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Palaiseau cedex, France

Abstract

BEM-FEM coupling is desirable for three-dimensional problems involving specific features such
as (i) large or unbounded media with linear constitutive properties, (ii) cracks, (iii) critical parts of
complex geometry requiring accurate stress analyses. However, for cases with a BEM discretiza-
tion involving a large numberNBEM of degrees of freedom, setting up the BEM contribution to
the coupled problem using conventional techniques is an expensiveO(N2

BEM) task. Moreover, the
fully-populated BEM block entails aO(N2

BEM) storage requirement and aO(N3
BEM) contribution to

the solution time via usual direct solvers. To overcome these pitfalls, the BEM contribution is for-
mulated using the fast multipole method (FMM) and the coupled equations are solved by means
of an iterative GMRES solver. Both the storage requirementsand the solution times are found
to be close toO(NBEM). A preconditioner based on the sparse approximate inverse of the BEM
block is shown to improve the convergence of the GMRES solver. Numerical examples involving
NBEM = O(105 − 106) unknowns, run on a PC computer, are presented; they include the Eshelby
inclusion (as a validation example), a many-inclusion configuration, and a dam structure.

Key words: BEM-FEM coupling, Fast multipole method, sparse approximate inverse

1 Introduction

The finite element method (FEM) and the boundary element method (BEM)
are important numerical tools for computing the solutions of many engineering
problems. FEM is appropriate for very large classes of situations, including e.g.

⋆ Computers and Strudtures, 83:700–717 (2005)
∗ Corresponding author.

Email addresses:margonar@ing.unitn.it (Massimiliano Margonari),
bonnet@lms.polytechnique.fr (Marc Bonnet).
1 This author was supported in the framework of a research project funded by MIUR (Cofin 2002)

Preprint submitted to Elsevier Science



those with heterogeneous or non-linear constitutive properties, or finite deforma-
tions. On the other hand, BEM is useful for modelling specialsituations such as
very large or unbounded domains, geometrical singularities (e.g. cracks) or to ob-
tain very accurate results in regions of complicated shape (see e.g. [1, 5, 6]). Cou-
pling the BEM and the FEM allows to exploit their complementary advantages
when the geometrical configuration warrants it.

The topic of BEM-FEM coupling has been studied since a long time, and many
such coupled formulations have been proposed and analysed [14]. In particular,
since the traditional collocation BEM (CBEM) formulationslead to unsymmetric
systems of coupled BEM-FEM equations, a number of investigations have been
directed towards either forcing the symmetry of the CBEM-FEM equations (like in
e.g. [3, 15]), or use a symmetric Galerkin BEM (SGBEM) formulation in order to
obtain naturally a symmetric system of BEM-FEM equations (see e.g. [7, 13, 19,
25]). The latter approach is well suited to optimally exploit direct solvers.

As the problem size grows, direct solvers applied to coupledBEM-FEM equa-
tions become impractical or infeasible with respect to bothcomputing time and
storage, even using specific implementation strategies such as out-of-core proce-
dures, mainly because of the fully-populated nature of the BEM matrices, whose
build-up computational cost and storage requirement are both of orderO(N2

BEM),
whereNBEM denotes the number of degrees of freedom (DOFs) supported bythe
BEM mesh, not to mention theO(N3

BEM) growth of the solution time. To overcome
these pitfalls, one needs to resort to iterative solution algorithms for linear systems,
together with an acceleration technique for computing the BEM contribution to the
residual of the matrix BEM-FEM equation.

Coupled SGBEM-FEM formulations usually lead to governing matrices that
are symmetric but not sign-definite. In such cases, iterative solvers do not take
advantage of the symmetry (in contrast with e.g. the conjugate-gradient technique
applied to positive definite problems). Hence the final symmetry of the coupled
problem is not as important as in connection with direct solvers. Since CBEM is
simpler and less costly to set-up, a good case can be made for considering the
unsymmetric CBEM-FEM approach.

In this article, a simple CBEM-FEM coupled approach leadingto a system
of equations solved by means of the generalized minimal residual (GMRES) itera-
tive algorithm [8, 22] is presented. The BEM part of the calculation is accelerated
by means of the Fast Multipole Method (FMM), a method originally introduced
by Rokhlin [20] and further discussed in e.g. [10] and in the recent review arti-
cle by Nishimura [18]. When applied to elastostatic BEM, it provides a reduction
of both storage requirements and computational cost toO(NBEM). These improve-
ments make BEM a viable tool (either on a stand-alone basis orcoupled with FEM)
for large problems. In addition, a preconditioning technique known as the SParse
Approximate Inverse (SPAI) technique is implemented for improving the conver-
gence (i.e. reducing the number of iterations) of GMRES. Thearticle is organized
as follows. In section 2, CBEM and FEM formulations are outlined and the coupled
problem is presented. Then, the FMM treatment of the BEM equations is presented
in section 3. The solution technique, and especially the preconditioning strategy, is
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discussed in section 4. Finally, numerical examples are examined in section 5.

2 Coupled CBEM-FEM formulation

Consider a solid occupying a three-dimensional regionΩ. A coupled BEM-
FEM model of the solid (Figure 1) is defined on the basis of a partition Ω = ΩB∪ΩF,
where∂ΩB (the boundary ofΩB) andΩF respectively support boundary element and
finite element discretizations. LetSI =∂ΩB ∩ ∂ΩF denote the BEM-FEM interface,
while SB andSF are the remaining surfaces such that∂ΩB = SI ∪ SB and∂ΩF =
SI ∪ SF. Both subregionsΩB, ΩF are here endowed with linear elastic properties:

σij = Cijkℓuk,ℓ (in ΩB) σij = CF
ijkℓuk,ℓ (in ΩF) (1)

whereui andσij denote the Cartesian components of displacements and stresses
andCijkℓ, C

F
ijkℓ are the components of the fourth-order elasticity tensors in each

region. Besides, homogeneous and isotropic properties areassumed inΩB, i.e.

