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SUMMARY

This paper is concerned with an application of the concepopdlogical derivative to elastic-wave imaging of
finite solid bodies containing cavities. Building on the egazh originally proposed in the (elastostatic) theory of
shape optimization, the topological derivative, which mfifées the sensitivity of a featured cost functional due
to the creation of an infinitesimal hole in the cavity-freeférence) body, is used awaid indicatorthrough an
assembly of sampling points where it attains negative gallibe computation of topological derivative is shown
to involve an elastodynamic solution to a set of supplemgritaundary-value problems for the reference body,
which are here formulated as boundary integral equatiamsa Eomprehensive treatment of the subject, formulas
for topological sensitivity are obtained using three alégive methodologies, namely i) direct differentiation
approach, ii) adjoint field method, and iii) limiting form tife shape sensitivity analysis. The competing techniques
are further shown to lead to distinct computational procesluMethodologies (i) and (ii) are implemented within
a BEM-based platform and validated against an analyticlitisn. A set of numerical results is included to
illustrate the utility of topological derivative for 3D edic-wave sounding of solid bodies; an approach that may
perform best when used as a pre-conditioning tool for mocerate, gradient-based imaging algorithms. Despite
the fact that the formulation and results presented in tiviestigation are established on the basis of a boundary
integral solution, the proposed methodology is readilyliapple to other computational platforms such as the
finite element and finite difference techniques.
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1. INTRODUCTION

In recent times, rapid advances in sensor and signal pingaeghnologies have exposed the need for
efficient 3D elastodynamic solutions to inverse scattedraplems. Similar to their electromagnetic
counterpart, elastic waves find applications as a sensinf ito diverse areas of engineering
such as medical imaging, seismic surveys, and nondesteuctaterial testing. In general, inverse
elastodynamic solutions are derived from either of thedlm@mputational cornerstones that include i)
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SOUNDING OF FINITE SOLID BODIES BY WAY OF TOPOLOGICAL DERIVAIVE 2345

(far-field) ray theory|[|1], i) finite-difference approxirtian of the wave equatiorﬂ[Z], and iii) boundary
integral equation (BIE) formulationﬂ [3]. In the contextbfee-dimensional imaging, these approaches
bear substantial computational cost associated withrepthie forward elastic-scattering problem. This
precludes the use of global search techniques such as gafggrithms which entail a large number
of forward simulations. To mitigate the problem, gradibased optimization algorithms have been
proposed as a computationally-tractable alternative hairgpinverse scattering problems, especially
when ameliorated by the analytical shape sensitivity eﬂ&m[{ﬂ[ﬁ] Unfortunately, the latter class
of solutions necessitate a reliable prior information ahtbe location, topology and geometry of
a hidden scatterer (e.g. defect) for satisfactory perfoceaAs a result, their stand-alone use may
not be sufficient for 3D elastodynamic imaging which intid@dly involves minimization in a high-
dimensional parametric space.

Driven by the foregoing considerations, the focus of thiglgtis a robust, yet computationally
efficient approach for preliminary elastic-wave imagin@6f solid bodies (containing cavities) based
on the concept of topological derivative. With referencetgeneric cost functiona)? of the body
shape, its topological derivative] (z°), synthesizes the sensitivity g with respect to the creation
of an infinitesimal cavity at a prescribed locatish inside the reference, i.e. cavity-free counterpart
of the probed body. The concept of topological derivativet fappeared irﬂG] anc[|[7] in the context
of topological optimization of mechanical structures (@éor a description of the subject), wherein
the spatial distribution of7 (x°) was used in an iterative procedure as a criterion for the vairaf
“excess” material through regions whefé < 0. Recently, its rigorous mathematical formulation has
been established within the framework of elastostatic lerob and Laplace equatiof] [9] 10]. Beyond
its direct application to the topology and shape optimaraf structures, however, the topological
derivative is also expected to facilitate the minimizattmsed solution of inverse scattering problems
by providing, through a first-order approximation, a ratibbasis for selecting the number, location,
and geometry of hidden defects, all of which are essentiaé$tablishing a reliable initial “guess”
(see also [1]1[]2] for the developments in 2D elastostatlosjhe previous studym.3], this idea
was considered in the context of inverse elastic scattapgrgaining tosemi-infiniteand infinite
domainswhere the availability of suitable fundamental solutiomesde it possible to establish explicit
expressions fo7 (z°).

The present study is a part of ongoing research by the autiotise identification of cavities in
afinite 3D body from non-invasive elastodynamic measurementstdpaogical derivative is hence
established in connection with a generic cost function esged in the form of an integral over the
body’s external boundary and whose kernel involves thetieolwof the forward elastic scattering
problem. This format constitutes a natural generalizadicthe least-squares misfit function, assumed
in the ensuing numerical study. Owing to the fact that thelaimental solutions for a finite body of
arbitrary shape are generally unavailable, it is no longessible to obtain explicit expressions for
7 (x°). Instead, the computation of (x°) is shown to entail the computation of the solutions of a set
of supplementary boundary-value problems for the referécavity-free) body. In an effort to provide
a comprehensive treatment of the subject, formulas forltgpcal derivative are obtained using: i)
the direct differentiationapproach, ii)adjoint field approach, and iiishape sensitivitgnalysis. The
point of departure for the first two methods is an asymptotjza@sion of the featured cost functional
with respect to the creation of an infinitesimal hole in thieestvise intact reference solid. This in turn
requires the knowledge of the leading contribution of thatteced field for a vanishing cavity. By
means of a boundary integral analysis, the latter solutidatind to be governed by a pair of separable
problems: a) an elastostatic exterior problem for the scedwity in an elastic free space, and b) an
elastodynamic interior problem for the reference body wing point sources acting at°. With such
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2346 M. BONNET, B. B. GUZINA

result, the first approach yields a formula for topologiaaivative involving the solutions to problems
a) and b), in a fashion similar to the direct differentiatapproach for shape sensitivity analyses. The
second approach leads to a distinct formula, involving tiet®ns to problem a) and an adjoint field
defined on the cavity-free reference body. The latter foanfiail topological derivative is also obtained
via the third approach, this time by taking a zero-size liofithe suitable shape-sensitivity expression
for a finite cavity (e.g.|]|5]). One should mention that theefgoing three methodologies have been
employed elsewhere, e.g. iE[lB] for inverse scatteringeimisinfinite media, and in[[9] anq]l4]
for static optimization problems, as a tool for obtainiag To the authors’ knowledge, however,
their parallel development and comparison for three-dsi@ral elastodynamics and a common
computational platform have eluded the previous studieset®of numerical results for a basic 3D
configuration is included to examine the utility of topolcaii derivative for preliminary elastic-wave
imaging of solid bodies. Notwithstanding the fact that thenfulation and results presented in this
study are established on the basis of a BIE solution, theqsegh methodology is readily applicable
to other computational platforms such as the finite elemegthod. The present study emphasizes
the development of topological sensitivity as a prepayatool for more accurate, gradient-based
solution algorithms. In such framework, the computatiarost entailed by the topological sensitivity
calculation is of the order of one forward elastodynamiasoh, and therefore modest compared to
that of the subsequent minimization of the output least sepufunctional. Another possibility, not
pursued here, consists of defining an imaging algorithnredgtbased on the topological derivative,
in which the preliminary computation of” would be followed by an iterative procedure, each step
involving matter removal based on the current distributdr?” and re-computation of” for the new
domain.

