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SUMMARY

This paper is concerned with an application of the concept oftopological derivative to elastic-wave imaging of
finite solid bodies containing cavities. Building on the approach originally proposed in the (elastostatic) theory of
shape optimization, the topological derivative, which quantifies the sensitivity of a featured cost functional due
to the creation of an infinitesimal hole in the cavity-free (reference) body, is used as avoid indicatorthrough an
assembly of sampling points where it attains negative values. The computation of topological derivative is shown
to involve an elastodynamic solution to a set of supplementary boundary-value problems for the reference body,
which are here formulated as boundary integral equations. For a comprehensive treatment of the subject, formulas
for topological sensitivity are obtained using three alternative methodologies, namely i) direct differentiation
approach, ii) adjoint field method, and iii) limiting form ofthe shape sensitivity analysis. The competing techniques
are further shown to lead to distinct computational procedures. Methodologies (i) and (ii) are implemented within
a BEM-based platform and validated against an analytical solution. A set of numerical results is included to
illustrate the utility of topological derivative for 3D elastic-wave sounding of solid bodies; an approach that may
perform best when used as a pre-conditioning tool for more accurate, gradient-based imaging algorithms. Despite
the fact that the formulation and results presented in this investigation are established on the basis of a boundary
integral solution, the proposed methodology is readily applicable to other computational platforms such as the
finite element and finite difference techniques.
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1. INTRODUCTION

In recent times, rapid advances in sensor and signal processing technologies have exposed the need for
efficient 3D elastodynamic solutions to inverse scatteringproblems. Similar to their electromagnetic
counterpart, elastic waves find applications as a sensing tool in diverse areas of engineering
such as medical imaging, seismic surveys, and nondestructive material testing. In general, inverse
elastodynamic solutions are derived from either of the three computational cornerstones that include i)
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(far-field) ray theory [1], ii) finite-difference approximation of the wave equation [2], and iii) boundary
integral equation (BIE) formulations [3]. In the context ofthree-dimensional imaging, these approaches
bear substantial computational cost associated with solving the forward elastic-scattering problem. This
precludes the use of global search techniques such as genetic algorithms which entail a large number
of forward simulations. To mitigate the problem, gradient-based optimization algorithms have been
proposed as a computationally-tractable alternative to solving inverse scattering problems, especially
when ameliorated by the analytical shape sensitivity estimates [4, 5]. Unfortunately, the latter class
of solutions necessitate a reliable prior information about the location, topology and geometry of
a hidden scatterer (e.g. defect) for satisfactory performance. As a result, their stand-alone use may
not be sufficient for 3D elastodynamic imaging which intrinsically involves minimization in a high-
dimensional parametric space.

Driven by the foregoing considerations, the focus of this study is a robust, yet computationally
efficient approach for preliminary elastic-wave imaging of3D solid bodies (containing cavities) based
on the concept of topological derivative. With reference toa generic cost functionalJ of the body
shape, its topological derivative,T (xo), synthesizes the sensitivity ofJ with respect to the creation
of an infinitesimal cavity at a prescribed locationxo inside the reference, i.e. cavity-free counterpart
of the probed body. The concept of topological derivative first appeared in [6] and [7] in the context
of topological optimization of mechanical structures (see[8] for a description of the subject), wherein
the spatial distribution ofT (xo) was used in an iterative procedure as a criterion for the removal of
“excess” material through regions whereT < 0. Recently, its rigorous mathematical formulation has
been established within the framework of elastostatic problems and Laplace equation [9, 10]. Beyond
its direct application to the topology and shape optimization of structures, however, the topological
derivative is also expected to facilitate the minimization-based solution of inverse scattering problems
by providing, through a first-order approximation, a rational basis for selecting the number, location,
and geometry of hidden defects, all of which are essential for establishing a reliable initial “guess”
(see also [11, 12] for the developments in 2D elastostatics). In the previous study [13], this idea
was considered in the context of inverse elastic scatteringpertaining tosemi-infiniteand infinite
domains, where the availability of suitable fundamental solutionsmade it possible to establish explicit
expressions forT (xo).

The present study is a part of ongoing research by the authorson the identification of cavities in
a finite 3D body from non-invasive elastodynamic measurements. Thetopological derivative is hence
established in connection with a generic cost function expressed in the form of an integral over the
body’s external boundary and whose kernel involves the solution of the forward elastic scattering
problem. This format constitutes a natural generalizationof the least-squares misfit function, assumed
in the ensuing numerical study. Owing to the fact that the fundamental solutions for a finite body of
arbitrary shape are generally unavailable, it is no longer possible to obtain explicit expressions for
T (xo). Instead, the computation ofT (xo) is shown to entail the computation of the solutions of a set
of supplementary boundary-value problems for the reference (cavity-free) body. In an effort to provide
a comprehensive treatment of the subject, formulas for topological derivative are obtained using: i)
the direct differentiationapproach, ii)adjoint fieldapproach, and iii)shape sensitivityanalysis. The
point of departure for the first two methods is an asymptotic expansion of the featured cost functional
with respect to the creation of an infinitesimal hole in the otherwise intact reference solid. This in turn
requires the knowledge of the leading contribution of the scattered field for a vanishing cavity. By
means of a boundary integral analysis, the latter solution is found to be governed by a pair of separable
problems: a) an elastostatic exterior problem for the scaled cavity in an elastic free space, and b) an
elastodynamic interior problem for the reference body involving point sources acting atxo. With such
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result, the first approach yields a formula for topological derivative involving the solutions to problems
a) and b), in a fashion similar to the direct differentiationapproach for shape sensitivity analyses. The
second approach leads to a distinct formula, involving the solutions to problem a) and an adjoint field
defined on the cavity-free reference body. The latter formula for topological derivative is also obtained
via the third approach, this time by taking a zero-size limitof the suitable shape-sensitivity expression
for a finite cavity (e.g. [5]). One should mention that the foregoing three methodologies have been
employed elsewhere, e.g. in [13] for inverse scattering in semi-infinite media, and in [9] and [14]
for static optimization problems, as a tool for obtainingT . To the authors’ knowledge, however,
their parallel development and comparison for three-dimensional elastodynamics and a common
computational platform have eluded the previous studies. Aset of numerical results for a basic 3D
configuration is included to examine the utility of topological derivative for preliminary elastic-wave
imaging of solid bodies. Notwithstanding the fact that the formulation and results presented in this
study are established on the basis of a BIE solution, the proposed methodology is readily applicable
to other computational platforms such as the finite element method. The present study emphasizes
the development of topological sensitivity as a preparatory tool for more accurate, gradient-based
solution algorithms. In such framework, the computationalcost entailed by the topological sensitivity
calculation is of the order of one forward elastodynamic solution, and therefore modest compared to
that of the subsequent minimization of the output least squares functional. Another possibility, not
pursued here, consists of defining an imaging algorithm entirely based on the topological derivative,
in which the preliminary computation ofT would be followed by an iterative procedure, each step
involving matter removal based on the current distributionof T and re-computation ofT for the new
domain.

2. PRELIMINARIES

Let Ωtrue denote a finite elastic body bounded by the external surfaceS and characterized by the shear
modulusµ, Poisson’s ratioν and mass densityρ. An unknown cavity (or a set thereof)Btrue bounded by
the closed surface(s)Γtrue is embedded inΩtrue, so thatΩtrue = Ω\Btrue whereΩ denotes the reference,
i.e. cavity-free counterpart ofΩtrue. On applying a steady-state tractionp onS with angular frequency
ω, an elastodynamic stateutrue arises which satisfies the field equations and boundary conditions

∇·(C :∇utrue) = −ρω2utrue (ξ ∈ Ωtrue),

ttrue = p (ξ ∈ SN),

ttrue = 0 (ξ ∈ Γtrue),

utrue = 0 (ξ ∈ SD).

(1)

whereξ denotes the position vector. Here, the external surfaceS is divided into complementary subsets
SN andSD supporting prescribed tractions and displacements, respectively; ttrue ≡ σtrue·n = (C :
∇utrue)·n denotes the traction vector associated with the displacement utrue through Hooke’s law, and

C = 2µ
[ ν

1 − 2ν
I2 ⊗ I2 + I

sym
4

]

is the isotropic elasticity tensor withI2 andI
sym
4 symbolizing the second-order and symmetric fourth-

order identity tensors, respectively. For simplicity, it is assumed thatω is not an eigenfrequency of any
of the boundary-value problems appearing in the ensuing developments.
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For the inverse scattering problem of interest, where the location, topology and geometry ofBtrue

(or equivalentlyΓtrue) is being sought, the trace ofutrue on S is assumed to be available over the
measurement regionSobs ⊂ SN. In what follows, these measurements will be denoted byuobs, so that
uobs(ξ, ω) = utrue(ξ, ω), ξ ∈ Sobs.

