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Stability of crack fronts under Griffith criterion: a computational approach using integral equations and domain derivatives of potential energy 
Marc Bonnet* 

Laboratoire de Mecanique des So/ides (UMR CNRS 7649), Ecole Polytechnique, 91128 Palaiseau cedex, France 

This paper deals with the numerical study of stability and instantaneous extension of cracks under Griffith criterion, within the classical 
linear fracture mechanics framework. First- and second-order domain derivatives of the potential energy W in crack extensions play a central 
role in the mathematical formulation of such situations. The proposed solution strategy (called the 8-integral method, by reference to the 
FEM-based 8-method) possesses the following main characteristics: (i) it is based on a symmetric Galerkin boundary integral formulations; 
and (ii) explicit expressions for the domain derivatives of W are established using Lagrangian formulas (so that the derivations do not 
increase crack front singularities). The numerical solution procedure for the extension velocity problem, including all domain derivative 
evaluations, is entirely supported by the boundary element mesh of the current crack configuration; numerical differentiation is avoided. 
Numerical examples for an isolated crack in a 3-D unbounded elastic body show that in practice an excellent accuracy can be achieved for 
the energy release rate, the second-order domain derivatives of W and the prediction of stability or instability of crack growth.

1. Introduction

In the classical Griffith approach, crack propagation may occur at points of the crack front where the energy
release rate G reaches a critical value Ge. For a quasi-static loading history and assuming infinitesimal 
displacements and strains, the governing problem for the extension velocity of the crack front on the current 
configuration has been formulated as a variational inequality [16,17]. Mathematically speaking, G is (minus) the 
kernel associated with the domain derivative of the equilibrium value W of the potential energy. Then, the
variational inequality, and in particular the stability and non-bifurcation criteria, involves the second-order 
domain derivative of W 

The consideration of perturbations of W under fictitious body changes associated to virtual crack extensions
provides a computational tool for fracture analysis. Finite difference approaches, using small finite crack 
perturbations, have been proposed using either FEM [12,21] or BEM [8,7, pp. 50-55]. Then, the concept of 
material differentiation (i.e. analytical differentiation using infinitesimal crack perturbations) has been applied to W, starting from variational formulations of elasticity problems [9,10,14,18,20,25]. This approach, sometimes
known as the '0-method' (0 refers to the notation used in [10,14] and herein for the transformation velocity), has 
led to FEM implementations [27]. The present paper aims at formulating a BIE version of the 0-method. 

This paper aims at developing a solution strategy for the governing variational inequality whose main 
characteristics are: (i) a boundary integral equation (BIE) framework, reflecting the major role played by the 
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crack surface and its perturbations; ( ii) the recourse to explicit expressions for the domain derivatives of W, 
avoiding any numerical differentiation. This approach, herein referred to as the 8-integral method, is in fact a 
transposition to boundary integral equation formulations of the 8-method. More specifically, symmetric Galerkin 
BIEs [6,15] are used here because, like in FEM, their symmetry allows one to formulate second-order 
derivatives of W in terms of the elastic field variables and their first-order domain derivatives. The present 
development, like the classical 8-method, relies on Lagrangian-type domain differentiation formulas, in order to 
avoid the appearance of non-integrable crack front singularities during the differentiation process. The resulting 
solution procedure for the extension velocity problem is entirely supported by the boundary element 
discretisation (assuming linear elasticity). Numerical examples for an isolated crack in a 3-D unbounded elastic 
body are presented in Section 7. They show that, in practice, an excellent accuracy can be achieved for G, the 
second-order domain derivatives of Wand the prediction of stability or instability of crack growth. Although the 
Griffith criterion alone is insufficient for mixed-mode three-dimensional crack propagation simulation, our 
approach could be combined with other techniques in more complex propagation criteria. 

2. Lagrangian differentiation in crack perturbations

Let n denote a three-dimensional elastic solid. The boundary an of {} is split into tw_? components Su
(supporting prescribed displacements u =u) and ST (supporting prescribed tractions u.n =t, see Fig. 1). A 
crack, idealized by the surface I', is embedded into D. The unit normal n to I' is oriented along the r- ➔ r+ 

direction, where r+ , r- are the two crack faces (the outward normal to I':<:. is thus +n). 
The crack edge ar is a closed, generally nonplanar, curve; let T(s) denote the unit tangent vector to ar (s: arc 

length along aI'). Then, let v = T An denote the outward unit normal to ar lying in the tangent plane to I', so 
that (T, n, v) is an orthonormal right-handed frame. The components of a vector (J in (7, n, v) will be denoted 
(8,, On , OJ: 

(1) 
Smooth crack perturbations ( i.e. without kinking) are considered, so that the vector v defines the instantaneous 
crack extension direction. 

Crack extensions may be mathematically described using a pseudo-time t � 0 and a geometrical transforma­
tion <P: 

X E {} ➔x' = <P(x, t) E il(t)

which must satisfy 
<P(D, t) = il <P(r, t) ::i r 

(2) 

(3) 

Fig. I. Cracked elastic solid n.

2



Here, instantaneous crack extensions are considered, so that the unperturbed crack configuration corresponds conventionally to t = 0, and all derivatives will be implicitly taken at t = 0. Differentiation of field variables and integrals in a domain perturbation is a well-documented subject, see e.g. [22,24]; a few basic facts are recalled now [4]. The initial transfonnation velocity (J is defined by 
a<P IfJ(x) =-at t=O * The 'Lagrangian' derivative at t = 0 of a field quantity f(y, t) in a geometrical transformation, denoted by f, is defined by * I af f =lim - [f(x' -f(x, 0)] =-at+ VJ . fJ (4) hO t The Lagrangian derivative of the gradient of a field quantity is then given by * (W)* =V J-w.vo (5) where the symbol '.' indicates the dot product of two vectors or tensors (e.g. W. VO= fA.jej). Similarly, the Lagrangian derivative of any surface integral of the form I(f, S; t) = f f dS S(r) is given by the formula 

where the surface divergence of a vector field is defined by divs( ) = div( ) -n . V( ) . n
* * Note that f and / are linear expressions in (J if af/ at= 0. From formula (6), the Lagrangian derivative of a double surface integral is given by :t LL f(x, y) dSx dSY =LL {f(x, y) + /(div 5 fJ(x) + div 5 (J(y))} dSx dSY Finally, the Lagrangian derivative of a integral over a line C is given by 

(6) 
(7) 
(8) 

(9) (K: algebraic curvature of C; m: unit normal to C defined by the Frenet formula d-r/ds=Km; 0m=fJ .m). Splitting the gradient off into tangent and normal parts with respect to C, i.e. dt VJ=- +(Vf) ds J_ it is readily seen that identity (9) is equivalent, if the curve C is closed, to 
* where the derivative f now implicitly assumes that {)7 = 0. This simply reflects the fact that the closed curvesC + t07 T and C are identical up to first order in t.In this paper, Lagrangian derivatives are defined so as to reflect the effect of geometry (i.e. crack) variations alone, with fixed load, on field variables; the prime ( )' reflects the effect of load variations with the geometry kept fixed. The total derivative of (say) the displacement field under both load and geometry variations is thus expressed as 

du -=� +u'dt 
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The requirements (3) imply that 8 must satisfy the following conditions: 8=0 on af}\I' In addition, one can assume without loss of generality that 
e, = 0 on ar 

( 11)
(12) since the closed curves ar + t8;r and ar are identical up to first order in t. Let 0 denote the set of alltransformation velocity fields verifying (11)-(12). 