2. PRELIMINARIES

Let Q"¢ denote a finite elastic body bounded by the external suSaaed characterized by the shear
modulusu, Poisson’s ratie and mass densify. An unknown cavity (or a set theredBf™® bounded by
the closed surface(§}®is embedded if2"¢, so that2"™® = 2\ B¢ wheref2 denotes the reference,
i.e. cavity-free counterpart ¢, On applying a steady-state tractipron .S with angular frequency
w, an elastodynamic state™€ arises which satisfies the field equations and boundary tonsli

v.(C:vutrue) — 7pw2utrue (6 c Qtrue)7
ttrue =p (5 c SN)7
tiue — o (5 c I—\true),
uMe =0 (£eSp).

1)

whereg denotes the position vector. Here, the external surfasalivided into complementary subsets
Sy and Sp supporting prescribed tractions and displacements, ctigply; t™'¢ = o"'¢.n = (C:
Vu'®).n denotes the traction vector associated with the displaseai&® through Hooke'’s law, and

v

C=2u1—,

h®b+ﬁﬂ

is the isotropic elasticity tensor witlh andI3’" symbolizing the second-order and symmetric fourth-
order identity tensors, respectively. For simplicitysiissumed that is not an eigenfrequency of any
of the boundary-value problems appearing in the ensuingldpments.
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For the inverse scattering problem of interest, where thatlon, topology and geometry @f'"®
(or equivalentlyT'"™®) is being sought, the trace af™® on S is assumed to be available over the
measurement regiofi°®®s c Sy. In what follows, these measurements will be denoted®¥, so that
uObs(é,W) — utrue(g,w), 5 c Ggobs.

To facilitate the ensuing developments,détdenote the solution to the forward problem for a given
excitationp and a trial cavityB. bounded byI". Accordingly, the forward solution® is defined over
Q. =0\ B,., and is governed by the equations

V-(C:Vu) = —pu?u’ (£ €Q.),
t°=p (5 € SN)?
t°=0 (&el).
u®=0 (&€ 5h).
wheret® is the traction vector associated witfi.
To establish a rational framework for solving the inversaiyem, a misfit function is set up in order

to minimize the difference betweei?**andu°. The weighted least-squares misfit function, commonly
used for such purpose, is defined here as

S Qip) = 5 [ @) WE) - (u—ue) o ©

whereW (&) is a3 x 3 matrix-valued weighting function, assumed to be symmatnitpositive definite
(the simplest choice beind/ (£) = I,), while overbar denotes complex conjugation. In genell, (
can be considered as a special case of the class of costfiumprmitting the format

F(Quip) = / o(uc(€), ) dr (@)

Gobs

)

where

plw,€) = 3 (w(E)—uE)) - W(E) - (w(E)~u™¢)) ©)

Governing integral equation for the forward problem

Let a¥(&, @, w) and i¥(¢,@,win) = &F(& x,w)n;(€) denote respectively thé-th Cartesian
components of the elastodynamic fundamental solutiomf e displacement and traction vectors at
£ due to a unit (time-harmonic) point force actingmain the k-th direction in an infinite homogeneous
elastic solid characterized by the shear modylsPoisson’s ratior and mass density. This
fundamental solution can be decomposed into a singulaapdra regular (residual) component via

ﬁ?(&awaw) :&f(gaw) + [&f(ngvw)]Qv
(& z,win) =1 (& zn) + [I7(€ z,win),

where @¥ (¢, ) and £ (¢, x;n), which constitute the singular part, are given by the ekiatc
fundamental solution for an infinite solid (i.e. the Kelviolgtion). With such definitions, the forward
problem ﬂZ) can be formulated in terms of a boundary integmaktion (BIE):

(6)

(U8 (€,0) — uS(,w) } (€, @im) T + / W (€, )[4 (€, 2w m)]y AT
Sur Sur

/Stf(é)ﬂf(é,m,w) iy (zeTusS) (7)

with u¢ = 0 on Sp andt® = p on Sy.
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2348 M. BONNET, B. B. GUZINA

3. TOPOLOGICAL DERIVATIVE

To aid the gradient-based minimization ﬂf (4) that is ofterdias a tool for identifying'™e on the
basis ofu?s, of interest here is the development of topological deireafor the cost functionals
F(Q;p) of form (E), which would facilitate rational selection oftimecessary initial “guess” in terms
of the location, topology and geometry Bf"®. To this end, letB. (x°) = z° + %, where# C R?

is a fixed bounded open set with boundafyand volume 2| containing the origin, define the region
of space occupied by a cavity of (small) size- 0 containing a fixed sampling poiat®. Following
[@,@], one is in particular interested in the asymptotibdgor of ¢ (Q.; p) for infinitesimale > 0,
whereQ). = Q\ B.(x°), andB.(x°) is the closure of3. (x°). With reference to this limiting behavior,
the topological derivativeZ (x°,w) of the cost functional # (Q2; p) at «° for a cavity-free body is
defined through the expansion:

I (Qeip) = Z(4p) +&° | B T (2°,w) + o(e?) (e < Diametet(2), B.(z°) C Q) (8)

One may note that this definition is not restricted to spla¢iidinitesimal cavities (for whicl# is the
unit ball,.# the unit sphere and2| = 47/3). In general, the valug’ (z°,w) is expected to depend on
the shape of4. Also, the postulated (<) asymptotic behavior of7 (Q.; p) — _# (Q; p) is chosen
for simplicity because it is known to hold for traction-freavities in the 3-D elastostatic cage|[{0, 9].
The analysis to follow will corroborate this choice, and \eballow to find this behavior were it left
unspecified in definitior{[8).

With reference to|]8), the evaluation of (€).;p) requires the knowledge of the elastodynamic
solutionwu® to the forward problen[[Z) witlB. replaced byB. = B.(«°). To this end, it is convenient
to decompose the total displacement fiefdas

u* =u+u° (9)

wherewu® denotes thescattered fieldandw is thefree fielddefined as the response of the void-free
(reference) solid) due to given excitation (i.e. boundary tractign)so that
V- (C:Vu) = —pu’u (€ €Q),

t=p (§£€5n), (10)

u=20 (6 S SD),
wheret is the traction vector associated with At this point, it is important to emphasize that the
notions of void-free reference configuration and the agsddaee field, postulated for clarity reasons,
do not restrict the applicability of topological sensitwio more general geometric configurations. For
example, the techniques developed in this study are eqapfilicable to reference solids containing
pre-existing cavities and, in particular, to iterative giray algorithms where the voids identified in a

previous iteration are used to update the reference coafigarfor the next step.
By analogy to K|7), the free field is governed by the integraiagimpn

Uk(ﬂw)Jr/S{uz-(E,W)uz-(m,uJ)}ff(E,m;n) dfs+/Suz-(€,w)[f§(€,w,w;n)]z dl’e

_ / LE©)ikE zw) dle  (zeS) (11)
s
with w = 0 on S, andt = p on Sy. For infinitesimak the scattered field is expected to vanish, i.e.

limfu(z)] =0 (=€) (12)
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SOUNDING OF FINITE SOLID BODIES BY WAY OF TOPOLOGICAL DERIVAIVE 2349

whereas the free-field, by its definitioh [10), does not delpems. On the basis of[4) and (12), one
may expand # (€2.; p) with respect taz® as

F(Quip) = / p(u(€), £) dTe

Sobs

= [ [otute).6)+ Re( 52 (w(©). ©)-w(©)) + ol ()] o
Gobs . u
= @p)+ [ Re(FE(u(€).€) 5 () de+ of| ) (13
where 5 5 5
% = a—sz _ ia_il (wr = Re(w), w = Im(w)) (14)

By means of[8) and (13), the topological derivative #f(2; p) can be recast as:
o L 1 dp e

(@) = lim o | Re( 52 (u(€), €)@ (€) ) dre. (15)
To estimate the leading perturbation term

/SobSRe(g_Z(u(é)vﬁ)-ﬁf(g)) dre

one can resort to either i) direct approach, ii) aradjoint field method, or iii) limiting form of the
shape sensitivitgnalysis. These alternative methodologies for computiegtdpological sensitivity
are presented in Sectiofls[%, 5 &hd 6, respectively.