Cijkℓ = 2µ
(

ν

1 − 2ν
δijδkℓ + δikδjℓ + δiℓδjk

)

(2)

(whereµ andν are the shear modulus and the Poisson ratio) whereas theCF
ijkℓ need

not be subjected to such restrictions. The isotropy assumption in ΩB is also not
mandatory, but is kept here for simplicity and definiteness.The interface need not
be simply connected, andSB orSF may be empty (the case of emptySB corresponds
to a FEM region embedded in an infinite medium).

CBEM equations. The governing equation forΩB is taken here as the usual
Somigliana displacement integral equation

cij(x)uj(x) +
∫

∂ΩB

Tij(x, y)uj(y) dSy −
∫

∂ΩB

Uij(x, y)tj(y) dSy

=
∫

∂ΩB

Pi(x, y) dSy (3)

whereti = σijnj denote the Cartesian components of traction vector defined in
terms of the componentsnj of the unit normal vector directed away fromΩB.

ΩB

SI

SB

SF

ΩF

Fig. 1. FEM-BEM coupling: geometry and notation.
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The kernelsUij(x, y) andTij(x, y) are the components of the Kelvin fundamen-
tal displacement and traction, whose expressions are givenlater in equations (14)
and (17). The last integral with kernelPi(x, y) arises when a known gravitational
load is considered. Thefree-termcij(x) is cij(x) = δij/2 if ∂ΩB is smooth at
the collocation pointx, and its value is also known ifx is located on an edge or
corner of∂ΩB [12, 16]. On introducing isoparametric boundary elements to model
geometry and boundary fields, considering in turn all mesh nodes as collocation
points, and performing the necessary numerical quadratures [3, 5] and singular in-
tegrations using a direct algorithm [12], equation (3) yields the collocation BEM
(CBEM) matrix equation

[H]{u} − [G]{t} = {P} (4)

where [H] and [G] are coefficient matrices,{u} and{t} collect nodal values of
boundary displacements and tractions, and{P} contains the contribution of the
gravitational load.

FEM equations. In ΩF the standard set of displacement-based FEM discretized
equations is considered, i.e.

[K]{u} = {F} + {T } (5)

whereu collects all displacement DOFs inΩF (including those onSI); [K] is the
elastic stiffness matrix;{F} gathers the nodal generalized forces associated with
known loads applied toΩF (e.g. gravitational body forces, prescribed tractions on
SF); and{T } collects the nodal generalized forces associated with tractions along
the BEM-FEM interface, i.e. the values of

{T } =
{

∫

SI

ti(y)φa(y) dSy

}

(1 ≤ i ≤ 3 , a ∈ NI) (6)

whereφa is the trace onSI of the FEM shape function associated with nodea of
SI and the setNI collects the numbers of all FEM nodes lying onSI. The stiffness
matrix [K] is symmetric, positive semidefinite and sparse; it is positive definite if
the boundary conditions onSF do not allow any rigid-body motion ofΩF consid-
ered in isolation. Here, a skyline storage of[K] has been used to take advantage of
symmetry and sparsity. No attempt at optimizing the storageof [K] through node
renumbering has been made, although this would certainly beuseful.

Coupled formulation. Finally, the coupled formulation must include relation-
ships between the displacement and tractions onSI associated withΩB andΩF.
Here, only the usual perfect bonding condition is considered, i.e.:

uB
i (y) = uF

i (y) and tB
i (y) = tF

i (y) (y ∈ SI) (7)

having conventionally defined the traction vector from bothsides ofSI in terms of
the same unit normal vector, namely that pointing away fromΩB. In the discretized
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formulations, these conditions can be imposed in a weak sense through the relations
∫

SI

[uB
i (y) − uF

i (y)]φa(y) dSy = 0
∫

SI

[tB
i (y) − tF

i (y)]φa(y) dSy = 0
(a ∈ NI) (8)

allowing the use of FEM and BEM interpolations whose traces on SI are not con-
forming, whereas the strong coupling conditions on the nodal values

uB
i (ya) = uF

i (y
a) , tB

i (ya) = tF
i (y

a) (a ∈ NI) (9)

require conforming interpolations onSI (interpolations are said to be conforming
on SI if the BEM mesh and the trace onSI of the FEM mesh (i) coincide, and
(ii) are associated with the same interpolation functions). In this article, the strong
coupling conditions (9) are adopted, but weak coupling of type (8) could be easily
considered as well.

Gathering equations (4), (5) and (9) leads to the coupled BEM-FEM set of
linear equations
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(10)

having introducing partitions of the DOFs so that{tI , uI} gathers the unknown
traction and displacement DOFs onSI , {zB} collects all unknown traction and dis-
placement DOFs onSB (i.e. thosenot prescribed by the boundary conditions), and
{uF} gathers the displacements at all nodes ofΩF not lying onSI . The number
NBEM of unknown DOFs on the BEM mesh (including the BEM-FEM interface)
is the cumulated length of{zB, tI, uI}, while the numberNF of internal DOFs on
the FEM mesh is the length of{uF}. The first two rows of (10) are obtained by (i)
partitioning the CBEM equation (4) according to whether thecollocation pointx
belongs toSB or SI, and (ii) performing the usual column-switching accordingto
the boundary conditions onSB, with the right-hand sidesBB,BI gathering all con-
tributions from prescribed data onSB. The last two rows of (10) correspond to the
subsets of FEM equations obtained by taking the shape function associated with
nodes onSI and insideΩF, respectively, as trial functions. In addition, the strong
coupling assumption implies that tractions onSI are modelled using the shape func-
tionsφa associated with the BEM discretization ofSI, so that the load vector{T }
in (5) becomes (in terms of the above partition){T } = [DII ]{tI}, where the entries
of the matrix[DII ] are

[DII ] =
[

δij

∫

SI

φa(y)φb(y) dSy

]

(1 ≤ i, j ≤ 3 , (a, b) ∈ NI ×NI) (11)

Solution strategy. In the system (10), the blocks generated by the CBEM equa-
tions are fully populated and nonsymmetric, whereas the blocks contributed by the
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FEM equations are sparse and symmetric. For problems of moderate size, direct
solvers may be applied to the system (10). This usually entails some sort of con-
densation, in order not to build explicitly the whole matrix(which features blocks
of zeros). Alternative BEM-FEM formulations based on the symmetric Galerkin
BEM instead of the CBEM lead to symmetric variants of the system (10).

