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This review concerns a methodology for solving numericatlyengineering purposes, boundary
and initial-boundary value problems by a peculiar appradaracterized by the following
features: the continuous formulation is centered on iategpguations based on the combined use
of single-layer and double-layer sources, so that the iategperator turns out to be symmetric
with respect to a suitable bilinear form; the discretizai®performed either on a variational
basis or by a Galerkin weighted residual procedure, thegotation and weight functions being
chosen so that the variables in the approximate formulatiergeneralized variables in Prager’s
sense. As main consequences of the above provisions, syyimexhibited by matrices with a
key role in the algebraized versions, some quadratic foieme h clear energy meaning,
variational properties characterize the solutions andratbsults, invalid in traditional boundary
element methods, enrich the theory underlying the comjoutatapplications.

The present survey outlines recent theoretical and cortipngd developments of the title
methodology with particular reference to linear elasficastoplasticity, fracture mechanics,
time-dependent problems, variational approaches, sangntegrals, approximation issues,
sensitivity analysis, coupling of boundary and finite elatsgecomputer implementations.

Areas and aspects which at present require further resasgdtentified and comparative
assessments are attempted with respect to traditionatlaoyimtegral-element methods.

features, among which most pertinent here is the lack of sgtrym
1 INTRODUCTION in some matrix operators which play a key role in various tagcal
The boundary integral equation (BIE) approaches refewed this developments and analysis procedures. These nonsymropéie
article as ‘traditional’ stem from the mathematical workiotegral ~ators typically include: the matrix which in linear problsrmrelates
equations (more specifically on Somigliana’s integral espntation the boundary unknowns to the vector containing the datamteix
formulas established in 1886), as formulations of lineanrfatary ~which transforms the vector collecting the modelled ptastrains
value problems alternative to those in terms of partialegéhtial into the consequent selfstress vector; the stiffness xmatrich re-
equations. Traditional boundary element methods (BEMsglde lates kinematic boundary variables to static ones, witlrssgbent
oped from these BIE formulations in the late 60s and in thg 70&ell-expected difficulties in FE-BE coupling.
through modelling of boundary variables and, mostly, tigtogol- Symmetry can be understood as a synonym for harmony. In fact,
location as their algebraized version for approximate misakso- ethymologicallyovp — petpro meant commensuration and was re-
lutions. In the last two decades, thus originated BEMs haenb ferred to musical notes in Pythagoras’ canons. Howevek,dasym-
the subject of a very considerable effort in computationathan- metry in traditional BEMs entails undesirable effects nuyf aes-
ics, gaining a still growing popularity, competing with fimielement thetical nature. Itis accompanied also by lack of sign-dkefiress (or
methods (FEMs) in some areas and spreading in engineerpiy apsemi-definiteness) and the negative consequences areafzring
cations, also by means of commercial computer codes. and have both theoretical and computational significancefadt,
Despite their undeniable success, besides remarkable @md rypically, e.g., continuous solutions of the BIEs (or of Btased
well understood advantages in some kinds of problems tivadi formulations for nonlinear problems) and their approxioms as

BEMs in the above sense are known to exhibit certain unpheasaliscrete solutions of BE models fail to be characterized &gav
tional properties; criteria for convergence and algorithstability
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in time-stepping solution techniques, known in FE elagtid inelas-
tic analyses, cannot be proved for their traditional BE terparts;
as a third example, important concepts of structural pigtsuch
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elastoplasticity. The integrations are dealt with in Secwsh spe-
cial attention to hypersingular integrands which represearucial
aspect in SGBEM and has been a braking factor in its developme

as shakedown and bounding theorems do not carry over tonsystéDther mathematical and computational issues are presierSet. 9,

discretized in the traditional BEM fashion.

specifically: convergence, algorithmic stability, erratimates,p-

It was said that ‘advances in engineering and mathematital sapproaches, self-adaptive solution techniques.

ences usually spring from a feeling of dissatisfaction, Imas the
oyster responds to the grains of sand’.
boundary element methods (SGBEM) of concern in this revigiv a
cle can be regarded as a response to grains of sand containadi+

tional BEM and pointed out above. A number of responses tsetho

grains , i.e. remedies to the above undesirable featureadifibnal
BIE-BEMSs, can be found in the recent literature in terms dt-H#E
formulations endowed with symmetries. Only the SGBEM wél b
focused herein. However, it represents the symmetrizgtiovision
most frequently dealt with in the present literature andhewriters’
opinion, is the most mature and promising one as for futuneppects
from both the theoretical and computational standpoint.

Sensitivity analysis has recently become an effectiveftoaolv-

The symmetric Galerking inverse problems such as parameter identification andtatal

shape optimization. Therefore it is briefly discussed in.S€cin
view of the remarkable potentialities of the SGBEM in thigar

Sec. 11 concerns coupling between SGBEM and FEM, since this
may represent an attractive novelty in domain decompasitidnich
is another fashionable issue in today’s computational iueicks.

Section 12 surveys the still inadequate but fast growingprger
implementations of the SGBEM and attempts some comparasive
sessments of computational merits. Some of the diversrnalive
or related, symmetric formulations that appeared in tleediure are
briefly surveyed in Sec. 13, with reference to represergatontri-

The SGBEM can be singled out by means of a few of its didutions. Section 14 gathers closing remarks on the corselidre-

tinct peculiarities as follows: its continuous formulatioests on
BIEs generated with recourse to both single-layer and d@olatyler
sources, in such a way that the integral operator turns oltteto
symmetric with respect to some suitably constructed alirferm;
the BE-discrete model (BEs and domain cells simultaneoirsly
some problems) is constructed by weighted residuals wipesland
weight functions correlated in the sense of Galerkin anchabthe
governing variables turn out to be ‘generalized variabéeglording
to a concept originally introduced by W. Prager in strudtyas-
ticity, i.e. such that the dot products and their energy rimegnare
preserved in the transition from fields of (local) varialfewvectors
of (global, nodal) variables in the discrete model.

In the early literature, the symmetric formulation for BI&s un-
derstood here was first proposed for linear elastic anailysis1979
paper by Sirtori, Ref. 153; for some structures (beams amdhKi
hoff plates) in 1985 by Hartmann et al., Ref. 79, and for elalststic
solids in 1987 by Maier, Polizzotto, Ref. 112. Earlier syntmnce
formulations include one by Nedelec, Ref. 120 for scalaeptial

sults, limitations, potentialities and research need$efSGBEM,
as emerging from the present state-of-the-art study. lanalskng
the reference list, completeness in terms of meaningfufitmrions
has been pursued together with objectivity of selectioreiie; how-
ever, undue omissions are regrettably inevitable even esticted
subject like SGBEM and the authors apologize for them.
NoTATION. The formalism and nomenclature of matrix algebra
are adopted in this paper, except where special purposes imak
dicial tensor notation more convenient. Matrices and wsctye
represented by bold-face characters; exporffémharks transpose;
vector inequalities apply componentwise. The most fretjiyersed
symbols are defined here:, £ are coordinate vectors in a Cartesian
orthonormal reference system, for the field point and sopuaiat
(or load point), respectively, p, b are displacements, tractions and
body forces;o, e, 9 are vectors gathering the independent (allow-
ing for tensor symmetry) stresses, strains and imposedetastic
strains (with the “engineering” definition of strains). Topen do-
main where a problem is formulated is denoted(hyits boundary,

problems and another in a 1977 paper by Bui, Ref. 32, devatedassumed to be piecewise smooth Ihyhe outward unit normal td

BIE for plane cracks under mode | loading.

Since the late eighties the literature on SGBEM, to be s@dédy
this paper, has grown and still grows at an accelerated Jacere-
cent comprehensive books on BEM in general devote chatéhe t

by n ata and byv at£. The symbolG is used for Green'’s functions
defined on the homogeneous unbounded sphace Other symbols
are defined in the text where they are employed for the firg.tim

fundamentals of the SGBEM: the former by Kane appeared iAd,199

Ref. 87, the latter by Bonnet in 1995, Ref. 27, its Englishsfation

2 LINEAR ELASTIC PROBLEMS

being expected in 1997, Ref. 29. Some aspects of the SGBEM hav

been dealt with in review papers either ad hoc, ref. 103, gerco
ing subareas of BEMSs, such as the recent AMR article by Beskos
dynamics, Ref. 22.

The present article is believed to provide the first compnsive
systematic survey of the SGBEM. The research results azthiap
to the end of 1996, and available in the general literatuiié,be
reviewed in twelve sections to follow. The symmetric contim
formulations of BIEs and their Galerkin discretizationstfwgener-
alized variables in Prager's sense) by BEs are outlinedhi@icate-
gories of problems so far considered in the SGBEM contexhahg
linear elastostatic (and potential) problems in Sec. Xtelglastic
analysis in Sec. 3; fracture mechanics (linear elastic aadieprittle)
in Sec. 4; time-dependent linear problems in Sec.5 (prignkniear
elastodynamics, briefly also transient heat conductionitmnédna-
logues, viscoelasticity, poroelasticity and acousti€&ction 6 is de-
voted to such diverse subjects as limit analysis and asady$irch-
hoff plates by the SGBEM. Section 7 presents energy appesaatd
variational theorems with reference primarily to lineaasicity and

2.1 Formulation of the boundary integral equations

All BEMs are deeply rooted in the mathematical theory ofdinelas-

ticity, which provided, since its golden age in the 19th ceptcen-

tral concepts such as effect superposition, influence ilometand

reciprocity relationships, and basic ingredients suchelsiK’s fun-

damental solution (1848), Somigliana’s identity (1886) &ebbia’s

kernels (1891). Therefore, quite naturally, we will refetdw to lin-

ear elastic analysis in order to start discussing the SGBBNM)ju-

lating it and elucidating its distinction from, and linkstij the tradi-

tional BEM. Naturally, numerous papers on SGBEM contairiards

of its formulation and developments in elastostatics; aasgntative

sample and source of information may be Refs. 29, 87, 135, 154
Consider a homogeneous elastic body which occupies the (clo

sed) domairQ) = Q U T resulting from the union of the two- or

three-dimensional open domdihand its boundary’. The boundary

T" is assumed to be smooth, i.e. endowed everywhere with a@niqu

outward normal denoted by or v, depending on the symbai or
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&, respectively, used for the point cartesian coordinate dlastic
states, say the actual one (unstarred symbols) under gitemal
actions and some fictitious one (starred symbols) can bévietaon
the following Betti’s equation:

/(pTu* —u"p)dl: + / (b"u* —u"b*) dQ
r Q

/ ("9 — 9"
JQ

For brevity, no domain external actioh & 0,9 = 0) will be con-
sidered in what follows. If the fictitious state is identified the
Kelvin state associated to a poiat € €, i.e. if one seta?* = 0
and modelsb™ by a Dirac distributionA(¢ — x), then Eq. (1)
becomes Somigliana’s integral representation formuladfsplace-
ments, which, ‘taken to the boundary’ (i.e. withe T") provides the
usual starting point for the traditional BEM.

Instead, let the (starred) fictitious state be identifiedaat @f the
response of the homogeneous elastic spaceembedding?, to dis-

o”)dQe 1)
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(c) Sign definiteness of quadratic forms expressing stragrges
(see Sec. 7):

[ o
S fee

The latter inequality should be relaxed o(semidefiniteness) i@
may represent a relative rigid-body motion betwéeand(...

(d) Links are worth noticing between kernels concernindedént
sources: e.g. Gebbia’'s fundamental solution can be oltdhoem
Kelvin's by taking first derivatives of it with respect to ldgoint
coordinates.

Basically, the elastic SGBIE formulation results from irisey
u”*(€),p* (&) (¢ € TI'), expressed as integral representations, into
Betti's equation (1). However, the expressions (2-3%bfp* can-
not be directly used to this purpose because of the kerngllsin-
ties (6—7). Recalling classical results of elastic potgitieory given

Guu(z, &) f(€)dldl; >0, Vf#0 9)

Gpp(z, §)d(§) dle dl> >0, Vd#£0  (10)

tributions overl” of static discontinuitieg ™ (or single-layer sources) e.g. in Ref. 91, Egs. (2-3) take the following limiting forméen

and of kinematic discontinuitieg* (or double-layer sources). In or- ¢

der to set a convenient ground for the subsequent rigoreagtent
of the singular integrals (Sec. 8), it would be suitable tocsive
here the boundary as the limit configuration (saly™) of a moving
surfacel™ outsideQ (cf. e.g. Ref. 154). Thus, having det= 0 and
¥ = 0, we can write for an¢ € Q2 (not onI'):

/ Gt
9= [ Gules

where the source density functions are interpreted asidraend
displacement jumps, respectively, acrbss

f(@)=p (") -p"
d'(z)=u"(z") —u

z)dl, +/Gup & x)d (z)dly, (2)

x) dl;, +/Gpp & x)d () dl, (3)

(4)
Q)

The meaning of the new symbols are as follows: superscripad
+ denote point{¢~,¢*; £, ™) or sets of point{T'~,I'") be-
longing to€2 (outward normaln ™
Qe = Qoo — (QUT) (outward normaln™® = —n), respectively;
infinitely close toI'; matricesG gather Green'’s functions fd2,
the former subscript specifying the effect fior displacementp for

traction at¢ ~ with normalv ™), the latter the source that causes it,
namely: « for static discontinuity concentrated as unit force, in the

load point (here denoted k), like in Kelvin fundamental solution;
p for kinematic (displacement) discontinuity concentraited: with
normal n with respect tol' and with unit integral over”, like in
Gebbia solution, Refs. 29, 63, 87. The two-point influencefions

contained in matrice&,, exhibit the following properties, denoting

by r the distance defined as Euclidean nam= |z — £|):

(a) Singularities forr — 0; specifically, in three-dimensional prob-

lems:

Guuw =O(1)r), Gup=0(1/r?)

6
Gpu = 0(1/7"2): Gpp = 0(1/7"3) ©
and in two-dimensional problems:
Guu =0(l 5 Gu =0(1
(Inr) p=0(/r) @

G =0(1)r), Gpp= 0(1/7"2)

(b) Reciprocity relationships flowing from Betti's theordan » # 0:

th(€7m) = Ggh(x7£)7 (8)

(h,k =u,p)

= n) and to the exterior domain

=& el
u'(§)=-3 +/FGuu(£,w)f*(w)dr
+f G @ ar (11)
P (€) =51 (€)+ f Grule.a)f (@)
+ Gl a)d @) 12)

where the symbolg.—and ;. denote Cauchy principal value and
Hadamard finite part integrals respectively.

Egs. (11-12) can then be substituted into Betti's equatign (
written withb = b* = 0 and¥ = ¢¥* = 0, we obtain:

[ @{-fuo+ [ utone
][Gup (x,&)u )ng}
+ a7 {——p + [ Gt 006

-Gl OuOdrfdn -0 3
Let the given external actiorg, u act on two complementary dis-
joint parts of the boundary, sdy, andI', respectively. Since equa-
tion (13) holds for any source distributigii andd*, the two expres-
sions in brackets must vanish separately, thus providingvande-
termined redundant set of BIEs. However, let usget= 0 onT,,
andd* = 0 onT', and denote by-g, and—g, the sums of the
integrals containing the boundary dagiaand @ (and the additional
four domain integrals in square brackets in Eq. (13) coirigido-
main datab and49, if these had not been ignored for brevity). Thus,
partitioningI" into ", andT",,, the following two BIEs are generated
from the Betti equation (13) in view of the arbitrarinessfsf(z ™)
onT, andd*(x™) onT:

. Guu(z,§)p(E) dle

Gup(mv E)U(E) dr§ = gu(m)7

Ip

(xely) (14)
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and which they are used to generate linear equations (as mamjieqs
as boundary unknowns containedX’ = [X}, X 1]) characterize

/ Gpu(z, €)p(€) dle various BEMs as briefly dlscussgd in Sec. 2.2. . .

" The SGBEM of concern herein arises when the following provi-

o sions are taken in Eq. (21):
_/F Grp(@,§)u(€)dle =g,(x), (€Lp) (15) iy a5 in the classical Galerkin's weighted residual apphoahe
g source interpolations acting as weight functions are ahesgial to

with the interpolation functions adopted in order to model thaadields
1 within each pair of stati¢p, f*) and of kinematidu, d*) variables,
gu(x) =5u(z) — | Guu(z,&)p(&)dle namely:
i T =¥, (i=pu) (22)
+ 1+ Gup(x,&u(g)dl: (xeTu) (16) (ii) setting F, = 0 andD, = 0, the selected equations emerging
Tu from (21) are:
1
q =—D — G w s D dr; A uu AU
g,(x) =5p(z) L Gr (z,&)p(§) dle { e } { X, } - { B! } 3
A PU PP -
—Gpu Gy Xu Bi

+ Gpp(z, &)u () dle (xeTy) (17)
P or, more compactly, with self-evident meaning of the new lsgis:
As functions ofz € Q, g, andg, are discontinuous acrogs
(namely:g, (") —g,(z7) = u(x), g,(x") —g,(=7) = p(x)).
The singularity issue can also be dealt with using a regdtign ¢ symmetry of the coefficient matrig, Eq. (23), can be proven
approach (Sec. 8), which avoids Cauchy principal valuesnitefi y taking into account the Galerkin assumption Eq. (22) aedeci-
part integrals. procity properties (8) of the kernels in the double inteigratormu-

Let matrices¥ collect shape functions defined over the wholgye Eq. (20), which must be suitably interpreted and imgleted as
boundaryT’, identically vanishing outside the relevant nodal ‘supgiscussed in Sec. 8.

port’ and endowed with suitable continuity properties {@fied by
integration requirements, see Sec. 8). The discretiztidrboth 2 2 Miscellaneous issues and remarks
the actual boundary fields and the source distributionpecavely,

AX =B, with AT = A (24)

materialize as follows: It is worth noticing that the discretized Betti equationptovides
an unified basis from which, besides SGBEM, other BEMs pregos

p(§) = ¥, ()P, u(§) = ¥u (U 1g) inthe literature naturally descend with different choioéthe source

f*(z) = ¥i(x)F, d*(z) = ¥ (x)D (18) distributions and interpolation functions. Three of thaternative

choices and consequent BE approaches are mentioned below.
Let the governing vectors in (14-15) be partitioned acaaydd the
subdivision of the boundary into its freel", and constrained’,,
portions, i.e. (withh = u, p):

(A) If corresponding shape and weight functions are equadiaing
to Eq. (22) but kinematic discontinuities (double-layesuices are
renounced by settind* = 0, then a nonsymmetric Galerkin BEM

pT — [PT7X§]7 UT = [XT,07), W, = [* W, 0] is fprmulated as proposed _in Refs. 128, 129. The loss of syryme
T o - - e s . (19) which occurs unlesB, = 0, is partly compensated for by the avoid-
F* =[F, F,], D" =[D,,D,], ¥j=["¥};" ¥]] ance of hypersingular kernels implied by the displacememips as

sources. More recently, spectral discretizations in cotioe with

The matrices resulting from the double integrations inmbly Eq. this nonsymmetric GBEM have been proposed in Ref. 115.