4. DIRECT APPROACH

The direct approach for the computation of topologicalwdgive proposed in this study represents a
generalization of the methodology developedE [13] foritheerse scattering problems in infinite and
semi-infinite media. It entails a substitution of the legdoontribution ofu® into @) and seeking the
limit of the resulting expression as— 0. It is therefore essential for this purpose to find the legdin
asymptotic behavior o&® ase — 0.

4.1. Leading contribution o&° ass — 0

From (2) withu¢ replaced withu®, () and [2]), it follows that the scattered fieid solves the
boundary-value problem:
V-(C:Va®) = —pu’a (€€ Q),
ia =0 (5 € SN))
'ELE = O (5 (S ;S’D)7
tt=-omn ((cT.)
wheres = C: Vu is the stress tensor associated with the free fleld ([L0)s the boundary o,

andn is the normal onS U I'. outward tof2.. As a result,u® is governed by a boundary integral
equation analogous ttﬂ (7) but withTi) superseded by/., and ii) applied loading being given by the

(16)
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2350 M. BONNET, B. B. GUZINA

surface tractior-o-n distributed over’. instead ofp acting onSy. To investigate the limiting form of
this integral equation as — 0, it is convenient to distinguish between the two distindes namely
x € S andz € T, (z being the collocation point), so that the boundary tracg6ft) on S andI'.
can be defined in terms of a pair of integral equations:

(@) + [ {(6) ~ (@)} € mim) e+ [ H(E Wik € @i m)l dTg

€

+/&f(£,w)ff(£,w,w;n) dl"g—/ ff(ﬁ,w)ﬁf({,:c,w) dr
S Sp

_ / (6wt €z w) AT (zeTy) 17)

€

and
/S (35 (6, w) — @ (0, ) } (€, @y m) dTe + /S (6, )15 (€, @, wi m)]o AT

+ / (€, )4 (€, @, wim) dTe
T

- / (€, ) (€, 2,w) dTe — / LE Wit mw) de  (@eS)  (18)
Sb e

wheret; = o;;n; is the traction associated with the free field. One may nateattsence of the free
term @3, (x,w)) from BIE @) owing to the fact tha$ is anexternalboundary ofQ2. (e.qg. ]). To
find the equations governing the leading contributior{®f, #°) ase — 0, one has to establish the
asymptotic form of the systerﬂl?) ar@(lB). For this purpssaled coordinates = (x — x°) /e and

€ = (£ — x°) /e (wherez, £ € .¥) are introduced whem € T or ¢ € T., respectively. In particular,
one has

dle =e*d; (€T, E€) (19)
where d denotes a differential element of the surfa€eboundingZ c R3.

Preliminary estimate ofa®,#°) on S. In what follows, the traces ai® on Sy andI'. and oft* on
Sp will be denoted respectively ag;, , uf_ andtg . In view of ([2), it is natural to assume tentatively

that|11§6| = O(e%), where the exponent > 0 is to be found. Based on this assumptign] (18) can be
used to estimate the behavior@§ andigD ase — 0. For such purpose, one may note that

/ s (&, w)tF (€, z,w;n) dre = 5265 (x°, :c,w)/ a5 (2° + €, w)n;i(€) dig + o(e¥?) (20)
€ y
and

/ ti(é‘vw)ﬁ?(gawvw) dr& =

€

(2%, @, w)o (2°,0) / ni (€)dTe + [ (@°, @, w)ois (2% )] ¢ / n;(€)(E—a2) dTe + o(e®)

€ €

=0 =—0;05%||

= [pwzﬂf(a:", z,w)u;(x®w) — ﬂfj (x°, m,w)aij(mo,w)} 3| B| + o(e?) (xeld) (21)
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SOUNDING OF FINITE SOLID BODIES BY WAY OF TOPOLOGICAL DERIVAIVE 2351

On the other hand, the remaining termsi (18) have the form

ZLs {ﬁasN , ~ng}
where the linear integral operatdfs clearly does not depend an On the basis of this resulf_(20),
and ), integral equatioE(llS) can be recast as
Ls{ug, 15, } = O(e™E@T23)  ase -0 (22)

It follows thatag, andt (i.e. the traces ofi® on Sy andt® on Sp) areO(¢™"@+2:9)), j.e. that one

can represent the leading contribution=gf andigD ase — 0 in terms of auxiliary functiond/ (£)
andT (&) which are independent ef so that:

ag, (€) = e™M@T 2D Z] [V(€) +o(1)], VI=0@1) (£€5)

N

t5, (&) =™+ 2318 [T(£) + o(1)], IT| =0(1) (&€ 5Sp) (23)

Asymptotic form of equatiof (17) One may note thaf (17) involves integrals ogeandT ... By virtue
of @a), the integrals ovef in (@) are readily seen to be of order

/ ﬁf(&,w)ff(é’,m,w;n) dre = O(smin(d+273))

S (24)

/ E(&w)ﬁf(é,m,w) dlre = O(Emin(d+2,3))_
s

For the integrals over'. in ), on the other hand, one hasc I'. and§ € I'.. In this case, one
can show that

i€ ww) = S E2) +00) (g mwin) = 5B E BN +00), Ll (29
and
[ﬁf(wo +e€,x° +ex,w)]e = O(1) [ff(:l:o +e€,x° +ex,w;n)]y = O(1) z, £ el (26)

where ¥ (€, ) and¥ (€, z;n) are respectively the displacement and traction given byKeslgin
fundamental solution.
Now, again assuming thakf. | = O(e%) with d > 0, one has

[ aEewitE e vl dre = 061 27)
e
by virtue of (19) and[(36), and
/ L€, )il (€, @,w) dTe = coyy () / (€ 2y (€) 9 + O(2) (28)
e

7
by virtue of (19) and[(35). On introducing the scaled cocatisz andé€ into the remaining integrals

featured in [(1]7) and taking into account estimafep (44)), 2@ [28), equatior] (1.7) is readily seen to
take the form
ag(x® +ex) + / {as (x° + e€) — @ (z° + ex) }F (€, & m) Y
K%
= oy (2% w) / W€z (@) di +OE) .,  zes (29)
K%
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2352 M. BONNET, B. B. GUZINA

On the basis of(29), integral equatidn](17) is thereforéefform
ZLoyup_ = O(e) ase — 0

where the linear integral operatéfs is O(1). It immediately follows thatl = 1, i.e. that one can seek
the solutionii, (z° + ) of (R9) in the form

ur (§) =eU(§) +o(e)  (§€Te) (30)

where the auxiliary field’ (£) does not depend anand solves the counterpart 29)

V@) + [ {U4€) - Ui(@) i@ aim) oo
——oylatw) [ dtEamn @ (@) @D
7
over the normalized cavity surfacé. Upon inspection, integral equatiSl) turns out to beeissed
with the exterior elastostatic problem:

Ve (C:VeU)=0 (E€R*\ %), (32)
T=—-o(x’,w)n (£c.7).

whereT = (C:VgU)-n is the traction vector associated with, andn is the normal on” outward
to R? \ 4. In fact, since the prescribed boundary tractiBris defined in terms of a constant stress
tensor, the solution td (B2) can be conveniently recast as

U(€) = one(z®,w)% " (€) (33)
in terms of the individual solutiong& ** = % ** to six canonical problems:

Ve (C:Ve™) =0 (€ €R?\ B),

(C:Veu™)om = —%n-(ek@)eg-i-eg@ek) Eec.?). (34
which are independent af® ande.
Asymptotic form of equatiofi (18) By virtue of [23), the resul{(30), i.el = 1, implies that
ag, (§) = <° | D] [V (€) +o(1)], VI=0(@1) (&€ Sy
t5,(6) =< |B] [T (€) +o(1)], IT|=0(1) (§€5p) (35)

On the basis of[(30)[ (21)[ (BO), (33) ar[d](35), the contiéms of integrals oveF. in equation [(1]8)
reduce to

[ aewiteawimares [
re

ti(€7 w)ﬁf({, Z, w) drf
e

= 3|4 [p&ak(a,ﬂ, z,w) ulz,w) — 6 (2%, z,w): o o (z°, m} +o(e?) (36)
where theconstanfourth-order tensory is defined by

1 v 1 _ _
Ayt = 5 {Bove = bt} — o [ % @my (@) oo @7
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SOUNDING OF FINITE SOLID BODIES BY WAY OF TOPOLOGICAL DERIVAIVE 2353

It should be noted that the tensof and the associated canonical proble@; (34) are the same as

in the previous studym_3] dealing with infinite and semi+mitit media. For an arbitrarily shaped
infinitesimal cavity, these canonical problems should imegal be solved numerically. This is a modest
computational task, since in fact one only needs to solvelsimentary static problems which do not
depend omx®. For the particular case of a spherical infinitesimal cavitywhich 4 is the unit ball,

is the unit sphere and8| = 47 /3, problems|G4) have an analytical solution, from which ti®fving
closed-form expression af is obtained@S]:

o —

3(1-v) sym  1+5v
20(7—5v) [5 L 2(1+v) L® 12} (38)
Recapitulation: governing problem for the scattered fieldre limit ase — 0. On the basis of the
foregoing analysis, the leading contributions of the scatt field in the limit as — 0 are obtained as
follows. The scattered displacement on the surface of thisking cavitysf. , is of the form [3) with

U given by (3B) in terms of the six solution&; ™, to the canonical exterior elastostatic proble@; (34).
As noted earlierz** depend solely on the void shape (as defined/byr %), and therefore need to be
computed only once irrespective of the set of grid poitfter angular frequencies being considered.
The constant fourth-order tensef can then be determined on the basigof (37)

With the foregoing result (i.e. witluf., . pre-computed), the scattered figla, , t5 ) on S is of the
form @) wherg V', T') are governed by the limiting form of the integral equat )(@se — 0. On
the basis of[(36), the latter BIE is obtained as

/{V & w) — Vi(z,w) (&, x5 n) dl"g—l—/V £ w)[t" (€ x,w;n)]p dle
—/Ti(ﬁ,w)ﬂi (&, x,w;n) dl¢
s

= 6", x,w): A o (2°,w) — p?ut (2%, &, w)-u(x®, w) (xesS) (39
The above formula and can be interpreted as an integraliequgverning the elastodynamic state
(V,T) in the cavity-free, reference body (with homogeneous boundary conditions Spdue to
a point source air®, generated by the superposition of a concentrated siséino (x°,w) and a
concentrated force pw?u(x°,w). The right-hand side 01:@9), and therefore its solutioneshe}s on
the grid pointz®, the angular frequeney and the shape of the vanishing cavity.

Here it is useful to note that the small-cavity approximat§@9) is inherently related to the low-
frequency approximation of elastic scattering in infinitedia |1§]. In particular, the latter theory,
based on series expansions of field variables with respetiieicelastic wave numbers, involves
canonical elastostatic problems that are similaf tp (32).

4.2. Topological derivative by the direct approach

To evaluate the topological derivativé (x°, w) as defined by[(]15), one needs th¢:3) (leading)
contribution of #¢ on S°° < S. For the cavity identification problem using external boaryd
measurements, the topological derivative can be expressaatly from ) interms oV as

T (x°,w) = /5 ObsRe(gi( (z), m)~V(m)) dr,. (40)
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5. ADJOINT FIELD APPROACH

In what follows, an alternative formulation of the elastadynic topological derivative for finite bodies,
eq. (40), is developed by means of the adjoint field methodnByntaining the rigor of the earlier
elastostatic developmenf{s [10] while elevating their sgarency, it will be shown that the application
of the adjoint field technique to elastodynamics leads tolegeat formulation whose compactness is
matched by its computational efficiency.

To arrive at an adjoint counterpart 40), tet¢) denote the elastodynamic displacement field in
the finite, cavity-free reference bo@ydue to prescribed surface tractipt€) acting on its boundary.
In mathematical terms this solution, herein termeddbint field satisfies the field equations and
mixed boundary conditions

V-(C:Vu) = —puwiu, §&c€Q,
t=p, &€ Sy, (41)
'ZL = 07 £ S SD.

Here it should be noted that a general definition of the atigtste permits an arbitrary distribution
of body (i.e. interior) and surface sources, with the lagfgecialization adopted here to facilitate the
formulation. With reference tdIlLG) defining the scatteredtfi:® over the “punctured” domaif.
(bounded byS U I'.) due to primary excitatiop, application of the Graffi's reciprocal theorem in
eIastodynamicslI;l?] in terms of and@® over(), yields

/(ﬁ-itaﬁ-i) dr/s as-pdr, (42)
€ N

which makes use of the fact that= % = 0 on Sp, £ = 0 on Sy andt = p on Sy. To utilize {4})
as a tool for obtaining the formula for topological derivatiit is further convenient to specialize the
surface tractiomp generating the adjoint stateaccording to

92 u(g).6),  €erocs,

p(€) = | Ou (43)
; &€ S\

0

wherey is the featured misfit function, e.g. given lﬂ/ (B)p/Ou is defined througtm4)z is the free
field in Q due to primary excitatiop (see [1))); and, as examined earlier, the external bourtiafy
the actual body2""® (and thus that of the cavity-free reference donf)ris assumed to contain the
measurement surface so PS5 S. In practical terms, the assumed distributioppabverI™°®scan be
interpreted as being proportional to a measure of the misfivéen the measured displacement field
(u°9) and the (reference) free-fietd In particular, if¢ is given by ﬂS),&p/au = W (u — u°) so
that for W = cI one ha® = c(u°"S-u), wherec is a suitable constant aneg?®s — w is the observed
scattered field if2™¢ due toB™e. On the basis of (13)[ (IL6) an[d [42), one finds that

S (@uip) = f(ﬂm)ree[/im-idr/ma-is ar| -+ ofla )
= /(Q;p)ReU ff-idr+/ ﬁ~tdF] + o(|ac]]) as e—0. (44)

€ €
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For a given primary excitatiop, the last integral over. in (@b) is known since the adjoint fietd
is determined, througlﬂ43), solely in termswafu®® and the chosen cost function densityin fact,
it can be shown by virtue omLO) that

/a.tdr f/ V(o) d = / (pw?ivu — Vit: o) d
I, B. Be
314 (pw2ﬁ~u - Vﬁ:o’) (x°,w) + o(e?) (45)

* 1 * *
= |4 (pw2u-u ~ o {a:o- - %tra tra} ) (2%, w) +o(e®) as £—0

wheree = C : Vu is the stress tensor associated with the adjoint field, a@dnimus sign in front
of the first integral oveB. appears becaugds defined in terms of the unit normal pointing to the
interior of B..
To complete the expansion gf (€2.; p) in (B4b), one is left with evaluating the leading asymptotic
behavior of the “bubble” integral
/ @t dl
T.

for vanishinge, a task that can be effected in a straightforward manner tighaid of the results of
Sectior[}4. In particular, by employinf 30) ard](33), oneadist