As the problem size grows, direct solvers become impractical or infeasible
with respect to both computing time and storage, mainly due to the fully-populated
nature of the BEM blocks[G] and[H], and iterative solvers are used instead. In the
present case of non-symmetric coupled equations, the system (10) is solved using
the generalized minimal residual (GMRES) algorithm [8, 22], which is applicable
to general invertible square matrices. Such algorithms arebased on matrix-vector
evaluations, and therefore do not require actual storage ofthe matrix in (10).

In this context, traditional quadrature methods mean that each evaluation of
the BEM contribution to the matrix-vector product in (10), i.e. of the residuals

[ABB] {zB} − [GBI]{tI} + [HBI ]{uI}

[AIB] {zB} − [GII ]{tI} + [HII ]{uI}
(12)

is a O(N2
BEM) task, and BEM numerical quadratures are usually time-consuming

(i.e. the coefficient ofO(N2
BEM) is expected to be fairly large). To accelerate the

computation of the residuals (12), the Fast Multipole Method (FMM) is adopted.
In the present context of elastostatics, choosing this methodology allows to reduce
the computational burden of this task toO(NBEM). Detailed descriptions of FMM-
based algorithms can be found in [9, 10, 18]. Besides, the FEMstiffness matrix
[K] is evaluated only once, stored (in sky-line fashion) and then invoked at every
GMRES iteration. The computation of the sparse matrix[DII ] is very inexpensive
and is therefore done for every GMRES iteration (i.e.[DII ] is not stored).

The methodology and formulae pertaining to FMM applied to the Somigliana
integral equation (3) are concisely reviewed in section 3. Then, section 4 will ad-
dress the preconditioning strategy used in connection withthe GMRES algorithm.

3 Fast Multipole Method (FMM)

3.1 Multipole expansions for 3D elasticity

The FMM used in this article follows closely the treatment presented in [24]
for solving the hypersingular CBEM for elastostatic crack problems. The latter is
based on the following series expressing the inverse of the distancer = |y − x|
between two pointsy andx, expanded about two polesy0 andx

0:

1

r
=

+∞
∑

n=0

n
∑

m=−n

Rn,m(ŷ)
+∞
∑

n′=0

n′

∑

m′=−n′

(−1)nSn+n′,m+m′(r0)Rn′,m′(x̂) (13)

having putŷ = y − y
0, x̂ = x − x

0 andr
0 = y

0 − x
0, and where the overbar

indicates complex conjugation. The (complex-valued)solid harmonicsRn,m(z),
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y
r

Fig. 2. Geometrical notation for the multipole expansion.

Sn,m(z) can be evaluated by means of the recursive formulae (A.1) to (A.5) given
in the appendix. For fixed polesy0 andx

0, expansion (13) is convergent for ally

andx such that|ŷ| < |x − y
0| and|x̂| < |y − x

0| (Figure 2).
To take advantage of expansion (13), it is convenient to formulate the elasto-

static Kelvin fundamental displacement in the form

Uij(x, y) =
1

2µA

[

(3 − 4ν)δij
1

r
− (x̂j − r0

j − ŷj)
∂

∂xi

1

r

]

(14)

whereA = 8π(1 − ν). Introducing (13) into the above formula yields the series
expansion

Uij(x, y) =
1

2µA

+∞
∑

n=0

n
∑

m=−n

F m,n
ij (x̂−r

0)Rn,m(ŷ)+Gm,n
i (x̂−r

0)ŷjRn,m(ŷ) (15)

having put

F m,n
ij (x̂ − r

0) =
+∞
∑

n′=0

n′

∑

m′=−n′

(−1)nSn+n′,m+m′(r0)

×
[

(3 − 4ν)δijRn′,m′(x̂) − (x̂j − r0
j )

∂

∂xi
Rn′,m′(x̂)

]

Gm,n
i (x̂ − r

0) =
+∞
∑

n′=0

n′

∑

m′=−n′

(−1)nSn+n′,m+m′(r0)
∂

∂xi
Rn′,m′(x̂)

(16)

Then, the Kelvin traction vectorTij(x, y) is defined by

Tij(x, y) = Cjpkℓnp(y)
∂

∂yℓ
Uik(x, y) (17)

and therefore admits the series representation

Tij(x, y) =
1

2µA
Cjpkℓnp(y)

+∞
∑

n=0

n
∑

m=−n

{

F m,n
ik (x̂ − r

0)
∂

∂yℓ
Rn,m(ŷ)

+ Gm,n
i (x̂ − r

0)
∂

∂yℓ

(

ŷkRn,m(ŷ)
)

}

(18)

The iterative GMRES solver requires repeated evaluations of the residual of
the displacement integral equation (3) for known trial solutions(uj, tj). With that
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purpose in mind, let the surface∂ΩB be split into two complementary partsS(x0)
and S̄(x0), whereS(x0) containsx0 as an interior point. The residual of equa-
tion (3) for a trial solution(uj, tj) is recast in the form

cij(x)uj(x)+
∫

S(x0)
Tij(x, y)uj(y) dSy −

∫

S(x0)
Uij(x, y)tj(y) dSy + Īi(x) (19)

having omitted for simplicity the body force term and whereĪi(x), defined by

Īi(x) =
∫

S̄(x0)
Uij(x, y)tj(y) dSy −

∫

S̄(x0)
Tij(x, y)uj(y) dSy (20)

collects the far-field contributions relative tox or x
0. With respect to decompo-

sition (19), near-fieldelement integrals (i.e. those for elements lying inS(x0))
are to be evaluated by means of the usual numerical integration techniques classi-
cally used for BEMs [3, 5], while thefar-field contributionĪi(x) will be evaluated
with the help of the multipole expansions. Accordingly, decomposition (19) is only
considered for collocation pointsx lying insideS(x0) in such a way thatS(x0)
includes the support of all singular element integrals. Thedirect algorithm [12] is
chosen here for the evaluation of the latter, because decomposition (19) is not well
suited to using an indirect regularization based on a rigid-body identity.