3. Formulation of the rate problem for crack extensionThe equilibrium solution for the current load and crack configuration has a potential energy W = W(ii, t; I') which, for the present context of linear elasticity and assuming the absence of body forces, is given by 
- 1 

J, f -W(ii,t; I')=2 u : e dV- t. u dS
f} ST 

(13) Let (ua, e0, u0) denote the equilibrium solution for the original boundary data (ii, t) and in the absence of the crack, and let (u P ei, u1 ) be the elastic state associated with given tractions on the crack faces: (14) and homogeneous boundary data on Su and S 7, so that u = u0 + u 1, e = ea + e1 , u = u0 + u1 . Then, one canshow that W(ii, t; I') = W0 (ii, t) +½Lt. <P dS (15) where cp = u + -u - = u; -u � is the crack opening displacement (COD) on I', W0 (ii, t) is the potential energy of the state (u0, ea, u0). Note that W(ii, t; I') depends on the crack configuration both explicitly and implicitly (through cp), and that W0 is left unchanged by any crack perturbation (16) The energy release rate G(s) is mathematically defined as the kernel function associated with the domain derivative of - W in any relevant domain transformation, i.e. (17) The crack is assumed to grow according to the Griffith criterion, which stipulates that the actual crack extension velocity µ verify: 
{G < Ge µ,, = 0 (no extension) G = Ge µ" � 0 (possible extension) (18) Denote by 0c E 0 the set of extension velocity fields which satisfy the above criterion at any point of the crack edge ar. The rate problem for the current crack and load configuration consists of investigating a possible infinitesimal crack extension dI' = µv dt induced by a load increment dt =t' dt applied during the 'time' interval dt. The formulation adopted here for the rate problem is a direct adaptation of the work of Nguyen et al. [17,18]. Its main unknown is the actual crack extension velocity 0v, sought as a response to a given loading rate i'. Introduce the part ar,, of the crack edge ar on which G = Ge. Denote by( ◊) the 'material' derivative associatedwith the unknown velocity µ and for fixed load. The equality (17) must be maintained in the crack extension. Applying the Lagrangian derivative (◊) thus gives, using identity (10): 
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(19) where '\$ denotes the operation of applying the Lagrangian derivative ( 0) in the velocity µ to the first-order* ◊ derivative W (which depends linearly on 8) with the additional provision that 8 = 0. The latter is acceptable ◊ because 8 acts as a test function in ( 17): the requirement 8 = 0 amounts to stating that the set of test functions � associated to the perturbed crack I' + tµ is obtained from the set 00 for the initial crack I' by transport in thetransformation (2). The equality (19) holds for any 8 E 0, and is thus in particular true for 8 replaced by 8 - µ with( µ, 8) E 0c. Introducing the bilinear form Q((J, µ): 
one obtains the following identity: 

1 � 1 ◊ * -d (0v - µJ dS - (G - GJ (0v - µJµmK ds + Q (8 - µ, µ) + (W - W)' = 0
ar t ar Then, one notes that the Griffith criterion implies the inequality: 

which includes the cases: 

and also that 
if G(s) = Ge if G(s) < Ge 

dG and dt = 0 dG or G(s) = Ge, dt < 0 
Then, substitution of inequality (22) and identity (23) into Eq. (21) yields the variational inequality: ◊ *Find µ E 0c such that (\/ 8 E 0J Q (8 - µ, µ) + (W- W)' � 0 

(20) 
(21) 
(22) 

(23) 
(24) To investigate the stability of instantaneous crack extension (i.e. the existence of a solution µ to the variationalinequality (24 ), ensuring its controllability by the loading evolution) and the possibility of multiple solutions for µ, the quadratic form Q defined by (20) plays a major role. It is shown in [l ,16] that the instantaneous extension is stable (i.e. a solution µ exists) if (25) and that the solution µ to the variational inequality (24) is unique subject to the stronger condition: 
(26) Note that, since a given instantaneous crack propagation is characterized only by the normal extension velocity µJ r, the uniqueness criterion refers only to the normal component µv. The most important steps in the formulation of the rate problem are thus the governing equation ( 17) for G and the variational inequality (24 ). They do not depend on the solution technique invoked for the initial elastic equilibrium problem. The practical issue now is of course how to evaluate the first- and second-order derivatives of W The basic purpose of the present 0-integral method is to provide boundary-only expressions of the energy derivatives, thus allowing their computations in a boundary element framework. 
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4. General BIE-based formulation for potential energy derivativesThe symmetric Galerkin boundary integral equation (SGBIE) formulation for elastic solids with cracksgoverns the boundary unknowns: traction t on s., displacement u on ST and COD q, on the crack surface I'. Ittakes the following general form:
{PAu(i, t) + PA,Ji, u) + PA,/i, q,) = fii,(i)'v (u, i, ti,) [JJJu,(u�t) + PA"Ju, �) + PA./u, �) = �•�) _ [JJJ ,t,,( q,, t) + [JJJ ,f,u( q,, u) + PA M( q,, q,) - Yi'/"') (27) 

where the bilinear forms f!/Jij and linear forms :ffe; are expressed in terms of double surface integrals (see [5] or [13) for detailed expressions). In particular, using again the decomposition u = u0 + u i, one can show that the governing SGBIE for the state u 1, is of the form: 
(28) 

The formulations (27), (28) are symmetric, and lead after BEM discretization to symmetric linear systems of equations for the unknowns boundary DOFs. It has been shown in [5] that the SGBIE formulation (27) is nothing else than the stationarity equation for the potential energy constrained by the Dirichlet boundary data, restricted to trial functions (i.e. displacement variations) solving the homogeneous Navier (i.e. elastic equilibrium) equation. To formulate the derivatives of the potential energy W given by (15), it is advantageous to introduce the Lagrangian !£: 
!£(u 1 , ii,, u, I') = Wo(u) +½Lt. qJ dS + PA(u 1, ii,)+ L;;, .t dS (29) where u, u, u, PA are compact notations for the set of unknowns, trial functions, external boundary data and bilinear forms. The underlying idea, very commonly used in optimal control, is to treat formally the variables (u 1, I') as independent and incorporate the state equation (28) as a constraint term.