To facilitate the ensuing developments, letuc denote the solution to the forward problem for a given
excitationp and a trial cavityBc bounded byΓ. Accordingly, the forward solutionuc is defined over
Ωc = Ω \ B̄c, and is governed by the equations

∇·(C :∇uc) = −ρω2uc (ξ ∈ Ωc),

tc = p (ξ ∈ SN),

tc = 0 (ξ ∈ Γ).

uc = 0 (ξ ∈ SD).

(2)

wheretc is the traction vector associated withuc.
To establish a rational framework for solving the inverse problem, a misfit function is set up in order

to minimize the difference betweenuobsanduc. The weighted least-squares misfit function, commonly
used for such purpose, is defined here as

J (Ωc; p) =
1

2

∫

Sobs

(uc−uobs(ξ)) · W (ξ) · (uc−uobs(ξ)) dΓξ (3)

whereW (ξ) is a3×3 matrix-valued weighting function, assumed to be symmetricand positive definite
(the simplest choice beingW (ξ) = I2), while overbar denotes complex conjugation. In general, (3)
can be considered as a special case of the class of cost functions permitting the format

J (Ωc; p) =

∫

Sobs

ϕ(uc(ξ), ξ) dΓξ (4)

where

ϕ(w, ξ) =
1

2
(w(ξ)−uobs(ξ)) · W (ξ) · (w(ξ)−uobs(ξ)) (5)

Governing integral equation for the forward problem

Let ûk
i (ξ, x, ω) and t̂ki (ξ, x, ω; n) = σ̂k

ij(ξ, x, ω)nj(ξ) denote respectively thei-th Cartesian
components of the elastodynamic fundamental solution, i.e. of the displacement and traction vectors at
ξ due to a unit (time-harmonic) point force acting atx in thek-th direction in an infinite homogeneous
elastic solid characterized by the shear modulusµ, Poisson’s ratioν and mass densityρ. This
fundamental solution can be decomposed into a singular partand a regular (residual) component via

ûk
i (ξ, x, ω) = ûk

i (ξ, x) + [ûk
i (ξ, x, ω)]2,

t̂ki (ξ, x, ω; n) = t̂ki (ξ, x; n) + [t̂ki (ξ, x, ω; n)]2,
(6)

where ûk
i (ξ, x) and t̂ki (ξ, x; n), which constitute the singular part, are given by the elastostatic

fundamental solution for an infinite solid (i.e. the Kelvin solution). With such definitions, the forward
problem (2) can be formulated in terms of a boundary integralequation (BIE):

∫

S∪Γ

{
uc

i (ξ, ω) − uc
i(x, ω)

}
t̂ki (ξ, x; n) dΓξ +

∫

S∪Γ

uc
i (ξ, ω)[t̂ki (ξ, x, ω; n)]2 dΓξ

=

∫

S

tci (ξ)ûk
i (ξ, x, ω) dΓξ (x ∈ Γ ∪ S) (7)

with uc = 0 onSD andtc = p onSN.
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3. TOPOLOGICAL DERIVATIVE

To aid the gradient-based minimization of (4) that is often used as a tool for identifyingBtrue on the
basis ofuobs, of interest here is the development of topological derivative for the cost functionals
J (Ω; p) of form (4), which would facilitate rational selection of the necessary initial “guess” in terms
of the location, topology and geometry ofBtrue. To this end, letBε(x

o) = xo + εB, whereB ⊂ R
3

is a fixed bounded open set with boundaryS and volume|B| containing the origin, define the region
of space occupied by a cavity of (small) sizeε > 0 containing a fixed sampling pointxo. Following
[10, 9], one is in particular interested in the asymptotic behavior ofJ (Ωε; p) for infinitesimalε > 0,
whereΩε = Ω\Bε(x

o), andBε(x
o) is the closure ofBε(x

o). With reference to this limiting behavior,
the topological derivativeT (xo, ω) of the cost functionalJ (Ω; p) at xo for a cavity-free body is
defined through the expansion:

J (Ωε; p) = J (Ω; p) + ε3 |B|T (xo, ω) + o(ε3) (ε ≪ Diameter(Ω), Bε(x
o) ⊂ Ω) (8)

One may note that this definition is not restricted to spherical infinitesimal cavities (for whichB is the
unit ball,S the unit sphere and|B| = 4π/3). In general, the valueT (xo, ω) is expected to depend on
the shape ofB. Also, the postulatedO(ε3) asymptotic behavior ofJ (Ωε; p) − J (Ω; p) is chosen
for simplicity because it is known to hold for traction-freecavities in the 3-D elastostatic case [10, 9].
The analysis to follow will corroborate this choice, and would allow to find this behavior were it left
unspecified in definition (8).

With reference to (8), the evaluation ofJ (Ωε; p) requires the knowledge of the elastodynamic
solutionuε to the forward problem (2) withBc replaced byBε ≡ Bε(x

o). To this end, it is convenient
to decompose the total displacement fielduε as

uε = u + ũε (9)

whereũε denotes thescattered field, andu is the free fielddefined as the response of the void-free
(reference) solidΩ due to given excitation (i.e. boundary traction)p, so that

∇·(C :∇u) = −ρω2u (ξ ∈ Ω),

t = p (ξ ∈ SN),

u = 0 (ξ ∈ SD),

(10)

wheret is the traction vector associated withu. At this point, it is important to emphasize that the
notions of void-free reference configuration and the assocated free field, postulated for clarity reasons,
do not restrict the applicability of topological sensitivity to more general geometric configurations. For
example, the techniques developed in this study are equallyapplicable to reference solids containing
pre-existing cavities and, in particular, to iterative imaging algorithms where the voids identified in a
previous iteration are used to update the reference configuration for the next step.

By analogy to (7), the free field is governed by the integral equation

uk(x, ω) +

∫

S

{
ui(ξ, ω) − ui(x, ω)

}
t̂ki (ξ, x; n) dΓξ +

∫

S

ui(ξ, ω)[t̂ki (ξ, x, ω; n)]2 dΓξ

=

∫

S

ti(ξ)ûk
i (ξ, x, ω) dΓξ (x ∈ S) (11)

with u = 0 onSD andt = p onSN. For infinitesimalε the scattered field is expected to vanish, i.e.

lim
ε→0

|ũε(x)| = 0 (x ∈ Ωc) (12)
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whereas the free-field, by its definition (10), does not depend onε. On the basis of (4) and (12), one
may expandJ (Ωε; p) with respect tõuε as

J (Ωε; p) =

∫

Sobs

ϕ(uε(ξ), ξ) dΓξ

=

∫

Sobs

[

ϕ(u(ξ), ξ) + Re
(∂ϕ

∂u

(
u(ξ), ξ

)
·ũε(ξ)

)

+ o(|ũε(ξ)|)
]

dΓξ

= J (Ω; p) +

∫

Sobs

Re
(∂ϕ

∂u

(
u(ξ), ξ

)
·ũε(ξ)

)

dΓξ + o(‖ ũε ‖) (13)

where
∂ϕ

∂w
≡

∂ϕ

∂wR
− i

∂ϕ

∂wI

(
wR = Re(w) , wI = Im(w)

)
(14)

By means of (8) and (13), the topological derivative ofJ (Ω; p) can be recast as:

T (xo, ω) = lim
ε→0

1

ε3 |B|

∫

Sobs

Re
(∂ϕ

∂u

(
u(ξ), ξ

)
·ũε(ξ)

)

dΓξ. (15)

To estimate the leading perturbation term
∫

Sobs

Re
(∂ϕ

∂u

(
u(ξ), ξ

)
·ũε(ξ)

)

dΓξ

one can resort to either i) adirect approach, ii) anadjoint fieldmethod, or iii) limiting form of the
shape sensitivityanalysis. These alternative methodologies for computing the topological sensitivity
are presented in Sections 4, 5 and 6, respectively.

4. DIRECT APPROACH

The direct approach for the computation of topological derivative proposed in this study represents a
generalization of the methodology developed in [13] for theinverse scattering problems in infinite and
semi-infinite media. It entails a substitution of the leading contribution ofũε into (15) and seeking the
limit of the resulting expression asε → 0. It is therefore essential for this purpose to find the leading
asymptotic behavior of̃uε asε → 0.