(13) when Egs. (18) and (19) are substituted into it, can peere
sented in the form: (B) If the weight functionsP* are assumed as Dirac distributions as-
, L sociated to boundary points (so that the Galerkin apprdagh(22),
G‘;fk = / / i/\IlfL/T(m)Gfk(gc,g)j'\pk/(g) dT¢ dT, (20) is abandoned in favor of collocation at nodes) and only ki
JT; JT; sources are employed (i.ef; = 0), then a nonsymmetric BEM
merges from Eq. (21), with attractive features in lineastt frac-
ure mechanics. This is basically the method developed loyicr
and Starfield, though mostly in the variant of an indirechfafation,
Ref. 47. Several contributions, e.g. those by Gu and Hew, Ref
and Altiero and Gioda, Ref. 2, are within this line of thought

where subscripté, k (= u, p) refer to the nature of the source an
of the actual field;h', k' (= p,u) to the variable which is work-
conjugate tah, k; 4,7 (= u, p) refer to the boundary portioR,, or
Tp; i, 5" (= p,u) to its complementI(,, or T',,).

Through modelling, Egs. (18), and partitioning, Eqs. (Z8)d

account taken of Eq. (20), Eq. (13) becomes: (C) Finally, if ¥; # W,; because the interpolation functions are
A A Dirac functions and only static sources are adopted (id&. =
FIGu. X, - Gi X, — Bl + 0,d’ = 0), the starting point of the traditional BEM is recovered
FZ[GZZXI) B GZZXIL _Bi+ from Eq. (21).
A, pu (21) The following comments may supplement what precedes anrd pro

DZ[GWXP - GzZXU + Bi] +
DIG X, -G X, +Bl=0

vide links with what follows.
(a) The two BIEs in Egs. (14,15) can be rewritten in a compayat (
where vectorsB contain boundary data, Egs. (16-17), and woulgratorial) fashion:
contain also domain data ¥ if any. Ly=g (29)
In the discretized Betti equation (21) the vectors premlyti wherey stands for both the unknown fields on the boundBry=
ing the expressions in brackets are arbitrary and the diveeys in I', U T',, g for the data functions on the r.h.s. of Egs. (14-15) and
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L denotes the (linear, integral) operator which transfotmsformer
into the latter. Making use of the reciprocity propertiesta kernel
G in (14-15), it can be easily proven, e.g. Refs. 29, 135, 1tt, for
any pair of boundary fieldg andz:

/zTLy ar = / y Lzdl Yy, z (26)

T r

Equation (26) expresses the symmetry (or self-adjoinjrefshe op-
erator L with respect to the bilinear form defined there oVerAn
important consequence of this symmetry (attainable byaégstifor-
ward and traditional path of reasoning, e.g. Ref. 162) isrmtianal

characterization (i.e. stationarity as a sufficient andessary condi-
tion) of the boundary solution, say, namely:

sWa(y)=0 (27)

with )
@z—/yTLdef/gTde
2J)r r

Because of the sign properties (9), (10), the functiod@aturns
out to exhibit a saddle point at solutigpn with minimization and
maximization with respect tp overI', andu overI', separately,
Refs. 135,154. The energy approach to, and interpretafiothe
SGBEM in elasticity and elastoplasticity developed in Seavill
cover the above variational properties as a special casaviinulit
them in broader perspectives.

(b) So far, the provisions necessary to confer a meaningetaiti
gular integrals have been tacitly assumed for granted amokégl.
However, the presence of singularities stronger than thosdved
in the traditional BEM and in most of its variants representsucial

Bonnet, Maier and Polizzotto: Symmetric Galerkin BEM 5

of Sec. 2, an alternative and simpler path will be followetbtefor
the sake of approach diversity.

In the presence of material nonlinearities the SGBEM is be-

lieved by the writers to exhibit special advantages oveditianal
BEMs because a number of potentially useful results candresir
ferred from continua to discrete models. Therefore, in Sastion,
a rather detailed conspectus is presented of results wisicbeen
quasi-static elastoplastic analysis (see Refs. 42, 8083103, 104,
106, 108-110, 112, 126, 133, 140, 142, 143), to be suppleudnt
those aspects of plasticity briefly dealt with in Secs. 41361.

Let, C Q be the subdomain where plastic yielding is reason-
ably expected. Ignoring plasticity for a while, assume thathomo-
geneous elastic body considered be embedded in a suitableges
neous solid (here, like in Sec. 2, the unbounded spaecg of which
Green’s influence function& are analytically known. Besides the
static and kinematic sources on the boundBryf* and d*) em-
ployed in Sec. 2,imposed straif}s are assumed if2, as proposed
in Ref. 112. The following effects oft, due to all these sources are
expressed by superposition: (i) displacements, to identith data
@ in the actual body, in points of Q2 neighbouring the constrained
boundaryI’,,; (i) tractions, to identify with date in pointsx of Q
infinitely close to the free boundaly,; (iii) stresses ir,,.

The linearity ofQ2, permits to superpose effects by means of in-
fluence functions. These functions, indexunning over the above
three kinds of effectsi = u,p, o), can be identified with funda-
mental solutions or Green’s functions 9f,,, and precisely with:
Kelvin's kernelsG},, for static sourceg™; Gebbia’s kernel€s},,, for
displacement jump sources; Bui's kernelsG,. for strain sources
9*. We name the Green’s functions of the third kind after Bui in
view of the substantial correction (addition of the ‘cornwezterm’)

feature of the SGBEM (and perhaps the very reason of its ddlayProvided in Ref. 33 to the kern€¥,, as it was widely used, until
deve|0pments)_ Therefore, Sec. 8 and parts of Secs. 9 antth® o 1978, without that term in elastoplastic analysis by tiaddl BEM.

review will primarily be devoted to various meaningful siarity-
related issues.

(c) In the consolidated literature on traditional BEMs, stidiction is

often made between direct and indirect approaches. Therelifte
concerns the nature of the boundary variables chosen a®wnkn
(actual quantities or fictitious [source] fields). It is shom Sec. 8
that indirect SGBEM formulations can be easily derived frdinect

ones, once regularization or other correct interpretatfcthe singu-

lar integrals is made. Indirect SGBEM formulations do narado

otherwise involve new essential features in mathematicabmpu-

tational terms. Therefore only direct approaches have beasid-

ered above and will be dealt with in what follows, with the egtion

of a short discussion of indirect formulations in Sec. 8.

(d) Potential problems, such as those concerning steatly-keat
and electricity conduction, Darcy filtration through posomedia,
De Saint-Venant torsion and the motion of compressiblesidi
fluids, are seldom referred to in research papers on SGBEM,
cept to special purposes such as hypersingular integrabmiques
(secs. 8, 12) in view of the formal simplification entailedtbg scalar
nature of the unknown fields. In fact, the essential mathiealdea-

tures (ellipticityin primis) are the same as in linear elastostatics and

this makes it redundant to deal with such situations hengiticitly.

3 ELASTIC-PLASTIC QUASI-STATIC ANALYSIS
3.1

Clearly, the formulation of BIEs for elastoplastic anasysan be ob-
tained as a generalized version of that for elastic analyisvever,
instead of extending the path of reasoning based on Bétdsrem

Integral equations and their space discretization

The actual elastic-plastic state in the solid considereeldsvered
by means of three provisions: (i) interpretifig as unknown plastic
strainse?; (ii) making explicit the circumstance that the exterior do
main{. — is undeformed and unstressed, i.e. settifig¢ ™) = 0
andp*(¢1) = 0 in the expressions of the boundary sources inter-
preted as discontinuities accrdss (iii) entering the boundary data,
ie.u*(¢”) =uwonly andp*(§~) = p onT', and the boundary
unknownsu*(§7) =u onI', andp*(£€~) = ponl,.

Thus the integral expressions originally written as supsitipns
of the effectsu andp onT'~ ande in 2, due to sourceg™, d* onT
andd* = €? in , yield the three integral equations:

Guu(zx,&)p(§) dle — Gup(z,§)u(€)dl;

Ty Tp
] Gule 0 @d% =g, @eT) (@)
o [ Gr@Op©d: + [ Gpyle &ulé)dr
Jry o,
Gpola )P (€)d% = g, (), (zeT,)  (29)

/F G, €)p(€) ATk — / G, €)ul(€) T

[ Gl ©d% =g,@) +ol@). (@)
QP
(30)
Like in Egs. (14-15)g, (h = u,p, o) denote the resulting terms
gathering data on the boundary and also on the domain (badggo

and thermal strains were ignored in Sec. 2 for brevity).
Among the nine kernels that show up in Egs.(28-30), four have
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been employed for elastic analysis and commented upon in2Secare not valid in conventional BEMs. As a consequence of B, (

As for the kinds of properties considered there, the new faraéds
can be easily seen to exhibit the following features:

(o) Those concerning stresses as effects, G&, (b = u,p,0)
are singular like those concerning traction effects, i@, (h =

u, p, 0); Bui kernels have the same singularities as Gebbia kernel

(B) The reciprocity relationships (8) hold for all kernelsg.i. for
(h7k = u7p70-)1

() The quadratic form associated, for any domainte,, is neg-

the eigenvalues of are real, those that vanish correspond to stress-
less systems of plastic strains and their number can bededas
a measure of the ability of the cell-discretization to acomdate
mechanisms in plastic collapse and shakedown analysisrfefqplg

glastic solids and structures (see Ref. 103 and Sec. 6.1).

3.2 Constitutive laws in local and generalized variables

The main peculiarities of SGBEM in inelastic analysis ereeggen
in the narrow context of associative, single-yield modefgm (non-

ative semi-definite, like that associated@g, over any closed sur- hardening) plasticity, to which therefore the consideraiin this

face, in view of the common meaning of the sign-inverse oftas-
tic strain energy due to (generally non-compatible) stamposed
in Q. as external actions.

If the left-hand sides of Eqs. (28-30) together are interpre

ted as consisting of an integral operatdr acting on fields
{pT,u”,ePT}7, then, using propertieg} and &), L can be shown
to exhibit symmetry with respect to a bilinear form definecov

and2,. Clearly, remark (a) of Sec. 2.2 does not apply, as Eq. (30)

contains the unknown fielet ().

Subsection will be restricted for brevity. Let the elas&gpic mate-
rial model be described in the following classical fashion:

o=E(—¢eP)
=2 o) —y<0: =2k @39)
>0, pA=0

Here, ¢ denotes the yield functiory a yield limit (meant to be a

Symmetry is preserved when the discretization is perforimed material constant)} the plastic multiplier. As usual, the ‘equivalent

accordance with two provisions: (i) field modelling (18)extled to
Qp by €P(€) W, (£)OP, denoting by®?” the vector of ‘gener-
alized’ plastic strains; (ii) Galerkin weighted residutdtement ac-

cording to Egs. (22) witlih = u, p, o), carried out for Egs. (28-30).

In fact, the double integrations like in Eq. (20) withk ands, 5 run-

ning over the augmented index set p, o), if suitably executed in
view of the integrand singularities (cfr. Sec. 8), genestamet-
ric algebraic linear equations. These can be written in ¢lleviing

compact form, which augments Eq. (24) to elastic-plastilyais

purposes:

AX +CO” = By (31)
C"X +G,,0"=Bg+ X (32)
where:
AT =A, Gl =6G.., = :/ Tl (6o (€)de  (33)
Q

Equation (31) condenses the Galerkin-discretized BIEE@8 (29).
Let its solution with respect to the vectdf of boundary unknowns
be substituted into Eq. (32), which is the Galerkin disazesi ver-
sion of integral equation (30). This move is implicitly orpdic-
itly recurrent in the traditional elastoplastic analysis BEM, e.g.
Refs. 15, 31, 49, 158 (itis not so in computational plastieit FEMs,
where it would require the inversion of the whole elastifratiss ma-
trix). In the present SGBEM the equation resulting from éheivial
manipulations,namely

ZO+3° =% (34)
turns out to exhibit the following special features:
Z'=z; -je"ze’>0 ver (3

Clearly, the interpretation of Eq. (34) is equal to that sf ¢bun-
terpart from traditional BEMSs, i.e.: actual stresses ageghm of

stress’y + ¢ is assumed to be positively homogeneous of order one
in the stresses. The elasticity law (36a) postulates saddtitivity;
Eqgs. (36b) express the yield criterion and the normalite;régs.
(36¢) the so-called ‘consistency’ or ‘loading-unloadimgfe.

The space discretization in the boundary and domain integra
equations and their Galerkin approximate enforcement. (B&éthas
entailed a link between the plastic strain model

e’(z)

= Wy(z)O" (37)

and the stress-governing paramefgraver(2,,, defined by Eq. (33.
It is highly desirable that vectol® andX gather ‘generalized vari-
ables’ in Prager sense (W. Prager and M. Save introduceddtitn
for structural plasticity in the late fifties), namely that:
sTer = / o’ (x)e? (x)dQ, VX, 0F (38)
QP
The identity (38) entails the preservation of the scaladpod (and
its energy meaning) of conjugate variables occurring imspgdine-
matic and static) in passing from the local quantities todhubal
ones which govern the discrete model. This preservatioadessary
(even if not sufficient) in order to endow the discrete modithithe
essential features of the original continuum solid or stmee In par-
ticular, Eq. (38), if combined with the symmetries of the bdary
integral operator (Sec. 2.1), has far-reaching conse@seimcterms
of attractive peculiarities of the SGBEM, as discussed in 3e
Condition (38) is complied with if the shape functions mdidel
stresses are suitably derived from those chosen for stiansf:
-1

W] (x)®y(z)dQ

(39)
Then®? in turn becomes weighted averages6f shape functions
W, acting as weights, in full similarity to Eq. (33). Clearlhet
same shape functions will be used for total as well as plagtiins,
i.e.e(x) = ¥y(x)E.
A fully analogous modelling procedure will be applied to the

o(x) =

U, (z)%, with ¥, = \IIGV
QP

the linear elastic stress respon®é to external actions and self- other pair of conjugate variable fieldsand, by introducing interpo-

equilibrated (in a suitable approximate way, Ref. 136)sstes due
to plastic strains through the influence matéx The properties

lations ¥, and consequent, through a dependence like Eq. (39), in-
terpolations¥ ., with vectorsA and® gathering Prager-generalized

(35) (i.e. symmetry ofZ and the meaning of strain energy for theplastic multipliers and yield functions, respectively. eTéame pro-

quadratic form associated to it) are in the SGBEM the sambazet

cedure would hold for possible internal variables occuyiim pairs

of kernel G, for the continuunf2 in local variables, whereas theyin cases of hardening (instead of ideal) plasticity.
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After the above preliminaries, straightforward manipigias lead
from the material model in local variables to constitutiaevs in
weighted-average variables, generalized in Prager'sseasnely:

s-—K@©-0" @=2 (3% v<o
%
o®T (40)
L 0T - i _
C) o5 (BA, Azo0, @"A=0
where:
K= | 9 (x)E¥y(z)dQ Y = [ ¥} (z)y(z)d
Qp Qp
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consists of two phases: (i) ‘prediction’, namely a linedopbgl com-
putation of A®,. with elastic stiffness for know\©” _, (provided
by previous iteration or assumed at initialization); (ipfrection’,
namely a nonlinear local (cellwise) solution of Eqs. (41) diven
A®,. The use of the original elastic stiffnesses in the pregicti
phase is more natural in BEMs, but by no means mandatory: clas
sical Newton-Raphson procedures with consistent tangetticas
can be adapted at the price of some manipulations, bothdititnaal
BEMs (e.g. Refs. 145, 158) and in SGBEM, Ref. 101.

The finite-step problem of inelastic analysis represenesadithe
topics where the SGBEM exhibits clear advantages overtioadi
BEMSs. In fact, using the symmetry of the matrix operatérsand
Z in the elasticity equations, combined with the domain fiehdsd-

K andY having the meanings of cell-wise stiffness matrix (symme;;mng by Prager-generalized variables, permitted toeehiamong

ric, positive-definite, block-diagonal and intrinsic orataral’, i.e.
unaffected by rigid-body motions) and yield limit vector fl cells,
respectively.

The relations (40) can be interpreted as a description of the,um property:

elastic-plastic global behaviour of the potentially yialgisubdomain
Q,, cell-by-cell in a generally decoupled format. It is worthting
that the cell-wise constitution (40) reflects both the spaceelling
and the local material model; of the latter it possessessakmtial
features (perfect plasticity and Drucker’s stability, nermality and
convexity) as it can be easily proven; clearly, this doesratet out
local violations of the material model (36), (see Refs. 48],1.12).
Supplemented by displacement modelling (missing in qtegis
analysis by all BEMSs), the above kind of relationships cangéeer-
ated also in the FEM context, and in fact variants of them Heaen
dealt with there under various labels such as ‘consistdes, multi-
field models (e.g. Ref. 43), discretizations in ‘naturakigales).

3.3 The space-discrete finite-step problem

The incremental elasto-plastic constitutive laws (40) &ir cells

in 2, have to be integrated in tim& Among various popular
time-integration schemes, we choose here the implicit Wwao#-

difference method, according to which the (nonholonomiathp
dependent) rate relations (40) generate the followingp{gite holo-

nomic) finite-step relations:

AT = K(A® — A@), &= %(E)(E—&—AZ)—YSO
o®T T

(41)
where all variables (like2) at the starting instant are known, the
unknowns are the finite increments denotedgver the time inter-
val At, and the gradients of generalized yield functidnare meant
at the final instant 4+ At (i.e their argument i€ = ¥ + AX).

The elastoplastic cell constitution (41) f@r, must be associated
to the linear Eq. (34) resulting from the elasticity intdgrquations,
rewritten here for increments:

ZAGP + AXC =AY (42)

Equations (41) and (42) together constitute the relatiothse gov-
erns the SGBEM-discretized nonlinear boundary-valuelprolover

the finite time step\¢, the input increments of external actions being

captured in the linear elastic stress respaftde°.

For the numerical solution to this nonlinear problem vasipuo-
cedures are available in the FE context of computationahstie-
ity and can be transferred to the BE context. The so-calleadim
fied’ Newton-Raphson iterative method seems to be the masttti
transferable and the most popular so far in the BE litergsee e.g.
Refs. 15, 31, 49, 158). In fact, each iteration (sayrtik) basically

others, the following results, Ref. 42, on the finite-steghbem (40—
41) (actually in a more general context allowing for hardgnand
multi-yield modes): (a) the solution, if any, is characted by an ex-
(b) the modified Newton-Raphson procedare

verges to the solution, if any, and the objective functiontemplated
in theorem (a) monotonically decreases along the iteratguence;
(c) algorithmic stability, i.e. the contractivity of a ‘natl norm’ (in

Simo’s sense, Ref. 152) along the time-step sequence issghsn-

conditionally, i.e. for any time amplitudAt.