On introducing the series representations (15) and (18) of the fundamental
kernels into (20),̄Ii(x) takes the form

Īi(x) =
1

2µA

+∞
∑

n=0

n
∑

m=−n

{

F m,n
ij (x̂ − r

0)
[

M t1
j;n,m(y0) − Mu1

j;n,m(y0)
]

+ Gm,n
i (x̂ − r

0)
[

M t2
n,m(y0) − Mu2

n,m(y0)
]

}

(21)

where themultipole momentsare defined by

M t1
j;n,m(y0) =

∫

S̄(x0)
Rn,m(ŷ)tj(y) dSy

M t2
n,m(y0) =

∫

S̄(x0)
ŷjRn,m(ŷ)tj(y) dSy

Mu1
j;n,m(y0) = Ckpjℓ

∫

S̄(x0)

∂

∂yℓ
Rn,m(ŷ)uk(y)np(y) dSy

Mu2
n,m(y0) = Ckpjℓ

∫

S̄(x0)

∂

∂yℓ

(

ŷjRn,m(ŷ)
)

uk(y)np(y) dSy

(22)

Further, introducing expressions (16) into (21), rearranging summations by switch-
ing dummy summation indices(m, n) and(m′, n′), Īi(x) takes the form

Īi(x) =
1

2µA

+∞
∑

n=0

n
∑

m=−n

{[

(3−4ν)δijRn,m(x̂)−(x̂j−r0
j )

∂

∂xi

Rn,m(x̂)
]

L1
j;n,m(x0)

+
∂

∂xi
Rn,m(x̂)L2

j;n,m(x0)
}

(23)
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where thelocal expansionsare related to the multipole moments by the following
“multipole-to-local” (M2L) relations:

L1
j;n,m(x0) =

+∞
∑

n′=0

n′

∑

m′=−n′

(−1)n′

Sn+n′,m+m′(r0)
[

M t1
j;n′,m′ − Mu1

j;n′,m′

]

(y0)

L2
n,m(x0) =

+∞
∑

n′=0

n′

∑

m′=−n′

Sn+n′,m+m′(r0)
[

M t2
n′,m′ − Mu2

n′,m′(y0)
]

(y0)

(24)

3.2 Outline of FMM algorithm

Traditional methods for evaluating the residual of integral equation (3) require
that all element integrals be recomputed each time a new collocation pointx is
considered, hence theO(N2

BEM) overall complexity of such operation. In contrast,
equation (23) shows that thesameset of local expansionsL1

j;n,m(x0), L2
j;n,m(x0)

allows the treatment of not one but a cluster of collocation points lying sufficiently
close to a polex0.

If there is a positive numberR such thatx̂ < R and |r0 + ŷ| > 2R, the
truncation error estimate

∣

∣

∣

∣

1

r
−

p
∑

n=0

n
∑

m=−n

Rn,m(ŷ)
n

∑

n′=0

n′

∑

m′=−n′

Sn+n′,m+m′(r0)Rn′,m′(x̂)

∣

∣

∣

∣

<
1

2p+1R
(25)

for the multipole expansion (13) [10] implies that the larger the radius of the cluster
of collocation points, the smaller the size of the far-field surfaceS̄(x0).

To exploit optimally the acceleration afforded by (23), a hierarchical oct-tree
structure of elements is introduced. For that purpose, a cube containing the whole
boundary∂ΩB, called ‘level-0 cell’, is divided into eight cubes (level-1 cells), each
of which is divided in the same fashion. A level-ℓ cell is divided into level-(ℓ+1)
cells unless it contains less than a preset (relatively small) numberM of boundary
elements (such cells are termedleaves). The FMM algorithm then consists of:
• An upward passwhere multipole moments (22) are first computed for the lowest-

level cells and then recursively aggregated by moving upward in the tree until
level 2 (for which there are4 × 4 × 4 cells overall) is reached. This operation
requires the so-called “multipole-to-multipole” (M2M) identities

M (u,t)1
j;n,m(y0) =

n
∑

n′=0

n′

∑

m′=−n′

Rn′,m′(y0′ − y
0)M (u,t)1

j;n−n′,m−m′(y0′)

M (u,t)2
n,m (y0) =

n
∑

n′=0

n′

∑

m′=−n′

Rn′,m′(y0′ − y
0)

[

M (u,t)2
n−n′,m−m′(y0′)

− (y0
j
′ − y0

j )M
(u,t)1
j;n−n′,m−m′(y0′)

]

(26)

to shift the origin from the centery0′ of a level-(ℓ+1) cell to the centery0 of a
level-ℓ cell.
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Y
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X
0

Y

Fig. 3. M2M, M2L and L2L translations

• A downward passwhere local expansions are first computed at levelℓ = 2 and
then evaluated at selected lower-level cells by tracing thetree structure down-
wards. This operation requires the so-called “local-to-local” (L2L) identities

L1
j;n,m(x0′) =

n
∑

n′=0

n′

∑

m′=−n′

Rn−n′,m−m′(x0′ − x
0)L1

j;n′,m′(x0)

L2
n,m(x0′) =

n
∑

n′=0

n′

∑

m′=−n′

Rn−n′,m−m′(x0′ − x
0)

[

L2
n′,m′(x0) − (x0

j
′ − x0

j )L
1
j;n′,m′(x0)

]

(27)

to shift the origin from the centerx0 of a level-(ℓ) cell to the centerx0′ of a
level-(ℓ+1) cell. At all levels, only interaction between well-separated cells are
so evaluated.

• A direct calculation, which includes all singular integrations, where the near-field
contributions to (19) are evaluated using conventional integration methods.

For BEM formulations of static problems, one computation ofthe residual of inte-
gral equation (3) the FMM is found to be aO(NBEM) task.