4.1. Leading contribution of̃uε asε → 0

From (2) with uc replaced withuε, (9) and (10), it follows that the scattered field̃uε solves the
boundary-value problem:

∇·(C :∇ũε) = −ρω2ũε (ξ ∈ Ωε),

t̃ε = 0 (ξ ∈ SN),

ũε = 0 (ξ ∈ SD),

t̃ε = −σ ·n (ξ ∈ Γε)

(16)

whereσ = C :∇u is the stress tensor associated with the free field (10),Γε is the boundary ofBǫ,
andn is the normal onS ∪ Γε outward toΩε. As a result,ũε is governed by a boundary integral
equation analogous to (7) but with i)Γ superseded byΓε, and ii) applied loading being given by the
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surface traction−σ·n distributed overΓε instead ofp acting onSN. To investigate the limiting form of
this integral equation asε → 0, it is convenient to distinguish between the two distinct cases, namely
x ∈ S andx ∈ Γε (x being the collocation point), so that the boundary traces of(ũε, t̃ε) onS andΓε

can be defined in terms of a pair of integral equations:

ũε
k(x, ω) +

∫

Γε

{
ũε

i (ξ, ω) − ũε
i (x, ω)

}
t̂ki (ξ, x; n) dΓξ +

∫

Γε

ũε
i (ξ, ω)[t̂ki (ξ, x, ω; n)]2 dΓξ

+

∫

S

ũε
i (ξ, ω)t̂ki (ξ, x, ω; n) dΓξ −

∫

SD

t̃εi (ξ, ω)ûk
i (ξ, x, ω) dΓξ

= −

∫

Γε

ti(ξ, ω)ûk
i (ξ, x, ω) dΓξ (x ∈ Γε) (17)

and
∫

S

{
ũε

i (ξ, ω) − ũε
i (x, ω)

}
t̂ki (ξ, x; n) dΓξ +

∫

S

ũε
i (ξ, ω)[t̂ki (ξ, x, ω; n)]2 dΓξ

+

∫

Γε

ũε
i (ξ, ω)t̂ki (ξ, x, ω; n) dΓξ

=

∫

SD

t̃εi (ξ, ω)ûk
i (ξ, x, ω) dΓξ −

∫

Γε

ti(ξ, ω)ûk
i (ξ, x, ω) dΓξ (x ∈ S) (18)

whereti = σijnj is the traction associated with the free field. One may note the absence of the free
term (̃uε

k(x, ω)) from BIE (18) owing to the fact thatS is anexternalboundary ofΩε (e.g. [15]). To
find the equations governing the leading contribution of(ũε, t̃ε) asε → 0, one has to establish the
asymptotic form of the system (17) and (18). For this purpose, scaled coordinates̄x = (x−xo)/ε and
ξ̄ = (ξ − xo)/ε (wherex̄, ξ̄ ∈ S ) are introduced whenx ∈ Γε or ξ ∈ Γε, respectively. In particular,
one has

dΓξ = ε2 dϑξ̄ (ξ ∈ Γε, ξ̄ ∈ S ) (19)

where dϑ denotes a differential element of the surfaceS boundingB ⊂ R
3.

Preliminary estimate of(ũε, t̃ε) on S. In what follows, the traces of̃uε on SN andΓε and of t̃ε on
SD will be denoted respectively as̃uε

SN
, ũε

Γε
andt̃ε

SD
. In view of (12), it is natural to assume tentatively

that
∣
∣ũε

Γε

∣
∣ = O(εd), where the exponentd > 0 is to be found. Based on this assumption, (18) can be

used to estimate the behavior ofũε
SN

andt̃ε
SD

asε → 0. For such purpose, one may note that
∫

Γε

ũε
i (ξ, ω)t̂ki (ξ, x, ω; n) dΓξ = ε2σ̂k

ij(x
o, x, ω)

∫

S

ũε
i (x

o + εξ̄, ω)nj(ξ̄) dϑξ̄ + o(εd+2) (20)

and
∫

Γε

ti(ξ, ω)ûk
i (ξ, x, ω) dΓξ =

ûk
i (xo, x, ω)σij(x

o, ω)

∫

Γε

nj(ξ)dΓξ

︸ ︷︷ ︸

=0

+
[
ûk

i (xo, x, ω)σij(x
o, ω)

]

,ℓ

∫

Γε

nj(ξ)(ξℓ−x0
ℓ) dΓξ

︸ ︷︷ ︸

=−δjℓε3|B|

+ o(ε3)

=
[

ρω2ûk
i (xo, x, ω)ui(x

o, ω) − ûk
i,j(x

o, x, ω)σij(x
o, ω)

]

ε3 |B| + o(ε3) (x ∈ S) (21)
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SOUNDING OF FINITE SOLID BODIES BY WAY OF TOPOLOGICAL DERIVATIVE 2351

On the other hand, the remaining terms in (18) have the form

LS

{
ũε

SN
, t̃ε

SD

}

where the linear integral operatorLS clearly does not depend onε. On the basis of this result, (20),
and (21), integral equation (18) can be recast as

LS

{
ũε

SN
, t̃ε

SD

}
= O

(
εmin(d+2, 3)

)
asε → 0 (22)

It follows thatũε
SN

andt̃ε
SD

(i.e. the traces of̃uε on SN andt̃ε on SD) areO(εmin(d+2, 3)), i.e. that one

can represent the leading contributions ofũε
SN

andt̃ε
SD

asε → 0 in terms of auxiliary functionsV (ξ)
andT (ξ) which are independent ofε, so that:

ũε
SN

(ξ) = εmin(d + 2, 3) |B|
[
V (ξ) + o(1)

]
, |V | = O(1) (ξ ∈ SN)

t̃ε
SD

(ξ) = εmin(d + 2, 3) |B|
[
T (ξ) + o(1)

]
, |T | = O(1) (ξ ∈ SD) (23)

Asymptotic form of equation (17).One may note that (17) involves integrals overS andΓε. By virtue
of (23a), the integrals overS in (17) are readily seen to be of order

∫

S

ũε
i (ξ, ω)t̂ki (ξ, x, ω; n) dΓξ = O

(
εmin(d+2, 3))

∫

S

t̃εi (ξ, ω)ûk
i (ξ, x, ω) dΓξ = O

(
εmin(d+2, 3)

)
.

(24)

For the integrals overΓε in (17), on the other hand, one hasx ∈ Γε andξ ∈ Γε. In this case, one
can show that

ûk
i (ξ, x, ω) =

1

ε
ûk

i (ξ̄, x̄) + O(1) t̂ki (ξ, x, ω; n) =
1

ε2
t̂ki (ξ̄, x̄; n) + O(1) , x, ξ ∈ Γε (25)

and

[ûk
i (xo + εξ̄, xo + εx̄, ω)]2 = O(1) [t̂ki (xo + εξ̄, xo + εx̄, ω; n)]2 = O(1) , x, ξ ∈ Γε (26)

whereûk
i (ξ̄, x̄) and t̂ki (ξ̄, x̄; n) are respectively the displacement and traction given by theKelvin

fundamental solution.
Now, again assuming that

∣
∣ũε

Γε

∣
∣ = O(εd) with d > 0, one has

∫

Γε

ũε
i (ξ, ω)[t̂ki (ξ, x, ω; n)]2 dΓξ = O(εd+2) (27)

by virtue of (19) and (26), and
∫

Γε

ti(ξ, ω)ûk
i (ξ, x, ω) dΓξ = εσij(x

o, ω)

∫

S

ûk
i (ξ̄, x̄)nj(ξ̄) dϑξ̄ + O(ε2) (28)

by virtue of (19) and (25). On introducing the scaled coordinatesx̄ andξ̄ into the remaining integrals
featured in (17) and taking into account estimates (24), (27) and (28), equation (17) is readily seen to
take the form

ũε
k(xo + εx̄) +

∫

S

{
ũε

i (x
o + εξ̄) − ũε

i (x
o + εx̄)

}
t̂ki (ξ̄, x̄; n) dϑξ̄

= −εσij(x
o, ω)

∫

S

ûk
i (ξ̄, x̄)nj(ξ̄) dϑξ̄ + O(ε2) , x̄ ∈ S (29)
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On the basis of (29), integral equation (17) is therefore of the form

LS ũε
Γε

= O(ε) asε → 0

where the linear integral operatorLS is O(1). It immediately follows thatd = 1, i.e. that one can seek
the solutioñuε

k(xo + εx̄) of (29) in the form

ũε
Γε

(ξ) = εU(ξ̄) + o(ε) (ξ ∈ Γε) (30)

where the auxiliary fieldU(ξ̄) does not depend onε and solves the counterpart of (29)

Uk(x̄) +

∫

S

{
Ui(ξ̄) − Ui(x̄)

}
t̂ki (ξ̄, x̄; n) dϑξ̄

= −σij(x
o, ω)

∫

S

ûk
i (ξ̄, x̄; n)nj(ξ̄) dϑξ̄ (x̄ ∈ S ) (31)

over the normalized cavity surfaceS . Upon inspection, integral equation (31) turns out to be associated
with the exterior elastostatic problem:

∇ξ̄ ·(C :∇ξ̄U) = 0 (ξ̄ ∈ R
3 \ B̄),

T = −σ(xo, ω)·n (ξ̄ ∈ S ).
(32)

whereT = (C :∇ξ̄U)·n is the traction vector associated withU , andn is the normal onS outward
to R

3 \ B̄. In fact, since the prescribed boundary tractionT is defined in terms of a constant stress
tensor, the solution to (32) can be conveniently recast as

U(ξ̄) ≡ σkℓ(x
o, ω)U kℓ(ξ̄) (33)

in terms of the individual solutionsU kℓ = U ℓk to six canonical problems:

∇ξ̄ ·(C :∇ξ̄U
kℓ) = 0 (ξ̄ ∈ R

3 \ B̄),

(C :∇ξ̄U
kℓ)·n = −

1

2
n·(ek ⊗ eℓ + eℓ ⊗ ek) (ξ̄ ∈ S ).