/ @t dl = 6 (afw) / UL(&)ny(8) dos + o) (46)
€ y
— S o) onee) [ WH@On@d + o) as e @)
S

On substituting[(47) and (#5) intp {44), the leading asyrtiptaehavior of 7 (Q.; p) for vanishinge
can be further shown to take the form

I Qesp) = Z(%p) + |28 Re[(&:ﬂ:a—puﬂ{t-u) (z°,w)] + o(c*) as ¢—0, (48)

where theconstanfourth-order tensory is again defined througﬂS?), i.e. by

1 v 1 - _
ik = ﬂ{lz’jkl - H—V5ij5u} 1@ /y wF (€m;(€) dig

Finally, by virtue of [B) and[(48), the adjoint-field formtftar the topological derivative can be written
in the compact form as

T (x°w) = Re{(&:d:a — pwu-u) (:co,w)} (49)

whereu andwu are the elastodynamic displacement fields solving the fieéé-problem ) and the
adjoint problem|@1), respectively.
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6. SHAPE SENSITIVITY APPROACH

The concept of topological sensitivity investigated heisirelated to the asymptotic behavior of a cost
function with respect to the introduction of a new, infiniteal cavity. In contrast, the concept of shape
sensitivity ] is related to infinitesimal geometric petiations of pre-existing finite cavities. Despite
their obvious differences, however, these two subjectsedated. In this section, a third method for
computing? (x°, w) is established by exploiting this relationship, providaudglitional insight into the
concept of topological sensitivity. For that purpose, ootes that|§|8) implies

%/(Qs;p) = 32| 8| T (2°w) + o(c2),  as & — 0. (50)

and that the derivativd_# /de can be expressed for any meaningfut> 0 by means of a shape
sensitivity formula [#{]5]:

L5 @ap) = [ [peruti - 0%V €0 (6) dr (51)

€

where u° denotes the adjoint displacement field for the cavitatedypediich is governed by
equations|Z|2) with the loag on Sy replaced by the adjoint loag defined by @3). In addition, the
normal transformation velocity,,(§) must be chosen so that the mapp§ig— & + 0,,(§)n(§)de

transformd’. into ' (neglecting(de) contributions), which is achieved with the choite= &n.
From ) and@O), an alternative expression of the toposdglerivative is then inferred as

o N T 1 2, € %€ _ €. * e
T (x°w) —ilg%) 377 /FE {pw u®-u® — o :Vu }(5)6’”(5) dr, (52)

On using notations and results of Secﬂ)n 4, the leadingitonion of the above integral for vanishing
¢ is readily established, leading to the more explicit foraul

T (x°,w) = ﬁ /y [prU(:co,w)-{L(:c”,w)
~ (0(a®,w) + 2(E): (Veu(a®,w) + VU () |0,(6) doe  (53)

whereX(£) =C: VEU (§), U(§) is given by [3B), and/ (£) is the normalized elastostatic displacement
given by (3B) witho (°, w) replaced by (x°, w) = C: Vetu(a®, w).

Considerations similar to those presented in this Sectawe bbeen developed ilﬂ14] anE[19] for
scalar (potential) problems and spherical vanishing mliEquation@3) is a generalization of these
results to vector (elastodynamic) problems and vanishéw@ies of arbitrary shape. This formula can
also be established by means of a direct calculation (ithoat explicitly invoking a shape sensitivity
argument), as shown in the Appendix. It should however behasiged that the computational
procedure based on exploiting the connection between saageopological sensitivities, i.e. on
definition ) of 7 (x° w), is neither simpler nor more efficient than that developeSe'mtionDS,
contrary to what is suggested E[19].
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7. DISCUSSION

7.1. Computational issues

Solution methods. To establish expressiorE[40) av@ (49) for elastodynamiaitgical derivative, it
was necessary to investigate the limiting behavior of ttatsred field for vanishingly small cavities,
a task for which the BIE formulation of the scattering prablis well suited. Similarly, the solution of
the canonical exterior elastostatic proble@; (34) is basiputed using a boundary element method.

However, the actual computation of the fie#d(x°, w) can be achieved by means of any numerical
solution technique available for elastodynamic problesagh as the finite element method (FEM),
the finite difference method (FDM) or the boundary elementho@ (BEM). This is especially true
for the adjoint field approach of Sectigh 5, where the adjpioblem is, like the forward problem,
a conventional elastodynamic boundary-value problem. l@ndther hand, obtaining an accurate
evaluation of 7 (x°,w) by means of FEM or FDM using the direct approach of Secﬂon 4 ma
prove more difficult because the associated elastodynamiidgims involve interior point sources (see
eq. 39)).

The present work is a part of the ongoing study on defect ffiestion from elastodynamic
measurements, for which the BEM is a convenient numeriaglaiowing easy re-meshing as the
trial defect evolves. For that reason, the numerical erpents in Sectioﬁ|8 are performed by means of
a boundary element method. In what follows, the BEM-basedmgdational procedures for evaluating
7 (x°,w) are described in some detail.

Elastodynamic BEM equationsOn introducing a boundary element discretization of théaserS
(together with the boundary displacements and tractioppatied thereon) into integral equati(ll)
and performing pertinent element quadrat[HI:];, 20], onieemrat a linear system of equations

[H(w){X} = [G(w){P} (54)

where{ X} and{ P} are ‘vectors’ collecting respectively thhé unknown degrees of freedom (DOFs)
and prescribed nodal tractions 6R; [H (w)] and[G(w)] are fully-populated matrices. The unknown
DOFs are thus found by solvinfy (54) foX }, with the matrix| H (w)], of sizeN x N, being invertible
(based on the assumption thadoes not define an eigenfrequency for the reference bodyhand
symmetric. Likewise, the integral representation formsufia the displacement vector and the stress
tensor at a grid point° have respectively the forms

u(z®,w) = [Gu(2®, ) { P} — [H, (2% w){ X}
o(2%w) = [Go(2®, w)[{ P} — [H, (2%, w)[{ X} (55)

where the influence matricé&, (z°, w)], [Go(x°, w)], [H,(z° w)] and[H ,(z°, w)] result from the
BEM discretization of the relevant boundary integrals.&{dfris assumed that the set of internal grid
pointsz®, over which7 (x°, w) is to be computed, is chosen beforehand.

One may note that solving the forward proble@ (54) and evimgahe representation formul55)
for Ngig grid points via traditional methods entail(N3) and O(N x Ngig) computation times,
respectively. However, both stages can be considerabslerated for largeV and Ngig by resorting
to fast solution strategies such as the fast multipole nmb@].

BEM-based computational procedures for the topologicaiMdgive. Both the direct and the adjoint
field approaches entail the followirmpmmoroperations:
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=

. Solve the BEM matrix equatiop (54) for the free-field DQP$ };

. Compute integral representationg (55) of the free-figdcfl grid pointsx®;

3. Compute thé x 6 constant tensory defined by @7), which in general entails solving the
set of six canonical problemE{34). For spherical vanisltiagties, </ has been precomputed
analytically and is given by[ (38).

N

Additional operations required by tlirect approactinclude:

4D. On the basis of Steps 2 and 3, compute the right-hand $ide°, w)} of (@) for all grid points;
5D. Solve problem[(39) in discretized form, i[#]{V'} = {F(x°,w)}, for all grid pointsz®;
6D. Compute7 (z°,w) for all grid pointsz® using [4D).