The near-field integrations, as they involve all singular and nearly-singular
integrations, are a costly (albeitO(NB)) task. For that reason, they were not re-
computed for each iteration (i.e. each evaluation of the residual (12)) in the present
implementation. Instead, that part of the matrix block is precomputed and assem-
bled into a matrix, prior to invoking GMRES. The near-field direct influence matrix
thus obtained is sparse, withO(NBEM) entries, and is of course stored accordingly.

4 Preconditioning strategy

As previously mentioned, the GMRES iterative algorithm is used for solving
the system (10) of CBEM-FEM equations. The convergence rateof iterative solvers
depends strongly on the spectral properties of the coefficient matrix. These spectral
properties can be improved by means of suitably chosen linear transformations,

10



i.e.preconditioning. Preconditioning iterative solvers is thus an important practical
issue, to which a great deal of attention is devoted in the literature [8, 21].

The linear system in equation (10) has the form

[A]{X} = {B} (28)

where theN×N matrix [A] is invertible but not symmetric. Preconditioning of (28)
can take any of the forms

[P L][A]{X} = [P L]{B} (left)

[A][P R]{Y } = {B} , {X} = [P R]{Y } (right)

[P L][A][P R]{Y } = [P L]{B} , {X} = [P R]{Y } (two-sided)

(29)

where theleft preconditioner[P L] or theright preconditioner[P R] might ideally be
chosen so that the governing matrix of the preconditioned system of equations is the
identity matrix. Of course, this would amount to solve the original system by means
of a direct solver, and therefore be of little practical value. A good preconditioning
strategy is such that the matrix of the resulting linear system of equations is as close
as possible to the identity matrix. This objective must in addition be fulfilled within
computing time and storage requirements significantly lower, and growing slower
with N , than those expected for the original system of equations.

Preconditioners are either implicit or explicit. The former require the solution
of a linear system for each step of the iterative procedure. The most popular are
based on an incomplete LU decomposition (ILU or ILUD) of the original matrix or
a sparsified version thereof, whereas the latter are based onan explicit evaluation
of the preconditioning matrices[P L] and/or[P R]. Such matrices are then usually
chosen to be sparse so as to reduce the storage requirement and the computational
complexity of the preconditioner evaluation.

In this article, a two-sided preconditioning of equation (10) has been adopted,
with the left and right preconditioning matrices defined by

P L =

















S
0

0

0 0 Id

0 0 0

0

C−T

















P R =















D(ABB) 0 0 0

0 D(−GII ) 0 0

0 0 D(KII) 0

0 0 0 C−1















(30)

where D(X) denotes the inverse of the main diagonal ofX, Id is the identity block
andKFF = CCT denotes the Choleski decomposition ofKFF. The blockS is con-
structed by computing, in a manner explained later in this section, the sparse ap-
proximate inverse (SPAI) of theNBEM × NBEM matrix











ABB −GBI HBI

AIB −GII HII

0 0 Diag(KII)











(31)
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and keeping only the first two rows (in the above block notation sense) of the result.
The blocksC andCT clearly define an implicit preconditioning on{uF}, while the
preconditioning acting on{zB, tI , uI} is of explicit type.

As mentioned above, the blockS in (30) results from the computation of a
sparse approximate inverse (SPAI). The concept of SPAI is described in e.g. [4, 11,
21], where in particular theoretical properties and invertibility of such precondi-
tioning matrices are discussed. This technique appears to be effective even when
applied to unsymmetric matrices and with an imposed sparsity of 97-99%. An ap-
plication of the SPAI preconditioning technique to a BEM formulation for electro-
magnetic wave problems is presented in [2].

The left sparse approximate inverse[A♯] of a generic square matrix[A] is de-
fined as the solution of the minimization problem

[A♯] = arg min
[E]

‖ [I] − [E][A] ‖2
F [E] ∈ R

N×N sparse (32)

where‖[E]‖F= (EabEab)
1/2 denotes the Frobenius norm and the sparsity constraint

may either take the form of a predetermined sparsity patternor be founda posteriori
so as to satisfy some supplementary optimality criterion. The former, obviously
simpler, approach is adopted here. The choice of the Frobenius norm allows to
decompose (32) intoN independent minimization problems for the rows of[A♯]:

{A♯
k} = arg min

{E}
‖ {ek} − {E}[A] ‖ {E} ∈ R

1×N sparse (33)

where{ek} and{A♯
k} are thekth row of the identity matrix and[A♯] respectively,

and the trial rowN-vector{E} is constrained by the preset sparsity pattern assigned
to thek-th row of [A♯].

The effectiveness of SPAI-based preconditioners largely depends on the choice
of sparsity pattern for[A♯]. This choice should be such that[A♯] provides a good
approximation of the largest entries in[A−1]. A difficulty arises in that the location
of such entries in[A−1] is usually not knowna priori. In [11] the sparsity pattern
is found for every row (or column) with an adaptive strategy,and the positions of
non-zero entries in[A♯] are iteratively modified to minimize the residual in (33). In
[2], four heuristics for selectinga priori the sparsity pattern of[A♯] are considered.

Here, the sparsity pattern is predetermined by means of the following strategy.
The numberm ≪ N of nonzero entries in each row of[A♯] is chosen. A sparse
approximation[Â] of [A] is created by assigning to[Â] them largest entries of each
row of [A], at the same locations, and setting all other entries of[Â] to zero. The
sparsity pattern of[Â] thus defined is then assigned to[A♯] as well, and the entries
of [A♯] are found by solving the minimization problems (33) with[A] replaced with
[Â]. Denoting byI(k) the set of them column indices of nonzero entries in the
k-th row of [A♯] or [Â], the independent minimization prolems are found to reduce
to the minimization of quadratic functionals overm-vectors:

{Â♯
i} = arg min

{Ê}∈R1,m

{

‖ {E}[Ãi] ‖
2 −2 trace({E}[Ãi]) + 1

}

(1≤ i≤N) (34)
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Fig. 4. Inclusion problem: geometry and notation.

where{Â♯
i} is them-vector of the nonzero entries of rowi of [A♯] and[Ãi] is the

m×m matrix with entries[Aab]a∈I(i),b∈I(a). TheN minimization problems (34) are
of small size, allowing for a relatively inexpensive set-upof [A♯]. Computing[A♯]
is therefore aO(m3N) task, while storing[A♯] requires aO(mN) ≪ N2 memory
space. They are well-posed provided the diagonal of[A] is included in the sparsity
pattern of[A♯], i.e. thatk ∈ I(k) for everyk.