(34)

which are independent ofxo andε.

Asymptotic form of equation (18).By virtue of (23), the result (30), i.e.d = 1, implies that

ũε
SN

(ξ) = ε3 |B|
[
V (ξ) + o(1)

]
, |V | = O(1) (ξ ∈ SN)

t̃ε
SD

(ξ) = ε3 |B|
[
T (ξ) + o(1)

]
, |T | = O(1) (ξ ∈ SD) (35)

On the basis of (20), (21), (30), (33) and (35), the contributions of integrals overΓε in equation (18)
reduce to

∫

Γε

ũε
i (ξ, ω)t̂ki (ξ, x, ω; n) dΓξ +

∫

Γε

ti(ξ, ω)ûk
i (ξ, x, ω) dΓξ

= ε3 |B|
[

ρω2û
k(xo, x, ω)·u(xo, ω) − σ̂

k(xo, x, ω) :A :σ(xo, ω)
]

+ o(ε3) (36)

where theconstantfourth-order tensorA is defined by

Aijkℓ =
1

2µ

{

Iijkℓ −
ν

1 + ν
δijδkℓ

}

−
1

|B|

∫

S

U kℓ
i (ξ̄)nj(ξ̄) dϑξ̄ (37)
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It should be noted that the tensorA and the associated canonical problems (34) are the same as
in the previous study [13] dealing with infinite and semi-infinite media. For an arbitrarily shaped
infinitesimal cavity, these canonical problems should in general be solved numerically. This is a modest
computational task, since in fact one only needs to solve sixelementary static problems which do not
depend onxo. For the particular case of a spherical infinitesimal cavity, for whichB is the unit ball,S
is the unit sphere and|B| = 4π/3, problems (34) have an analytical solution, from which the following
closed-form expression ofA is obtained [13]:

A =
3(1−ν)

2µ(7−5ν)

[

5 I
sym
4 −

1+5ν

2(1+ν)
I2 ⊗ I2

]

(38)

Recapitulation: governing problem for the scattered field in the limit asε → 0. On the basis of the
foregoing analysis, the leading contributions of the scattered field in the limit asε → 0 are obtained as
follows. The scattered displacement on the surface of the vanishing cavity,̃uε

Γε
, is of the form (30) with

U given by (33) in terms of the six solutions,U kℓ, to the canonical exterior elastostatic problems (34).
As noted earlier,U kℓ depend solely on the void shape (as defined byS orB), and therefore need to be
computed only once irrespective of the set of grid pointsxo or angular frequenciesω being considered.
The constant fourth-order tensorA can then be determined on the basis of (37).

With the foregoing result (i.e. with̃uε
Γε

pre-computed), the scattered field(ũε
SN

, t̃ε
SD

) onS is of the
form (35), where(V , T ) are governed by the limiting form of the integral equation (18) asε → 0. On
the basis of (36), the latter BIE is obtained as

∫

S

{
Vi(ξ, ω) − Vi(x, ω)

}
t̂ki (ξ, x; n) dΓξ +

∫

S

Vi(ξ, ω)[t̂ki (ξ, x, ω; n)]2 dΓξ

−

∫

S

Ti(ξ, ω)ûk
i (ξ, x, ω; n) dΓξ

= σ̂
k(xo, x, ω) :A :σ(xo, ω) − ρω2û

k(xo, x, ω)·u(xo, ω) (x ∈ S) (39)

The above formula and can be interpreted as an integral equation governing the elastodynamic state
(V , T ) in the cavity-free, reference bodyΩ (with homogeneous boundary conditions onS) due to
a point source atxo, generated by the superposition of a concentrated strainA : σ(xo, ω) and a
concentrated force−ρω2u(xo, ω). The right-hand side of (39), and therefore its solution depends on
the grid pointxo, the angular frequencyω and the shape of the vanishing cavity.

Here it is useful to note that the small-cavity approximation (29) is inherently related to the low-
frequency approximation of elastic scattering in infinite media [16]. In particular, the latter theory,
based on series expansions of field variables with respect tothe elastic wave numbers, involves
canonical elastostatic problems that are similar to (32).

4.2. Topological derivative by the direct approach

To evaluate the topological derivativeT (xo, ω) as defined by (15), one needs theO(ε3) (leading)
contribution of ũε on Sobs ⊂ S. For the cavity identification problem using external boundary
measurements, the topological derivative can be expresseddirectly from (15) in terms ofV as

T (xo, ω) =

∫

Sobs

Re
(∂ϕ

∂u

(
u(x), x

)
·V (x)

)

dΓx. (40)
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5. ADJOINT FIELD APPROACH

In what follows, an alternative formulation of the elastodynamic topological derivative for finite bodies,
eq. (40), is developed by means of the adjoint field method. Bymaintaining the rigor of the earlier
elastostatic developments [10] while elevating their transparency, it will be shown that the application
of the adjoint field technique to elastodynamics leads to an elegant formulation whose compactness is
matched by its computational efficiency.

To arrive at an adjoint counterpart of (40), let
⋆

u(ξ) denote the elastodynamic displacement field in
the finite, cavity-free reference bodyΩ due to prescribed surface traction

⋆

p(ξ) acting on its boundary.
In mathematical terms this solution, herein termed theadjoint field, satisfies the field equations and
mixed boundary conditions

∇·(C :∇
⋆

u) = −ρω2 ⋆

u, ξ ∈ Ω,
⋆

t =
⋆

p, ξ ∈ SN,
⋆

u = 0, ξ ∈ SD.

(41)

Here it should be noted that a general definition of the adjoint state permits an arbitrary distribution
of body (i.e. interior) and surface sources, with the latterspecialization adopted here to facilitate the
formulation. With reference to (16) defining the scattered field ũε over the “punctured” domainΩε

(bounded byS ∪ Γε) due to primary excitationp, application of the Graffi’s reciprocal theorem in
elastodynamics [17] in terms of

⋆

u andũε overΩε yields
∫

Γε

(
⋆

u·t̃ε − ũε ·
⋆

t) dΓ =

∫

SN

ũε ·
⋆

p dΓ, (42)

which makes use of the fact thatu =
⋆

u ≡ 0 on SD, t̃ε ≡ 0 on SN and
⋆

t =
⋆

p on SN. To utilize (42)
as a tool for obtaining the formula for topological derivative, it is further convenient to specialize the
surface traction

⋆

p generating the adjoint state
⋆

u according to

⋆

p(ξ) =







∂ϕ

∂u
(u(ξ), ξ), ξ ∈ Γobs⊂SN

0, ξ ∈ SN\Γobs
(43)

whereϕ is the featured misfit function, e.g. given by (5);∂ϕ/∂u is defined through (14);u is the free
field in Ω due to primary excitationp (see (10)); and, as examined earlier, the external boundaryS of
the actual bodyΩtrue (and thus that of the cavity-free reference domainΩ) is assumed to contain the
measurement surface so thatΓobs⊂S. In practical terms, the assumed distribution of

⋆

p overΓobscan be
interpreted as being proportional to a measure of the misfit between the measured displacement field
(uobs) and the (reference) free-fieldu. In particular, ifϕ is given by (5),∂ϕ/∂u = W (u − uobs) so
that forW = cI one has

⋆

p = c(uobs−u), wherec is a suitable constant anduobs− u is the observed
scattered field inΩtrue due toBtrue. On the basis of (13), (16) and (42), one finds that

J (Ωε; p) = J (Ω; p) − Re

[∫

Γε

ũε ·
⋆

t dΓ −

∫

Γε

⋆

u ·t̃ε dΓ

]

+ o(‖ ũε ‖)

= J (Ω; p) − Re

[∫

Γε

ũε ·
⋆

t dΓ +

∫

Γε

⋆

u ·t dΓ

]

+ o(‖ ũε ‖) as ε→0. (44)
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For a given primary excitationp, the last integral overΓε in (44b) is known since the adjoint field
⋆

u

is determined, through (43), solely in terms ofu, uobs and the chosen cost function densityϕ. In fact,
it can be shown by virtue of (10) that

∫

Γε

⋆

u·t dΓ = −

∫

Bε

∇·(
⋆

u·σ) dΩ =

∫

Bε

(

ρω2 ⋆

u·u −∇
⋆

u :σ
)

dΩ

= ε3 |B|
(

ρω2 ⋆

u·u −∇
⋆

u :σ
)

(xo, ω) + o(ε3) (45)

= ε3 |B|
(

ρω2 ⋆

u·u −
1

2µ

[
⋆

σ :σ −
ν

1+ν
tr

⋆

σ trσ
])

(xo, ω) + o(ε3) as ε→0

where
⋆

σ = C : ∇
⋆

u is the stress tensor associated with the adjoint field, and the minus sign in front
of the first integral overBε appears becauset is defined in terms of the unit normaln pointing to the
interior of Bε.