Like in classical plasticity of stable materials, only laakhard-
ening may jeopardize solution existence and uniquene$iimtre-
mental boundary value problem. The above conclusions, Hret
of similar type expected in the same line of thought, allovireight
into, and the controllability of, inelastic analyses. Theiyilege the
SGBEM since they are not available, neither are likely toibehe
traditional BEMs.

3.4 Material instabilities

In traditional BEMs only classical, Druckerian elastopicity ap-
pears to have been envisaged as constitutive model. Uagtzédn!
terial behaviours (in the sense of negative second-ordek fow
some deformation disturbances) are technically imporadtform
at present a subject of intensive research. Violations ofcker’s
stability postulate such as softening (negative hardgramgl lack
of normality, may cause material instability which in turashfar-
reaching mathematical and computational consequencegstice
plastic analyses. In the BE area, loss of ellipticity and mespen-
dence has been pointed out, Refs. 40,103. Various progision
tended to restore objectivity and, in particular, to remioypersensi-
tivity to space discretizations, have been proposed inntepears,
mostly with reference to FEMs: link through fracture enefmgr
tween mesh length and constitutive softening; adaptiveesting
(Zienkiewicz et al.); fictitious time-dependence; polars€erat me-
dia; nonlocal continua; gradient plasticity.

Nowadays the last one of the above provisions appears to mate
rialize a good compromise between regularization effeatss and
computational economy. It is also the only one investigatethe
BE area so far, specifically in the context of SGBEM only, R€3.
A typical constitutive law of nonlocal, gradient plasticis obtained
if the yield criterion of Eq. (36b) is generalized to:

_ O¢
" 9oT
The two additional terms are: a linear softening term (witgative
hardening constant, < 0); a diffusive term containing the Lapla-
cian V2 of the cumulative (time-integrated) plastic multiplieand

a material constant. The presence of a partial differential opera-
tor in the plastic constitutive laws requires suitable dbords to be
assumed on the boundaf}?, of the subdomairf2, where plastic

(0)o —y—hA+cVA<0 (43)
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yielding cannot a priori be ruled out. The (nonlinear) boanydcon-
ditions, of dubious mechanical interpretation, proposgdiifantis
and Muhlhaus involves the space gradi®hand read:

(m"VA)AX=0 0ndQ, (44)

A variational saddle-point theorem, proposed for FEM in.Ref,
permits one to regard Eq. (44) as a natural boundary concitial
to achieve a generalized, gradient-plasticity versiorhefaell con-
stitutive laws without the explicit presence of that boutydeondi-
tion, but with the addition in the yield criterion, Eq. (41la&f the
hardening-softening term{dd + C') A where matricedd andC de-
pend on the material constartis< 0 andc, respectively, and on

the cell mesh as well (Ref. 104). Thus the SGBEM of the prexgedi

section was extended to softening associative plastidity eonse-
quent regularization (in the sense of mesh independenodarathe
presence of softening), however at the price of a couplingranthe
cells in the correction phase of the solution procedureliog due
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idealized by an open surfat¥, and denote by the external bound-
ary. In addition to the usual boundary data on the externdiqms
T'w,I'p, assume a prescribed self-equilibrated loading on thekcrac
faces:

p(z™) = Fp zely
(conventionally, the surfacE, is oriented so that the positive unit
normaln is directed fromS~ to ST). Consistently with the orienta-
tion convention o'y, the kinematic unknown on the crack surface
is the CODw = uT — u~, whereas the source distributian* on
T4 is interpreted as a fictitious COD. Then, ignoring again doma
external actions for brevity like in Sec. 2, a SGBIE formidatcan
be obtained by invoking Betti reciprocity identity

/‘ (pTu* . qu*) dry = /
Jr

JIy

(p"w* —w'p*) dle (45)

with a fictitious auxiliary statéw*, p*) defined, ovef2.. embed-

to theC® continuity requirement generated on the plastic multiplieding €2, in terms of densitieg”, f* onI' andw” onI'y:

field by the Laplace operator).

4 FRACTURE MECHANICS
4.1 Linear elastic fracture analysis

Integral equation methods are frequently applied to thatwl of
fracture mechanics problems, either in a (semi)-analyfashion,
for simple geometrical configurations, or as a boundary etemu-
merical solver. The main advantages provided by BEMs indtes.
are the much increased ease of geometrical modelling, iedlyen
three-dimensional situations and for the simulation ofkigropaga-
tion, and the high accuracy attainable in the evaluatiotress inten-
sity factors. Moreover, the BIE/BEM approach is almost wid&ble
for the numerical solution of dynamical problems like seattg of
waves by cracks, fault modelling in seismology, and othieted sit-
uations which frequently involve very large or unboundecthdms.
Ref. 48 provides an effective introduction to the tradiitbBEM in
fracture mechanics.

u' (€) = / (Ca(&,2) £ () + Gy (€, x)d" ()] dT,

+ g Gup(&, z)w” (z)dl, (46)
p () = / (G (€,2) 1" (@) + Gy €, x)d" ()] T
+ Gpp(ﬁ,:c)'w*(:c) dr; 47)

1]

The right-hand side in Betti theorem, Eq. (45), uses the(fastwn
from potential theory) that

w(EN) —u(€)=w(€) (E€S9)

with w* defined by (46). Then, the considerations developed in
Sec. 2 can be followed again with obvious modifications cause
the presence of the new crack surfateand relevant kinematic un-
known w. Modelling the latter using shape functiods,, (xz) =

v, (x) defined ovel4, one eventually arrives at the symmetric lin-

Due to the well-known degeneracy of the Somigliana identitgar system of equations:

when collocated at points of the crack faces, hypersingudation
BIE (HBIE) and their space discretization by collocatioe aften
considered, and a substantial amount of research is ukdaritathis
area. Implementations of HBIE must be based on either regata
tion methods or direct evaluation of finite-part integrdtgther way,
the ‘density function’ (e.g. the crack opening displacet{&@OD),
i.e. the displacement jump accross the crack surface) neusSt 15-
continuous at the collocation point. This requirement leagie con-
sequences on the available choices of shape functions dliedazo
tion points, especially for 3D problems. The so-called 1B&EM
for cracks combines displacement and traction collocdsilits, and
thus faces similar implementational difficulties.

A U uc

G.. —-G.. G.,.] (X, Bl

-G, G G| {X.p={ B! (48)
~cu ~cp ~cc w

Gpu *Gpp Gpp Xw B.

using notation (20) but with superscriptsj = u, p, ¢ referring to
the surfaced’,, 'y, T'q, respectively. The new right-hand sid#’
will be made explicit in Sec. 8.3.

SGBIE formulations for the special case of a crack (or a set of
cracks) isolated in an infinite elastic medium, easier tcete (ex-
cept for the regularization issue, which is left aside udét. 8), have
been studied since about twenty years, see e.g. Ref. 32ctirlie

On the other hand, it seems that only scattered efforts he&® b 5ystem (48) becomes simply:

directed towards the application of SGBIE formulations tack
problems. Compared to HBIE formulations and collocationBNB
the main advantage of the SGBEM is that it needs offy“-
continuity for the kinematic unknown on the crack surfateréby
allowing the use of standa@d® interpolations. Moreover, it will be
pointed out in Sec. 10 that the symmetric character of Gel&Bke
formulations is valuable for sensitivity analysis; thistféeads to in-
teresting techniques, briefly described in Sec. 10, for tladuation
of the energy release rate considered as the domain deeivitthe
potential energy at equilibrium.

Focussing now on a SGBIE formulation for linear elastic fuae

mechanics, lef) denote an elastic solid containing an internal crack

~cC

GppXu=— | ¥,(@)p(z)d:

Ty

(49)

Similar SGBIE formulations have been obtained for scaitpiof
elastodynamic waves by isolated cracks, see e.g. Ref. 1&.irlt
teresting to note that direct and indirect Galerkin BIE fafations
coincide for problems involving cracks in infinite mediag thrimary
unknown being in both cases the C@QR moreover, the strain en-
ergy W stored in the infinite body is given (see Eq. (80) of Sec. 7)
by

1

T =c
W = 2XwG;;Xw
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The interpolations function® ., (z) for the COD, usually taken
of the same type as th&, (x), need only to be continuous ovEy.
Near the crack front, one may use any of the special intetipala
functions that have been developed in conventional BEMpegent
the square-root behaviour of the COD, e.g. quarter-nodaeies.
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quasi-brittle fracture problems by the present SGBEM, bsedhis
method leads to approximate discrete formulations whidsenve
all those properties, while the traditional BEM does notclSpriv-

ilege of the SGBEM rests not only on expected computatioasalsy
(e.g. in terms of accuracy at equal number of unknowns), e

The SGBEM system of equations (48) can be used to perform usaglly on the achieved possibility of physical insight anéleations.

linear fracture mechanics analyses. The implementatictasfdard

The importance of an enrichment of the theory underlyingnihe

post-treatments likd-integral computation or stress intensity factorsnerical computations becomes quite apparent in quasiebfitic-

evaluation using COD extrapolation is straightforward.
Numerical experiments in linear elastic fracture mechauaica-
lysis were first achieved for cracks in infinite media, likedryg.

ture mechanics if the constitutive law of; is focused. In gen-
eral, the relationship symbolically represented by Eq) {&@onlin-
ear, nonholonomic, softening, sometimes nonassociatidenaulti-

Refs. 72,169. However, 2D numerical experiments for bodndelissipative (i.e. with a multiplicity of yield modes) andrcaften be

isotropic domains with internal cracks are reported in B&f.171,
based respectively upon direct and indirect Galerkin BlEnida-
tions. An implementation for fracture analysis in planehottopic
elasticity is reported in Ref. 70. Finally, Ref. 95 presenSGBEM
implementation for three-dimensional linear fracture lgsia for
bounded elastic bodies, based on a formulation very closg.t(¢48).

4.2 Quasi-brittle fracture analysis

The computer simulation of fracture processes in concreid
concrete-like materials (often collectively referred te ‘@uasi-
brittle’ and including many geomaterials and several kiofdseram-
ics) is mostly based on the ‘cohesive crack model’ stemnriow fpi-
oneering works of Barenblatt (1962) and Dugdale (1967 )pldie-
ment discontinuity loci are allowed and endowed with anriiate
rigid-plastic softening law while linear elasticity is assed every-
where else. This model rules out stress singularities atipseand
entails a ‘process zone’ behind the tip. Such now populaalipk-
tion naturally suggests to conceive the analysis as a awies of
two substantially diverse ingredients (a) an experimégntairrobo-
rated constitutive nonlinear dependance of the tractipfrom the

described by means of internal variable rigid-plastic niede

The following kinds of analysis problems can be singled dst,
pending on the engineering situation and on the conseqpentas-
ization of the relationship (50).

(A) Problems in rates (or in infinitesimal increments) aliiog/for the
irreversible, nonholonomic nature of the quasi-brittlacture pro-
cess. Then the locus, reduces to the current process zone (where
currentlyw # 0 andp # 0). An important purpose of rate formula-

ations is to check overall stability (characterized by thsifieeness,

in any possible virtual kinematic disturbance, of the oltesmcond-
order work done by an external agency which preserves bquitn
while promoting the kinematic disturbance), see Ref. 10fotAer
purpose is to capture the onset of possible bifurcationh@nsense
of path-equilibrium branching) and to compute the wholetipli¢-
ity of rate solutions as beginning of other alternative fugicg pro-
cessses, see e.g. Ref 39. Finally, in the very special yérg case
of mode | only (i.e. because of symmetry) along an a priorivkmo
path with piecewise-linear decay of tractipnfor increasing open-
ing displacementw, the rate solution can be amplified (by solving
a trivial linear programming problem) up to the activatidracnew

displacement jumpw (and sometimes also of its previous time hisyielding mode, thus reducing the time-stepping ‘exact'lysia to a

tory) in all points of the locus, say,, where nonzerav are reason-
ably expected; (b) a linear relationship between the samiablas
through the body or structure deprivedIof (i.e. of any kinematic
discontinuity) and subjected to the given external actioreslinear
elastic regime. In compact symbols, the above two ingréesliah
time instantt read, respectively:

p(x,t) = f(w(z,7),0<7<t), xely (50)

E(w7t)+ Zd(wvé)w(g) dFE

1]

p(z,t)=p (51)

The latter equation exhibits the following noteworthy feas: (i) it

sequence of steps, each one of which simply consisting afimear
rate solution and its linear amplification.

(B) Problems in total variables, i.e. based on a holonomiméda-
tion. For instance, in simulating three-point bendingdéstg. to pa-
rameter identification purposes), the crack propagatitimadang the
symmetry axis and a monotonic increase of the displacenuemp j
w (‘regularly progressive yielding’ in the plasticity jangpcan be
reasonably conjectured. In cases like this, where irr@viéitg man-
ifestations can a priori be ruled out and the discontinuigubsT 4
assumed, the analysis can be formulated as a non-line&c ¢esb-
lem (in the spirit of the ‘deformation theory’ of plastic)fycf. Ref 24.

(C) Formulations of the cohesive model which are in a seriserire-

reflects the overall geometry of the domain and the elagtidithe  diate between (A) and (B) naturally occur when the time etimiu
material in(2; (i) all loads are allowed for through the (linear elasticbf the fracture process has to be simulated without priomtedge

tractionp” response to them acroBs only; (iii) the influence func-  and with full nonlinearity of the interface law. Then, like¢omputa-
tion matrixZ, or Green'’s kernel of the considered body, is symmetrigonal plasticity (cf. Sec. 3.3), a stepwise-holonomicdiintegration
due to the Betti’s reciprocity identity, and negative segfiltite due scheme has to be derived, including in each finite step thatingg
to its energy meaning (definitet is simply connected with respect of internal variables to allow for irreversibility and a é@tion search
toI'q): algorithm for the (process zone) tip advancement.

Za(x, &) =Zq (& ) Focussing now on the linear-elastic background descrilyetié
integral equation (51), its discretization according ®$GBEM can
be carried out by the same path of reasoning followed in Sfer.iB-
elastic analysis, basically with the only difference tHatanstitutive
nonlinearities envisaged are confined to the kinematicodiscuity
locusT'; with the same dimensionality as the boundaryinstead
of a subdomairf2,). This difference implies that double-layer (dis-
placement jump) sources, to be identified with the unknownsre
adopted within the domaif2 onT'; (instead of concentrated strain

. T (52)
— 5/F g w (x)Z4(x, &) w(€)dl, dly >0

The confinement of all nonlinearity to the locdi; with lesser
dimensionality with respect t& and the consequent formulation
(50) of the analysis problem, clearly advocate a BIE-BE apph
for its numerical solution. The above listed features, ey
those in (iii), provide a strong motivation for solving anadadyzing
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sourced to be identified with plastic strains i1,). Otherwise the of a branching of the system evolution (see e.g. Ref. 39). ofo-c
conceptual and operative sequence is the same as in Sec &ynanpute the whole multiplicity of solutions of a LCP like (56) liere

embedding inQ2.; superposition of effectsp(and« on '™ and an important task but also still a challenge to applied nrattes.

p onTy) in Q. through its Green function&';; with 4, j = w,p  In fact, enumerative methods, which guarantee to provitiscél-

(no longer alsa@r); introduction of boundary data and unknowns onion (with finite termination), entail a computing time expmtially

'™ and, as forl'™, attribution of a stressless undeformed state tgrowing with the problem size; on the other hand, efficieaynap-

Qs — Q, thus leading to BIEs analogous to Egs. (28)-(30), formalliotic iterative Newton-type methods lead to a solution dejieg on

with subscriptp instead ofo, I'; instead of(2, andw instead ofe;  the initialization, but hardly lead to all of them (see R&¥4, 25).

modelling the unknown fields and enforcement of the integgaia- () In various ways the LCP (56) is amenable to generally aovex

tion in the Galerkin weighted-residual fash_lon; doublee_gr_atlons quadratic programming, hence to optimization procedutesrative
on elements alon§ andT'; to generate matrices of coefficients anq0 those mentioned in (b)

vectors of data, like in Egs. (31)-(33); condensation oftthendary
unknowns, cf. Egs. (34). This sequence leads to a discretgen
part to Eq. (51) in the form

(d) The quadratic form associated to matiif, if ® = &, can
be shown to provide with its copositiveness a necessary affid s
cient condition for overall stability, with its positive sédefiniteness

P=P°+Z,W (53) asufficient one for it (Ref. 24).

The noteworthy circumstances in this SGBE formulation & tha-  (€) The interface law drastically simplifies for fracturipgocesses
trix Z 4 is endowed with the same essential features of its continudfthe case of cohesive crack model for mode | with linearesoft
counterpart, Egs. (52), and thRtand W governing the unknowns ing. In the holonomic (B) and stepwise-holonomic (C) foratidns
on T, are vectors of generalized variables (tractions and digpla outlined earlier, the LCP structure may be preserved in #se of
ment jumps, respectively), i.e. they are conjugate in aiginvork  piecewise linear models or may give way to more general neali
sense. Once again, it is worth stressing that the aboverésatan complementarity problems (NLCP), remarks (a) to (c) stiically
one hand, would be missing in a traditional BEM and, on themwthholding with suitable adjustments.

hand, are especially beneficial in quasi-brittle fractwbgre ma-
terial instability (softening) and its structural conseqoes are the
peculiar ingredient and the main origin of computation#ialilties.

In fact, let us consider as an illustration rate problems gk
only them for brevity. Borrowing again the formalism of ieanental
‘nonstandard generalized’ plasticity, a broad class adfrfate rela-
tionships for the discontinuity locus; (now reduced to the instanta-
neous process zone) can be represented in terms of ratdfoas fo
after the transition from local to generalized variablessistently
with the Galerkin discretization which led to the elastidig. (53):

As a conclusive remark, it can be stressed that the SGBEM:is id
ally suited to quasi-brittle fracture analysis. In fact,EEM not only
leads to formulations which economically exploit the lindack-
ground of the problems and the confinement of nonlinearitthéo
discontinuity locud’ 4, but also faithfully reflects, through the prop-
erties of Z 4, the underlying mechanics of the problem and, hence,
gives rise to beneficial consequences, as those listed (@) &bbove,
which can hardly be proved in the context of traditional BEMs

4.3 Further remarks on fracture mechanics

. 0%’ . . 0d" . . b ka1 A variety of issues in mechanics of materials and structames
W= a—pA’ S= 7%1&’ Q= 950ST s (54 closely related to the developments outlined in what préseend
. 9P . 9P . . LT equally susceptible to advantageous applications of thBEMG

e = opT P+ aQTQ <0, A>0, & A=0 (55 They will be briefly mentioned below.