4.1. First-order domain derivatives of W Consider the application of Lagrangian differentiation to (28), assuming that (i) (ii,)*= 0 (i.e. the space of test functions is convected in the domain transformation) and (ii) the loading is kept constant, i.e. i =Vt. 8 on I' One first obtains (note that ii, = ii): * [JJJ(u i, ii,)= PA(il, u )  + f!lJ \u i, ii,; 8)The above equalities define [JJJ 1 (which depends linearly on 8). Besides, one has 
:, L <f,.t dS = L ;.i dS + L <f,.(Vt. 8 +t divs 8) dS

= L�.tdS-L(Vq,.8).tdS 

(30) 
(31) 

(32) where the differentiation d/ dt is performed for constant loading (the latter equality results from an integration by parts). The derivative !£ then takes the form (using the fact that W0 = 0): 
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Now, one notices that the particular choice ii= u 1 /2 for the multiplier ii ensures that 1 J * - * * 
2 r <f, .t dS+ !?JJ(ii, u) = O ('r/ u E 'Y)

(33) 

by  virtue of the SGBIE formulation (28) and using the symmetry of the bilinear form [JJJ (thi� selection of ii is a particular instance of the adjoint state concept). This results in the following expression for W, which is linear in 0: (34) * It can be shown that W depends on O only through the normal extension velocity on the crack front Bv lar; in other words, if o< I ), o< 2 l are such that 8 �1 l = 8 �2 >, then W /i, I') . o< 2 ) = W r(t, I') . 0( 2). Hence, the result ( 34) is, . in practice applied to extension velocity fields 8 defined as arbitrary extensions over I' of given normal extension velocities 8" over ar, see Section 6.4.2. Second-order domain derivatives of W The Lagrangian derivative of !?/J I takes the form: 0 1  ◊ !?lJ (u, ii; 0) = [JJJ 1(u , ii; 0) + !?JJ \u, ii; 0, µ)which defines [JJJ 2
, a bilinear form in (8, µ). Moreover, from (5), (6), one has (35) :t L (V<f,. 0).t  sS = L (V�. 0). t  dS + L {(V<f,. 8).(V t. µ +t divs µ) - (V<f,. Vµ . 8) .t} dS (36) where the Lagrangian differentiation d /  d t  is taken for constant loading and in the velocity field µ. Then, one*◊ can express the second-order derivative W from (34) as*◊ I ◊ } 2 J ◊ -W = !?lJ (u, u; 8) + 2 !?lJ (u, u ;  8, µ) - r (V<f,. 8).t dS

- L {(V<f,. 0). (V t. µ +t divs µ) - (V<f,. Vµ . 0) . t} dS (37) *◊ ◊ To evaluate W, one thus needs the first-order derivatives u of the elastic state. A governing equation for J is obtained by taking the Lagrangian derivative (*)  of the SGBIE formulation (28), resulting in 
(V ii) [JJJ(ii, J)= L (V ii, . 8). t dS- [JJJ 1(ii, u; 8) 

◊ Choosing ii = u in (38) and substituting the corresponding equation into (37) yields the result :*◊ 1 2 * ◊ f - - . -W = 2 !?lJ (u, u; 8, µ) - !?IJ(u, u)  - r {(V<f, .O).(Vt . µ +t divs µ) - (V<f,. Vµ . 0) .t} dS4.3. Second-order mixed domain-load derivatives of W Eq . (34) gives 
W' = [JJJ 1(u 1 , u ;; 0) -L {(V<f, 1

• 8) . t  + (V<f,. 0) . t'} dSThen, the differentiation in a load increment of (28) yields (with ii =  J): 

(38) (39) 
(40)
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f¾J(u ;,:) =- L 4J. t' dS while substituting ii =  u ;  into the derivative SGBIE (38) gives f¾l(J, u ;) = L (V</>' . fJ) . i  dS - [13 1
(U p u ;; fJ)Substituting the last two relations into ( 40) results in 

* f *W' = r( </> -V</>. fJ).t' dS (41 )  In the above result, t' is evaluated from the derivative of the uncracked elastic state u0 in the load increment: t' = u(u�) .n  on I' 4.4. Formulation of the rate problem 
* *◊ * The foregoing development shows in general terms how the derivatives W, W ,  W' are set up from an initial SGBIE formulation. To actually apply this strategy one must establish explicit expressions for f¾J 1, £13 2.This task is carried out in the next section for cracks of arbitrary shape embedded in an infinite medium, for which numerical examples will be presented later. Bounded elastic solids with cracks can be addressed the same way, resulting in formulas that are longer but conceptually identical. 

5. Derivatives of potential energy: cracks in unbounded media5.1. Galerkin BIE formulation The Galerkin BIE formulation for a (possibly non-planar) crack I' of arbitrary shape in an infinite isotropic medium n = ihl! 3 (Poisson ratio v, shear modulus µ), formulated by Nedelec [15], is recalled in this section for the reader's convenience. The states defined by u0 and u 1 here correspond to loadings applied respectively: (i) at infinity; and (ii) symmetrically on the crack faces: 
(42)  I t  is  well known that any displacement field u solution to the field (Navier) equations for elastic equilibrium admits an integral representation in terms of the crack opening displacement (COD) </>(y) = u \y) - u -(y) (seee.g. [3,7]): u ;(z) = L .!�Jy -z)nJy)<f>iY) dSv (z E I') (43) where .!�e (1 ::;:; i, k, I' ::;;  3) is the kt-component of the fundamental Kelvin stress tensor, i.e. the elastic stress state generated at the field point y by a_ unit point force applied at z along the i -direction. One notices that the given tractions ±t do not appear explicitly in the previous expression. It is thus necessary to formulate an integral representation for the stress tensor u. The latter is associated with u through Hooke's law: 

so that the integral representation formula for u reads 
o;/x) = cijab L a!b ..r:e<Y - x)ne(y)<A(y) dSY 

(44) 

(45) The Galerkin BIE formulation basically follows a weighted-residual approach, i.e. consists of taking the inner 
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product of ( 45) with ¢;(x)n/x), where 4>(x) is a test function, and integrating the result over I' with respect to the observation point x. However, due to the IY - z l - 3 hypersingular behavi�r of I', a regularization procedureis needed. To this purpose , following Sirtori et al. [23], an auxiliary surface I' close to, but not intersecting, I' is defined by means of a one-to-one correspondence, e.g. x E I' ➔  z = x + 7]1l(X) E I' for TJ > 0 sufficiently smallThe weighted residual approach is then sought as the limiting case when T/ ➔ 0 in 
f- <IJ;(z)n/z)<T;/Z) dS .  = cijah f- f n/z) <IJ;(z) -!-- :t�e(y - z)ne(y)<My) dSY dS,r • r r �hIntroduce the fourth-order tensor B(y -z) defined by [15,19] 

B(y - z) has a weak r - i singularity and verifies 

(46) 
(47) 

(48) Thanks to this fundamental property, a double application (once with respect to each integration variable z andy) of the Stokes formula:
L eah,nafb dSY = I.r Jr, dsy allows to recast ( 46) into the following equivalent form: 
L. L ¢;(z)u;/z)n/z) dSx = Ir L Rq ¢;(z)B,kq,(y - z)R,</J/y) dSY dS,The differential operator Raf, defined by 

(49) 
(50) 
(51) involves tangential derivatives off only: its inner product by na vanishes due to the well-known properties of the permutation symbol eabc · Since B,kq,(y - z) is weakly singular, the inner integral (w.r.t. y) is convergent and, as a function of z, contipuous everywhere (and in particular across I'). Hence, the limiting form of (50) for T/ ➔ 0, i.e. 

z E I'  ➔ x E I', follows at once.As a result, the Galerkin BIE formulation for the crack problem is [15] find </J E °fl' f!IJ( </J, <i,) = - L <i, . t dS ('v <i, E 'V)where the bilinear form .o/J( </J, <i,) is given by f!IJ(</J, <i,) = LL Rq ¢,(x)Bikq ,(y - x)Rs<Pk(y) dSY dSX The function space °fl' is 
5. 1. 1. Other cases of applicability

(52) 
(53) 
(54) 

In addition to the isolated crack configuration, the Galerkin BIE formulation (52) also covers the followingsituations: (1) Multiple cracks in an unbounded elastic medium (the surface I' is not required to be connected);(2) A bounded elastic body B with external iJB containing internal cracks and with tractions prescribed over
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aB (formulation (52) for I' = aB U I", where I'' are the internal cracks). In this case, </> on aB is the density of a double-layer potential, not the displacement physically experienced by the body B.