To complete the expansion ofJ (Ωε; p) in (44b), one is left with evaluating the leading asymptotic
behavior of the “bubble” integral

∫

Γε

ũε ·
⋆

t dΓ

for vanishingε, a task that can be effected in a straightforward manner withthe aid of the results of
Section 4. In particular, by employing (30) and (33), one obtains

∫

Γε

ũε ·
⋆

t dΓ = ε3 ⋆

σij(x
o, ω)

∫

S

Ui(ξ̄)nj(ξ̄) dϑξ̄ + o(ε3) (46)

= ε3 ⋆

σij(x
o, ω)σkℓ(x

o, ω)

∫

S

U kℓ
i (ξ̄)nj(ξ̄) dϑξ̄ + o(ε3) as ε→0. (47)

On substituting (47) and (45) into (44), the leading asymptotic behavior ofJ (Ωε; p) for vanishingε
can be further shown to take the form

J (Ωε; p) = J (Ω; p) + ε3 |B|Re
[( ⋆

σ :A :σ − ρω2 ⋆

u·u
)

(xo, ω)
]

+ o(ε3) as ε→0, (48)

where theconstantfourth-order tensorA is again defined through (37), i.e. by

Aijkℓ =
1

2µ

{

Iijkℓ −
ν

1 + ν
δijδkℓ

}

−
1

|B|

∫

S

U kℓ
i (ξ̄)nj(ξ̄) dϑξ̄

Finally, by virtue of (8) and (48), the adjoint-field formulafor the topological derivative can be written
in the compact form as

T (xo, ω) = Re
[( ⋆

σ :A :σ − ρω2 ⋆

u·u
)
(xo, ω)

]

(49)

whereu and
⋆

u are the elastodynamic displacement fields solving the free-field problem (10) and the
adjoint problem (41), respectively.
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6. SHAPE SENSITIVITY APPROACH

The concept of topological sensitivity investigated herein is related to the asymptotic behavior of a cost
function with respect to the introduction of a new, infinitesimal cavity. In contrast, the concept of shape
sensitivity [18] is related to infinitesimal geometric perturbations of pre-existing finite cavities. Despite
their obvious differences, however, these two subjects arerelated. In this section, a third method for
computingT (xo, ω) is established by exploiting this relationship, providingadditional insight into the
concept of topological sensitivity. For that purpose, one notes that (8) implies

d

dε
J (Ωε; p) = 3ε2 |B|T (xo, ω) + o(ε2), as ε → 0. (50)

and that the derivativedJ /dε can be expressed for any meaningfulε > 0 by means of a shape
sensitivity formula [4, 5]:

d

dε
J (Ωε; p) =

∫

Γε

[

ρω2uε ·
⋆

uε − σε :∇
⋆

uε
]

(ξ)θn(ξ) dΓξ (51)

where
⋆

uε denotes the adjoint displacement field for the cavitated body, which is governed by
equations (2) with the loadp on SN replaced by the adjoint load

⋆

p defined by (43). In addition, the
normal transformation velocityθn(ξ) must be chosen so that the mappingξ → ξ + θn(ξ)n(ξ)δε
transformsΓε intoΓε+δε (neglectingo(δε) contributions), which is achieved with the choiceθn = ξ̄·n.
From (51) and (50), an alternative expression of the topological derivative is then inferred as

T (xo, ω) = lim
ε→0

1

3ε2 |B|

∫

Γε

[

ρω2uε ·
⋆

uε − σε :∇
⋆

uε
]

(ξ)θn(ξ) dΓξ (52)

On using notations and results of Section 4, the leading contribution of the above integral for vanishing
ε is readily established, leading to the more explicit formula

T (xo, ω) =
1

3 |B|

∫

S

[

ρω2u(xo, ω)·
⋆

u(xo, ω)

−
(
σ(xo, ω) + Σ(ξ̄)

)
:
(
∇ξ

⋆

u(xo, ω) + ∇ξ̄

⋆

U(ξ̄)
)]

θn(ξ̄) dϑξ̄ (53)

whereΣ(ξ̄)=C :∇ξ̄U(ξ̄), U(ξ̄) is given by (33), and
⋆

U(ξ̄) is the normalized elastostatic displacement

given by (33) withσ(xo, ω) replaced by
⋆

σ(xo, ω) = C :∇ξ
⋆

u(xo, ω).

Considerations similar to those presented in this Section have been developed in [14] and [19] for
scalar (potential) problems and spherical vanishing cavities. Equation (53) is a generalization of these
results to vector (elastodynamic) problems and vanishing cavities of arbitrary shape. This formula can
also be established by means of a direct calculation (i.e. without explicitly invoking a shape sensitivity
argument), as shown in the Appendix. It should however be emphasized that the computational
procedure based on exploiting the connection between shapeand topological sensitivities, i.e. on
definition (52) ofT (xo, ω), is neither simpler nor more efficient than that developed inSection 5,
contrary to what is suggested in [19].
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7. DISCUSSION

7.1. Computational issues

Solution methods. To establish expressions (40) and (49) for elastodynamic topological derivative, it
was necessary to investigate the limiting behavior of the scattered field for vanishingly small cavities,
a task for which the BIE formulation of the scattering problem is well suited. Similarly, the solution of
the canonical exterior elastostatic problems (34) is best computed using a boundary element method.

However, the actual computation of the fieldT (xo, ω) can be achieved by means of any numerical
solution technique available for elastodynamic problems,such as the finite element method (FEM),
the finite difference method (FDM) or the boundary element method (BEM). This is especially true
for the adjoint field approach of Section 5, where the adjointproblem is, like the forward problem,
a conventional elastodynamic boundary-value problem. On the other hand, obtaining an accurate
evaluation ofT (xo, ω) by means of FEM or FDM using the direct approach of Section 4 may
prove more difficult because the associated elastodynamic problems involve interior point sources (see
eq. (39)).

The present work is a part of the ongoing study on defect identification from elastodynamic
measurements, for which the BEM is a convenient numerical tool allowing easy re-meshing as the
trial defect evolves. For that reason, the numerical experiments in Section 8 are performed by means of
a boundary element method. In what follows, the BEM-based computational procedures for evaluating
T (xo, ω) are described in some detail.

Elastodynamic BEM equations.On introducing a boundary element discretization of the surfaceS
(together with the boundary displacements and tractions supported thereon) into integral equation (11)
and performing pertinent element quadrature [3, 20], one arrives at a linear system of equations

[H(ω)]{X} = [G(ω)]{P } (54)

where{X} and{P} are ‘vectors’ collecting respectively theN unknown degrees of freedom (DOFs)
and prescribed nodal tractions onSN; [H(ω)] and[G(ω)] are fully-populated matrices. The unknown
DOFs are thus found by solving (54) for{X}, with the matrix[H(ω)], of sizeN ×N , being invertible
(based on the assumption thatω does not define an eigenfrequency for the reference body) andnon-
symmetric. Likewise, the integral representation formulas for the displacement vector and the stress
tensor at a grid pointxo have respectively the forms

u(xo, ω) = [Gu(xo, ω)]{P } − [Hu(xo, ω)]{X}

σ(xo, ω) = [Gσ(xo, ω)]{P} − [Hσ(xo, ω)]{X} (55)

where the influence matrices[Gu(xo, ω)], [Gσ(xo, ω)], [Hu(xo, ω)] and[Hσ(xo, ω)] result from the
BEM discretization of the relevant boundary integrals. Here, it is assumed that the set of internal grid
pointsxo, over whichT (xo, ω) is to be computed, is chosen beforehand.

One may note that solving the forward problem (54) and evaluating the representation formulas (55)
for Ngrid grid points via traditional methods entailO(N3) and O(N × Ngrid) computation times,
respectively. However, both stages can be considerably accelerated for largeN andNgrid by resorting
to fast solution strategies such as the fast multipole method [21].

BEM-based computational procedures for the topological derivative. Both the direct and the adjoint
field approaches entail the followingcommonoperations:
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1. Solve the BEM matrix equation (54) for the free-field DOFs{X};
2. Compute integral representations (55) of the free-field for all grid pointsxo;
3. Compute the6 × 6 constant tensorA defined by (37), which in general entails solving the

set of six canonical problems (34). For spherical vanishingcavities,A has been precomputed
analytically and is given by (38).

Additional operations required by thedirect approachinclude:

4D. On the basis of Steps 2 and 3, compute the right-hand side{F (xo, ω)} of (39) for all grid points;
5D. Solve problem (39) in discretized form, i.e.[H]{V } = {F (xo, ω)}, for all grid pointsxo;
6D. ComputeT (xo, ω) for all grid pointsxo using (40).