Delamination phenomena in inhomogeneous structural cempo
Here® and® are vectors of yield functions and plastic potentialsjents can be regarded as a special decohesion process wititia p
respectively;S andQ denote kinematic and static internal variablesknown locud’; of potential displacement discontinuities and, hence,
respectively, andl their potential. All derivatives are evaluated inis implicitly covered by the remarks of Sec. 4.2 on quasitlerfrac-
the current situation, at which the incremental procesgsstarhe ture, provided geometric effects are negligible (e.g. $ations of
combination of Egs. (54-55) with Eq. (53) in rates leads tmadr local buckling in laminates would require extensions of &bBnot
complementarity problem (LCP) of the type (Ref. 102): available so far).
Unilateral contact, without or with friction or with more glois-

. . . . T -
—-®=B+MA>0, A>0, ® A=0 (56) ticated interface models, represent a subject per se,sixédyndealt
. with in the BE literature, see e.g. Antes and PanagiotogoiRef. 6.
having set . - - o . .
In some important engineering situations, unilateral &orit related
9% 2T 0" 0P adT to fracture: e.g. it must be allowed for in integrity assessta of
= 20T 95957 9Q Pl ep concrete dams in the presence of cracks (and possibly e§jainder
9% variable loads (e.g. earthquakes, seasonal thermal cyelssrvoir
B=— 5pT p” level fluctuations). SGBEM in contact was investigated Himadly

in Ref. 139 and in association to quasi-brittle fracture ef.R07.
Among several remarks and developments on the LCP (56)e thddethodologically, from the present standpoint unilateitact may

mentioned below are especially pertinent to SGBEM.

(a) Matrix M is symmetric if® = &, i.e. with associative co-
hesive crack models; it is not definite nor semidefinite inegah

because the former addend on the right-hand side is not sofer
ening behaviour (though the latter addend is positive defioi at

least semidefinite).

(b) In view of (a) the solution set can be empty or contain adini
number of elements, the latter event having the mechanieahing

be considered as basically covered by the discussion o#Szc.

Elastic-plastic fracture mechanics encompasses at firesesral
unsettled questions in physical interpretations, mattiealanodels
and computing procedures. Traditional BEMs and their reden
velopments applied to ductile (large yield zone) fractinaye been
extensively discussed by Leitdao, Ref. 92. As for the SGBHM,
following remarks may supplement this monograph.

(a) Elastic-plastic fracture processes in metal strustare fre-
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quently simulated in industrial environments by geomegipproa-
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G give inxz € Qo at timet the effect specified by the first sub-

ches (tip advancement criteria based on crack-tip openimgdea script of Gi (i.e. displacements fol = w, tractions on the sur-

(CTOA) at the onset of and during crack propagation, respeg}

face element of normak(x) for h = p and stresses fdt = o)

or energy approaches (based.bimtegral or other path-independentand caused by a unit discontinuity source applied & = in Qo

integrals). Since these approaches still imply discreteletiog
of fractures in association with classical constitutivassic-plastic

at timer < ¢, this source being specified by the second subscript
of G, through a conjugation rule (i.e. unit impulse of force for

laws, stable in the sense of Drucker, the comparisons batwee = u, relative displacement layer on the surface element with no

SGBEM and traditional BEMs pointed out in Secs 3.1 to 3.34fita
ity) and 4.1, 4.2 (brittle and quasi-brittle fracture) cantbansferred
to ductile fracture analysis by the aforementioned appresc

(b) The present trend in elastic-plastic fracture meclsisido-
wards the use of micromechanically corroborated materizdets
(such as Gurson model with porosity internal variablespabie to
describe in a diffused fashion the damage process up toialatepa-
ration. These models exhibit softening and, hence, reguirésions
apt to remove subjectivities like mesh dependence. A pdatione
of such remedies, i.e. gradient plasticity, was discussitid ref-

erence to SGBEM in Sec. 3.4. It is worth noting that the cakeesi

models for discrete crack simulations (Sec. 4.2) do notleixkiie
above subjectivity, since dissipative damage processsageezed’
into the discontinuity locu§',.

(c) As emphasized e.g. in Ref. 92, in elastic-plastic fracty
traditional BEMSs, recourse is made to the so-called ‘duadirfula-
tion (in the sense that displacements are Somiglianasepted on
one side of the potential crack and tractions on the otharder to
avoid both ill-conditioning and zonewise multidomain farations).

It is worth noting that in SGBEM the issue does not arise despi(

single-domain formulation, as could be observed in Seds44.

(d) Finally, ductile fracture processes usually imply gliab
zones large with respect to the crack extension and locahge®@
features (e.g. thickness), but small with respect to a ajpéngth of
the overall geometry. This is the case of a fracture evenpiessure
vessel or a pipeline, the economical simulation of which mey
terialise into three-dimensional BE modelling around theppgat-
ing cracks and shell FE modelling elsewhere in the structiheis,
BE-FE coupling becomes a particularly favorable optiom,vihich

SGBEM has a special appeal, as shown in Sec. 11 of this survey.

5 TIME-DEPENDENT PROBLEMS
5.1 Linear elastic dynamics

SGBEM formulations of linear elastodynamic analysis peofs for
three-dimensional solids were formulated in Ref. 141. Tlethod
therein employed is similar to that of elastostatics, bat\Wheeler-
Sternberg formulas, Refs. 41, 58, were used instead of Jiaméds.
With a notation similar to that previously employed in etesatics,
the Wheeler-Sternberg formulas can be written:

Li)-

where the asterisks denote convolution integrals, i.ein&iance,

{ Ghu*de_
Ty

Ip

th*udF—gh },
(h=wu,p,0) (57)

Ghuxp = / Ghu(z, 6.t — T)p(€.7)dr.  (58)
0

The two-point time-dependent matrix-valued functio@,, =

mal n (&) for k = p and distortion fork = o). The symmetry prop-
erties, Eq. (8), still hold:GE, (x,&,t) = Gn(€,x,t) Va, € # x,
Vvt > 0 and for allh, k = u, p, 0. It can be assumed that> 0 and,
hence,Gpi(x,£,0) = Ghi(x,£,0) = 0 Va, & # . The terms
—g,, (h = u,p, o) account for the given load history and initial con-
ditions, i.e.:

Gy *f)dl“ —

T, Ty

+/Ghu*5d9+/Gho*{9dQ
Q Q

—gn = Ghp *xudl

+/thpuon+/thuuon (h=wu,p,0)
Q Q
(59)

wherep is the mass density and the overbars denote given functions
of space coordinates and time.

Equations (57) provide the displacemenigx,t), tractions
p(x,t) = o(x,t) - n(x) and the stresses(x, t) at pointz € N
as superpositions of the responggsto loads and initial conditions
uo, Uo), as well as to the unknown force layeonT',, and relative
displacement layeru onT',,. By their very nature, they satisfy the
motion equations irf2 but not the boundary conditions. The latter
conditions, enforced in a symmetric Galerkin mode, read:

Ol (uw—a)dl =0,

T Ty

¥, (p—p)dlr =0 (60)

where¥ ,, and¥,, are shape function matrices modeling in space the

boundary unknowns andp, namely:
u(x,t) = Wu(x) X u(t)
p(w,1) = ¥p(x) X p(t)

Substituting from (57) fow andp into Eq. (60) and using Eq. (61),
one obtains:

onl’, (61)
onl’,

Ayu * Xp — Aup *x Xy = By(t)

62
Apux Xp — App x Xu = Bp(t) (62)
having set:
An(t) = / O (2) Gk (x, &, 1)@ (€) T dT
ry JTy
Bi(t) = [ W, (x)g,(w,t)dl, (h=u,p) (64)
Tp
where:
g,=u+g, only, g,=p+g,onl, (65)

Equations (62) are the space-discretized equations obmatid
constitute a symmetric system of Volterra integral equmetiof the

Gri(z,&,t — 1), (h,k = u,p, o), collect Stokes fundamental so-first kind in time, with unknownsX ,(¢t) and — X (¢), these un-

lutions. Their explicit expressions are presented in thpefglix of
Ref. 100. Interpreted as influence or Green’s functionskéraels

knowns being the time histories of the nodal values of thendaty
tractions X ,,(¢t) and of the sign-reversed displacementX . ().
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Their integration can be achieved using a time-steppingquore, where the data vectog, are still given by Egs. (59). These equa-

see e.g. Ref. 88. tions describe the elastic responseXxf to the given loads and ini-

An alternative is as follows. Let Eq. (62) be rewritten in tten-  tial conditions, as well as to the plastic stragtyz, t) treated as
pact form imposed strains. The Galerkin boundary conditions (60)&tid. A

AxX =B(t), Vt>0 (66) domain discretization is required for the fieltland can be achieved
where in exactly the same way as in statics (see Sec. 3), that idj\sding
Awe Auy X, B. the domain in appropriate cell elements and writing
A=14,. 4 X={_x B=(B
pu pp T P el(x,t) = Ty(xz)OF(t) InQ

and let the time-primitived () of A(t) be introduced, i.e. where W, is the relevant shape function matrix a@# (¢) collects

A(t) = A1), A(0) = 0. node values of plastic strains. Thus, following the samé patin
~ elastodynamics, one arrives at an equation similar to (&6),
Note thatA can be derived from the primitive fundamental solutions
Gi, as A is derived from theG, = Ghi, (Grr = 0 for t = AxX +C+O°=B(t), ¥t >0 (71)
0), Ref. 141. Thus, through integration by parts, Eq. (66) ban

reformulated as where

AxX =B(t) - A(t)X(0). (67) cz{g“}, Ch(t):/F /Q‘IJZGhaxpﬂder (h = u,p).

Denoting byty = 0,¢1,t2,... a subdivision of the time axis into ! (72)

equal intervals of lengtihz, using the notationX () = X (x) and  The motion equation (71) must be supplemented by the equatio
writing Eq. (67) att,, with initial conditions att,,—1, one arrives at

the equation S=CTxX +Goox®” — Bq, Yt>0 (73)

.
/ A(tn — )X (1)dr = AB(,) — A(At)X (,_1y  (68) where, similarly to the quantities defined in Secs. 2 and 3nbut
Jtn 1 with the dependence on time:

whereAB () = B(,) — B(,—1). Modelling X as e.g. piecewise-

linear in time, i.e.X (1) = X (n) = AX (,)/At in then-th interval 3(t) = / ¥ o dQ, Bo(t) = / TigdQ, (74)

and noting that,, — 7 = At — (7 — t,—1) = At — 7/, one obtains & §2

from Eq. (68): G

oo (t) = / / U] G oo Wy dQdO. (75)
JAX (ny = AB(,) — A(A)X (1) (69) e
The generalized stressEsare conjugate (or dual) ©” in the sense
of Prager that the produ®” ®” equals the total continuum plastic
J— 1 /At A(At —ydr. dissipation, see Sec. 3.2. Equation (73) is obtained bytisutirsg
At J, into Eq. (74) the expression (57) af.
The principal submatrices of, i.e. J. and.J,,, can be shown to _Equations (71) and (73) are Volte_rra equations of the finst ki
be, respectively, positive and negative definif€. ) can be com- Which must be solved, through a typical step-by-step proedf
puted taking into account the initial conditioao, io). Applying Numerical plasticity, with the aid of a set of additionalatns
Eq. (69) sequentially for, = 1,2, .., the vectorsX (1), X (2), . .- which, like in quasp_statlc plastlt_:lty (cf. Eqs._ 40, Sec, 8rcount
collecting the station values of the boundary unknownsghie the for the plastic material model suitably approximated far dell ag-
motion equations (67) can be computed. The numerical imptem 9regate, see Ref. 127. . . _
tation of the above integration procedure is still lacking. ~ The SGBEM in the above formulation for elastic-plastic dyra
In Ref. 141, the Galerkin boundary conditions (60) werewdti ICS Was not numerically tested so far, to the writers’ knalgke:
making use of a variational procedure based on the Hu-Waghig- Probably the main obstacle to overcome in computer implemen
ciple for dynamics (cf. Sec. 7). The same equations (60) easbb tations and practical appllcatloqs rests in the_ generambrough
tained by an alternative variational approach to the dyngrablem EGS- (63), (72) and (74) of matricesA (which intervenes also in

where the matrixJ is symmetric and step-independent, i.e.

proposed in Refs. 99 and 100 (see Sec. 7). linear elastic dynamics, Sec. 5.1), G, in Egs. (71) and (73). In
) ) ) fact, as a remarkable and computationally crucial diffeedinom the
5.2 Elastic-plastic dynamics quasi-static time-independent context, the entries cfetmatrices

are functions of time, not numerical coefficients. Suchcliffiy can
be attenuated, as proposed in Refs. 99 and 100, if matricesnof
bers are generated by performing, once and for all in a coared

The SGBEM for elastodynamics outlined in Sec. 5.1 was exénd
to elastic-plastic dynamics (Refs. 125 and 127) throughoagature
quite smylar to that employeq in statics. The key conc_eprtsw;ls fashion, the four integrations required (two in space aralitwtime
of replacing the imposed straink of Eq. (59) by the sum? + €7, . o NI .
wheree? (x, t) denotes the unknown plastic strains, but adding /e the step o, in elasticity, over the time interval opfist).

’ ' As an alternative to the preceding formulations, a SGBEM for

new integral withe? as a third integral before the data vectggsin o . . .

Eq. (57). With this obvious changes, Eq. (57) reads: dynamic inelastic aqaly5|s has recently been formulqt@blmplg-
mented (Ref. 101) with recourse to static fundamental gwiat This
u X X approach avoids the aforementioned difficulty. In fact,sitzrting
p — { Ghu*pdl — Gy *udl } point merely consists in adding to each |.h. side of Eqs.-(38) a

o JTy, JTp domain integral containing inertial forcespii(£). To compensate

for the presence of these unknown body force€jrdisplacements

+ { / Gho x€”dQ — g, } . (h=u,p,0) (70) u(z) in © have to be represented as effects as well, giving rise to
Q a further integral equation. The unpleasant consequenttmatithe
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domain integrals with unknowns to model are not only the Lsoes
with plastic strains but also these reflecting the inertfact$. The
price seems to be worth paying since, after space-modegthiegon-
struction (by double integrations) of the coefficient nws is car-
ried out like in the quasi-static regime, Sec. 3.1. Subsettyjeany
integration scheme of inelastic dynamics may be employéattou-
late the finite-step problem basically like in Secs. 3.2 ai3d B the
presence of constitutive instabilities, Sec. 3.4, theiksaiy effects
of inertia should be properly allowed for and exploited liRd=EM.
Numerical tests and comparisons with solutions generagea b
commercial FE codeABAQuUS) and by traditional BEM from the
literature, partly presented in Ref. 101, turn out to beeayeitcour-

aging.

Bonnet, Maier and Polizzotto: Symmetric Galerkin BEM 13

linear conductive, viscoelastic or poroelastic mediunspestively)
considering the effects of not only single-layer but alsatde-layer
sources; (ii) using both these kinds of sources on suitabbsen
complementary parts of the boundary of the bétyBIEs are gen-
erated such that they can be interpreted as a (linear) altegerator
(in space and convolutive in time) which transforms the awkm
fields onIT" over a given time interval’, sayy(&, ), into known
data-capturing fields, say(x,t), x € I, 0 < ¢ < T (iii) the inte-
gral operatotL is shown to be self-adjoint with respect to a bilinear
form, convolutive in time, defined ovét x T'; (iv) the above bilin-
ear form and symmetry property &f provide a quadratic functional
(convolutive in time) ofy, the stationarity of which characterizes the
solution overT” x T'; (v) field modelling (under suitable continuity

The use of static kernels in dynamic problems has already besonstraints dictated by the kernel singularities in spaog)its sub-

developed in traditional BEM, sometimes with the provisiéirans-
forming the additional inertial domain integral into boang inte-
grals by Nardini-Brebbia’s ‘dual reciprocity techniquéRdf. 118).
While this technique has still to be tested in the contextasfoern
herein, the SGBEM based on static kernels for inelastic alycs
has been enriched (Ref. 101) by theoretical results withpeteaa
tional interest, such as those established for SGBEM iniepiatc
plasticity (Ref. 42) and mentioned in Sec. 3.3.

5.3 Other time-dependent problems

Like in other branches of computational mechanics, the Idpve

stitution into the above functional, through the variatibproperty
(iv) and by four integrations (two in space and two conveitin
time), leads to a linear algebraic equation system, whicleigs the
modelled approximate solution ovErx T and is endowed with a
symmetric matrix of coefficients.

The same strategy outlined in what precedes will be destribe
with some formal details in Sec. 7 with reference to lineaseldy-
namics and was pointed out for elastostatics in Sec. 2.2mrh
(a). Therefore, only the supplementary remarks which folppear
to be appropriate here.

(A) The line of thought centered on the generation of a symmet

ments in the SGBEM of concern herein tend to primarily focns ontegral operator ovelr x 7" and on the consequent variational theo-

elasticity and plasticity, partly because of the centyatit these ar-
eas in structural mechanics and engineering, where thevatiotis
of those developments and the background of most researaher
located. Outside the core areas dealt with in what precedess at-
tention has been paid so far to the SGBIE-BE approaches ifokhe
lowing categories of linear evolutive analysis problemstironolog-
ical time (in contrast to event-ordering time variable ofgiistatic
inelastic analysis).

(a) Transient heat conduction, implicitly covering thrbuanalogy
other diffusion phenomena described by strictly identimathemat-
ical models, such as Darcy filtration in porous media.

(b) Linear viscoelasticity based on the classical cornstglaw ex-
pressed by a convolutive integral understood in the senSéiedfjes
in order to cover input variables (stress or strain tensizQamtinu-
ous in time.

(c) Poroelasticity in Biot sense of an elastic solid skeidtte poros-
ity of which is fully saturated by a liquid. By analogy, othivo-

phase coupled problems can be regarded as implicitly cdysteh
as linear thermoelasticity.

(d) Linear acoustics in media with uniform (and in some cgéese-
wise uniform) constitutive properties. The mathematicaldel is
usually the scalar or vector wave equation, and other palykinds
of wave propagation, e.g. electromagnetic waves, are edvéilost
applications of computational acoustics deal with unbedhahedia.

Traditional BEM have been extensively studied in the last fe
decades for the numerical solution of the above initialdztary
value problems arising in a number of diverse technologiesveys
of the abundant relevant literature can be found, e.g., énbiboks
Refs. 13, 29, 31. As for the present SGBEM the few resultdatvai
so far can briefly be outlined as follows.

rem, represents a noteworthy unifying framework (altéveab the
Galerkin weighted-residual approach) to formulations GBEM in
a variety of problems, especially viable in those where gneon-
cepts are not as natural and perceptible as in elasticitpkasticity.
The methodology has origin in classical works (by Gurtinf.Hd,
Tonti, Ref. 162 and others) on linear mechanical initialubdeary
value problems formulated in terms of partial differengglations.