As previously mentioned, the technique outlined above is used for computing
the sparse approximate inverse of the matrix defined by (31),from which the block
S of (30) is then extracted.

5 Numerical examples

Two numerical examples based on the CBEM-FEM coupling method descri-
bed above are presented in this section. The first one (section 5.1), which concerns
the response of an infinite medium to a uniform temperature applied over an ellip-
soidal region, has an exact solution. The second one (section 5.2) concerns a real
dam structure, in order to demonstrate the present couplingtechnique on a realistic
problem. For both examples, the stopping criterion for the GMRES algorithm was
a backward error less than10−5, i.e.: ‖ {B} − [A]{X} ‖ / ‖ {B} ‖≤ 10−5 with
the notations of equation (10). All computations were run ona Linux PC computer
equipped with one 3 GHz Pentium 4 CPU unit and 2 GBytes of core memory.

5.1 Eshelby solution

This first numerical example involves an infinite elastic body containing an
ellipsoidal inclusionE , with principal half axesa1, a2, a3 (Figure 4). The Cartesian
coordinate system is chosen such that the origin coincides with the center ofE while
the coordinate axes are directed along the principal axes ofE . The inclusion and the
surrounding medium have the same elastic moduli(µ, ν); in addition,E is endowed
with a constant thermal expansion coefficientα. The elastic response of the infinite
body to auniformtemperature increment∆T ⋆ applied overE is such that the stress

13



Table 1
Inclusion problem: meshes, oct-tree parameters and numbers of DOFs.

Mesh Nodes Elements Oct-tree DOFs

BEM FEM Max level Leaves NBEM NF N = NBEM+NF

1 267 346 979 3 42 1050 276 1326

2 822 1038 3153 3 100 3126 903 4029

3 1362 1540 5563 3 103 4632 1770 6402

4 2274 2418 9626 4 301 7266 3189 10455

5 5881 5200 26602 4 422 15612 9837 25449

6 12868 9402 61770 5 1175 28218 24495 52713

7 20258 12842 100200 6 1403 38538 41505 80043

inside the inclusion is constant. The exact solution for thestress insideE , a special
case of the well-known Eshelby solution (see e.g. [17]), is known. The nonzero
components of the stress insideE are given by

σii =
E

1 − ν
(Ii − 1)α∆T ⋆ (i = 1, 2, 3) (35)

(no summation overi) with

Ii =
a1a2a3

2

∫ ∞

0

ds

(a2
i + s)∆(s)

and∆(s) = (a2
1 + s)1/2(a2

2 + s)1/2(a2
3 + s)1/2.

This example is used here to demonstrate some of the computational features
of the present BEM-FEM coupling method. The FEM domain is taken as the inclu-
sion, i.e.ΩF = E , and the BEM-FEM interface is therefore∂E , the boundary of the
inclusion. Although in principle this example could be treated by taking advantage
of the symmetries with respect to the three coordinate planes, the entire domain has

x

z

y

FEM

BEM

Fig. 5. Inclusion problem: longitudinal section ((x, z)-plane) of mesh 1.
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Fig. 6. Inclusion problem: non-zero stress components along the majorx-axis within the inclusion.

been modeled. The physical parameters used in the numericalexamples, in consis-
tent SI units, areE = 2µ(1+ν) = 100, ν = 0.1, α = 10−4, (a1, a2, a3) = (5, 3, 2),
∆T ⋆ = 10. The interfaceSI and the FEM regionΩF have been modelled using
seven meshes (Figure 5), involving DOFs for displacementsuI and tractionstI at
the interface nodes, and for displacementsuF at the internal FEM nodes (i.e. ex-
cluding the interface nodes). The BEM and FEM interpolations are based on linear
three-noded boundary triangular elements and linear four-noded tetrahedral domain
elements, respectively. The problem sizesN range between about 1300 (mesh 1)
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Table 2
Inclusion problem: CPU timing using SPAI-based preconditioning.

Mesh Precond. (s) Time (s) Iters Total time

BEM FEM Upw. Downw. Direct Cycle n (s)

1 10 <1 1 <1 <1 1 37 43

2 36 <1 1 1 <1 2 37 154

3 50 <1 1 2 <1 3 37 202

4 64 3 3 2 1 6 36 277

5 169 18 7 3 1 11 37 721

6 349 101 12 6 2 19 38 1425

7 512 279 18 6 18 42 38 2913

to about 80 000 (mesh 7). Details on the meshes, oct-tree parameters and numbers
of DOFs are provided in Table 1.

In Figure 6 the non-zero stress components (σ11, σ22 andσ33 evaluated inside
E and along thex-axis are plotted against the exact solution (35). The agreement is
reasonable, with relative errors always less than3%. The comparatively high errors
recorded near the interface even with fine meshes have to be ascribed to the FEM
and not to the coupling technique or to the FMM. The same results have been in
fact obtained with the traditional CBEM approach.

Table 2 displays for each of the seven meshes the computer times spent in
(i) the computation of the preconditioning blocks associated with the boundary
element and finite element parts of the system (10), (ii) the BEM matrix-vector
products performed using FMM for each iteration, and (iii) the overall analysis.
In particular, the times recorded for setting up the BEM-based part of the precon-
ditioner include the computation of the SPAI as explained insection 4. The term

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+03 1.E+04 1.E+05

DOFs

Total Time (sec.)

FMM-CBEM

Traditional CBEM

Cross over point

Fig. 7. Inclusion problem: analysis timeT (N) against problem sizeN for the traditional and FM-
M-based CBEM-FEM coupling methods.
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Table 3
Inclusion problem: CPU timing using diagonal preconditioning of BEM equations.

