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Table 7
Pian Telessio dam: CPU timing for the three CBEM-FEM meshe ) and the ABAQUS FEM
comparison model (A).

Mesh | Precond. (s) Time (s) Iters | Total time
BEs FEs| Upw. Down. Direct Cycle| n (s)
186 26 23 27 24 76 83 7916
328 114 11 21 23 57 82 5818
1215 223| 23 36 102 165 | 85 17775
- — | = — — — | = 3749

>lw N R

5.00E-03 -
Ux (m) (a)
4.00E-03
— ABAQUS
3.00E-03 —o—Mesh 1
—— Mesh 2

2.00E-03 = Mesh 3

1.00E-03 4 s (m)

0.00E+00

100 200 300 400 500
-1.00E-03 -

-2.00E-03

-3.00E-03 -

-4.00E-03 -

0 100 200 300 400 500
0.00E+00

s (m)

-2.00E-03 -

-4.00E-03 + — ABAQUS
—e—Mesh 1
-6.00E-03 { —+~Mesh 2
= Mesh 3

-8.00E-03 -

-1.00E-02 q

-1.20E-02

-1.40E-02

u
Aoz ) Y™ (b)

0 100 200 300 400 500
-2.00E-04

-4.00E-04 4
— ABAQUS

-6.00E-04 - —e-Mesh 1
——Mesh 2

-=—Mesh 3
-8.00E-04 -

-1.00E-03 -
-1.20E-03
-1.40E-03 -

-1.60E-03

-1.80E-03 -

Fig. 11. Pian Telessio dam: crest displacement Ux (a), Urfflo)Uz (c)
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Fig. 12. Pian Telessio dam: deformed shapes of a trans\erstibn
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Fig. 14. Pian Telessio dam: shear stress components

as follows: zero displacements are imposed on the bottonladedl surfaces of
the rock-foundation subdomain, a hydrostatic pressur@sied on the rear face
of the dam to take into account the stored water, and the etkternal surfaces
are traction-free. Finite elements were used for the firg aones, and bound-
ary elements for the third zone. All materials are treatedirsesar elastic, with
the following characteristics? = 33000 MPa,v = 0.12 andy = 2500 Kg/m?
(dam), £ = 30000 MPa,» = 0.12 and~y = 2500 Kg/m? (concrete layer) and
E = 20000 MPa,r = 0.2 (rock). Three CBEM-FEM meshes of increasing sizes
have been set up, together with a FEM model run with ABAQUScmmpari-
son purposes. Mesh 1 is based on linear three-noded boutnidaryular elements
and four-noded tetrahedral domain elements, while mestee®lZ3 are based on
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Fig. 15. Pian Telessio dam: stress components on the Ves#icBon (crest abscissa equalltolm)
obtained with the third mesh (left) and ABAQUS (right).

guadratic six-noded triangular boundary elements anchteted tetrahedral do-
main elements. Figure 10 depicts mesh 3, which involvestabggy = 10° and
Nr = 6 10* DOFs, respectively.

The truncation parameter in multipole expansions and tharman number
of elements in a leaf have been septe- 10 and M = 30, respectively. GMRES
was run without restarts. The SPAI preconditioning techrigresented in sec-
tion 4 has been adopted, the sparsified matrix being build wit= 50 non-zero
coefficients on each row. The comple&t&’ factorization has been chosen as left
preconditioner for the finite element coefficient matrixeaplained in the previous
section.
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The iteration counts and CPU times required by the variowsseé of the
FMM and by the overall analyses, recorded for the three CBFHEA meshes of
Table 6, are gathered in Table 7 using the same arrangementaisle 2. Again, a
sharp increase of “Direct” CPU time between meshes 2 andiBatesb that sparse
direct influence matrix for mesh 3 could not be held in the cosmory.

The crest displacements computed using the present CBEMI{EEhnique,
displayed in Figure 11, are seen to agree well with valuesionétl using the FEM
code ABAQUS. Discrepancies between the two computations haen registered
for thew, component, with a maximum difference of approximately0—> m when
using mesh 3. Obviously, if a better accuracy is requiredstblation procedure
should be stopped for a smaller relative error.

The deformed shapes of a transversal section of the dam (astabscissa
of 151 m), depicted in Figure 12, are also in good agreemett the ABAQUS
solution.

In Figures 13 and 14, the stress components evaluated anténface between
the concrete layer and the dam, along thpath, are reported. Meshes 2 and 3
(based on quadratic elements) yield better results tharh rhedased on linear
tetrahedral elements which are not well suited for highigusate stress analyses.

6 Summary

In this paper a coupling technique between the finite elemmezthod (FEM)
and the collocation boundary element method (CBEM) has pessented. Its main
feature is the recourse to the Fast Multipole Method in otddroth accelerate the
BEM contribution to the overall computation and allow BEM shes involving
large numbers of degrees of freedom. In addition, a pretimming strategy based
on the sparse approximate inverse concept has been impiemadl these issues
have been demonstrated and validated through numericariexgnts, run on a
Linux PC computer, involving up to aboutl0> BEM unknowns. The accuracy of
the numerical solutions is not influenced by the FMM if certparameters (multi-
pole truncation parameter minimum numbe\/ of elements in a leaf cell) are set
appropriately.

Several implementation areas are believed to have pokémtienprovement
of the overall computational performance. The heuristicsielecting the sparsity
pattern in the SPAI algorithm was a rather simple one, andceatainly be im-
proved upon. The preconditioning of the FEM part (a full Giedi decomposition
of the FEM stiffness matrix) certainly can be improved upeith potential savings
in core memory space. The computation and handling of thessglirect influence
matrix also has scope for optimization.

The CBEM-FEM coupling strategy was presented here for éMeraar prob-
lems. However, the extension of the present iterative &lgarto problems involv-
ing constitutive nonlinearity (e.g. plasticity) in the FEddmain should not give
rise to major difficulties.
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A Fast Multipole Method: useful formulae

This appendix provides the formulae for practical compatabf the solid harmonic®,, ,,
andS, ., and of the derivatives of th&,, ,,,, after references [23, 24] to which the reader is re-
ferred for more details. First, the evaluation®f ,,,(z) and.S,, .»(z), wherez denotes the generic
argument of these functions, is performed as follows:

e TheR, ,,(z) are computed recursively by settidty o(z) = 1 and using

Rotims (2) = %Rmz) (A1)
(n+1)2 =) Ros1m(2) — (21 4 1) 23R (2) + |22 Rutm(2) = 0 (A.2)

e TheS, ., (z) are computed recursively by settisg o(z) = 1/ |z| and using

(2n + 1)(221 + iZQ)Rn,n(z) (A3)

Sn+1,n+1(z) -
£
12 Spy1m(2) — (20 + 1)238, m(2) + (0% —m?)S,_1.m(2) =0 (A.4)
e Finally, R,, (z) andS, .. (z) for negative values af, are computed via the identities

Rn,—m(z) = (_1)mRn7m(Z) Sn,—m(z) = (_1)mSn,m(z) (A.5)

Identities (A.2) and (A.4) are used with > m. In addition, the derivatives of thg,, ,,, are com-
puted by means of the following formulae:

0 1

a—lenfm(z) - §(Rn—1,m—1 - Rn—l,m+1)(z)
0 i

8—Z2Rn,m(z) = §(Rn71,m71 + Rnfl,erl)(z) (A6)
0

8—Z3Rn,m(z) = Rnfl,m
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