(B) A variational characterization of the boundary solatiaver a
time interval can be regarded as a central ingredient in ¢heldp-
ment of SGBEM for time-dependent problems. Further pragces
be achieved in this direction by generating a variationatabteriza-
tion in terms of saddle point with separation of variablésiilar to
that easily proved in elastostatics (Secs. 2.2 and 7; R8§.154),
namely with a minimum with respect to the static variabled an
maximum with respect to the kinematic ones. For transieat ten-
duction and its analogues, problems of kind (a), this reégafterging
in elasticity as a straightforward corollary of the vardetal proper-
ties (A)) has been established in Ref. 37. In fact, the boynsialu-
tion over the unbounded time intenaK ¢ < oo has been shown to
be characterized by a minimum with respect to the time-hiesaf
fluxes on the Dirichlet boundary and by a maximum with respect
the time-histories of temperatures on the Neumann bounudérgn
the functional involved is constructed based on a speci&ed
bilinear form in the Laplace transforms of the unknown bamd
fields according to Rafalski's (1969) ‘orthogonal projeatimethod’
for linear partial differential equations.

(C) In the problems listed at the beginning of this Sectiba,double-
layer, or ‘kinematic’, sources needed for the SGBEM consistis-

continuities, concentrated (i.e. Dirac-modelled) in gpaad time,
of the following quantities, respectively: (a) temperatyr(b) dis-
placements, (c) displacement and pressure, (d) acoustssyme or

The studies so far available on SGBIE-BEM for problem cate/€locity potential (while the more familiar single-layensces con-

gories (a), (b) and (c) (Refs. 35, 36, 153 respectively) hiavem-
mon a strategy consisting of the following phases: (i) tidependent
Green’s functions (fundamental solutions) were taken froenliter-
ature or ad hoc constructed for the homogeneous sfiacgof a

cern: heat flux, tractions, tractions and fluid flux, normdbuy,
respectively). Explicit expressions (concerning 2D an@D ‘free
space’(2-) could be found in the earlier literature only for some of
these kernels. Other ad hoc expressions, for isotropic anédive
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been derived (and presented in Appendices) in the first paper
SGBEM on viscoelasticity, Ref. 35, and poroelasticity, Rf3.

(D) For the classes (a), (b) and (c) of time-dependent prnokl¢he
SGBEM has been formulated and preliminarly discussed frames
standpoints of computational interest (e.g.: marchingtgmh proce-
dures, Ref. 36, BE-FE coupling, Ref. 37). However, engiinger
oriented implementations and comparative numerical tektthe

SGBEM (see Sec. 12) are still missing in these areas, andeso élf’

to the writers’ knowledge, investigations of relevant cangpional
theoretical issues such as algorithmic stability typicatiportant in
time-dependent problems.
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tional direct BEM can be interpreted as modelling errors ting
can be reduced to within acceptable limits by adopting blétdis-
cretizations. The safety factor formulated by SGBEM or itradal
BEM exhibits the same mathematical programming settingpéin
ticular, linear programming if the yield surface is piecesiinear)
as in the FEM, but with the following peculiarities: in thest ap-
proach, the self-stress variables required by the statieefl bound)
eorem are expressed in terms of initial plastic straifatées; in
the kinematic approach, the compatible initial plastiaistvariables
required by the kinematic (upper bound) theorem are regléage
stress-free strain variables.

A discussion of the shakedown analysis problems for peplast

(E) In linear acoustics and wave propagation the SGBEM has gtity within the framework of BIEM is given in Ref 124 wherbe

tracted since several years a considerable attention giitatpn-
oriented effort research effort, e.g. Refs. 76, 77, evenfibriunately
with limited crossfertilization among neighbouring areas

6 OTHER ANALYSIS PROBLEMS
6.1 Limit and shakedown analysis, deformation bounds

Solving a limit analysis problem requires considerationedher
equilibrated stress states with the static approach, orpatibie
plastic strain fields with the kinematic approach, wheréaselas-
tic properties of the material behavior turn out to be ivald, i.e.
limit analysis exhibits the nature of a rigid-plastic thgorThere-
fore, the boundary integral equation method (BIEM) and éhevant
discretized forms as the BEM seem to be unsuitable to sawig i
analysis problems, since the BIEM is deeply rooted in theenmit
elastic behaviour through the fundamental solutions asdremlly
operates by superposing elastic states, i.e. completécedakitions
to suitable auxiliary problems. As pointed out in Refs 110, lthis
apparent drawback can be overcome by expressing any aqtglib
stress field as the superposition of two (elastic) stresdsfiene of
which is the BIEM response to the pertinent loads and ther ashee
self-stress field obtained as the BIEM response to an anpifield
of initial plastic strains; analogously, a compatible fitastrain field
is one whose BIEM stress response identically vanishesm Fine
same standpoint, the BIEM appears to be applicable to sbhaked
analysis problems, which also require consideration ofoguas
stress and strain fields. In fact, limit analysis can be dgas a
special case of shakedown analysis obtainable by consglarpro-
portional loading instead of an amplification of a domain afiable
repeated loads.

Another difficulty, pointed out in Refs 110,111, 135, 136ses

classic Melan’s and Koiter’s theorems, Ref 114, are remegavith
the pertinent BIEM language, and their duality relatiopsissessed.
The SGBEM is used in association with a consistent domain dis
cretization cells aimed at the interpolation of the plafite laws by
means of the maximum plastic work theorem (see also Refs337, 1
135, 136).

Arelated topic where BIE methods can be usefully appliedis c
cerned with the deformation bounding techniques, Ref. T3fese
are analytical/numerical procedures which are able toigeouse-
ful information about the actual plastic deformations proet in a
body subjected to some load history, without performing iz loer-
some step-by-step analysis. Deformation bounds may bees sy
complement of shakedown analysis in consideration thatahaly-
sis gives no information regarding the plastic deformaticourred
in the transient elastic-plastic response precedingieladaptation.
An early attempt to formulate bounding techniques by BIE pt&s
sented in Ref 105, where symmetry is shown to be a pre-regdiisi
any successful formulation of this type, and proceduredamteéd
symmetrization’ were proposed in order to make the conueati
direct BEM applicable to this aim (Ref. 98). The SGBEM was em-
ployed in Ref 132 to show that the so-called ‘pertubationhoet
previously devised in Ref 131 can be given a BIE format. A gaine
bounding principle was there formulated which is able, imgiple,
to provide bounds to several types of plastic deformatiergs, plas-
tic strains, plastic dissipation, generalized residuspldicements at
the boundary, and the like. No numerical applications weesgnted
in the papers quoted above.

6.2 Elastic analysis of plates

Nonsymmetric boundary integral formulations for plate diag,
based on the use of the fundamental solution for biharmarib-p
lems, have been studied by various authors, see the booRRef.

when the BIE is approximated by the conventional direct BEMhe relevant chapters in Refs. 13,31. They consist of twgleau

which does not preserve self-adjointness and leads to nonsyric
solving equation systems. This implies that the BEM strespanse
to any initial plastic strain field is not necessarily a sttess field
and that, as a consequence, the identically vanishing cfttbss re-
sponse does not guarantee that the related initial stradghi§ieom-
patible. For these reasons, the conventional direct BEMviswvell
suited to limit and shakedown analysis, whereas the SGBEM is

boundary integral equations, one strongly singular andther hy-
persingular (i.e. containing singularities of ordgh- and1/r?, re-
spectively), associated with the representation formtiaeoflexural
displacement and its normal derivative, respectively,fiat of the
boundary. The traditional BE approach rests, as usual, kocating
those integral equations at a finite number of boundary point

On the other hand, not much effort has been directed to SGBIE

has been proven in Refs 135, 136 that the SGBEM stress respoggmulations. Tottenham, Ref. 163, outlines how a symmoeti-

to any initial plastic strain field is a self-stress field ahdttany ini-
tial plastic strain field whose SGBEM stress response vasiglen-
tically is compatible; in other words, the SGBEM does preval
means to construct self-stresses and compatible inite@hst with a
degree of redundancy depending on the mesh, just like the. FEM

mulation can be obtained by weighting in a Galerkin senselsigi
equations containing different kind of sources: forcesnmants, bi-
couples and tri-couples. Singular integrations are neropeaed
analytically under restrictive hypotheses on geometryfaatd mod-
elling. More recently, Galerkin BIE formulations for plateith free

The conventional direct BEM was employed in Ref 110 to adedges have been derived in Refs. 66, 119, the latter allofeinthe

dress limit analysis and in Ref 111 to address shakedowiysiaah
perfect plasticity. The validity of nonsymmetric formutats rests

presence of corners.
In a recent work, Ref. 59, a direct symmetric boundary irgkgr

on the assumption that the mentioned deficiencies of theetenv formulation has been sought in the form of the stationaritydi-
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tions of the Lagrangian functional obtained by incorpamgtkine- the same stationarity principle to obtain a symmetric BEkhfola-
matic boundary conditions, in the form of constraint tering the tion on the basis of a standard BEM procedure. Substanggiljv-
potential energy associated with bending when first-ordeations alent formulations were proposed and numerically impleegiy
of the unknown bending displacement solve the homogendass e Schnack (Refs. 150, 151), Dumont (Refs. 56, 57), De Figderand
tic equilibrium equation. In deriving such a formulationeohas to Brebbia (Ref. 52), Davi (Ref. 50) and other authors (see $&c
deal with very high potential singularities on the boundafyorder All these formulations, often referred to as hybrid BEMs ),

up to1/r*; this fact may explain the past lack of research effort iare characterized by symmetry and require single intemratover
this area. The evaluation of these terms is tackled usimgtations the boundary. They are thus quite interesting to humeriaition

by parts, thanks to the fact that the most singular kernelshown purposes, but have not been shown to possess the desirgistes

to be derivatives of other, less singular, kernels with eespo the
arc length along the boundary, in an approach similar incla

of a genuine energy-based discretization method.
As mentioned in Sec. 2.1, kerndls,, andG,, can be associated

to that developed in Sec. 8.1. This result in a SGBIE fornmmitat with strain energies. Specifically, consider the displaaetiieldw

which is direct, i.e. in terms of mechanical unknowns on tberia-
ary (bending displacement, normal slope, normal momenKanoti-
hoff shear), accommodates general boundary conditiodsnatude

unknown jumps of twisting moment at corners. For the caseesf f

edges, this formulation and that of Ref. 66 are identicale $im-
gularities involved are at most logarithmic, like in twavdénsional
elasticity after regularization, so that the numericaldyature tech-
niques briefly discussed in Sec. 12 are applicable. Thistation
has been implemented with either straight or circular bamne|-
ements, and successfully tested against several analgticdions.
Finally, a BE expression of the stiffness matrix of an unkxhglate
has been derived following a method similar to that preskire
Sec. 11 for 2-D and 3-D elasticity.

Only very few practical applications of SGBEM have yet bee

published. One of the initial motivations for the aforemenéd

work was the study of cracks and delamination, using eneogy c

cepts like energy release rate. Like in classical lineasttnz me-

generated in the elastic spae, = R? by a single-layer sourcg:

u@) = [ Gul@. (€ dr (76)
r

wherel is any closed oriented surface of RThen, the strain energy

W for the wholeQ2 is given by:

Woo = l/F(pT(:c’)u(af) —p (2 )u(x")) dr

) 7)

having taken into account that the displacement field (j&dlves
the local elastic equilibrium equation and (ii) verifiesiegn con-
ditions at infinity. Hence, using Eq. (4) and the continuityassI’
Rf the field (76), one can write:

1 LT
Woe = 2 /F /F I (®)Guu(, §) f(§) dle dI, (78)

chanics, Secs. 4 and 10, a domain derivative approach toothe ¢ Similarly, considering the displacement fialdgenerated if2.c =

putation of energy release rate in cracked or delaminateépkru-
cially benefits from the symmetry of the SGBIE formulatiom &
first attempt in this direction, Ref. 61, encouraging nuedriesults
have been achieved.

7 VARIATIONAL AND ENERGY APPROACHES

The energy principles of mechanics can be used throughbswita

variational procedures to characterize the system’s respto given
external actions. These principles, together with thetedlaaria-
tional procedures, have a remarkable role in the framewbitke
discretization methods in order to give firm basis to the reitza-
tion operations; that is, in order to derive, from a giventeomum a
discrete system with qualitatively the same essentialifeat In this
way, the discrete solution is not only an approximate sofutf the
original problem, but also the true solution for the diszed me-
chanical system. Such an approach to the continuum solptin
lem has several beneficial consequences from both the nzahanid
theoretical points of view. Namely, on one hand, error amveo
gence analyses are in general easier to accomplish andrgence
of the numerical solution to the exact one is likely to ocorgrewith
a greater convergence rate; on the other hand, the selfiadjss of
the original problem is preserved and the discretized énguaet can
be employed as an effective analytical basis for theordtieastiga-
tions within the framework of discrete mechanics.

The Finite Element Method (FEM) is potentially susceptitde

possess the above mentioned requisites of the energy-lohised

cretization methods, but the same cannot be stated for thene

tional BEM. The first attempt to formulate an energy-basedVBE

can apparently be attributed to Reissner, who proposedfirlR@ a
boundary stationarity principle for linear elasticity amdelated Ritz
type solution procedure. Zienkiewicz et al. employed in.R&%6

R? by double-layer sources

u@) = [ Gule.od)dr 79)
Eq. (5) and computing(x*) from (79), W still given by Eq. (77)
becomes:

Weom =5 [ [d"@Gu(@ ed@) drear.  @0)
Hence, the interpretation of kernals,., andG,, in terms of (pos-
itive) strain energies clearly entails the sign-definitmef the rele-
vant quadratic forms, Egs. (9), (10). The kern€ls., G, appear
also in the expression of the strain energy stored in a balialZestic
solid (see Sec. 11).

In Sec. 2, SGBEM elastostatic formulations have been distlis
from a weighted-residual viewpoint. The same final formalatan
be obtained from variational principles, as explained iraivol-
lows. Hu-Washizu and Hellinger-Reissner principles oétinelas-
ticity were used in Refs. 131-137 to derive energy-based B&M
mulations which happen to coincide with the symmetric Gater
ones, see Refs. 112, 155. With such formulations, the BEatized
model turns out to be well defined, so that the related dis@qua-
tion set has a unique solution in terms of generalized bayndia-
placements and tractions. For given generalized boundatey (ei-
ther diplacements or tractions at every boundary nodejetlsea
unique boundary response in terms of generalized varigblteer
tractions, or displacements). This set of generalized thaynvari-
ables is representative of a class of continuum solutioas dhe
equivalent to one another, in the sense that the boundapjades
ments and tractions of every solution have different distions, but
result into the same (unique) generalized boundary valespec-
tively. Following similar lines of thought, continuous S@Bfor-
mulations for three-dimensional elastostatics (Ref. 28)kirchhoff



Appl Mech Rev vol 51, 1998

plate theory (Ref. 59) are shown to express the stationawitgitions
for an augmented elastic potential energy in which the kitéral
boundary data appear as constraints.
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and are the equations governing the modelled boundary figlds
boundary min-max principle above has been extended as ltalc
frictionless unilateral contact boundary conditions irf.R9 and

The same BEM formulation can also be derived using anothdeformation-theory plasticity in Refs. 140, 142, 143.

variational principle, that is, the so-called min-max pipie pro-

posed in Refs. 133,138. For an elastic body subjected tanmlu scribed in Sec. 2 is available.

forcesd in , imposed displacements on I',, and tractiongp on
T',, let us consider the functional

//
~f L
+§/Fp/r

—/ p gude+/ u” g, dL,
T,

JTy JTp

p,u] = Guu(z,§)p(§) dly dl:
Gup(z, §)u(§) dl, dly
Gpp(z, §)u(§) dI dle

(81)

whereg,, (z € I'y) andg,, (z € I';,) are functions of the data, i.e.:

9.(@) =3(@) ~ [ Guular. PO I

Gup(x, §)u () die

Ty

/ Guu :L' € )ng +
g,(x) =2p(z) - | GuwOp©) 0

2
_ [ Gt

It can be proved that the solution in a suitable function sethe
saddle-point problem:

£)d0; + f G, €)a(€) T

min max II[p, u] (82)
P u

provides the tractionp = p|r, and the displacements = u|r,

pertaining to the solution of the boundary-value problend that

conversely the latter solution solves problem (82). Theoprests

on two requisites of the functional (81): (i) the symmetrpmperties

Another, related, energy interpretation of the SGBEM as de-

It is based on the fact, astedad
in Sec. 11, that the strain ener@y in 2 associated with any elasto-
static state is given by

=3 )
*—//

Then, the following augmented potential enerdis introduced:

L :Wf/ﬁT(x)u(m) dr,

o [xe { (@, E)u (s>7Guu<m,s>p<s>}drzdFs

Guu(z, 5) (5) dry dF&

Gpp(x, &)u(g) dl, dle (86)

where A(§) is the Lagrange multiplier field associated with the
boundary compatibility constraint (i.e. the fact thatp are the
traces onl" of an elastostatic state, o in 2). Then, by express-
ing the stationarity ofZ, one finds that (i)\ = p and (ii) the un-
known partgp|r, andu|r, solve the now usual SGBIE formulation.
The above interpretation is anposteriorione in the sense that the
weighted residual SGBIEs are used (with particular choafethe
test functions) to establish Eq. (86), see Sec. 11.

Energy based variational formulations were also achiewed f
elastodynamics in Ref. 141. The Hu-Washizu principle eéen
to dynamics is there employed together with the classicaket
fundamental solutions. Through semidiscretization byrioiauy el-
ements, the original initial-boundary value problem issfarmed
into a discrete set of Volterra time-integral equationsheffirst kind,
which can be numerically solved through a suitable timeysitey
algorithm. The potentialities of this formulation, thougheady ex-

(8) of the kernels,..; and (ii) the positive and negative definiteneséended to plasticity in Ref. 125-127, deserve further study

of, respectively, the first and the third double integral&%)(
Modelling p asp, = ¥,(z)X, onT, andu asu, =
v, (x)X., onT',, one has
U[py,, un] =1(P,U)

E—PTC”:””P -PTGYU

2 pu y(z,t) =

uu

+ = U G,.U—-P'R,+U"R, (83)
Whel’eéi are defined by Eg. (20) and

vig,d R,=
JT, Ty

R, = Tlg,dr
Matrix G,,, turns out to be positive definite ara,
nite. The min-max problem

min max l:[(P, U)

84
(P) (U) 84)

is the discrete counterpart of (82). The relevant Kuhn-8udondi-
tions read:
G P —G,.U =R,

G.,P-G,,U=R, (85

negative defi-

An alternative variational BEM formulation was given by Mai
et al. in Ref. 99, 100 with the use of a boundary integral dpera
which is grounded on works on convolutive variational pifihes by

Gurtin, Ref. 74, and Tonti, Ref. 162. Let us set:
p(z|r,,t) _ g.(x|r,,t)

] » g, t) = [ _ (87)
u(zlr,, ) gp(zr,,t)

whereg,, andgp depend on the assigned loading and initial condi-
tions like in Eq. (59) but with9 = 0, that is:

9. :ﬂig_ou ) (88)

where

Ghui) sz -

T, Ty

— p/ (Ghul(t 0yUo + Ghul(t 0)u0> dle (h=wu,p)

®n :/ Ghul_)dQ + thﬁ dFl:|
Q

denoting byu, andw the given initial displacements and velocities.
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The above mentioned boundary operator is defined as follows:

/ Guu(zlr,, &1 — T)p(E, 7) dledr
Fu
/ Gup(lr, &t — T)u(€, 7) dledr
T (89)
/ Gpu $|Fp7§ t— ) (€7T)dF§dT
Fu

/ Gy (@l &5t — T)u(€, ) dledr
r, ]

This operator turns out to be symmetric (or self-adjointhbio space
and time with respect to the time-convolutive bilinear form

(Ly, y / / (x, T —t) Ly (x,t) d; dt, (90)
such that the equality
(Ly,y") = (LY, y) (91)

holds for arbitraryy andy’. As a consequence, the unknown bound-

ary displacements and tractions pertaining to the dynaespanse
of the body to given loading and initial conditions can beaited as
the displacements and tractions that make stationary tiaiunal

Ly, y) - (92)

F(plr,,ulr,) = (¥, 9)

1
2
Through discretization by boundary elements with inteaiohs as

py(x;t) = ¥y(x;t)P only x T

(93)
up(x;t) = Uyu(z; t)U only x T

whereT denotes the time interval of interest, like in Sec. 2.2 fo

elastostatics, the functional (92) transforms into a gatalfunction.
The above variational formulation has been shown to be goiter-
ful since it has been applied to a variety of time-dependestilpms,

cf. Sec. 2.2, such as elastodynamics over piecewise horaogen

domains (Ref. 100), viscoelasticity (Ref. 35) and transherat con-
duction (Refs. 36, 37).