5.2. Der ivatives of potential energyExplicit expressions for @ 1 , @ 2 are now established through two successive applications of Lagrangiandifferentiation to the Galerkin BIE formulation (52), under the assumption (30), i.e for a fixed loading. It is important to note again that the space "Y, of test functions associated to the perturbed crack I', = '-l>(I', t) can be put in one-to-one correspondence with the space °JI' of test functions associated to the orig inal crack I' through: 
ii, E °JI' ➔ ii,,(x) = ii,( '-l>(x, t)) E "Y,which is such that (55) Hence, one can assume ii, =  0 without loss of generality. In accordance with these provisions, the derivative ofthe bilinear form @( <f>, ii,) in a crack extension is given by 

(56) where the new bilinear form @ 1 ( </>, ii,; 8) is expressed in terms of a new kernel function B: kq,(x, y ; 8) whichdepends linearly on 8: 
(57) 

The above result stems from an application of formula (8) to (53). Use has been made of the following identity : 
(58) Next, applying formula (8) (with e replaced by µ) to (57) yields the derivative of the quadratic form [?lJ 1 (</>, <f>;  8) in the extension velocity µ :  

◊ ◊ @ i (</>, <f>;  8) = 2@ 1 (</>, <f>; 0) + @ 2<</>, <f>; 0, µ) (59) where the new bilinear form @ 2c</>, ii,; 8, µ) is expressed in terms of a new kernel function B 2 (x y · O. µ)1kqs , , , which is bilinear in (0, µ): 2 r r - 2 [?lJ (</>, <f>;  0, µ) = Jr Jr Rq ,/J;(x)Rs <A(y)B ikq, (x, y ; 0, µ) dSx dS Y ◊ where (using the fact that the set 0, can be defined so as to have (J = 0) cikq,(x, y ;  0, µ) = [Ba (Y) -ea (x)][ µb(y) - µ,,(x)]B;kqs ,ab(y - x) 
+ [ µb(y) - µb(x)]{ea ,s(y)Bikqa ,b(y - x) + ea_/y)Bika,,b(y - x)}
+ [Bb(y) - eb (x)J{µa_ ,(y)B;kqa,b(y - x) + µa _q(y)Bikas_b(y - x)}
+ Bika/Y - x){µa _,(y)Bb_/x) + µa _/x)Bb_,(y)}

(60) 

Eqs. (57) and (60), which express the terms @ 1 , @ 2 in boundary-only form, constitute the main results of thissection. 
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*◊ 5.2.1. Symmetry of W in (0, µ) 
*◊It is important to remark that W given by (39) is symmetric with respect to (0, µ). This property follows from the following identity, established in Appendix A.2 using repeated integrations by parts: 

L {(V<f,. O) . (Vt . µ +t divs µ) - (V<f,. Vµ . 0) . t} dS
= L (VO : Vµ + K(O . µ) - divs O divs µ)(</> . t) dS

+ ½ L {(V<f, . 0).(V t .  µ) + (V<f,. µ).(Vt . 0)} dS1 f + 2 r <f> . Vt . (VO. µ + Vµ . 0 - O div_1. µ - µ div5 0) dS
- - * ◊ 

(6 1) 
Moreover, the symmetry of rJJJ(<f>, </>) in (</>, </>) implies that of rJJJ(<f>, </>) in (0, µ). Finally, the symmetry of rJJJ \<f,, <f>; 0, µ) in (0, µ) is apparent in Eq . (60).
5.2.2. F onnulation of the instantaneous crack extension problem It is achieved by direct substitution of formulas (34) into ( 17), using expression (57) for rJJJ ', and (39), (41) into the variational inequality (24) and the definition (20), using expression (60) for rJJJ 2

• 

5.3. Special case of a planar crack The numerical examples to be presented in Section 7 concern planar cracks. Accordingly, Eqs. (53), (57), (60) are now given in a more explicit form for planar cracks. The surface I' lies in the (e " e2) coordinate plane,the crack front ar being a closed planar curve; the unit normal to I' is taken as n = +e 3 . 

5.3.1. Expression of rJJJ( <p, ¢) One has, as shown in Appendix A.3: 
(62) (with i, h, k = 1, 2). The above expression emphasizes the well-known uncoupling between mode I (opening, i .e. (<p3 , ¢3 )) and modes II-III (sliding, i.e . (</);, ¢), i = 1, 2). The governing Galerkin BIE formulation for the COD in mode I thus reads 
(63) 
(64) 

5.3.2. Expression of rJJJ 1 ( <f>, <IJ; 0) It stems from either a direct application of formula (6) to (63 )- (64) or a specialization to planar cracks of Eq. ( 57). As a result, one has 
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where x = l / ( 1 - v) for mode I and x = 1 for modes I I- III, and. 2 -5.3.3. Expresswn of gJ ( cf,, cf,; (J, µ) 

(65) 

It stems from either a direct application of formula ( 8) to (65) or a specialization to planar cracks of (60): 
[JJ \cf,, cf,; 0, µ) = � x LL { � [8h (y) - 0h (x)] [µk (y) -µk (x)]( f) ,hk

+ (Ao;k -B;k)(8;,k (x) [ µh (y) - µh (x)] + A,k (x) [8h (y) - 8h (x)])(  f) .h 
+ [ ( � oh .k -Bhk) [ ( µJx) + µ;, ; (y))8h_k (x) + ( 0;,;(x) + 8;,; (y))µh _k (x)] 
+ B;k [0;,h (x)µh _ix) + µ, _h (x)8h,Jx) + 8;.h (x)A./Y)] - A8h _k (X)J½,h (x)-] f} dSx dSv (66)

6. Numerical implementation for planar cracksThe Galerkin BIE formulations (63), (64) and Eqs. (65), (66) constitute the basis of the implementationpresented in this section. 
6. 1. Crack and COD representationThe (planar) surface I' is interpolated using n E triangular or quadrilateral boundary elements. The ethboundary element in physical space is mapped onto a parent element .:i, using n, shape functions Nk and interpolation nodes y \ according to 

n, J = L Nk ( (i , t2)l ( (i, t2) E J,k � l  

� 2 t 
..-7 __ �1.,..6 ___ 5 

(67) Fig. 2. Natural basis and local numbering of elements adjacent to the crack front; extension P( [, , {2 ) of the unit normal P( {, ) to ar. 
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Fig. 3. Geometrical construction used to define a C 1 interpolation of the crack front: Al = AB/2 then JC = JK/2.In this work, 6-noded triangles and 9-noded quadrangles are used (in particular, elements adjacent to the crackfront are quarter-point 9-noded quadrangles). An isoparametric interpolation is used for the COD cf,: cf,(y) = L Ni ti , t2 )cf, <k l where y = y( gi , t2 ) through (67)
k � I  6.2. Interpolation of the extension velocity 