Mesh 1 2 3 4 5 6 7

Iters 48 51 53 55 57 58 60

Total time (s) 63 156 208 315 835 1715 3426

“Cycle” refers to the overall time spent in one BEM matrix-vector products, while
“Direct” stands for the computer time spent in reading the sparse direct influence
matrix (see end of section 3) and performing the matrix-vector product with the
trial solution. The depth of the oct-tree structure was suchthat a leaf should contain
at leastM = 25 elements. Setting up the preconditioners appears to require about
25% of the overall analysis computing time for all meshes, largely because comput-
ing the SPAI of (31) is a relatively time-consuming operation (note in passing that
the recorded SPAI computation times are roughlyO(N), as expected). The overall
analysis timeT (N) also appears to increase in a roughly linear fashion withN . In
addition,T (N) obtained using either conventional or FMM-based FEM-BEM cou-
pling is plotted againstN in Figure 7. The conventional FEM-BEM coupling entails
a O(N2

BEM) storage requirement which prevented to actually perform the analyses
for meshes 5, 6 and 7. Hence, this part of the graph, materialized with a dashed
line, is theO(N2

BEM) extrapolation of the values ofT (N) recorded for meshes 1 to
4. A cross-over point appears aroundNc/o ≈ 3 104. The value ofNc/o is however
expected to be strongly problem-, mesh- and implementation-dependent. In most
cases, the total computing time reported in Table 2 exceeds Precond+Cycle× Iters
because of other tasks which are not reported in the table (with the exception of
mesh 4, most likely as a consequence of elementary timings being rounded off).

The same problem has been run for the seven meshes using a simpler precon-
ditioning strategy involving a diagonal preconditioning of the BEM equations, i.e.
with [P L] defined by

P L =















Id 0 0 0

0 Id 0 0

0 0 Id 0

0 0 0 C−T















while the definition (30) for[P R] is retained. Table 3 displays, for each of the seven
meshes, the overall computing time spent and the iteration count. A comparison of
tables 2 and 3 reveals that the SPAI-based preconditioning lears to reduced overall
analysis times and stable iteration counts, whereas the iteration counts entailed by
the simpler preconditioner are higher and slowly increase with the problem size.
The sharp increase of “Direct” CPU time between meshes 6 and 7is likely due to
the fact that in the latter case the sparse direct influence matrix could not be held in
the core memory.

Finally, to further demonstrate that the FMM-based CBEM-FEM coupling
procedure can be applied to large problems, an array of8 × 8 × 8 = 256 iden-
tical spherical inclusions (diameter 1 m, centers placed atthe nodes of a regular
cubical grid with node intervals of 3 m along the three principal directions) em-
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Table 4
Many-inclusion problem: discretization parameters.

Nodes Elements Oct-tree DOFs

BEM FEM Max. level Leaves NBEM NF N = NBEM + NF

93227 122880 326493 5 7176 374784 92289 467073

Table 5
Many-inclusion problem: CPU timing.

Precond. (s) Time (s) Iters Total time

BEM FEM Upw. Downw. Direct Cycle n (s)

6609 19 47 48 84 180 147 39656

bedded in the infinite elastic medium, subjected to uniform thermal load, has been
considered. The other physical parameters are the same as above. The BEM-FEM
mesh, whose main characteristics are reported in Table 4, features 480 three-noded
triangular boundary elements on each inclusion-matrix interface, about 1200 linear
four-noded tetrahedral domain elements in each inclusion,andN = 467073 DOFs
overall. The many-inclusion aspect of this problem makes itespecially well-suited
to FMM, which is here used for the evaluation of geometrically well-separated
contributions (interaction terms between distinct inclusions). In this example, the
truncation parameterp = 5 was used in the FMM expansions and the depth of the
oct-tree structures was such that a leaf should contain at least 100 elements. Only
m = 25 non-zero terms for every row have been adopted for the construction of the
sparsified preconditioner. Figure 8 displays a vertical section of the array together
with the displacement magnitude displacement. The recorded computing times and
iteration count are presented in Table 5 in the same format previously used for the
single-inclusion problem.

Fig. 8. Many-inclusion problem: displacement magnitude drawn on a vertical section of the array
of spherical inclusions

18



Dam

Rock

Water

1050
1010

448

Fig. 9. Solid model of the Pian Telessio dam and rock foundation

Fig. 10. Pian Telessio dam: mesh 3.

5.2 Pian Telessio dam

This second example involves the Pian Telessio dam, an arc-gravity concrete
structure located in the north-west of Italy. The main characteristics of the dam
are: maximum height 80 m, crest lenght 515 m, crest maximal altitude 1919 m
above sea level, maximum storage level 1917 m above sea level, reservoir volume
23.5 106 m3. The structure and a large portion of the surrounding rock foundation
around the dam have been subdivided into three zones, as sketched in Figure 9:
the dam, the concrete layer, and the rock foundation. The boundary conditions are

Table 6
Pian Telessio dam: discretization parameters for the threeCBEM-FEM meshes (1,2,3) and the
ABAQUS FEM comparison model (A).

Mesh Nodes Elements Oct-tree DOFs

BEM FEM Max. level Leaves NBEM NF Total

1 25443 21684 (T3) 73569 (T4) 9 8953 38118 43797 81915

2 23433 7726 (T6) 10307 (T10) 8 3548 50490 46773 97263

3 51978 15296 (T6) 14462 (T10) 8 6786 96636 64152 160788

A 406035 — 279742 — — — — 1218105
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Table 7
Pian Telessio dam: CPU timing for the three CBEM-FEM meshes (1,2,3) and the ABAQUS FEM
comparison model (A).