8 REGULARIZED SGBE FORMULATIONS
8.1 Regularization

The various fundamental solutions involved in SGBEM araysin
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at the singular point. Hencefortli;®*(T') is the set of functiong
such that

Jo,0<a<1,3C >0, V(e,y) el xT,
lf(y) = f(@) < Cly —=|*

andC**(T") is the set of functions having'®* first-order deriva-
tives.

In view of the above circumstances, it is convenient to erage
somehow the SGBIE formulation in order to eliminate all diffties
related to integrability before performing the actual diization.
This step is usually known aggularization This issue has been
addressed in several ways.

The symmetric formulation of Balakrishre al., Ref. 9, consists
of using weighted residuals of regularized displacemedtteaction
BIE; the integrability of kerneG,,,, is then settled at the first (inner)
integral level, at the expense of having to rely@h* behavior for
the unknown displacement. The somewhat involved resufting
mulation otherwise allows for 2D and 3D implementation gsamy
usual interpolation scheme.

In the 2D implementation of Sirtori et al., Ref. 154, the rele
vant double integrals are temporarily taken on two closedsiinct
curvesI’ andT'™*, whereI™ surroundsl” and is in one-to-one cor-
respondence witf'; then a piecewise linear discretization is intro-
duced forT', T"* and the unknown boundary variables and test func-
tions. This particular choice of discretization allows t@leiate an-
alytically all integrals while the discretizdd,, I';, are kept distinct;
then, the limitl™* — T is taken analytically. In Ref. 154, a complex
variable formalism was found convenient, while in Ref. 9&ene
this procedure was extended to elastic-plastic 2D analgesas vari-
ables have been preferred in view of future 3D implemematio

A recent generalization of the limiting approach of Ref. =y
98 applicable to either two- or three-dimensional sitwai allows
to formulate regularized SGBIE in full generality; in partlar three-
dimensional situations fall within this framework. Essalty, the
regularization technique consists of a limiting procEss— T" car-
ried outbeforeany discretization. This is made possible by a key
property of theGG,,, kernel, which permits its reformulation as a re-
peated surface curl. Then,Stokes’ formula is applied wapect to
bothz and¢, resulting in the appearance of a new, weakly singular,
kernel. This approach is presented below for elastic prosleith-
out body forces, following Ref. 28. The SGBIE formulatiomues
e.g. from applying the Betti reciprocity identity

/[pTu* — qu*] dly =0 (94)
r

lar whenz = £. In linear elastostatics, their singularities have been

specified by Eqgs. (6) and (7). For other classes of problepteiffial
theory, acoustics, elastodynamics, diffusion...), tinggiar behav-
ior of the kernels is similar. In particular it is well knowhdt cor-
responding dynamic and static fundamental solutions Hevsame
singularity (i.e. their difference is nonsingular).

From Egs. (6)-(7), itis apparent that the various GalerKkia 8r-
mulations encountered in the previous sections cannotriergébe
implemented in a straightforward way. In particular, theegral of
the so-called hypersingular kerr@l,, (&, ) over a single surfacB
can be defined only in the sense of Hadamard finite part or sitmer
ilar limiting processes, which requi@"* continuity of the source
density function at the singular point. Its integral ovez tartesian

productl” x I is convergent for 3D, and still divergent for 2D. More-

over the strongly singular kernes ., G.. are integrable ovel
only in the sense of the Cauchy principal value or other sinfiimit-

ing processes, which requirg’®>~ behavior of the density function

with a fictitious auxiliary statéu*, p*) defined in terms of densities
d*, f* on the auxiliary surfac&* exterior tol":

u'(§) = - [Guu(§,2)f7 (@) + Gup(§, )d" ()] Al (95)
= [ 1Gn(ea)f @)+ Gule o) @) T (©0)
8.1.1 Strongly singular kernels
Consider first the well-known limit-to-the-boundary rédeis:
ghg; u” (@) G pu(, &) dT.
€+ fu" @Gl O ©7)
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and

lim

r—I*

. Gup(w,§)d" (&) dle

. ——d*(:c) + Gw(w,s)d*(s) dre (98)
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and are biharmonicvV*F = 0 for any¢ # z. Theik-component of
G,y is then given by

[Gpp(x, 8)]ik = —CijabCrecd|Guu (X, €)]ac,bamj (®)ne(€)
= Zijie(@, &)n;j(x)ne(§)

denoting by the symbgl-a Cauchy principal value (CPV) integral. where C' is the elastic tensor andl, (¢ — x) denotes the partial

It follows that, in the limitl’* — IT":

f e
Z/F T dr,

lim
r*—T

Gpu(z, &) f* (&) dl: dIy

[ @eneead @ (99)
and

Jim [ ] 0" @G e, © dr

__E/F Ta* dr,

+/FpT(9c) {][F*Gup(w,ﬁ)d*(ﬁ)drz} dl (100)

At this point, the inner CPV integrals can be either evalddig a
direct method (Guiggiani and Gigante, Ref. 73), or rega&diusing
the ‘rigid-body’ identity

 Grule ) die = (x(6) - )1
S

whereS is a closed surfacd, denotes identity matrix ane(¢) = 1
or 0 depending on whether the unit normato S (implicitly present
in the kernelG . (x, £)) is interior or exterior to the surfacg. For
instance: (i) if the domain boundaiy is connected, one has =
1 for an exterior problem and = 0 for an interior problem; (ii)

(&es) (101)

derlvatlve—f( ) taken atz = ¢ — x. Inserting Eq. (104) in the

above formula, one obtains the expression of hg..(x, £) com-
ponents in terms oF" as follows:

_QZiij = — 4V[Eijk[ — 57,'jF,ppk€ - 5k€F,ppij]
—2(1 — V)[2Fijke — OinF ppje
_ 6jZEPPik — 6iZF,ppjk — 6ij,pp'Ll] (105)

Then, § being the Kronecker symbol andthe Ricci permutation
tensor, using the algebraic identityepecrp = dacdef — dafdbe, ONE
obtains

€iep€jfqCkgr€lhs 6pq5rsF‘,efgh

= Flijie — 045 F pprt — Oxe Foppij + 0i01 V' F

and similar relations under permutationsiof, k, ¢. Finally, since

if the domain boundary" is made of two or more disjoint closed Bigis = €icpergrit’ [408pq0rs

components, both cases= 1 or 0 arise.

Besides, in 2D situations, the kernél,,,,
derivatives of other kernels with respect to the arc-lenagtshown in
Ref. 65; hence regularization through integration by pargsailable
in this case, and has indeed been used in Refs. 60, 104, 154.

8.1.2 Hypersingular kernel

Turning now to the most singular kernék,,,,, recall that the Kelvin
displacement kernék,,, is such that

Guu(wyg) - Guu(ﬁyw) - Guu(€ - .'13) (102)
which in turn implies that
V:Guu(x, &) = —VeGuu(x,€) = VGuu (€ — ) (103)

whereV f(& — x) denotes the gradient ¢ff(z) taken atz = £ —
x. Indeed, from the Galerkin representation formula for 8ohs in
isotropic elasticity (with shear modulysand Poisson ratio), one
has

Guw =2(1-v)V’F1-VVF (104)
where 1 denotes the identity matrix in ‘Rand the scalar function
F (& — x) for 3D and 2D situations, respectively, reads:

1
Fle—=) = 16mp(1 — y)r

-1 )
Fl&—x)= ) V)r Inr

G, Can be recast as

VAF = 0 for any¢ # =, substitution of the above identities into
Eq. (105) leads to the following expressionG@f,,:
[Grp(@, &)k = RGRS Bigrs (2, £) (106)
in terms of thesurface curldefined as
of
c = €abcNa a_ 1 7
Ref(€) = eavena() - (107)
and in terms of the new kernel
21— ) (Byrigs + peigr)| 2
prvgs bs¥gr afeal'g
(108)

This kernel turns out to be only weakly singula@¥((l /) for 3D and
O(Inr) for 2D problems).

The surface curl, Eq. (107), is associated to the followorgifof
the Stokes’ formula:

(109)

/RcdeZ freds
Js a8

whereS is any regular surface ane is the unit tangent to its edge
a8, if present (i.e. ifS is not closed). Thus, application of the above
identity together with (106) leads to

| [ v @6 (.o ©drar,
- / Ryui (%) Biges (@, €) R di(€) T oI, (110)
rJIr*

Note that no contour term appears sificendI™* are closed surfaces
and bothu andd* are continuous. At this point, since the kernel
Bi;qks is weakly singular, Eqg. (110) is valid in the liniit* — T.

For two-dimensional problems, the above consideratiomsitab
the hypersingular kernék ,,, still apply, with some simplifications.
Let es be the direction of invariance, and define the unit tangetat
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the boundary curv&€ by 7 = es A n, Or 7, = eapsna. Thus,R.f, and
Eq. (107), reduces té.sd/ds (s: arc length) and

B! = / (k(€) — 1)PT (&)L (€) dre

d d p
ik — ——Bi B R
Gl O = G, P (111 - [ [ ra" @By e R ) dr, ar;
Bix(z,§) = #_)[ln r0ik — T 4T k)
EA +/ / Gup(@, €)W (€) — W ()] dT, dI
I, /T,
The above expression is used in Ref. 60. _ / = )T G dT. oL 117
To recapitulate, the final SGBIE formulation, ready for iepl T, p(z) ¥u(z) T, up(®, €) dl; dle (117)

mentation, is obtained through the following steps: (i) gitbte . )

Egs. (95-96), withf* = 0 onT andd* = 0 on T, into (94); (i Wherenl(f) hgs the same meaning as in Eqg. (101).

take the limit expressions given by Egs. (99), (100) and 1) All singleinner surface integrals in the above formulas are at most

splitT"into T, T, and separate knowrs, p and unknownaz, p. weakly singular and, hence, have a meanlng in the usual Riema
Itis worth noting that in general the unknown displacemeand ~S€nse. In particular, the integrals o¥grof G, andG,, are at most

the kinematical trial functiort*, both defined off",, do not belong weakly singular by virtue of the fact that the relevant iptgation

to the same function space, since they must realize contines- functions¥,, are continuous and vanish along the separation curve

tensions or” of @ and the null function off',, respectively. Then, Petween andl’,.

one way to guarantee a symmetric final formulation is to g a |t 1S Worth stressing that Egs. (112) to (117) hold for interi
function4 chosen so thak — @ onT',, continuous o’ and other- 25 well as exterior problems, and that they can accommodgte n

wise arbitrary, and define dj, the new unknowrny = u — @; then connected boundariesz They providp in.aII respgcts an atieqasis
bothv andd* are continuous and vanish @h,. For pure Neumann for a purely numerlcal_|mplemen_tat|on, €. relying soletynumer-
boundary conditions, the introduction @f v is not necessary. ical quadrature techniques. This fact is very valuable femegal-
Assume that the boundaiy, boundary variables, p and trial PUrPose implementations to come, especially for threesdsional
functionsd*, f* are discretized in the usual BEM fashion. Follow- SGBEM algorithms, because it enables one to use curved aleme
ing the notations of Egs. (18), (19) of Sec:2andv can be simply and high-degree interpolations, like in traditional coition BEMs.

defined as the interpolations of the prescribed displacemedal Of €OUrse, the purely numerical approach to SGBEM implemen-
values and of the unknown ones, respectively, namely: tation is by no means the only correct one, and various other a

proaches, mixing numerical and analytical quadraturegehzeen
~ successfully developed, see e.g. Refs. 79 and 81.
a=w,00", 0" v=w,[XxT 0" . _
8.2 Indirect SGBEM formulation

The final outcome of the regularization procedure is, of seuthe Following classical methods of potential theory, fetbe bounded
linear system of equations (23), i.e. and introduce its unbounded complem&ht = Q. \ 2. Consider

an interior and an exterior problem simultaneously, withadlis-
 wu . up placement data ofi,, and opposite traction data @: u+ = @ and
G —Gyp Xp | B pT + p = 0. Combining the SGBEM formulations for both prob-
_Gzz GZ X. [ B! lems, using Egs. (112) to (117), yields a new formulatiorned

indirect, in terms of new nodal unknownX , = X — X, and

X = X} + X,. The corresponding linear system of equations is:
but now the various submatrices are given by

G -G X[ L wis)
. 7@173 GPP ti - i—/P
_ / RUT(2)B,y(z, &) R¥,(¢)dl, dle  (112) re  Gop U
oty Ly = / p'w,ds L) = / p’W, dS
Gy = / W (@) Gy, §) W, (€) dT, dTe (113) o i
Ip /T A significant simplification occurs in that all double-intagterms on
/ ,I, Glup(a, €)W, (€)dT, dle (114) the rlght-hand side are cancglled qut, because the kaﬂle,JsG,fu
r. Jr, depend linearly on the exterior unit normal to the relevasrhdin,

andG,,, depends quadratically on it.

Guu = / U, (2)Guu(z, €)W, (&) dI, dlt (115) Indirect SGBE formulations are natural symmetrizationmdf-

P /T rect BEM obtained from e.g. single-layer representation®irich-

let problems and double-layer representations for Neunmaaoh-

and the subvectors by lems. Such, formulations have been applied to radiatiorsaatter-

ing problems. For instance, an early indirect SGBIE forrtiatafor

; o mixed boundary value problems in exterior acoustics wabéished

B, :/ k(&)u” (&) ¥y () dly in Ref. 76; various symmetric indirect formulations for Dhlet and
Fu Neumann problems are presented in Ref. 121.

/ [@" (@) = @7 (€))Gpulw, €)Wy (€) AT T 8.3 Crack problems

/ / Guu(z, &)W, (&) dl, dle (116) The regularization approach for cracked bodies follows shme
Ip JTu steps as in Sec. 8.1, but with the Betti theorem and fictitsiate
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defined by Egs. (45), (46), (47); an auxiliary surfaemust be in-
troduced in order to consider the limiting situatiSti — S. As a
result, the new ternt in the right-hand side of (48) is given by

Bg:/

P (&)W, (€)dT:

+ [ [ Ri@)

- ./Fp /S P (@)Gup(w, €)Wy (€) dI d

Bpp(x, ) RP,(§)dlL dly  (119)

whereasB¢, B? are still given by Egs. (116), (117).

8.4 Further comments on the regularization procedure

The kernel decomposition (106) is given by Nedelec in Ref, 32e
also Han, Ref. 78. For a scalar fundamental solutibof Laplace
equation, such thah,G + §(¢ — x) = 0, it takes the simpler form

Gij(z,&)ni(x)n;(§) = —eiepni(x)e;rpn; (§)G er(z, )

For frequency-domain elastodynamics, the representdlios) of
the fundamental displacement reads for 3D problems:

Guu =21 —V)[V’F+E,F]1-VVF
_ 1 (eikLT _ eikTT)l (120)
Ak, r

with k3 = pw?/(\ + 2u), k3 = pw?/u, X andy being the Lamé
constants. Then, an analysis similar to that conductedhfostatic
case yields

[Gpp(w7€)]ik
= RSRY Bigrs(, &) 4+ 2(1 — v)k7.CijabCrecadac Fpan () (€)
—+ {[2(1 — V)((ilk(;]z + (5]k5lz) + 4V§,7(5kz]v F}TLJ nz({)
(121)

where B, takes the form (108) witl# given by Eqg. (120). One
can show using series expansions that the second derivativé
have a weakO(1/r) singularity; the factor ofk? is hence only
weakly singular. Besides, one has

ViF = k:%eikTr)l

g k2 (k4 ikpr

which is also weakly singular. A similar, more general, iebas
been achieved by Bécache et al., Ref. 17 for anisotroptals-
namic fundamental solutions, both in frequency and timeaom

The above outlined regularization approach has been fg@eat
tended to Kirchhoff plate bending in Ref. 59. In this workiensive
use is made of integration by parts; the most singular kepresdent
in the formulation, initially of ordeiO(1/r*), is recast in the fash-
ion of (106) as a fourth-order derivative with respect tolarggth of
anotherO(In r)-singular, kernel.

An interesting and promising alternative to regularizati® rep-
resented by the fully numerical integration techniquesetimed in
Refs. 1,54 and 116

9 CONVERGENCE AND OTHER MATHEMATICAL
FEATURES

The mathematical properties of the variational integredfialations,
namely symmetry and sign-definiteness, prove quite usefaldt
dress general questions such as existence and uniquersedstiain
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to the continuous problem and convergence study of the soorel-
ing discretized problem.

Many fundamental boundary-value problems have been asthlyz
this way by Nedelec and co-workers, Refs. 11,120-122. For in
stance, the variational formulation for the Dirichlet pler with
boundary data: € H1/2(F) using a single-layer potential of un-
known densityy is

(a,q¢) Vg € H V()

N 1 q(§)q' (x)

and the variational formulation for the Neumann problemhwit
boundary datg € H~'/%(T") using a double-layer potential of un-
known densityy is

b (u,u') = (g, u')

Riu(€ )
b (u, u = // B 7€| dl¢ dI;

where a double integration by parts regularization has loeen
ducted andR;u is the surface curl defined by Eq. (107).