(68) Let the global numbering of nodes be chosen such that y 1 , • • •  , ync are the nc interpolation nodes located onthe crack front ar, and denote by E(iJI') the set of (9-noded, quadrilateral) boundary elements adjacent to ar. The local numbering of nodes for any such element is conventionally defined so that nodes 1, 2, 3 lie on thecrack front, which is thus interpolated by the curvilinear segment ( g2 = - l ) and using the usual one­dimensional quadratic shape functions (see Fig. 2). (69)Within this interpolation framework, a C 1 (i.e. with continuous unit tangent T and normal v) interpolation of thecrack front can be defined, as shown in Fig. 3 (the midside node C is constructed as indicated given theendpoints A, B and their tangents). Now, a finite dimensional subspace (9nc of the space (9 of admissible transformation velocities fJ is defined soas to satisfy two requirements: ( 1 ) The trace on I' of any fJ E (9nc is zero outside E(iJI') (Fig. 4);
x1 

Fig. 4. Geometrical support and nodal values for the interpolation on r of extension velocities (J. 
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(2) Any (J E enc is a linear combination of the normal velocities Ok = OJl) at the crack front nodes:nc (J(y) = I B\y)(Jk (70) 
k = I  In order to do so, vector interpolation functions B k ( I ,s; k ,;;;  nc) are defined as follows, m terms of theone-dimensional shape functions Sk given by (69) 

(71) 
where the natural basis aa( ti, t2) (a = 1, 2) on a given boundary element is defined by (Fig. 2)

(72) 
It is readily seen that the B k have the following properties: (73) The function B 2 is depicted in Fig. 5. 
6.3. Comments Other definitions of the generating family {B\y), 1 ,s; k ,;;;  n c} of the finite-dimensional subspace enc of e satisfying (73) could be proposed. The present one is relatively easy to implement, thanks to the fact that its geometrical support is reduced to the ring of boundary elements adjacent to the crack front. Definition (71) implies that the (tangential) gradients of cf,, if, in the vicinity of the crack front are involved in the computation of the various integrals containing extension velocities. It is also important to note that the trace on the crack front of any velocity (J E enc has the form:

nc 8 = (Jv( t1 )v( t1 ) with 0Jt1 ) = L S k( t1 )8k k = I  and is continuous over ar thanks to the C 1 interpolation of ar introduced . 

-- .,,.-· ,..,,,,,,, .. ,,,,,_.,,.. .. 
-·· _ .. --·· 

8 •. ,,...... I
,,..) 

(Crack front) 

Fig. 5. Sketch of the vector interpolation function B 2
• 

(74)
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6.4 .  Discretized equations The foregoing discretization approach results in the following steps for the discretized instantaneous crackextension problem. 
6.4.1. Computation of the COD The governing Galerkin formulations (63), (64) for the mode I and modes II-III crack equilibrium problemstake the form: (75)wherewhere nN denotes the total number of nodes (note that according to the present global numbering convention ofnodes, tf,(y 1) = · · · = tf,(y

nc) = 0). 
6.4.2. COD derivative in a given crack extension * The governing Galerkin BIE formulation (38) for the nodal values t/, <b) of the Lagrangian derivative of t/, inthe extension velocity Bb is

* * [B B 12] {1* <1hl } = {L* <,b)}[B33]{ ,1,. (3b)} = {L (3b)} B
i l  .,, .,, B ,1,. (b ) L (b) 12 22 '1' 2  2 with the notationsL;b) = - [ �  : ib )]{t/J1 } - [ g(J :�b)]{<fli} - {L (VNa .Bb)t i dS} [ ,ea;a,ea;nN-nc, l "'b"'ncL�b ) = - [ �  !;b)]{t/J1 }  - [ � !�b )]{<fli} -{L (VNa .Bb)f2 dS} [ ,ea;a,ea;nN-nc, l "'b"'ncL� ) = -[ � ��b) ]{"'3} - {L (VNa .Bb)f3 dS} [ ,ea;a,ea;nN-nc, l "'b"'nc

[ � l (b) _ [ � I • b ij ] - (Nae; ,  Nee} , B )] [ ,ea;a ,c"'nN-nC 6.5. Energy release rate 

(76)Eq. ( 17) in discretized form, which governs the nodal unknown energy release rate values {G} ={G i , . . . , Gn }T , reads:
C [K]{G} = {t} (77)having set
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6.6. Discretized rate problemThe symmetric n c  X nc matrix [ Q ] associated to the quadratic form Q ((J, fJ )  defined by (20) is computed usingQ ab == Q (Ba, B b)== -!1IJ( 4, (a), 4, (b)) + ½ !1lJ 2(</J, </J;  Ba, Bb) - Lr GcSaSbK ds
-L {('V</J . Ba). (t divs Bh + 'Vt .Bh) - ('V</J. WJb . Ba)t} dS (78) The matrix [Q ] is then used to implement the stability (existence of actual extension velocity µ) and non-bifurcation (uniqueness of solution µ) criteria: ( I ) A Choleski factorization is first performed on [ Q ]. If this operation terminates successfully , [ Q ] ispositive definite, which in tum means that the uniqueness criterion (26) is satisfied.(2) If the Cholesky factorization is unsuccessful, the uniqueness criterion (26) is violated and the weaker,existence criterion (25) must be tested. In practical terms, one is led to test the positiveness ofLa,b Q a/Jaeb for any {O} ;:;. 0, which is in tum equivalent to testing the positiveness of J(x) == La ,b Q abx�x!without constraints on {x}. In practice, one can apply an algorithm for unconstrained minimization to J(x)(e.g. the conjugate gradient method). J(x) either has a minimum equal to zero or has no lower bound. Inthe latter case , negative values of J(x) should be encountered by the minimization algorithm. At the firstsuch occurrence, the existence criter ion is known to be violated.6. 7. Compute the actual extension velocityIf [Q ] is positive definite, the actual extension velocity µ == {µ" . . . , µn f induced by a load rate t ' solves

C the linear system of equations: J;, == Ir ( 4,(a) - 'Vcp .Ba). (' dS (79) 6.8. Computation of element integralsThe discretization process for the bilinear forms £JJ( </J, <f, ), !1lJ ' ( </J, <f,; fJ )  and !1lJ 2c </J, <f,; (J, µ) involvesintegrations over Cartesian products of elements E X E'. The typical form of such integrals is 
with I(E, E') == LL V <f,(x) : k(x, y) : 'V</J(y) dSv dSx 

I I k(x , y) = - f + V - · { [ fJ(y) - fJ(x)]g1 + [µ(y) - µ(x)]g2} r r I 
+ [fJ(y) -fJ(x)]. VV -. [µ(y) - µ(x)]hr 

(80) 