Mesh Precond. (s) Time (s) Iters Total time

BEs FEs Upw. Down. Direct Cycle n (s)

1 186 26 23 27 24 76 83 7916

2 328 114 11 21 23 57 82 5818

3 1215 223 23 36 102 165 85 17775

A — — — — — — — 3749
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Fig. 11. Pian Telessio dam: crest displacement Ux (a), Uy (b)and Uz (c)
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Fig. 13. Pian Telessio dam: normal stress components
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Fig. 14. Pian Telessio dam: shear stress components

as follows: zero displacements are imposed on the bottom andlateral surfaces of
the rock-foundation subdomain, a hydrostatic pressure is applied on the rear face
of the dam to take into account the stored water, and the otherexternal surfaces
are traction-free. Finite elements were used for the first two zones, and bound-
ary elements for the third zone. All materials are treated aslinear elastic, with
the following characteristics:E = 33000 MPa,ν = 0.12 andγ = 2500 Kg/m3

(dam),E = 30000 MPa, ν = 0.12 andγ = 2500 Kg/m3 (concrete layer) and
E = 20000 MPa,ν = 0.2 (rock). Three CBEM-FEM meshes of increasing sizes
have been set up, together with a FEM model run with ABAQUS forcompari-
son purposes. Mesh 1 is based on linear three-noded boundarytriangular elements
and four-noded tetrahedral domain elements, while meshes 2and 3 are based on
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Fig. 15. Pian Telessio dam: stress components on the vertical section (crest abscissa equal to151m)
obtained with the third mesh (left) and ABAQUS (right).

quadratic six-noded triangular boundary elements and ten-noded tetrahedral do-
main elements. Figure 10 depicts mesh 3, which involves about NBEM = 105 and
NF = 6 104 DOFs, respectively.

The truncation parameter in multipole expansions and the maximum number
of elements in a leaf have been set top = 10 andM = 30, respectively. GMRES
was run without restarts. The SPAI preconditioning technique presented in sec-
tion 4 has been adopted, the sparsified matrix being build with m = 50 non-zero
coefficients on each row. The completeCCt factorization has been chosen as left
preconditioner for the finite element coefficient matrix, asexplained in the previous
section.
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The iteration counts and CPU times required by the various phases of the
FMM and by the overall analyses, recorded for the three CBEM-FEM meshes of
Table 6, are gathered in Table 7 using the same arrangement asin Table 2. Again, a
sharp increase of “Direct” CPU time between meshes 2 and 3 indicates that sparse
direct influence matrix for mesh 3 could not be held in the corememory.

The crest displacements computed using the present CBEM-FEM technique,
displayed in Figure 11, are seen to agree well with values obtained using the FEM
code ABAQUS. Discrepancies between the two computations have been registered
for theuz component, with a maximum difference of approximately4·10−5 m when
using mesh 3. Obviously, if a better accuracy is required thesolution procedure
should be stopped for a smaller relative error.

The deformed shapes of a transversal section of the dam (at a crest abscissa
of 151 m), depicted in Figure 12, are also in good agreement with the ABAQUS
solution.

In Figures 13 and 14, the stress components evaluated on the interface between
the concrete layer and the dam, along thes path, are reported. Meshes 2 and 3
(based on quadratic elements) yield better results than mesh 1, based on linear
tetrahedral elements which are not well suited for highly accurate stress analyses.

6 Summary

In this paper a coupling technique between the finite elementmethod (FEM)
and the collocation boundary element method (CBEM) has beenpresented. Its main
feature is the recourse to the Fast Multipole Method in orderto both accelerate the
BEM contribution to the overall computation and allow BEM meshes involving
large numbers of degrees of freedom. In addition, a preconditioning strategy based
on the sparse approximate inverse concept has been implemented. All these issues
have been demonstrated and validated through numerical experiments, run on a
Linux PC computer, involving up to about4 105 BEM unknowns. The accuracy of
the numerical solutions is not influenced by the FMM if certain parameters (multi-
pole truncation parameterp, minimum numberM of elements in a leaf cell) are set
appropriately.

Several implementation areas are believed to have potential for improvement
of the overall computational performance. The heuristic for selecting the sparsity
pattern in the SPAI algorithm was a rather simple one, and cancertainly be im-
proved upon. The preconditioning of the FEM part (a full Choleski decomposition
of the FEM stiffness matrix) certainly can be improved upon,with potential savings
in core memory space. The computation and handling of the sparse direct influence
matrix also has scope for optimization.

The CBEM-FEM coupling strategy was presented here for overall linear prob-
lems. However, the extension of the present iterative algorithm to problems involv-
ing constitutive nonlinearity (e.g. plasticity) in the FEMdomain should not give
rise to major difficulties.
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A Fast Multipole Method: useful formulae

This appendix provides the formulae for practical computation of the solid harmonicsRn,m

andSn,m, and of the derivatives of theRn,m, after references [23, 24] to which the reader is re-
ferred for more details. First, the evaluation ofRn,m(z) andSn,m(z), wherez denotes the generic
argument of these functions, is performed as follows:
• TheRn,m(z) are computed recursively by settingR0,0(z) = 1 and using

Rn+1,n+1(z) =
z1 + iz2

2(n + 1)
Rn,n(z) (A.1)

((n + 1)2 − m2)Rn+1,m(z) − (2n + 1)z3Rn,m(z) + |z|2 Rn−1,m(z) = 0 (A.2)

• TheSn,m(z) are computed recursively by settingS0,0(z) = 1/ |z| and using

Sn+1,n+1(z) =
(2n + 1)(z1 + iz2)

|z|2
Rn,n(z) (A.3)

|z|2 Sn+1,m(z) − (2n + 1)z3Sn,m(z) + (n2 − m2)Sn−1,m(z) = 0 (A.4)

• Finally,Rn,m(z) andSn,m(z) for negative values ofm are computed via the identities

Rn,−m(z) = (−1)mRn,m(z) Sn,−m(z) = (−1)mSn,m(z) (A.5)

Identities (A.2) and (A.4) are used withn ≥ m. In addition, the derivatives of theRn,m are com-
puted by means of the following formulae:

∂

∂z1

Rn,m(z) =
1

2
(Rn−1,m−1 − Rn−1,m+1)(z)

∂

∂z2

Rn,m(z) =
i

2
(Rn−1,m−1 + Rn−1,m+1)(z) (A.6)

∂

∂z3

Rn,m(z) = Rn−1,m
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