The mathematical definition of the function spd@é(l"), s > 0
is (see e.g. Ref. 166):

# @ = {f = X [0 ar
|| <[s]
| D f(
+ Z // E|n 14+2(s—[s])

D f(&)P

lec|=[s]
(n = 2 or 3: dimension of the geometrical space) whésrkis
the integer part ofs, a is a n-tuple of positive integersja| =
a1+ ... |an|| @and D*f = (fay,....f.0, ); the spaceH °(I')
is the dual space off*(I") with respect to thel.? scalar product
(f:9) 2y = fF fT g dr. The regularity of the functions i * (I")
increases with the value af It is interesting to note that for half-
integer values of a kernel function similar to the fundamental solu-
tions used in BEMs appears in the definition of the nq)frtq{s(r)

Thanks to symmetry and sign-definiteness, the bilinear $orm
bp, by are shown to beoercive i.e. there exists positive constants
Bp, An such that

bp(q,q") =
(122)

vu' € Hl/Q(F)
(123)

dr, dle < +oo} (124)

bp(q,q) > Bp |Q|§1—1/2(r) by (u,u) > By |U‘|§—11/2(F)/R

Then, existence and uniqueness of the solution to probl&g®) Er
(123) follows directly from Lax-Milgram theorem. Moreoversing
Lagrangian element®,, for the unknown density ané,, for the
surfacel’, the following convergence results, in terms of the mesh
size parametel, are given in Ref. 122:

/F lu(€) — un (P

/F' 14(6) — an(P L (@) dIe < CiA™ + Cuh*H!
' (125)

(the orthogonal projectiof® ontoI' is used in order to ‘transport’
onto the exact boundarly the approximate solutiog, or u, de-
fined on the approximate boundary,). They suggest to choose in-
terpolations so thatn = k£ + 1 (e.g. flat triangles with piecewise
constant unknowns) for the Dirichlet problem, and= & (e.g. flat
triangles with piecewise linear unknowns) for the Neumarabfem.
Convergence results of similar nature are known for SGBHnie
lation of fundamental boundary value problems associatéueng.
Helmholtz or linear elasticity equations.

1) dre < CLh™ 4 Co[h™ ! + 7Y
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A more general approach to the mathematical study of Galerktontribution, Ref. 156, addressks— p adaptive Galerkin BEM for

BIE formulations is found e.g. in Wendland, Refs. 166, 167is|
based on the fact that the various integral operaiors Gu:

Gu(€) = /FG(S,:I:)U(QS) dr + (free term

that arise in boundary integral formulations for elliptioplems, are
particular instances giseudo-differential operators.e. they admit
a decomposition of the form

(Gv)(z(T)) =Cv+ /’;n—l /;n,—l g(T,t,m).v(x(t))dt dn (126)

with

g(r,t,m) = ¥ ag (7, m)W(|t — 7))
and wheret € R"™! — «(t) is a local parametrization df, ¥ (p)
is aC* cut-off function with compact support and such that= 1
in a neighbourhood g5 = 0. Theprincipal symbola, (¢, n) is C*°
with respect ta; moreover it is homogeneous of degree

ao(t, An) = Aao(t,n)

for a certain value ofy, called theorder of G. In definition (126),
C: H*(I') - H*%(T") is a compact mapping for somseneara.

The integral operatog is then said to bstrongly ellipticif and
only if there exists a positive constapaind a complex matrix-valued
function® € C°°(T) such that, for alle(7) € T, alln € R™™*
with || = 1 and allx € C", the principal symbol verifies

Re{x".[0().a0(t, An)].X} = 7 x|

The principal symbol is strongly related to the degree ofsiar-
ity of the integral operator. In particular, the integrakogtors with
elastostatic kernel& ..., G, are found to be strongly elliptic (with
© = 1) of ordera = —1 anda = +1 respectively (see e.g. Egs.
(2.1.18)—(2.1.24) of Ref. 167); this is also true of the esponding
dynamic integral operators.

A general convergence result is available for boundary etem
discretization of Galerkin formulations associated wittosgly el-

two- and three-dimensional Dirichlet and Neumann probléanghe
Laplace equation on domains having polygonal or polyheatvahd-
aries, including screens (i.e. open surfaces across wihéchrimary
variable is allowed to jump) in unbounded domains. In thisirsg,
the author establishes exponential convergence (witrectdp the
number ofboFs) of anh — p adaptive strategy, and provides numer-
ical experiments for both two- and three-dimensional eXamp

Two-dimensional formulations are addressed in Ref. 16&ravh
estimates of the errof, [u — up|? ds for a given intervall C 9Q
are expressed in terms of a norm of the residvat b — Gu over any
interval J with I C J C 0%, thus providing the basis for a posteriori
error estimation using residuals. Arposteriorilocal error estimator
based on the computation of the Galerkin residuals obtaiyer:-
versing the boundary condition types is introduced and mioaiéy
tested for 2D potential problems in Ref. 130. Two-dimenalon
h — p- andp-versions of the SGBEM are expounded and their faster
rate of convergence is numerically experimented in Refs382

10 SENSITIVITY ANALYSIS FOR STRUCTURAL
IDENTIFICATION AND OPTIMIZATION

Sensitivity analysis using boundary element methods isoavigg
area of investigation. In particular, BIE formulations &rape sensi-
tivity of field variables or objective functions using ani@gl domain
differentiation are frequently invoked in connection wsthape opti-
mization or inverse problems.

In general, there is no privileged relationship betweersitign
ity analysis and Galerkin symmetric BIE formulations. Oficse,
SGBIE allow to formulate governing equations of adjointigems
or of field variables sensitivities, and thus provide onesfie solu-
tion tool for the intermediary computations needed in messgiv-
ity analyses involving boundary value problems. Howeveg area
of sensitivity analysis in which the SGBIE do play a priviébrole
is shape sensitivity problems in elasticity in the presewfoeracks,
as shown by the following considerations.

In shape sensitivity analysis, the adjoint variable apginda the

liptic integral operators of ordet, in connection with the use of the most efficient one to objective function sensitivity evdioa, espe-
generic family of so-callecﬂ;‘f” finite element approximations sys-cially when the governing equations are linear. Usually. (in the
tems in(n — 1) dimensions (Babuska and Aziz, Ref. 8), where thabsence of geometrical singularities like cracks), it syea formu-
polynomial degree of the interpolation functions and the regularitylate such objective function sensitivities in terms of bdany inte-
degreer < d — 1 are nonnegative integers, ahdlenotes the max- grals only, even when domain integral functionals are asrsid.
imum element size. This family of interpolations includesialC®  However, the relevant derivations break down in the presefc
Lagrange interpolation®,, (for d = m + 1,7 = 1) and piecewise cracks due to the appearance at some point of the calcutztivom-
constant interpolations on triangles (fér= 1, = 0). The result integrable crack front singularities (essentially, whappens is that

states that, forv < 2r + 1 (n = 2) ora < 2r (n = 3) and for any
real numberg, s such thate < ¢ < a/2 < s < d, the approxi-
mationw, to the true solutiorv of the Galerkin formulation for the
integral equatiojv = b is such that

[on — ] gery < ch®™" 1] grs (127)

(see Eq. (124) for the definition of thg*® norm). Estimates (125),
neglecting the effect of geometrical modeling, are paldicun-
stances of the above result. Also, Eq. (127) is further gdized to
systems of integral operators of different orders, so shalsglo apply
to SGBIE formulations of mixed boundary-value problemth@lgh
no emphasis is put on this issue in the references quotethhere

In contrast, convergence results concerning the more widssd
collocation BEM formulations are scarce. They mostly adgre
spline discretizations for 2D formulations, Refs. 7, 16%7.1

Few results have yet appeared concerning the mathematidgl s
and actual implementation of adaptive SGBEM methods. Alieta

Eulerian derivatives of the strain energy density are miegrable at
the crack front); see e.g. Ref. 30. Thus the combined apjdicaf
BEM and classical adjoint variable techniques is probléné#n this
case, the SGBIE framework allows to circumvent those diffies.

For instance, let us consider again the cracked elastid seh
fined in Sec. 4 with Neumann boundary conditions alone (inerg
tractionp onT, traction-free crack faces), together with an objective
function J:

J= / f(u)dS (128)
JT

For example2f = —p.u gives the potential energy atf =

|lu — umeas|2 gives theL>-distance between computed (for an as-
sumed crackS) and measured displacements, frequently used to
solve crack identification problems. One has to assess ts#igey

of J to domain perturbations that affect the crathkut leave the ex-
ternal boundary” fixed. To this purpose, infinitesimal perturbations
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of the form

Y’ — yPtP = yP £ 0(y)op+o(6p)  with Jim

p—

of a domainQ2? are introduced, wherép is the small variation of
some shape parameteupon which2 is dependent, andl is thedo-

*
main transformation velocity The material derivativef (y) (also
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Then, consider the (discrete) adjoint solutiph &", X %"} to the
following problem:

[G‘ZZ Cl‘ii;} {Xﬁ} B {fr f}lwuds}
G | 1X8 0

-Gy,
Note that, in general, this problem is not equivalent to orenim
tioned above with Neumann data (131). Besides, applicatidhe

(135)

termedtotal or lagrangian derivative) of a generic field variable lagrangian derivative operation to the SGBE formulatidd8)lleads

f(y?,p) in the domain transformation is defined as:

%p[f(y”“p,p +dp) — f(y",p)] withy =y”

+ f,mt‘)m) (y,p)

b (y,p) =

lim
dp—0

af
(ap

(129)

using the notation:f,,, = 9f/dym,. The material derivative of a

generic regular integrals over a moving surf&eis given by:

dip./;pde:.;p{}+fDi0¢} ds (130)

to a governing linear system of equation foX ., )*(9,} of the fol-
lowing form:

2, PP 2 pC ol
|:GPP _Gpp:| Xu
~.Cp ~ccC *
*Gpp Gpp @
d ~ pc
0 e | [ X " ° (136)
Tl e —Lan|\xof T\ 4B
dp dp

where the detailed expressions of the varidygp come from appli-
cation of formula (130) and the fact that neitfienor p are modified

whereD; = 9; —n;0,, denotes the tangential part of a partial derivasinder the crack perturbation has been taken into account.

tive (D;0; is thesurface divergencdivs 6 of 6).

Domain formulation

T T
Now, left-multiply Eq. (136) by{X,, X} and Eq. (135) by
{XﬁT,X?DT}, then subtract the resulting equations from one an-
other. Taking advantage of the symmetric character of thiixna

Define theadjoint displacement field as the solution to the elastic 90Verning operator, one obtains the result

problem with Neumann boundary data

pt = _of onT’

p*=0 onS
ou p

(131)

Then, apply Betti reciprocity identity to the adjoint stai& and the

material derivativer: (the latter is formally a displacement field that

solves a certain elasticity problem with initial straikdibody forces
defined in terms of the original elastic state €, o)). Such applica-
tion of Betti’s identity leads to the result

47 :/ [67<"dive — 0" (Vu".V6) — o (Vu.V6)] d0
dp Q

(132)

dJy :{/ o, dS} X,
dp r
d ~ pC
X r 0 d_Gpp X rd
= d b +X{—BY
X; _écp __(A;cc ti dp
dp pp dp pp
(137)

One sees here the essential role played by the symmetry gbthe
erning integral operator: it allows to express the final ite€l87)

without explicit reference to the lagrangian derivati\{e% T )*( g}
of the boundary unknowns. Equation (137) thus expressesetie
sitivity of any objective function of the form (128) to domaper-

It turns out that the above expression can be recast as a &gundturbations in a boundary-only form that accommodates stadk

only formula using a series of integration by parts and thilieg
rium relations satisfied by the initial and adjoint stateswidver, this

particular, it can be applied to the special case of poteatiargy,
leading to a#-integral method for a boundary-only approach to the

manipulation breaks down in the presence of cracks becarse- ¢ computation of energy release rate, see Ref. 26.

sian derivatives of the strain energy density are encoedtar the
process and are not integrable in the vicinity of the cracktfrThen,
the use of Eq. (132) in a BEM context becomes impractical.

For the special case of potential energy at equilibriutfi, =
—%u and Eq. (132) defines the so-callédnethod for computing
the energy release rate in linear elastic fracture mechaRief 53.

Boundary formulation.

Recall that the governing SGBIE formulation reads

¢l -G (x| _ (B
6 \x.] " ey

~ cp
*Gpp

where the notations of Secs. 2,4 are used. Moreover, sieaexthr-

nal boundanf" is fixed, one has

(133)

%:/ﬂa ds:{/f}puds} X.  (134)
dp r Jr

11 COUPLING OF BEM WITH FEM

The BEM and the FEM possess specific computational feathess t
make them complementary to each other. Whereas the FEM is
well suited for problems with nonlinearities and inhomogjéies
in bounded domains, the BEM turns out to be especially approp
ate for linear homogeneous problems with unbounded donwins
in the presence of singularities (e.g. crack problems). thigrrea-
son, often in engineering practice there is computatiodehatage
in making use of both methods. Zienkiewicz et al. first in R&f6
dealt with this topic in elasticity by dividing the problenomain
into two subdomains, one for FE discretization, the otheBié dis-
cretization. Their main idea was to generate a boundary exiem
node stiffness matrix to assemble with the other finite ef@mea-
trices within a FEM package. Two difficulties arose in the\abo
treatment, one concerned with the impossibility to obtaisye-
metric stiffness matrix by means of the conventional difg8EM,
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the other concerned with the correct way to enforce the ooiti
conditions for displacements and tractions through therfate be-
tween the two subdomains. The ‘forced symmetrization’ efitidi-
rect BEM stiffness matrix suggested in Ref. 176 has beeitizsd
by various researchers (see e.g. Ref. 113). Symmetric chyther
ment coupling formulations (see Sec. 13) were given by Behjto

et al., Ref. 18,19 and by others, Refs. 55,93, 151, based engyen

methods substantially equivalent to the Reissner bourstatipnar-
ity principle, Ref. 148. As to the interface continuity cdtiehs, the

most common strategy adopted consists in using the samdlmgde

for the displacements and/or tractions on the two interfsides.
The correct way these continuity conditions are to be casdpliith

was discussed by Hsiao in a review paper, Ref. 84, devoteleto t
BEM/FEM coupling methods. BEM/FEM coupling via domain de-

composition, including algorithms and parallel realiaati, appear
among the contributions in Refs. 75, 165.
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having set
G = [ [ R¥I@)B,u(@. ORT . dredr,
By = [ (nl@) - 1)1 (@) ¥, (@) dr, (143)

Ly, = /F[‘I’u(w) - ‘IJu(g)]Gpu(iB,E)\IIZ;({) dr, ng

Finally, premultiplying Eq. (140) byP” and Eq. (142) by-U”*
and adding the resulting relations, we obtain:
P’G,..P-U"G,,U=P"E,,U-U"E,, P (144)

where use was made of the equaIE)[u = Ly, flowing from
Egs. (141b) and (143b). At this point, one has simply to oleser

A more general view point for the BEM/FEM coupling problemthat

consists in adopting a single variational statement fortwee sub-
domains such as to obtain the two sets of governing equadi®ttse
pertinent Euler-Lagrange equations with the interfaceinaity con-
ditions as natural boundary conditions. Such a variatiaparoach
leads to consistent FE and BE discretizations with indepetichod-
ellings on the interface. Examples of this approach werergby Be-
lytschko et al. in Ref. 19,20 and Zeng et al. in Refs. 173-1te

P'E,,U-U"E,P=P" (E,,—E,)U,

B, EY, = / () — (s(z) — 1)) %7 ()., (z) dT,

= / U, ()W, (z)dl,

Therefore Eq. (144), in view of Eq. (139), becomes

symmetric Galerkin BEM was employed to this purpose by Gosta

bel in Refs. 45, Costabel and Stephan in Ref. 46, Hsiao in &ef.
Wendland in Ref. 166 provided error estimates of the disaton
procedure and proved the related convergence features.

The ability of the symmetric Galerkin BEM to provide the ekac

(symmetric) stiffness matrix associated to the relevamegaized
boundary displacement can be shown as follows.
Let Q2 denote again an elastic body, whose boundary closed.

Let (u,p) denote anycompatible(i.e. which is the trace on the

boundary of an elastostatic stateo in ) pair of displacements
and tractions oft". The elastic strain energy’ for any such state is
given by

1 1

W= [ o' @e@. - 3 [ o @ul)dr @z

For simplicity, consider only discretized forms @&, p) according
to Eq. (18). In particulaiV is then given by

W= %PT{/F\IIZ(x)\IIU(x)dFZ}U

for any compatible paitU, P).

(139)

First, considering the tractigmas induced by given displacement

oW = PTG P -U"G,,U (145)

in which vectorsU and P must be compatible in the above sense.
Now, solving Eq. (140) forP and substituting the result into the
above equation (145) leads to:

W= %UTKU (146)

where: . R
K = (EUP + Lup)TGuu (Eup + Lup) — Gpp (147)

On the other hand, solving Eq. (142) leads to the complementa
strain energy interpretation ¥, i.e.:

W = %PTKCP (148)
having set:
Kc = Guu - (Epu + Lpu)TG;pl(Epu + Lpu)

In the foregoing analysis, the domahmay represent a subdo-
main of some region of space. The above results, Eqgs. (18463) (

u(ie.I'v =TI, ', = (), the discretized displacement and traCtiorEhen provide the subdomain stiffness matrix, which canteegadded

are related by the following matrix equation, which comeazdiy
from Eq. (23) and the regularized expressions (115), (116):

GuuP = (Eup + Ly,)U (140)
where
Gon= [ [ 97 (@) &)W, (&) dI, d;
[ | ¥ @G e, (6 dr ar
E., = / R(€) BT (€)W, () T (141)

L= [ [ %] @G (@ )[¥u(€) - ¥()dr

Then, considering the displacemeiatas induced by the given
tractionp (i.e.T', = T, T, = (), the following matrix equation also
holds, as a direct consequence of Egs. (23), (112), (117):

GppU = (Epy + Ly, )P (142)

to the stiffness matrix for the complementary subdomairaiokd
by a FE approach. Note th#& and K. are symmetric. Besides,
eitherQ) or its complement with respect 0, is bounded, so that
the above results allow to take care of an unbounded, lyneteak-
tic, portion while a FE modelling is used for the bounded ctanp
ment, e.g. because of nonlinear behavior. Note, howevat,ttie
actual computation o or K . needs the assembly of several inte-
gral operators oveF and the inversion of eithe® ... or G,, (the
latter being invertible only after provisions for removirigid-body
solutions have been made). Besides, equation (145) is pphoa-
imately true in a discretized setting, partly because (b4@) (142)
cease to hold simultaneously in the discrete case (i.e. thitlsame
U, P in both). However, the continuous counterpart of (145)ustr
These considerations are analyzed in detail in Ref. 155.
Incidentally, the latter point gives anposteriorijustification of
the use of discretized variables in the analysis. An expdiontinu-
ous expression foll in terms of eitheru or p onI' is indeed not
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available except when special choices are made for the foedil typical element integral is
solutions. For example, & ..., is the Green'’s function of the domain

Q,ie. if Guu(z,&) = 0foranyé € I, thenK = —G,,. Toe = / / g(x, &) Inrdl, dly
Energy-based formulations of the BEM/FEM coupling problem I'y /T
in the framework of elastostatics were given in Ref. 144ulgrocou- ol
pled variational principles that combine the boundary mizx prin- - / . F(n,x) Inr d dy (150)

ciple of Refs. 133, 138 with classical principles of elasficThese
coupled principles take on the form of a saddle-point pglecon Wherer = [z — £| and the regular functioff(, x) gathers interpo-
making use of the minimum total potential energy or the theimi lation functions, nonsingular parts of kernel functionsl aement
mum complementary energy. In any case, the continuity ¢iomdi jacobians. Then, following e.g. Refs. 129 or 60, one caroéhice
at the interface of the FE and BE subdomains are satisfiedtasaha New intrinsic variables, b:

conditions, which means that, in the numerical treatmetti@prob-
lem, the trial functions need not satisfy the continuity ditions.