(81) and r = /y - x / ;  f, g 1 , g 2 , h are non-singular fourth-order tensor functions of x, y which include whenappropriate the presence of (J, µ. In principle, three different types of situations arise: singular integration (E = E'), adjacent integration (E, E '  are d istinct but share a common edge o r  vertex) and regular integration (E, E'  are completely disjoint). Adjacent integrations are specific to Galerkin boundary element methods and do not arise in collocation-type implementations. The integrand exhibits in the four-d imensional Cartesian product E X E' a s ingularity (which is weaker than the r - i singularity arising in the singular integration case). This, in principle, mandates a proper, specific, numerical integration algorithm. In contrast to the ordinary singular and regular cases, adjacent integration algorithms are complex and not yet fully developed for 3D s ituations. This, and the fact that an improper integration scheme is expected to have lower adverse effects than in the singular (E = E') case, led us to treat adjacent integrations in the same way as regular integrations, at least for the time being. 
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6.8.1. Case E = E' : singular integration In this case, the various kernels k(x, y) are integrable over a single element (their order of singularity beingr - i ). Hence, the double integral is treated as an inner singular integral over y E E  followed by an outernonsingular integral over x E E. The outer integral is thus computed using Gauss points, which in tum impliesthat the inner integrals must he r:omputed with the singular points x taken as the Gauss points used for the outer integral. The evaluation of inner, singular, integrals for a fixed position of x E E  uses polar coordinates ( p, ({)) in the parent element .d, centered at the antecedent 1J E .d of x (Fig. 6), so that the antecedent g of y is given by ( ti , t2 ) = ('Y/1 + P cos ({), 'Y/2 + p sin ({)) (82) Then, auxiliary shape functions Nm(P, ({); 17) [2] are defined according to (83) (see Appendix A.4 for the 9-noded quadrilateral element). The following formulas can then be readily established: 
N, Y -X = pf =  P L Nm(P, 'P, 1]) 1 1 1 r p r 

m = l 1 1 f V -=- --r 2 , 3  p r 
r = pr = pJr l 

VV _!. = _l ( -3f ® f  _.!_) r 3 , 5  , 3  p r r In a similar fashion , auxiliary vector interpolation functions B m are defined according to 
(the expression for s; is established in Appendix A.4). Eq. (81) can thus be recast as combinations of 
Finally, the differential area element dSY is given bydSY = J( t) dt = J( t)p dp d({) 

(84) 

(J( fl: jacobian of the mapping g ➔ y( t)). The quantity k(y - x) dSY is then nonsingular in the (p, <p)coordinates, and can be integrated numerically, using a subdivision of the parent element J, into three (triangular elements) or four (quadrangular elements). 

. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
--Fig. 6 .  Singular integration: polar coordinates centered at -q and element subdivision into triangles. 
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6.9. Regular integration The regular double element integrals (£, E' disjoint) and the simple surface element integrals are evaluated using ordinary Gaussian quadrature techniques. 
6. JO. Crack front singularity of 'V</> It is taken into account using quadrilateral quarter-node elements along the crack front, allowing to useGaussian quadrature in that case also. 
7. Numerical examplesIn this section, the concepts introduced in the foregoing development are illustrated and tested on threenumerical examples where comparisons with exact solutions are possible . The configurations considered are: (i) elliptical crack under uniform tension; (ii) circular crack under torsional load;  and (iii) circular crack with equal and opposite concentrated forces on the normal axis. In each case, the crack is embedded in an infinite elastic body. The boundary element meshes are made of nc concentric rings, each containing n1 elements; the notation A,f,(n1, nc) is used for such meshes (for example, Fig. 7 displays the first quadrant of A,f,(12, 3)). All numerical results presented below were obtained for the value v = 0.3 of the Poisson ratio. They oftenappear as 'root mean square (RMS)' errors on some distributed quantity x: 

N 
"' ( computed _ exact)2 L, X; X; 

2 ; � 1  
eRMS = ___ N ___ __ _ L (x;xact )2 

1 = l where X; are the nodal values associated with x and N is equal to either nN - nc (e.g. for x = </>) or nc (e.g. forx = G). 
7. I. Elliptical crack under uniform loadingThe problem of an elliptical plane crack I' (center 0, axes a ;:;,  b) embedded in an infinite elastic body andsubjected to an arbitrary uniform loading has an exact solution (see e .g. (26)). For the particular case of uniform tension (t = pe3, mode I problem), one has

i x2

·-·-·-·--X.tFig. 7. Boundary element mesh Al( 1 2, 3) for an elliptical crack (first quadrant). 
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_ (1 - v)p _b_ _ -5._ _ x 2 ( 2 2 ) ) / 2  ¢,3 - µ E(k) I a2 b2
2 2 1 - 1/ -rrb 2 2 I /2  G = p -- --(1-k cos a) E E\k) where E(k) denotes the complete elliptic integral of first kind:f"/2 E(k) = Jo (1 -k2 cos 2 a) u2 da b2 k2 = l - -2 a The particular case a = b gives the well-known solut ion for a circular crack: 

from which it follows that 
2 8 1 - 11 2 3 W(b, p) = 3 -E- p  b d 2 1 - v2 -2 W(b, p) = 16 -E- p2bdb (85) 

A similar, more lengthy, solution is available for combined uniform tension and shear (mixed-mode problem). Fig. 8 displays RMS errors on ¢,3 for several meshes (circular crack, mode I loading) while the RMS errors onCOD and potential energy at equilibrium are shown in Fig. 9 (mesh ..«(12, 3), aspect ration alb ranging between1 and 8.5, mode I loading). Although the latter mesh is not very fine, the RMS errors (which increase with alb) are acceptable even for the larger aspect ratios, i.e. the most distorted meshes. Computed and exact distributions of G along the crack front are plotted in Fig. 10 for various values of alb. Fig. 1 1  displays the RMS errors on G obtained using either the present 0-integral approach or COD extrapolation (i.e. evaluated from the stress intensity factors Ki ' K1 1 , Km by means of Irwin 's formula), with thesame geometrical data as before, for a mixed-mode loading configuration. One notices that the RMS error obtained using the present 0-integral approach varies between about 0.5% and 2% (for the largest aspect ratioalb = 8.5) and that the RMS error on G using extrapolation is about three times higher for any value of alb. The computed and exact values of the second-order derivative d2Wldb2 of the potential energy, for the case of a circular crack (a = b), are presented in Fig. 12. The computed value is obtained by applying the matrix [Q ] (78) of the rate problem for a unit circular extension 0.(s) = 1:
1 .0e-01 

8.0e-02 

!l
I s.oe-02 � 4.0e-02 

.2.0e-02 

number of elements 
Fig. 8. Example I: RMS error on ,t,, for several meshes. 

1.llc--02 

I .Oe-OJ 

0.0 

j<r--() RMS error on COD 
jG--0 Relative error on W 

2.0 4.0 6.0 
a/lJ (elliptical crack ._i rallo) 

8.0 10.0 

Fig. 9. Example I :  RMS errors on ,t,, and W(I', t) for mesh 
.,/{( 12, 3 )  and various values of crack aspect ratio alb. 
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O a/b=l. 
0 11/b=l.S 
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numb« of node on crack front Fig_ IO. Example I :  computed and exact distributions of G along the crack front for several aspect ratio values (mode I loading)_ 
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fl ···· 6 RMS error on G con.,.lled by COO extrapola 
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o.� L---�----'-------'----�--....._, 

0-0 2.0 4.0 6.0 
alb (elliptical crack aspect ratio) Fig_ 1 1 .  Example I :  RMS error on G(s) for mesh .,./{( 1 2, 3) and various values of alb (mixed-mode loading). 'r---, , ,,J>-. __ ___ 

-0.560 -- , r---i ' (1  
N

,0 

-0.570 

' 1�--�:,.rr:ncal I ' � 
-0.580 0_0 10.0 20.0 30.0 40.0 50.0 60_0 

Number of elements of BE mesh Fig. 1 2. Example I :  computed and exact values of d2W/da 2
, for several meshes. 