Additional operations required by tlaeljoint field approaclinclude:

4A. Compute the adjoint nodal tractioﬁg)} using ) together with experimental observations and
free-field displacements computed aldiffc S in Step 1; compute the adjoint soluti({cf(}
by solving (54) with{ P} replaced With{13};

5A. Compute the adjoint displacements and stresa@és?,w) and o (z°, w), for all internal grid
pointsz® from (58) with { X } and{ P} replaced byl X } and{P};

6A. ComputeZ (z°,w) for all grid pointsz® using [4p).

le ex0|tat|0ns A generalization of the cost functlonﬂ (4) and its topotagderivative as given
(ﬁ) {49) or [BB) to multiple excitations! (¢=1,2, ... Q) is straightforward and involves external
summatlon in the form of

Q Q
EZ Qe;p?) and T (x°w EZ?:E w;p?) (56)
: q:l

7.2. Procedural similarities between topological and shapnsitivity formulations

In addition to the previously emphasized mathematical lihkre are also strong similarities between
the computational procedures devised for topological fiags sensitivity analyses. In both situations,
thedirect approactinvolves finding the point-wise shape (resp. topologicafjsitivity of the primary
field variable, which entails solving one sensitivity boangvalue problem per geometrical parameter
(resp. per grid point). In contrast, tlaeljoint field approactrequires solving but one new boundary
value problem and provides the most direct route for conmgitie sensitivity of the objective function
at hand, although it does not furnish sensitivity inforraatbn the primary field variable.

There is, however, a noteworthy difference between thetagproaches for topological and shape
sensitivity analyses. The sensitivity boundary value f@ois associated with topological sensitivity
analysis involve singular loadings (in the form of point ems), whereas the latter are typically
nonsingular in shape sensitivity analysis.

7.3. Explicit expression of (x°,w) in terms of Green'’s tensors
As examined earlier, alternative expressidng (40), (48)@&8) for 7 (z°,w) are implicit in that they
rely upon solutions of boundary-value problems on the gdvée reference bod§p.
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Explicit expressions for7 (x°,w) are obtained when the elastodynamic fundamental solution
[ﬂf(&, z,w), th (¢ 2, w; n)] is a Green’s tensor fdp, i.e. when it satisfies the boundary conditions

W€ zw) =0 (€8, E#z), {i(€zwn)=0 (€S E#a)
In this case, the free and adjoint displacement fields aengdy

(@) = [5 (€€ mw) e . ila) = /S P(€) (€. m,w) dTe

and the expressiof (49) becomes explicit as well. This éates a formal generalization of the results
of [L3], where the topological derivative for infinite andmsieinfinite elastic media was considered.
However, such Green'’s tensors are in general not knownatplior finite domains.

7.4. Relationship to the Eshelby solution

The well-known Eshelby solution, i.e. the elastostatipoese of a three-dimensional infinite body
Q = R? to auniforminitial strain distributiore' prescribed over an ellipsoidal regigh C €, is such
that the resulting (total) straif is uniform within B, i.e.

ef(¢) =7 (¢€B), (57)
where the constant fourth-ordéshelby tensor is known analytlcallyEZ] As a result, the induced
stress field,o€, is also uniform withinB, with ¢t = C : — 1™ : €'. Since the tractions

must be continuous across the boundBry 0B of the “Ioaded” reglon the Eshelby displacement
solution inR3\ B coincides with the solution of the elastostatic exteriavlgem when the cavity
surfacel is subjected to tractions®-n, wheren is the normal ol outward toR?\ B. It follows
that, when the shape of the unit caviy is ellipsoidal, the solution of the elastostatic exterior
problem ) coincides with that of the Eshelby inclusionldem with the initial straire' taken so
thato (x°,w) = —C: (. — I3M):€".

On the basis of@S) and earlier discussion (immediatelipfohg eq. .)) the free-field term

" (x°, x,w): 7 : o(x°,w) appearing in the right-hand side ¢f] d7]39) is thus expectediocide with
the limiting form (as|B| = £ |%| — 0) of the elastodynamic displacement fielfl(¢,w) /(3 | 5|)
generated ilR? \ B by the Eshelby initial straia' =— (. — I3™)~!: C~' : o(x°, w). Owing to the
fact that the latter displacement field is given by

6w = [(©:0"Eww) o

B
— f(yfIZymfl:C*l:a'(mo,w):/ GF (€, x,w) dO (58)
B
= 98 6" (@, z,w): {~(7 -1y :C o ) + o(e®) as £—0.

the implied coincidence holds only.d# = [(I}™.#)~':C~!]. Fora spherical cavity, this equality is
easily checked by direct inspection, usi@(38) and the knexpression of”, i.e.

1 sym
S = m [(8 — 101/)14 - (1 — 51/)12 ® IQ] . (59)
According to the foregoing reasoning, the closed form obt&ry can be obtained in the same
manner from the known value o for any cavity of ellipsoidal shape. Moreover, on considgri
the limiting cases of infinitely thin ellipsoidal cavitiesne should be able to establish topological
sensitivity formulae for circular or elliptical infinitesial cracks.
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8. NUMERICAL EXPERIMENTS

8.1. Pressurized annular sphere

To validate the foregoing developments, consider the@iigsiamic Neumann problem for a spherical
shell with an outer radiug and an inner radius™®< R, shown in Fig[JLa. The shell™e, is subjected
to a uniform time-harmonic pressuys@cting over its external surfac¢e For the spherically-symmetric
problem under consideration, thsed-formexpression for topological derivative’ (r°, w), can be
obtained as shown in Appendik Il where the cost functignis given by [B).5°Ps= S, W =1, and
0< r°< R denotes the radial coordinate of a sampling point insidevtlie-free, i.e. reference body
(see Fig[]Lb).

Figure 1. Pressurized spherical shell: geometry and notati
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Figure 2. Spherical shell problem: topological derivati#ér®, w) along a radial line.

To provide a basis for comparisonymericalvalues of the topological derivativg (r°, w) are
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computed by means of a three-dimensional boundary elenoéuntios [@] applied to both direct
approach[(40) and adjoint-field formufa]49) wjih= p, v = 0.3, R/a"™® = 3 andwR/c, = 3 where

cs = \/p/p denotes the shear wave speed in the solid. In the numericdélibe inner and outer
surfaces of the annular sphere were discretized using 48650 eight-noded boundary elements,
respectively. For the excitation frequency chosen, thisimgrovides no less than 12 element lengths
per shear wavelength. A comparison between the 3D numessalts and the exact solution given
by @) is shown in Figﬂz. As can be seen from the display, batherical techniques for computing
7 (r°,w) yield results that are in reasonable agreement with theediésrm solution. In the Figure,
the RMS errors for the featured set of grid points 26102 for the direct approach arid5 103 for

the adjoint-field method, respectively. It should be memdih, however, that the accuracy of numerical
estimates of7 (r°, w) was found to deteriorate for values«f/ R close to unity, primarily as a result
of the near-singular nature of the integral representdtiostresses at observation points close to the
boundary.

8.2. Cavity embedded in a cube

To illustrate the utility of topological derivative as a pnainary tool for elastic-wave sounding of
finite bodies, the next example deals with the delineatioa spherical cavity of radiug™® = 0.5d,
hidden inside a solid cube of sifigl x 6d x 6d. Similar to the previous example, the elastic solid
is characterized by the shear modulysmass density, and Poisson'’s ratio = 0.3. With reference
to a Cartesian coordinate system aligned with the box edzml{ig[h), the cube and the cavity are
centered respectively &b, 0,0) and(d, 1.5d, d). The cubical body, with external surfacg is fixed
(u(€,w) =0, & € Sp) over the bottom patchp = {£€ € S| —2.4d<§1<2.4d, —2.4d<€2<2.4d, &5 =
—3d}. Prior to the application of time-harmonic excitation usedluminate the cavity, the rest of the
external surfaceSy = S\ Sp, is traction free. As indicated in Fif} 3, surfaces of theecabd the
cavity are discretized using 600 and 64 eight-node (quajltadundary elements, respectively.