Additional operations required by theadjoint field approachinclude:

4A. Compute the adjoint nodal tractions{
⋆

P } using (43) together with experimental observations and

free-field displacements computed alongΓobs∈ S in Step 1; compute the adjoint solution{
⋆

X}

by solving (54) with{P } replaced with{
⋆

P };
5A. Compute the adjoint displacements and stresses,

⋆

u(xo, ω) and
⋆

σ(xo, ω), for all internal grid

pointsxo from (55) with{X} and{P } replaced by{
⋆

X} and{
⋆

P };
6A. ComputeT (xo, ω) for all grid pointsxo using (49).

Multiple excitations. A generalization of the cost functional (4) and its topological derivative as given
by (40), (49) or (53) to multiple excitationspq (q=1, 2, . . .Q) is straightforward and involves external
summation in the form of

J (Ωc) ≡

Q
∑

q=1

J (Ωc; p
q) and T (xo, ω) ≡

Q
∑

q=1

T (xo, ω; pq). (56)

7.2. Procedural similarities between topological and shape sensitivity formulations

In addition to the previously emphasized mathematical link, there are also strong similarities between
the computational procedures devised for topological and shape sensitivity analyses. In both situations,
thedirect approachinvolves finding the point-wise shape (resp. topological) sensitivity of the primary
field variable, which entails solving one sensitivity boundary value problem per geometrical parameter
(resp. per grid point). In contrast, theadjoint field approachrequires solving but one new boundary
value problem and provides the most direct route for computing the sensitivity of the objective function
at hand, although it does not furnish sensitivity information on the primary field variable.

There is, however, a noteworthy difference between the direct approaches for topological and shape
sensitivity analyses. The sensitivity boundary value problems associated with topological sensitivity
analysis involve singular loadings (in the form of point sources), whereas the latter are typically
nonsingular in shape sensitivity analysis.

7.3. Explicit expression ofT (xo, ω) in terms of Green’s tensors

As examined earlier, alternative expressions (40), (49) and (53) forT (xo, ω) are implicit in that they
rely upon solutions of boundary-value problems on the cavity-free reference bodyΩ.
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Explicit expressions forT (xo, ω) are obtained when the elastodynamic fundamental solution
[
ûk

i (ξ, x, ω), t̂ki (ξ, x, ω; n)
]

is a Green’s tensor forΩ, i.e. when it satisfies the boundary conditions

ûk
i (ξ, x, ω) = 0 (ξ ∈ SD, ξ 6= x), t̂ki (ξ, x, ω; n) = 0 (ξ ∈ SN, ξ 6= x)

In this case, the free and adjoint displacement fields are given by

uk(x) =

∫

SN

pi(ξ)ûk
i (ξ, x, ω) dΓξ ,

⋆

uk(x) =

∫

SN

⋆

pi(ξ)ûk
i (ξ, x, ω) dΓξ

and the expression (49) becomes explicit as well. This constitutes a formal generalization of the results
of [13], where the topological derivative for infinite and semi-infinite elastic media was considered.
However, such Green’s tensors are in general not known explicitly for finite domains.

7.4. Relationship to the Eshelby solution

The well-known Eshelby solution, i.e. the elastostatic response of a three-dimensional infinite body
Ω = R

3 to auniform initial strain distributionεI prescribed over an ellipsoidal regionB ⊂ Ω, is such
that the resulting (total) strainεE is uniform withinB, i.e.

εE(ξ) = S :εI (ξ ∈ B), (57)

where the constant fourth-orderEshelby tensorS is known analytically [22]. As a result, the induced
stress field,σE, is also uniform withinB, with σE = C : (S − I

sym
4

) : εI. Since the tractions
must be continuous across the boundaryΓ = ∂B of the “loaded” region, the Eshelby displacement
solution in R

3 \B coincides with the solution of the elastostatic exterior problem when the cavity
surfaceΓ is subjected to tractionsσE ·n, wheren is the normal onΓ outward toR

3 \B. It follows
that, when the shape of the unit cavityB is ellipsoidal, the solution of the elastostatic exterior
problem (32) coincides with that of the Eshelby inclusion problem with the initial strainεI taken so
thatσ(xo, ω) = −C : (S − I

sym
4

) :εI.
On the basis of (35) and earlier discussion (immediately following eq. (39)), the free-field term

σ̂
k(xo, x, ω):A : σ(xo, ω) appearing in the right-hand side of (39) is thus expected to coincide with

the limiting form (as|B| = ε3 |B| → 0) of the elastodynamic displacement fielduE(ξ, ω)/(ε3 |B|)
generated inR3 \ B̄ by the Eshelby initial strainεI =−(S − I

sym
4

)−1 :C−1 : σ(xo, ω). Owing to the
fact that the latter displacement field is given by

uE
k(ξ, ω) =

∫

B

εI(ξ) : σ̂k(ξ, x, ω) dΩξ

= −(S − I
sym
4

)−1 :C−1 :σ(xo, ω) :

∫

B

σ̂k(ξ, x, ω) dΩξ (58)

= ε3 |B| σ̂
k(xo, x, ω) :

{
−(S − I

sym
4

)−1 :C−1
}

:σ(xo, ω) + o(ε3) as ε → 0.

the implied coincidence holds only ifA = [(Isym
4

−S )−1 :C−1]. For a spherical cavity, this equality is
easily checked by direct inspection, using (38) and the known expression ofS , i.e.

S =
1

15(1 − ν)

[
(8 − 10ν)Isym

4 − (1 − 5ν)I2 ⊗ I2

]
. (59)

According to the foregoing reasoning, the closed form of tensor A can be obtained in the same
manner from the known value ofS for any cavity of ellipsoidal shape. Moreover, on considering
the limiting cases of infinitely thin ellipsoidal cavities,one should be able to establish topological
sensitivity formulae for circular or elliptical infinitesimal cracks.
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8. NUMERICAL EXPERIMENTS

8.1. Pressurized annular sphere

To validate the foregoing developments, consider the elastodynamic Neumann problem for a spherical
shell with an outer radiusR and an inner radiusatrue<R, shown in Fig. 1a. The shell,Ωtrue, is subjected
to a uniform time-harmonic pressurep acting over its external surfaceS. For the spherically-symmetric
problem under consideration, theclosed-formexpression for topological derivative,T (ro, ω), can be
obtained as shown in Appendix II where the cost functionJ is given by (3),Sobs= S, W = I2, and
0<ro<R denotes the radial coordinate of a sampling point inside thevoid-free, i.e. reference bodyΩ
(see Fig. 1b).
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Figure 1. Pressurized spherical shell: geometry and notation.
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Figure 2. Spherical shell problem: topological derivativeT (ro, ω) along a radial line.

To provide a basis for comparison,numericalvalues of the topological derivativeT (ro, ω) are
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computed by means of a three-dimensional boundary element solution [15] applied to both direct
approach (40) and adjoint-field formula (49) withp = µ, ν = 0.3, R/atrue = 3 andωR/cs = 3 where
cs =

√

µ/ρ denotes the shear wave speed in the solid. In the numerical model, the inner and outer
surfaces of the annular sphere were discretized using 486 and 150 eight-noded boundary elements,
respectively. For the excitation frequency chosen, this mesh provides no less than 12 element lengths
per shear wavelength. A comparison between the 3D numericalresults and the exact solution given
by (72) is shown in Fig. 2. As can be seen from the display, bothnumerical techniques for computing
T (ro, ω) yield results that are in reasonable agreement with the closed-form solution. In the Figure,
the RMS errors for the featured set of grid points are2.6 10−3 for the direct approach and1.5 10−3 for
the adjoint-field method, respectively. It should be mentioned, however, that the accuracy of numerical
estimates ofT (ro, ω) was found to deteriorate for values ofro/R close to unity, primarily as a result
of the near-singular nature of the integral representationfor stresses at observation points close to the
boundary.

8.2. Cavity embedded in a cube

To illustrate the utility of topological derivative as a preliminary tool for elastic-wave sounding of
finite bodies, the next example deals with the delineation ofa spherical cavity of radiusatrue = 0.5d,
hidden inside a solid cube of size6d × 6d × 6d. Similar to the previous example, the elastic solid
is characterized by the shear modulusµ, mass densityρ, and Poisson’s ratioν = 0.3. With reference
to a Cartesian coordinate system aligned with the box edges (see Fig. 3), the cube and the cavity are
centered respectively at(0, 0, 0) and(d, 1.5d, d). The cubical body, with external surfaceS, is fixed
(u(ξ, ω) = 0, ξ ∈SD) over the bottom patchSD = {ξ ∈S| −2.4d<ξ1<2.4d, −2.4d<ξ2<2.4d, ξ3 =
−3d}. Prior to the application of time-harmonic excitation usedto illuminate the cavity, the rest of the
external surface,SN = S \ SD, is traction free. As indicated in Fig. 3, surfaces of the cube and the
cavity are discretized using 600 and 64 eight-node (quadratic) boundary elements, respectively.

x/d

z/d

y/d

Figure 3. Cavity embedded in a solid cube: boundary element mesh.