(86) 

whereas the exact value is given by (85). A good agreement between the two values is observed (relative error less than I %  except for the coarsest mesh). 
7.2. Circular crack under torsional loading This is a mode I II  situation: a circular crack I' (radius: a) is loaded by t 1 = px 2 /a, t2 = -px 1 • The exact solution [26] is 
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1 .0&-01 

1 .0IHl2 
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Nwnber of clements of BE mesh 

Fig. 13 .  Example 2: RMS error on G(s) obtained by extrapolation 
of </)1 , </)2 and by the present method. 

-0.70 ,--- ----,----�----,-----, 

".o 
� -0.71 

0--0 numerical 
- exact 

-o.120L.o------'10�.o---- 2-'o.-o--- -30�_0---�40_0 
Number of elements of BE mesh 

Fig. 14. Example 2: computed and exact values of W"" for various 
meshes. 

8 2 3 G = -- p  a9-rrµ 16 2 5 W(a, p) = - 45µ p a 64 2 3 W = - - p a ,aa 9µ (87) 
Results for the RMS error on G(s) obtained using either the present domain derivative-based approach or Km evaluated by means of COD extrapolation of <Pi , ¢2 are shown in Fig. 13. The present approach is seen to provide more accurate values of G. Fig. 14 displays exact and computed values of ¾'.aa (the latter again obtained from (86)). A good agreement is observed, the relative error being well below 1 % except for the coarsest mesh. 
7.3. Circular crack with equal and opposite concentrated forces on the normal axis A circular crack (radius a) is loaded by two equal and opposite point forces ±Pe3 applied at points (0, 0, ±h ) (Fig. 15). The exact solution for G to this axi symmetric, mode I problem is known [26]: 1 - v2 P2 a(K + a 2) G = ------ - ----E (-rrh )3 (1 + a 2)4 with

Fig. 1 5. Circular crack with equal and opposite concentrated 
loads. 

2 - v 
K = --

1 - V 
(88) 

hh / aa  
Fig. 1 6. Example 3 :  relative error on  the potential energy at 
equilibrium. 

21



One can easily show from (88) that the exact solution for G gives dG da  and hence that dG { <O(a > am) withda >0(0 < a <  am) (89) (with am = (a lh)m = 0.43939, or a,: 1 = (h la)m = 2.2759 for P = 0.3). As a consequence, a circular crack frontextension is stable for a >  h lam but unstable for a <  h /am. In the stable case, uniqueness of the crack front extension velocity 8/s) is not guaranteed since the exact solution (88) does not address the possibility of non-circular extensions. Moreover, assuming that the load parameter P is such that G = Ge, the Griffith criterion leads to the following relation between the radius and load increments da and dP: dP a(l + a2)(K + a2 )da = 2 -p 4 2 3a + (7K - 5)a - K
(90) which provides a means to compare the computed extension velocity µ,(s) against an exact solution . This and the occurrence of either stable or unstable extension depending on the ratio a I h constitute the main interestingfeatures of this example. Fig. 16 displays the relative error for the potential energy at equilibrium W(P, a),with 2 � h /a � 2.5, using the mesh .,tl( l2, 3) (the exact solution for W is evaluated from (88) using 

aw a;; =  -21raG(P, a)The RMS error on G obtained in the same conditions, using either the present approach or K1 evaluated by means of kinematic extrapolation of </>3 is shown in Fig. 17. Here again, the present approach provides superior accuracy. The positive definiteness of the matrix [ Q ] (uniqueness criterion (26) for stable crack extension, in discretized form) has been tested using the Choleski factorization. This test has been performed using the mesh .,tf( 12, 3 ), for h la = 2 + 0.005i, 0 � i � 100 (each value of h /a requiring to perform the entire solution process). Then, a refined scanning has been made for the interval 2.26 � h /a � 2.28 in which the value of a lb for which loss of positive-definiteness for [Q ] was observed in the previous procedure lies: for each of the three meshes .,tf(8, 2), .,tl( l2, 3) and .,tl(16, 5), the matrix [Q ] has been set up for h /a = 2.26 + 0.0005i, 0 � i � 40 (each value of h larequiring again to perform the entire solution process). Table 1 displays the brackets found for the transition 
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2.00 2.10 2.20 2.30 hb / aa  2.40 2.50 Fig. 1 7. Example 3: relative error on G using either the present approach or kinematic extrapolation of </)3 • I.Clc-+03 
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Table I Bracketing of the transition value (hla)m Mesh Al(8, 2) Al( l 2, 3) Al( l 6, 5 )  Brackeying 2.267 ,s;; a: I ,s;; 2.2675 2.268 ,,;;; a : ' ,,;;; 2.2685 2.277 ,,;;; a:'  ,,;;; 2.275 Relative error ,,;;; 3.910- 3 ,s,; 3,510- 3 ,,;;; 7.010-4 

0.20 �---�------�----?-� 
1-Mesh M(8,2� 

1 .0 

0.5 

0.0 L--�--'---�--'------'----....__--� 2.00 2. 10 2.20 2.30 2.40 2.50 
h / a  Fig. 1 9 .  Example 3 :  RMS error for the crack front extension velocity: mesh Al(8, 2), 2 ,,;;;  h/a ,,;;; 25. 0.15 
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I 
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I 
I 
I 
I 
I 
I 
I � Fig. 20. Example 3: RMS error for the crack front extension velocity: mesh Al( l 6, 5), 2 ,,;;;  h/a ,,;;; 2.3. 

value (h / a)m, which compares very well with the theoretical value even for the relatively coarse mesh .,{{(8, 2).These results show indirectly that the present 0 -integral method leads to a very good evaluation of the second-order energy derivatives. Next, in the cases where [ Q ] is found not to be positive definite, the existence criterion (25) is tested. For the present example, this test proved always negative, so that instantaneous crack extension is either stable and unique (hence circular), or unstable. This confirms that (hla)m given by (89) corresponds to the transition between stable and unstable extensions in general (i.e. not only for circular extensions), and that the comparison with the value of (h la)m estimated from the positive-definiteness of [Q ] is valid. Fig. 18 displays, for the meshes .,{{(8, 2), .,{{(12, 3) and .,{{(16, 5), the RMS error on the extension velocity µ computed by solving the rate problem (24) when [Q ] is positive definite, for 2.26 :;;; h /a :;;; 2.28 close to (h /a)m (the exact solution is provided by (90)). One observes the progressive degradation of the conditioning of [ Q ] as h /a approaches (hla)m. Sufficiently away from h la = (h la)m, the numerical solution to the instantaneous crack extension problem reproduces very well the circular extension given by the analytical solution (90). Figs. 19 and 20 display RMS errors on µ.,,(s) (using the mesh .,{{(8, 2) with 2 :;;;  h/a :;;; 2.5, and using the mesh .,{{( 16, 5) with 2 :;;;  h la :;;; 2.3, respectively). Finally, the relative errors on (a) W(a, P), (b) G(s) computed using COD Table 2 Example 3: relative errors on (a) W(a, P), (b) G(s) computed using COD extrapolation, (c) G(s) computed using the present method, and (d) the extension velocity µ.(s) for several meshes and a/h = 0.5 Mesh AWIW IIAG,IIL, IIAGc<tnpoll lL 2 IIAµIIL, 
IIGII,., I IGl!i, l lµI IL, Al(8, 2) 2.905E - 03 l .975E - 02 5.463E - 02 2.677E - 02 Al( l 2, 2) - l .704E - 04 6.26 IE - 04 5.032E - 02 l .919E - 02 Al( l 2, 3) 3.823E - 05 7.897E - 03 2.910E - 02 l .965E - 02 .M.( 16, 4) -3.721E - 04 3.996E - 03 2 . 173E - 02 4.262E - o3 