Figure 3. Cavity embedded in a solid cube: boundary elemeshm

In sequence, a virtual elastodynamic experiment is pedron each of the four vertical faces of
the cube. With reference to the vertical testing face- —3d, the experiment parameters are chosen
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Table I. Cavity embedded in a cube: comparison of direct aljwirt method for the evaluation of (z°, w).

x°/d T(x°,w)/d | T(x° w)/d | Relative

/ Eadjoir)l{) ((difec)t§ diff.
(0.5,-1.0,05)| -7.1862e-3] -7.1882e-3| 2.78e-4
(0.5,-1.0,1.0)| -8.8608e-3| -8.8603e-3| -5.64e-5
(0.5,-1.0,1.5)| -7.9804e-3| -7.9781e-3| -2.88e-4
(0.5,-0.5,-2.5)| -2.0020e-3| -1.9841e-3| -8.98e-3
(0.5,-0.5,-2.0)| -1.0849e-3| -1.0850e-3| 9.22e-5
(0.5,-0.5,-1.5)| -2.2449e-4| -2.2492e-4| 1.91e-3
(0.5,-1.0,05)| -2.1021e-2| -2.0804e-2| -1.04e-2
(0.5,-1.0,1.0)| -1.2027e-2| -1.1854e-2| -1.45e-2
(0.5,-1.0,1.5)| -7.9503e-3| -7.8478e-3| -1.30e-2
(0.5,-0.5,-2.5)| +1.9531e-3| +1.9526e-3| 2.56e-4
(0.5,-0.5,-2.0)| -3.0256e-3| -3.0156e-3| -3.31e-3
(0.5,-0.5,-1.5)| -6.2075e-3| -6.1476e-3| -9.70e-3

so that i)\T°PS= {¢& € Sy, |&; = —3d, -3d<&,<3d, —3d<&3<3d}, and ii) the cavity is illuminated

in sequence by five localized (pyramid-shaped) distrimgtjof (£) (£ €T°°S¢=1,2,...5) of surface
tractions centered gt-3d,0,0) and (—3d, +-1.8d, +1.8d), respectively, applied over square patches
of four boundary elements. In the context of the employedndauy element mesh, these localized
tractions, each of resultaft = ud? and acting in the positivé; -direction, are generated by setting
the nodal traction at the respective central node of eacarsqeatch (e.g. at—3d, 1.8d,1.8d)) to a
value of25.,/9 while assigning half that value to the four closest (mideidoundary nodes. Virtual
experiments on the remaining vertical faces, §:e= 3d, £&; = —3d and¢, = 3d, are performed in an
analogous fashion with the applied normal tractions (pre9sacting respectively in the negatige,
positive&,-, and negativés-direction, respectively. With reference lﬁ 3) aE (58§ tost function
7 and its topological derivativg’ are calculated witt’ =1, and by summing the contribution from
all @ = 4 x 5= 20 experiments. The topological derivativE(x°, w) is evaluated at the nodes of a
regular cubic grid ofil x 11 x 11 = 1331 interior points such that-2.5d < z? <2.5d (i=1, 2, 3). As
me%i]oned earlier, all elastodynamic calculations ardéopered using the boundary element analysis
in [LY].

To check the computational developments in the absenceitab analytical solutions, Tabﬂe I
shows a comparison between the values of topological devéor the cavitated cube problem
computed by the direct differentiation approa (40) arel d@ldjoint field approach[(hg) at two
representative frequencies=1 andw =2, where

© = wd/p/p = wd/cs,

with ¢; denoting the shear wave speed. As can be seen from the disg&ive error between the two
estimates does not exceed 1.5 percent despite signifidéertedices in the respective computational
schemes.

In view of the findings in structural shape optimizatidh [9],1the elastodynamic topological
derivative developed in this study is expected to facditidie identification of internal defects (voids)
in finite solids through an algorithm that would entail i) Bwation of & (°, w) over a suitable grid
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of sampling points spanning the reference (cavity-free)tio, and ii) delineation of possible cavities
through regions i) where.7 takes the largest negative values. To investigate sucligiagsFigs. H
and|} illustrate the distribution of topological derivatiycomputed via the adjoint field approach)
corresponding to excitation frequencies- 1 andw =2, respectively. In both displays, the distribution
is plotted in three coordinate (cutting) planes contairting center of the true cavity. To provide
a reference, intersection of each plane with the true castityace is outlined in white. One may
observe that each distribution indeed points toward theedavity through negative values 6f(x°, w).
Unfortunately, the “low-frequency” map suffers from blmg, while an increased resolution of the
“higher-frequency” map is diminished by the appearancepofisus minima. One should mention,
however, that both excitation frequencies fall into thecatledresonance regiofp3] where the wave
lengths are larger than the size of the scatterer. In péatiq\s/D)|z=1= 27 and(\;/D)|g=2=,
where D is the cavity diameter and, denotes the shear wave length. As examinetﬂh [13], the
particular effectiveness of long wavelengths for prelianinimaging by way of topological derivative
is not surprising, since the assumption ofiafinitesimalcavity, implicit to (1), is better conformed
with by finite cavities that aresmall relative to the probing wavelength.

With diagrams such as those in Fiﬂs. 4 ﬂ1d 5, an algorithndéartifying plausible cavity locations
could be thus devised on the basis of the non-zero distoibwid an auxiliary function

Lo [ T@ow), T<C,
0, 7 >0,

whereC' < 0 denotes a suitable threshold value. With such definitiois, #iso possible to combine

(60)

72—%5 2 -15 -1 05 0 05 1 s 2 15

E:L/d El

7235 2 15 -1 05 0 05 1 15 2 25

Figure 4. Distribution of7 (°,w)/d in coordinate planes: &) =d, b), £&2 =1.5d, and c)¢; = d containing the
center of the true cavityy( = 1).
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&Jd

Figure 5. Distribution of7 (z° w)/d in coordinate planes: &% =d, b), £2 =1.5d, and c)¢; = d containing the
center of the true cavityy( = 2).

the individual advantages of different probing wavelesdii employing the product OEEO) at several
frequencies|E3]. As an illustration of the latter appradeig. |§ plots the distribution of the product
T (x°,¢s/d) x T (x°, 2¢,/d) in three coordinate planes containing the center of thedavéty with

C = 0.5inf,0 7 (x°,w). Notwithstanding the limited accuracy characterizingitrédvidual maps for

@ = 1 andw = 2, the combined result stemming frofn(60) clearly points tingle cavity with its
center and size closely approximating the true void conéitiom.

9. SUMMARY

In this study, the concept of topological derivative thas his origins in elastostatics and shape
optimization is extended to 3D elastic-wave imaging of &rsblids. On taking the limiting form
of the boundary integral equation governing the scatterdd iaused by a cavity with diminishing
size, the topological derivative, which quantifies the #aity of the featured cost functional due
to the creation of an infinitesimal hole, is formulated (imnts of an elastodynamic field for the
reference, void-free body) using three alternative methagles, namely i) the direct differentiation
approach, ii) adjoint field method, and iii) limiting form tife shape sensitivity analysis. The proposed
derivation of the topological gradient has two noteworthgttires. Firstly, it is organized so as to
ensure adequate rigor while avoiding the use of non-esdendéithematical concepts that would put it
beyond the reach of most researchers and practitionergjinearing sciences. Secondly, it follows a
pattern which is generic, i.e. transposable to i) other migaktechniques (e.g. BIE, BEM, or FDM),
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&,/d &,/d

-

Figure 6. Distribution of(1/d?)7]s=1 X ]a—2 in coordinate planes: & = d, b), & = 1.5d, and ¢)&; = d
containing the center of the true cavity.

i) variety of physical problems described by linear fieldiatjions such as acoustics, heat transfer, and
electromagnetics, and iii) other types of infinitely smaiijerts, such as inhomogeneities or cracks.
It is also shown that the cavity nucleation, central to togatal derivative, is closely related to the
Eshelby solution for the response of an infinite elasticdsdlie to a localized application of uniform
initial strain.