In sequence, a virtual elastodynamic experiment is performed on each of the four vertical faces of
the cube. With reference to the vertical testing faceξ1 = −3d, the experiment parameters are chosen
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Table I. Cavity embedded in a cube: comparison of direct and adjoint method for the evaluation ofT (xo, ω).

ω̄ xo/d T (xo, ω)/d T (xo, ω)/d Relative
(adjoint) (direct) diff.

(0.5, -1.0, 0.5) -7.1862e-3 -7.1882e-3 2.78 e-4
(0.5, -1.0, 1.0) -8.8608e-3 -8.8603e-3 -5.64e-5
(0.5, -1.0, 1.5) -7.9804e-3 -7.9781e-3 -2.88e-4

1 (0.5, -0.5,-2.5) -2.0020e-3 -1.9841e-3 -8.98e-3
(0.5, -0.5,-2.0) -1.0849e-3 -1.0850e-3 9.22 e-5
(0.5, -0.5,-1.5) -2.2449e-4 -2.2492e-4 1.91 e-3
(0.5, -1.0, 0.5) -2.1021e-2 -2.0804e-2 -1.04e-2
(0.5, -1.0, 1.0) -1.2027e-2 -1.1854e-2 -1.45e-2
(0.5, -1.0, 1.5) -7.9503e-3 -7.8478e-3 -1.30e-2

2 (0.5, -0.5, -2.5) +1.9531e-3 +1.9526e-3 2.56 e-4
(0.5, -0.5, -2.0) -3.0256e-3 -3.0156e-3 -3.31e-3
(0.5, -0.5, -1.5) -6.2075e-3 -6.1476e-3 -9.70e-3

so that i)Γobs= {ξ ∈ SN , |ξ1 = −3d, −3d<ξ2<3d, −3d<ξ3<3d}, and ii) the cavity is illuminated
in sequence by five localized (pyramid-shaped) distributionspq(ξ) (ξ∈Γobs, q =1, 2, . . .5) of surface
tractions centered at(−3d, 0, 0) and(−3d,±1.8d,±1.8d), respectively, applied over square patches
of four boundary elements. In the context of the employed boundary element mesh, these localized
tractions, each of resultantP = µd2 and acting in the positiveξ1-direction, are generated by setting
the nodal traction at the respective central node of each square patch (e.g. at(−3d, 1.8d, 1.8d)) to a
value of25µ/9 while assigning half that value to the four closest (mid-side) boundary nodes. Virtual
experiments on the remaining vertical faces, i.e.ξ1 = 3d, ξ2 =−3d andξ2 = 3d, are performed in an
analogous fashion with the applied normal tractions (pressure) acting respectively in the negativeξ1-,
positiveξ2-, and negativeξ2-direction, respectively. With reference to (3) and (56), the cost function
J and its topological derivativeT are calculated withW=I2 and by summing the contribution from
all Q = 4 × 5 = 20 experiments. The topological derivativeT (xo, ω) is evaluated at the nodes of a
regular cubic grid of11×11×11 = 1331 interior points such that−2.5d≤xo

i ≤ 2.5d (i=1, 2, 3). As
mentioned earlier, all elastodynamic calculations are performed using the boundary element analysis
in [15].

To check the computational developments in the absence of suitable analytical solutions, Table I
shows a comparison between the values of topological derivative for the cavitated cube problem
computed by the direct differentiation approach (40) and the adjoint field approach (49) at two
representative frequencies,ω̄=1 andω̄=2, where

ω̄ = ω d
√

ρ/µ ≡ ωd/cs,

with cs denoting the shear wave speed. As can be seen from the display, relative error between the two
estimates does not exceed 1.5 percent despite significant differences in the respective computational
schemes.

In view of the findings in structural shape optimization [9, 10], the elastodynamic topological
derivative developed in this study is expected to facilitate the identification of internal defects (voids)
in finite solids through an algorithm that would entail i) evaluation ofT (xo, ω) over a suitable grid
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of sampling points spanning the reference (cavity-free) body Ω, and ii) delineation of possible cavities
through regions inΩ whereT takes the largest negative values. To investigate such possibility, Figs. 4
and 5 illustrate the distribution of topological derivative (computed via the adjoint field approach)
corresponding to excitation frequenciesω̄=1 andω̄=2, respectively. In both displays, the distribution
is plotted in three coordinate (cutting) planes containingthe center of the true cavity. To provide
a reference, intersection of each plane with the true cavitysurface is outlined in white. One may
observe that each distribution indeed points toward the true cavity through negative values ofT (xo, ω).
Unfortunately, the “low-frequency” map suffers from blurring, while an increased resolution of the
“higher-frequency” map is diminished by the appearance of spurious minima. One should mention,
however, that both excitation frequencies fall into the so-calledresonance region[23] where the wave
lengths are larger than the size of the scatterer. In particular, (λs/D)|ω̄=1= 2π and(λs/D)|ω̄=2= π,
whereD is the cavity diameter andλs denotes the shear wave length. As examined in [13], the
particular effectiveness of long wavelengths for preliminary imaging by way of topological derivative
is not surprising, since the assumption of aninfinitesimalcavity, implicit to (15), is better conformed
with by finite cavities that are ‘small’ relative to the probing wavelength.

With diagrams such as those in Figs. 4 and 5, an algorithm for identifying plausible cavity locations
could be thus devised on the basis of the non-zero distribution of an auxiliary function

T̂ (xo) =

{
T (xo, ω), T < C,

0, T ≥ C,
(60)

whereC < 0 denotes a suitable threshold value. With such definition, itis also possible to combine

a) b)

c)

ξ1/d ξ1/d

ξ2/dξ2/d

ξ 3
/d

ξ 2
/d

ξ 3
/d

Figure 4. Distribution ofT (xo, ω)/d in coordinate planes: a)ξ3 =d, b), ξ2 =1.5d, and c)ξ1 =d containing the
center of the true cavity (̄ω = 1).
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a) b)

c)

ξ1/dξ1/d

ξ2/d

ξ 2
/d

ξ 3
/d

ξ 3
/d

Figure 5. Distribution ofT (xo, ω)/d in coordinate planes: a)ξ3 =d, b), ξ2 =1.5d, and c)ξ1 =d containing the
center of the true cavity (̄ω = 2).

the individual advantages of different probing wavelengths by employing the product of (60) at several
frequencies [13]. As an illustration of the latter approach, Fig. 6 plots the distribution of the product
T̂ (xo, cs/d) × T̂ (xo, 2cs/d) in three coordinate planes containing the center of the truecavity with
C = 0.5 infxo T (xo, ω). Notwithstanding the limited accuracy characterizing theindividual maps for
ω̄ = 1 andω̄ = 2, the combined result stemming from (60) clearly points to a single cavity with its
center and size closely approximating the true void configuration.

9. SUMMARY

In this study, the concept of topological derivative that has its origins in elastostatics and shape
optimization is extended to 3D elastic-wave imaging of finite solids. On taking the limiting form
of the boundary integral equation governing the scattered field caused by a cavity with diminishing
size, the topological derivative, which quantifies the sensitivity of the featured cost functional due
to the creation of an infinitesimal hole, is formulated (in terms of an elastodynamic field for the
reference, void-free body) using three alternative methodologies, namely i) the direct differentiation
approach, ii) adjoint field method, and iii) limiting form ofthe shape sensitivity analysis. The proposed
derivation of the topological gradient has two noteworthy features. Firstly, it is organized so as to
ensure adequate rigor while avoiding the use of non-essential mathematical concepts that would put it
beyond the reach of most researchers and practitioners in engineering sciences. Secondly, it follows a
pattern which is generic, i.e. transposable to i) other numerical techniques (e.g. BIE, BEM, or FDM),
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a) b)

c)

ξ1/d

ξ2/d

ξ1/d

ξ 3
/d

ξ 3
/d

ξ 2
/d

Figure 6. Distribution of(1/d2)T̂ |ω̄=1× T̂ |ω̄=2 in coordinate planes: a)ξ3 = d, b), ξ2 = 1.5d, and c)ξ1 = d
containing the center of the true cavity.

ii) variety of physical problems described by linear field equations such as acoustics, heat transfer, and
electromagnetics, and iii) other types of infinitely small objects, such as inhomogeneities or cracks.
It is also shown that the cavity nucleation, central to topological derivative, is closely related to the
Eshelby solution for the response of an infinite elastic solid due to a localized application of uniform
initial strain.