Al( l6, 5) -7. 1 76E - 04 3.789E - 03 2. 1 42E - 02 4.466E - 03 
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extrapolation, (c) G(s) computed using the present method, and (d )  the extension velocity µ)s) are presented in Table 2 for several meshes and a lh = 0.5.
Appendix A A. 1. Swface gradient and divergenceLet (a " a2 ) denote the natural basis defined by (72) and define : (A. I )  The surface gradient of a scalar function /( l)  defined on a boundary element ( l E Ll,) is given by (A.2) (where g 013 are the contravariant components associated with the covariant components defined by (A. 1 ). One can introduce the Cartesian components DJ of V 5f: DJ = D} = VJ.e, (A.3) Then, the surface divergence and surface gradient of a vector field u ( l) = u,( l)e, defined in terms of Cartesiancomponents can be expressed, using the notation (A.3), as 

A.2. Proof of symmetry of expression (39) The proof uses some results from differential calculus on surfaces [11 ] . The following integration by partsformula holds: 
f v : ds = f v "va dsr · ar f fv �a dS = f fv ava ds - J  fav a dSr · ar r · where v; /3 denotes the covariant derivative of a vector field v: 

In addition, the following identity holds for any vector field tangent to I': 
(K: total curvature). For scalar fields f, partial and covariant derivatives coincide, so that 
To settle the issue at hand, one has to investigate the symmetry in ((J, µ) of 

� = L {( V</> . 8). (Vt. µ  +t divs µ) - ( V<f>. Vµ. 8) .t} dS

(A.4) 

(A.5)  

(A.6) To this end, � is now reformulated by application of i dentities (A.4) and (A.5). On the one hand, one has 
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f i a - f3 a- f3 a- /3 = - r <P (0 ;atiµ;f3 + 0 t; ;aµ,13 + 0 t;µ,13 ;0) dS 
f ,1,. i(()" - /3 () "- /3 + 0 "- /3 0 "- "K ) dS= - I' 'f' ;ji µ;/3 + ti ; aµ:/3 t;U ;a ;/3 - t;µ g 

= f ((,1,. i8a- ) /3 _ ,1,. i- ()" /3 _ ,1,. i() a- /3 + ,1,. i - () a aK ) dSI' 'f' f; ;{3µ;a 'f' f; ;aµ;/3 'f' ti ;aµ;/3 'f' f; µ g 
Similarly, one has 

L (Ve/>.  fJ). (V I. µ) dS = L </J'.00 °fi ;f3µ/3 dS
= - f </J;(0 "t; 13µ13) a dSr . . 
= - f "' ;(0" - /3 + 0 "- /3 + 0 ',- /3 ) dS r 'f' ;a,i ; /3µ ti ; f3µ ;a ti ; a ;/3µ 
= L {(</J i() a µ/3 ) ; {!; ;a - </J i0 ':)i ; /3µ/3 - </J i8afi ; f3µ:J dS

= f {,1,. i () a 13- + ,1,. i - [()f3 ;a a + () /3 a _ ()" /3 _ () a /3 } dSr 'P ;f3 µ ti ; a 'f' ti ;/3 µ µ,a ;aµ µ ;a 
Note that in the above formula t; is a Cartesian component of t and can thus be treated as a scalar, hence fi ;a/3 = fi ;f3y•Substitution of the last two equations into (A.6) then results in (61). 
A .3. Expression of !YJ(cf>, ¢,) for a planar crack An explicit expression of rJJ(cf>, ¢,), defined by (53), is sought for the special case of a planar crack: the surface I' lies in the plane ( Oe I e 2 ), and n = e 3 • The bilinear form !YJ( cf>, ¢,) is thus given by 
where eab = e3ab is the two-dimensional permutation symbol, i.e. e 1 1  = e22  = 0, e 1 2 = -e21 = 1 (the indices f, q, h, s here range in { 1 ,  2} only). Then, using Eq. (47) together with the fact that r 3 = 0 for x, y E I'  (the crackis planar) and the identity 
one obtains 
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This expression can be recast in a simpler form, using the following relations: 
LL </>iix)</Jk)Y) ; dSx dSY = - LL ( </>;(x) - </>; (y))( </Jk (y) - </J;(x))(;) .ik dSx dSY 

= LL </>;)x)</Jk,iY) ; dSx dSY 

f f _ r.,r,k f f - [ 8ik ] r r <P;.h (X)<A.h (y) -r- dSx dS v = r r <P;,h (X)<A,h (y) -;:- - r,ik dSx dSY 

(A.7) 

(A.8) 
= LL [ </>i ,h (x)</Ji.h (y) ; + ( </>;(x) - ¢;(y)) ( </Jk ( y) - </J;(x))r.ikhh] dSx dSY 

noticing that r,hh = 1 1  r and
since 

,f .h _ .fh ,h + ,r .hh _ .r ,h ,h _ O + .t _ .f _ O( r ..r ) r r r ..r r ..r r r r r .h r r r2 r2 r2 Substitution of (A.8), (A.9), (A.10) into (A. 7) finally yields the desired result (62). A.4 . Modified shape functions for the 9-noded boundary elementA.4.1. Modified shape function N( p, ({); 7J) The usual shape functions are products of one-dimensional quadratic shape functions (69):
Introducing the variables ( p, </J) defined by (82), the latter are readily seen to verify: S 1 ( (1 ) - S 1 ( 111 ) = p cos <p( (1 + 11, - 1)/2 S 1 ( (2 ) - S 1 ( 112 ) = p sin <p( (2 + 112 - 1)/2Sz( (1 ) - S i(11, )= -p cos ({)( (1 + 111 ) S 2 ( (2) -S i<112) = -p sin ({)( (2 + 112)S 3 ( (1 ) - S l111 ) = p cos ({)( (,+ 111 + 1)/2S 3 ( (2 )  - S3 ( 112 ) = p sin ({)( (2 + 112 + 1)/2Noticing that N( (,, (2) - N('TJ,, '1/2) = S; (  (, )[S/ (z) - S/112)) + [S i ( (1 ) - S ;(11, )JS/112) the modified shape functions defined by ( 83) are then readily obtained. 

(A.9) 
(A.10) 
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A k  A.4.2. Modified vector shape functions B ( p, <p; 71) 
Using the natural basis (a i, a2), one has with 
One then has 
which gives 
having put b\ f)  - b\ 71) = pb\p, <p ;  71) v( f) - v( 71) = pv(p, <p, 71) From expression (A. I I ) of v( f ), one then obtains v(p, <p, 71) = {aa( P, <p; 71)Ap( f) + aa( 71)A13(P, <p;  71)}ea/3 with 

(A. I I )

A A k  Finally, explicit formulas for a°'(p, <p; 71), Aa(P, <p; 71) and b (p, <p, 71) are obtained by introducing the change of variables (82) and factoring out p. 
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