For the example of a pressurized spherical shell that adimitssed-form solution, both the direct
and the adjoint field estimates of topological derivativbtained using a three-dimensional BIE
method, are found to agree well with the exact result. To éxaithe potential of topological sensitivity
for preliminary elastic-wave sounding of finite bodies, anauical example for the solid cube hiding
a spherical cavity is also presented. The results suggesittility of the proposed imaging algorithm,
wherein a plausible void region is delineated through riegatalues of the topological derivative
at internal (sampling) points. It should be noted, howetteat the proposed imaging approach is
essentially of heuristic nature since the topological gieityg is by definition related to infinitesimal
cavities, whereas the obstacles being sought are of firziée Kiis also found that the use of multiple
excitation frequencies as a tool to illuminate the cavityrearich the experimental data set and thus
elevate the performance of topological derivative as agmatpry imaging tool.
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APPENDIX
I. PROOF OF EXPRESSION (53) FOR (z°,w)

From equationsma4)m37) anEt49), one has

T (z° w) = Re (U:Vgﬁ — pw2u-ﬁ) (z° w) — %‘;U (z° w) /y Ui(&)n; (&) dvg (61)

The integral over? can be transformed via integration by parts, noting thalh @stand U denote elastostatic
states without body forces.
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First, due to the Neumann boundary condition@ (32) anddhallequilibrium equatiorﬂi%a), one has
aij(xo,w)/ &inj dﬁg = */ ﬁizijnj dﬁg = */ Eij(*]i,j dVg (62)
7 7 o

whereX(§) = C: VU andd = R*\ #. In (62), both]é[2 VU and|£[2 Vgr} are bounded as a consequence
of the exterior problen@4), so that the integral over thenradized exterior domaid’ is convergent.
Next, with the help of the equality

3%;U4; = [EijUi + 25U — (EijUi,k + 25 Uzk)ék + ZikUi,kgj} ;

which holds for any pair of elastostatic displacement fiéjfdandl} without body forces, the divergence formula
is applied to the domain integral 62), leading to

Uij(mo,w)/ [*Jinj dﬂg = %aij(mo,w)/ ((}z — &Lké)@)nj dﬁg
7 S

1. . 1 o
+ gUij(wovw)/ (Ui = Ui k&k)n; d¥g — g/ (ZikUi)(&ny) dig  (63)
4 4

where the boundary conditio®s-n = —o(z° w)-n ands-n = —&(2°,w)-n have also been used.
Then, using the identity

(Vi = Vikér)ng = (Vi) jnn — (Vi) knj — Vi j€xnk + 3Vin,
WithV = U orV = U and invoking the following variant of the Stokes formula
/ (njf,k—nkf,j) d19§=0 j,k=172,3
JS

which holds true for any piecewise closed surfa€eand any continuous and piecewise differentiable function
f(&), equation 3) becomes, after rearranging terms:

* 1 . * * _
Uij(mo,w)/ Umj dﬁg = 5 / [O'Z'j (.’Eo,w)Ui’j + oij (.’IBO,UJ)UZ',J' + ZijUi’j] (§knk) dﬁg (64)
& &
Finally, on substitutindﬂm) and the identity
(0: Vet — pw’u-u)(z°,w) = ﬁ /y(prU-ﬁ —o:Veu)(z°,w) &n dg

into @), the alternative expressi(53) for the topatagierivative is established.

II. EXACT SOLUTION FOR THE SPHERICAL SHELL PROBLEM

In this example, the reference boflyis a spherical ball of radiug. LetQ, = Q \ B, denote the spherical shell
bounded by concentric spheres of radéind R > a. The external surface= R is subjected to a uniform pressure,
i.e.p = —pe, for r = R (where(r, ¢, 6) denote spherical coordinates andis the unit radial vector), while the

cavity surfacer = q, is traction-free. The resulting elastodynamic staté, o) in the spherical shell is radially

symmetric, so that® (£, w) = u®(r,w)e, ando®(&,w) = 0% (r,w)e, R e, + 7% (r,w)[e, ® e, + eg ® ey].
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Free field. For the foregoing configuration, the nonzero componenthefree field ¢ = 0) can be calculated
as

_p R (1-7%Q%*)sin(Qy) — Qycos(Qy) (65)
dpy? sin(Qy) — Qy cos(Qy)
» (1 -7°Q%?)sin(Qy) — Qycos(Qy)
(1 =2Q?%)sin(Q) — Q cos(Q)
[1+ (29" — 1)Q%y?]sin(Qy) — Qycos(Qy) 67)

(1 —2Q?)sin(Q) — Qcos(Q)

(66)

orr(ryw) = —

y3
p
Tpp(r,w) = 23

where
r 5 1—v _ pw?R?

_— — 2_
V=g YV =5 Q 1

Expansion of the displacement for a vanishingly small gavithe displacement on the external surface
for the case of a finite cavity of radius v® (R, w), is given by
W (Ryw) = pR A(z)cos Q(1 — z) — B(z)sinQ(1 — x)
T W TA@) + C@)cos Q1 — ) — [B(x) + D(@)]sin Q(1 — z)

(68)

wherez = a/R and
Alw)=1-2-"Q%"  C(x)=7"Q%
B(z) =1+ Q*(y’2* —x)  D(z) =+’Q*(y’Q*x — 1)

For a sufficiently small cavity radius, denoted dby= ¢ for consistency, a Taylor expansion (68) abeut 0

leads to
471' 3

u(R,w) = u(R,w) + 3¢ V(w) 4 o(e?) (69)
whereu(R,w) = u’(R,w), i.e. the free field o1, is obtained by setting = 0 in @) and
_ PR (1= 39%)Q°

V(w)

T 4p ArR2[Qcos Q + (12Q% — 1) sin Q]2

Topological derivative at the origin by direct differentian approach. Let(u"™¢, o™®) correspond to the
‘true’ cavity B"™® defined by the radius™®. The observation surfacs™ is taken as the whole external surface
S, so that®S(w) = u®(w)e, = u™(R, w)e,, and the cost functiod (a) is defined by:

1

I@) = @) =3 [ |u @ —uOf dre=2mr [ (Rw) =@ 0

where the conventiof2y = 2 is used. The topological derivative dfat the origin,7 (0, w), is given by

7(0,w) = lim ——[J() = J(0)]
— Rel| (u( R, @) = ww) V(1 -3+)Q°
- Re{( (R, w) — u3(w)) x [Qcos O+ (1207 ,1)SmQ]2} (71)

Topological derivative by the adjoint field approacit.he adjoint solutiorje(¢, w), & (£, w)] corresponds
to the uniform loack — u°bs, i.e. the pressurg = — (u(R,w) — u®®w) ), applied onS. Accordingly, the adjoint

field is given by
i w) = ﬁ(u(R, o) @) Jultw) . 66 w) = f%(um,w) —0) ) o (€, w)
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whereu ando are given by@S) anch6)m67), respectively. Therefdre topological derivativeZ (r°, w) at the
grid pointx® = r°e, is given by:

2

7(0°,0) = = (@) =) ) { el [0+ 200)°)(0°.0)
72 2 27,0 212 2/ 0
T e 1) 30 — o) 100 ) — 4" QG W} (72)

One may note that expressi(72) evaluatedrfor= 0 coincides with the resull) obtained by the direct
approach.
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