For the example of a pressurized spherical shell that admitsa closed-form solution, both the direct
and the adjoint field estimates of topological derivative, obtained using a three-dimensional BIE
method, are found to agree well with the exact result. To examine the potential of topological sensitivity
for preliminary elastic-wave sounding of finite bodies, a numerical example for the solid cube hiding
a spherical cavity is also presented. The results suggest the utility of the proposed imaging algorithm,
wherein a plausible void region is delineated through negative values of the topological derivative
at internal (sampling) points. It should be noted, however,that the proposed imaging approach is
essentially of heuristic nature since the topological sensitivity is by definition related to infinitesimal
cavities, whereas the obstacles being sought are of finite size. It is also found that the use of multiple
excitation frequencies as a tool to illuminate the cavity may enrich the experimental data set and thus
elevate the performance of topological derivative as a preparatory imaging tool.
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APPENDIX

I. PROOF OF EXPRESSION (53) FORT (xo, ω)

From equations (34), (37) and (49), one has

T (xo, ω) = Re

[
(
σ :∇ξ

⋆

u − ρω2
u·

⋆

u
)
(xo, ω) −

1

B

⋆
σij(x

o, ω)

∫

S

Ui(ξ̄)nj(ξ̄) dϑξ̄

]

(61)

The integral overS can be transformed via integration by parts, noting that both U and
⋆

U denote elastostatic
states without body forces.
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First, due to the Neumann boundary condition in (32) and the local equilibrium equation (34a), one has

σij(x
o, ω)

∫

S

⋆

U inj dϑξ̄ = −

∫

S

⋆

U iΣijnj dϑξ̄ = −

∫

O

Σij

⋆

U i,j dVξ̄ (62)

whereΣ(ξ̄) = C :∇ξ̄U andO = R
3 \ B. In (62), both

∣
∣ξ̄

∣
∣2 ∇ξ̄U and

∣
∣ξ̄

∣
∣2 ∇ξ̄

⋆

U are bounded as a consequence
of the exterior problem (34), so that the integral over the normalized exterior domainO is convergent.

Next, with the help of the equality

3Σij

⋆

U i,j =
[ ⋆

ΣijUi + Σij

⋆

U i −
( ⋆

ΣijUi,k + Σij

⋆

U i,k

)
ξ̄k + Σik

⋆

U i,kξ̄j

]

,j

which holds for any pair of elastostatic displacement fieldsU and
⋆

U without body forces, the divergence formula
is applied to the domain integral of (62), leading to

σij(x
o, ω)

∫

S

⋆

U inj dϑξ̄ =
1

3
σij(x

o, ω)

∫

S

(
⋆

U i −
⋆

U i,kξ̄k)nj dϑξ̄

+
1

3

⋆
σij(x

o, ω)

∫

S

(Ui − Ui,kξ̄k)nj dϑξ̄ −
1

3

∫

S

(Σik

⋆

U i,k)(ξ̄jnj) dϑξ̄ (63)

where the boundary conditionsΣ·n = −σ(xo, ω)·n and
⋆

Σ·n = −
⋆

σ(xo, ω)·n have also been used.
Then, using the identity

(Vi − Vi,kξ̄k)nj = (Viξ̄k),jnk − (Viξ̄k),knj − Vi,j ξ̄knk + 3Vinj

with V = U or V =
⋆

U and invoking the following variant of the Stokes formula

∫

S

(njf,k − nkf,j) dϑξ̄ = 0 j, k = 1, 2, 3

which holds true for any piecewise closed surfaceS and any continuous and piecewise differentiable function
f(ξ̄), equation (63) becomes, after rearranging terms:

⋆
σij(x

o, ω)

∫

S

Uinj dϑξ̄ =
1

3

∫

S

[⋆
σij(x

o, ω)Ui,j + σij(x
o, ω)

⋆

U i,j + Σij

⋆

U i,j

]
(ξ̄knk) dϑξ̄ (64)

Finally, on substituting (64) and the identity

(
σ :∇ξ

⋆

u − ρω2
u·

⋆

u
)
(xo, ω) =

1

3 |B|

∫

S

(
ρω2

u·
⋆

u − σ :∇ξ
⋆

u
)
(xo, ω) ξ̄ ·n dϑξ̄

into (61), the alternative expression (53) for the topological derivative is established.

II. EXACT SOLUTION FOR THE SPHERICAL SHELL PROBLEM

In this example, the reference bodyΩ is a spherical ball of radiusR. Let Ωa = Ω \ B̄a denote the spherical shell
bounded by concentric spheres of radiia andR>a. The external surfacer = R is subjected to a uniform pressure,
i.e.p = −per for r = R (where(r,ϕ, θ) denote spherical coordinates ander is the unit radial vector), while the
cavity surface,r = a, is traction-free. The resulting elastodynamic state(ua, σa) in the spherical shell is radially
symmetric, so thatua(ξ, ω) = ua(r, ω)er andσa(ξ, ω) = σa(r, ω)er ⊗ er + τa(r, ω)[eϕ ⊗ eϕ + eθ ⊗ eθ].
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Free field. For the foregoing configuration, the nonzero components of the free field (a = 0) can be calculated
as

u(r, ω) =
p

4µ

R

y2
×

(1 − γ2Q2y2) sin(Qy)− Qy cos(Qy)

sin(Qy) − Qy cos(Qy)
(65)

σrr(r, ω) = −
p

y3

(1 − γ2Q2y2) sin(Qy) − Qy cos(Qy)

(1 − γ2Q2) sin(Q) − Q cos(Q)
(66)

σϕϕ(r, ω) =
p

2y3

[1 + (2γ2 − 1)Q2y2] sin(Qy) − Qy cos(Qy)

(1 − γ2Q2) sin(Q) − Q cos(Q)
(67)

where

y =
r

R
, γ2 =

1 − ν

2 − 4ν
, Q2 =

ρω2R2

4µγ2

Expansion of the displacement for a vanishingly small cavity. The displacement on the external surface
for the case of a finite cavity of radiusa, ua(R, ω), is given by

ua(R,ω) =
pR

4µ

A(x) cos Q(1 − x) − B(x) sin Q(1 − x)

[A(x) + C(x)] cos Q(1 − x) − [B(x) + D(x)] sin Q(1 − x)
(68)

wherex = a/R and
A(x) = 1 − x − γ2Q2x2 C(x) = γ2Q2x

B(x) = 1 + Q2(γ2x2 − x) D(x) = γ2Q2(γ2Q2x − 1)

For a sufficiently small cavity radius, denoted bya = ε for consistency, a Taylor expansion of (68) aboutε = 0
leads to

uε(R, ω) = u(R, ω) +
4π

3
ε3V (ω) + o(ε3) (69)

whereu(R, ω) = u0(R, ω), i.e. the free field onS, is obtained by settingx = 0 in (68) and

V (ω) =
pR

4µ

γ2(1 − 3γ2)Q6

4πR2[Q cos Q + (γ2Q2 − 1) sin Q]2

Topological derivative at the origin by direct differentiation approach. Let (utrue, σtrue) correspond to the
‘true’ cavity Btrue defined by the radiusatrue. The observation surfaceSobs is taken as the whole external surface
S, so thatuobs(ω) ≡ uobs(ω)er = utrue(R, ω)er, and the cost functionJ(a) is defined by:

J(a) = J (Ωa) =
1

2

∫

S

∣
∣
∣u

a(ξ) − u
obs(ξ)

∣
∣
∣

2

dΓξ = 2πR2

∣
∣
∣u

a(R, ω) − uobs(ω)
∣
∣
∣

2

(70)

where the conventionΩ0 = Ω is used. The topological derivative ofJ at the origin,T (0, ω), is given by

T (0, ω) = lim
ε→0

3

4πε3
[J(ε) − J(0)]

= Re

[

(u(R, ω) − uobs(ω)) ×
γ2(1 − 3γ2)Q6

[Q cos Q + (γ2Q2 − 1) sin Q]2

]

(71)

Topological derivative by the adjoint field approach.The adjoint solution[
⋆

u(ξ, ω),
⋆

σ(ξ, ω)] corresponds
to the uniform loadu − uobs, i.e. the pressure

⋆
p = −

(
u(R, ω) − uobs(ω)

)
, applied onS. Accordingly, the adjoint

field is given by

⋆

u(ξ, ω) = −
1

p

(
u(R, ω) − uobs(ω)

)
u(ξ, ω) ,

⋆

σ(ξ, ω) = −
1

p

(
u(R,ω) − uobs(ω)

)
σ(ξ, ω)
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whereu andσ are given by (65) and (66), (67), respectively. Therefore, the topological derivativeT (ro, ω) at the
grid pointxo = roer is given by:

T (ro, ω) = −
1

p

(
u(R, ω) − uobs(ω)

){ γ2

4µ(3γ2 − 1)

[
(σrr + 2σϕϕ)2

]
(ro, ω)

+
γ2

4µ(9γ2 − 1)

[2

3
(σrr − σϕϕ)2

]
(ro, ω) − 4µγ2Q2u2(ro, ω)

}

(72)

One may note that expression (72) evaluated forro = 0 coincides with the result (71) obtained by the direct
approach.

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng2004;61:2344–2373
Prepared usingnmeauth.cls