Coupling across interfaces between individually homogese a|gebraic manipulations allow to show thatan be expressed as
SGBE-discretized subdomains of an inhomogeneous solidfavas

n=a—-b,x=a+b dn dx = 2da db (151)

mulated and implemented in Ref. 69 for two-dimensionalstabb- r? = b%#*(a,b) (152)
lems, and discussed on a variational basis in Ref. 100 fetadg- ) ]
namics. with #(a,b) # 0 at the singularityy = n whereb = 0 as a con-

sequence. The integrdl,, finally takes the form £ denoting the

function resulting fromf after the change of variables):
12 COMPUTER IMPLEMENTATIONS AND

COMPUTATIONAL EXPERIENCES loa =15 + 134
It has been shown in Sec. 8 that SGBIE formulations are anket@b / db/ f(a,b) In#2(a,b) + f(a, —b)In#*(a, —b)] da
regularizedform, in the sense that the various double integrations can b—
be given the form of a weakly singular integral followed bycasin-
gular integral. This provides a convenient basis for imm@atation. +2 / db /b a b) + f( —b)]Inbda (153)

In fact, in the regularized SGBIE formulation, the kinemdtiesp.
static) boundary variables and trial functions can be medalsing In Eq. (153), the inner integral in the first addef#l,, as well as
a continuous (resp. piecewise continuous) interpolatibhus, all both integrals in the second oig,, can be evaluated using standard

the usual BEM discretization techniques are applicable. quadrature rules (e.g Gaussian), while the outer integil,i should
Let us then discuss the implementation of the SGBEM using stabe computed using a logarithmic Gaussian rule, Ref. 157.

dard BEM modelling. The boundaty is divided into element§., For another type of potentially singular integral, of thenfio

each being mapped onto a reference (or ‘master’) eledgr(either

the square-1 < 71,72 < 1 or the triangleni, 2 > 0,m1 + 12 < 1 Jaa _/ f (7, %) [ (x) — \1,(77)]% dn dy

for three-dimensional problems). Nodes and shape furetoa in-
troduced in the usual fashion, so that the location of a pwiin
I' is expressed in terms of vector shape functi@ng(n) and nodal
coordinates:” in the physical space of the problefarunning over U(x) — ¥(n) = b¥(a,b)
the nodes of elemefit.. The modelling of the geometry and the un-

knowns can thus be symbolically expressed, on a given elefaen With ¥(a,b) # 0 at the singularityy = n where, henceh = 0.
in terms of the intrinsic coordinategas HenceJ,, is in fact nonsingular and can be computed using standard

quadrature rules.
In three-dimensional situations, one has to consider &nguo-

one observes, similarly to (152), that:

2(n) = Ur(n)A tegrals of the form (g and dx denoting dy di2 and dy; dy- re-
u(z) = Tu(n) Xy (149) spectively): :
p(z) = ¥p(n) X, faa = / f(n,x) - dndx (154)
Mg J Mg

which can be treated as a weakly singular integral with retsjoey
Note that the possibility of discontinuous unknown and trizctions ~ followed by a regular integral with respectp In order to do so,
must be allowed for in the definition @, e.g. using nonconformal for any fixedn, the parent element/, is divided into up to four
interpolation or multiple traction nodes where necessary. triangles, each defined by one element edge and the commiex ver
Then, upon substituting the above formulas, double integrzer 17, and thel /r singularity is taken care of using an adequate change
element product¥, x I', must be computed and assembled, an@f variables. For instance, for quadrilateral elements, tttangle
three situations arise as followg @ndn will denote the intrinsic containing the edgg: = +1 is transformed into new intrinsic coor-

coordinates on the master elemeffs and M,, respectively). dinates—1 < a,b < 1 according to:

(i) Disjoint elementsI’, N T, = (). The two elements do not share 1

a common side or vertex, so that the integral over either eftns X1 =m + 5(1 —m)(a+1)

nonsingular. The numerical evaluation of the double eldrimegral 1 (155)
is straightforward using e.g. a Gaussian product rule. kLikeore X2 = M2 + §(b —1)(a+1)

traditional BEMs, the number of Gauss points should be &efjus

according to the relative proximity of the two elements (tivenber Then, some algebra on the interpolation functions yields:

of Gauss points required increased'asl’, get closer to each other). 1 A

(i) Coincident elementsl’, = T,. In two-dimensional situations, a 7 = = (a + 1)7(a,b) Vo (x) — Yuln) = E(a +1)U(a,b)

N =
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where once agaif(a, b) # 0 at the singularityy = n,i.e.a = —1 is eventually reached, at least for boundary-value problerith

there. Besides, one has mixed Dirichlet and Neumann data.
l—mil+ta It is important to note that the matrix is symmetric but namsi
dx = 3 ?da db definite (except for the special cases of pure Dirichlet amé peu-
mann problems). Thus, Cholesky decomposition does noy.agpl
As aresult, the integrands cept for the special cases. However, direct linear solwristiefinite
1 11— symmetric matric_es are ex_pounded in Ref. 67 and ches arelpth
- dn = A da db e.g. in software libraries like APACK, Ref. 4. Such direct solvers,
as well as the Choleski algorithm for sign-definite symneeatniatri-
and ces, need about® /6 arithmetic operations fon x n matrices; in
1 1 . 1—m contrast, direct solvers for unsymmetricx n matrices need about
2 [Wu(x) = Wu(m)] dn = 72_2‘1’(“7 b) da db n® /3 arithmetic operations.

Due to its particular structure, the coefficient matrix desads it-
self to iterative solution techniques like biconjugatedieat or gen-
eralized minimal residualgMRES). In such techniques, a natural
preconditioner is the block-diagonal system of equatiobisioed
by ignoring the non-diagonal blockG,,,., G, in Eq. (158), which
hakes advantageous use of the Choleski decomposition® afith
agonal blocks(,,,, and —G.,. lterative solvers are discussed in

The supsequent, .nonsingular, integr.ation with .respet.;ti!scper- Refs. 71 (in general terms) and 75, 165 (in connection to SGBE
formed using Gaussian quadrature. This means, in panj¢hé all The techniques outlined above for the computation of double

samplen points actually used e.g. to define (155), lie in the interioélement integrals allow, in principle, to use any of the sieal
O”\ﬁld | T T AT 0 like (i) and BEM discretization schemes, and accommodates curved pteme
(.'.”) _]acent_e emel_’lts. a 7 To, a Nl # 0. U_n K€ (i) and - and high-degree interpolations. In practice, generagbqsgs imple-
(").’ th'.s case 1 specific to S.GBEMS |nasmgch no S|m!!arlmlainon mentations of SGBEM methods based on purely numerical sekem
arlse in .tradltlor?al collocatlo.n BEMS‘ This is, like (ii), @se of are not commonly found in the literature. SGBEM implementa-
singular integration, but the singularity, weaker, ocwlnsn:c,_gare tions that follow the ‘purely numerical’ approach are presel in
chatgd on the gdgle slhared py the tIV\,’O elements. In two-dioveis Refs. 60, 129 for two-dimensional elasticity and in Refsi@&%end-
situations, a typical element integral is ing of Kirchhoff elastic plates. Symbolic manipulationsvageen

are nonsingular. Therefore, the correspondinmtegral can be eval-
uated using Gaussian quadrature, in(tag) coordinates. Transfor-
mations similar to (155) must be performed separately feratmer
triangles. Note that it is possible to resort to a polar cowt trans-
formation onM,, instead of (155); the resulting integral is agai
nonsingular due to similar considerations as above.

used in Refs. 9,10 to implement two-dimensional SGBEM formu
Loy = /F /F 9(x, &) Inrdl; dle lations with curved elements, for both thermal and elastblems.
a b - - - . .
1 41 _An _|mplementa_t|0n for fracture analy_S|s in plane (_)rthotcapiastlc-
= / f(n,x) Inrdndyx (156) ity is reported in Ref. 70. SGBEM implementations for 3D prob
J-1 J-1 lems comparable to general-purpose 3D CBEMs are scarce9Ref

presents a direct SGBEM implementation for three-dimeraditn-

ear fracture analysis of bounded elastic bodies, based onmraufa-
tion very close to Eq. (48) and using eight-noded boundanehts
and numerical integration throughout; it is to our knowledlge best

where the singularity: = 0 now occurs forp = 1,x = —1. In-
troduce the transformation (151)xf— n > 0 (no singularity) and,
otherwise, the new variables § such that:

n=~v0-1)+1, x=~(0+1)—-1, attempt in this direction.
dy dy =~ dd dy In_ gddition_ to general numerical integratiqn techniquesinyn
specific techniques have been developed and implementpdrtin-
with —1 < § <1, 0 <+ < 1. As aresult, one obtains: ular, exact analytical element integrations for the cassrafght line
L - elements with piecewise linear or constant interpolatiawehbeen
r=77(07); lab :2/ db/ F(a,b)Inrda performed for two-dimensional problems, either using a miem
0 b—1 variable formalism, Ref. 154, or directly in real variahl&ef 38.

1

1= Also, exact expressions for some of the element integradsisnthe
+ 2/0 viny dV/ . f(6,7)dd (157)  gingular ones, which are critical) have been employed a.Bef. 85.
1 . B The firstp- andhp-versions of the SGBEM have been proposed, im-
+/ ydy/ In7#2(8,7) f(8,7) d§ plemented and tested in Refs. 82, 83
0 -1 Perhaps the main obstacles to attempts at general implament
where all integrations are performed using standard meamgpt tions of SGBE methods, especially for three dimensions, tiage
for the y-integration in the second integral, for which logarithmicOmPplexity of the formulation (compared to traditional loohtion
Gaussian quadrature should be used instead. BE methods) apd the fact that a general regularization agoprwas
A similar approach can be developed for adjacent integratio "0t known until a few years ago. The general regularizatisue
three-dimensional problems, see in particular Ref. 5 whéreases 1S NOW well understood in principle, but many potential aggions
of double singular integrations are addressed for the SG@ifu- 2are yet to be made. . '
lation of the Neumann problem and in a rather general digatagn !N @ddition to other desirable features provided by symynets
setting. dlscu_ssed in various passages of the present survey,_t_hlecmaw
Whatever the particular discretisation approach usedstasyof Putational gain provided by SGBE methods over traditionBMS
linear equations of the form (23), i.e. is related to the symmetry of the final system of equationsrely
a factor of two is gained in both solution computer time anth€o
G‘ZZ fézz X, B! puter storage. An objection frequently raised against S@&BHods
ot e x, (") B (158) s that the double integrals are expected to incur signifigdrigher
pu pp o P
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demands in numerical quadrature and thereby slow down teras
bly stage. However, this is not necessarily the case. Indeedider
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Refs. 90,176 (Sec. 11), and plastic deformation boundinf-te
niques, Ref. 105 (Sec. 6.1). These symmetrization proesdur

as an example a very fine mesh/éf(say) quadrangular eight-nodedthough justified by their proposers with more or less appabprar-

curved elements, with the usual polynomial interpolationctions.

From Euler formula, this mesh contaiBd’ + 2 nodes. Neglecting
coincident, adjacent or otherwise singular integratiombose rel-
ative proportion of the overall integration burden decesaas the
mesh is refined) and assuming that a uniform numbeiof Gauss
points is used for each single element integral, a roughtcshows
that the Galerkin approach needs function evaluations atah of

guments and numerical experiments, have been criticizddd& of
firm rational basis, Refs. 14, 19, 94, 164, and it was evergrized,
Refs. 19, 94, 164, that forced symmetrization may lead tce/ou-
merical results than those obtainable by unsymmetric BEMs.
As noticed in Sec. 7, truly symmetric BEM formulations reéet
to as hybrid BEM (HBEM) formulations in the literature werb-o
tained through energy-based approaches, all of which csicdily

N(N 4+ 1)n% /2 pairs of Gauss points for the (symmetric) matrixoe related to Reissner’s boundary stationarity principlBef. 148.
and N2nZ pairs of Gauss points for the right-hand side, whereas tAdese HBEM formulations exhibit a number of features (eigi- s

collocation BIE needs abow¥ (3N + 2)n¢ function evaluations for
each of the two global matrices. This naive count gives @ rati

ple integration over the boundary, symmetric positiverutistiff-
ness matrix for the boundary nodes), which make them ancattra

aboutng /4 between the computational demands for Galerkin artdre and effective alternative to the SGBEM. HBEMs were preed

traditional BEMs (note that by ‘functions’ we me&nx 3 matrices
of functions). Given that four Gauss points are asympttyigae.

for pairs of very distant elements) sufficient in this comtéixe above
count leads to a ratio of about unity. The integration tattkoaigh
of course influenced by many other factors, can neverthblessa-
sonably expected to have similar computational needs ih bpt
proaches. Numerical experiments presented in Kane's nmapbg

Ref. 87, show a factor of about two. Besides, the solutiogesta

asymptotically dominates the assembly sta@éX*®) vs. O(N?)),
so that the factor two gained in matrix inversion becomesnaggt-
ically decisive; this is also made apparent e.g. in Kaneimeni
cal results and their discussion. In this respect, the alviitly of a
proper scheme for automatic adjustment of Gauss pointgdiogo
to the ratio interelement distance to element typical lengtich as
that proposed for collocation BEMs in Ref. 149, is crucibg more
so because in SGBEM integration times grow with sij@areof the
typical number of Gauss points on an element.

in Refs. 20,52, 55,56, 93,150, 151, 173, 174, with differantiva-
tions, starting points and purposes. In order to give a laebunt
of the essential features of HBEMs, the formulation of Re2 i$
considered here as a representative one.

Reissner’s boundary stationarity principle for elasgidim an ex-
tended form used for hybrid finite element formulations, .RE$1,
considers the functional:

Hzl/pTudF—/(u—ﬁ)Ti)dF—/ pladl
2-1" JI

FP
_1
2 Q
where the independent unknown fields aseandw in Q, p and
onT', whereag is the traction associated éoonT, i.e. p = o.n;

o andu are related to each other by Hooke’s law, be= Ee(u),
wheree(u) = V°u (V°: symmetric part of the gradient operator

quiVO'de/ b wdQ

Q

(159)

Many of the applications of symmetric BE methods to date ad¥): @ is required to satisfy the essential boundary condifios u

dress rather specific situations. In particular, resedfont&éas been
devoted to problems in unbounded media. Scattering of sicours
elastic waves by cracks is addressed in Refs. 3 (three-Giomead

problems and frequency domain) and 16 (two-dimensiondilpros

and time domain). Computations for wave radiation in egrtedio-

mains is addressed e.g. in Ref. 77 for acoustics and Ref.rZldo-

tromagnetism. A SGBEM formulation for scattering by thimter-

ers or scatterers with corners is investigated and nunilgriested

in Ref. 172. Other papers deal with fracture mechanics probi in

Ref. 72, a SGBE formulation for plane cracks in three-dinmra

unbounded media is used to compute stress intensity fadtiorand

Ehrlacher, Ref. 171, present a complex-variable appraaSGBEM

for fracture mechanics in plane elasticity; the domainwdgive ap-
proach to the computation of energy release rate outlin&emn 10
is treated in Ref. 26; Xu et al. in Ref 169 present SGBEM-based
merical simulations of crack growth in fiber-reinforced quusites.
Most of the above-mentioned situations present relatisighple ge-
ometries; besides, they appear usually as either Diriohldeumann
problems (i.e. do not involve mixed-type boundary condisio

13 SYMMETRIZATIONS BY ALTERNATIVE
APPROACHES

The inability of the conventional BEMs to produce symmetrigia-
tion systems induced many researchers to carry out a ‘fosgad
metrization’ of the unsymmetric equation sets, Refs. 89980176.
Different procedures were proposed to different specifippses,
mainly for BEM applications to problems in which symmetrpire-
sents a feature of paramount importance, like BEM/FEM dagpl

onT,. It can be easily proved, Ref. 52, that the Euler-Lagrange
conditions that characterize the stationarityfbfwith respect to the
above four fields read:

dve+b=0 inQ

160
p=on=p onl, (160)

u=1u, p=p onl,

With the HBEM, the functional is discretized by representing
andp in terms of a discrete set of point sources and Kelvin’s fun-
damental solutions, as well as by interpolatiagind p from nodal
values through suitable shape functions:

u(@) = Gu(x)F, p(x)=Gy(x)F
u(z) = Wu(2)U, p(x)=¥,(z)P

MatricesG. andG, are constructed with the kernets, ., andG .y,
respectively, and vectaF' collects point sources (i.e. concentrated
forces) with location points over the boundary (or possitlyside

of it). Assuminge = G, F + o, whereG, is constructed with the
kernelsG,, ande® denotes some stress field in equilibrium wéth
in Q, the functionalH becomes:

H= %FTCF ~-F'LP+U"MP-U"?, - F"tq (161)
having set
C = / GLG,dI' L= / G.¥,dl', M= / vlw,dr
r T T

7, =

Ip

wTpdr Egzlf GIbdn
2 Q



Appl Mech Rev vol 51, 1998 Bonnet, Maier and Polizzotto: Symmetric Galerkin BEM 27

The first addend on the r.h. side of eq. (161) is a quadratim forSubstituting Eq. (163) into Eq. (162), after some reordgrgives:
which, being representative of the strain energy storédl&s a con-
sequence of the sourcds, is positive for anyF' # 0, so thatC'is

-H _1 / p T, (p*,ut)dl — 1 / w T, (p*,u*)dl
symmetric and positive definite, the prodde# provides the gener- 2 Jr, 2 Jr,

u P

alized displacement vector dual of the source ve&torThe Kuhn- B *T(u +g.)dr + u*T(‘ +g)dr
Tucker conditions that characterize the stationarit{fadf Eq. (161) r, p 9u L, L
read: 1
_ . . B +3 [/ p*'g,dr —/ u* g, dl
CF =LP + £q, L " F=M"U MP =¢, Ly Tp

,/Fu

+/ l_)TJu(p*,u*)dQ} +C
Q

gl u(p" u")dr ¢ / g7 To(p" u")dr

P

which are the algebraic equivalent of Egs. (160), respelgtislight
manipulations of the above equations give

(164)
Ku=0=20,+ML 'fq,
whereC denotes a collection of integrals dependent on the external
actions only. Noting that the expression within the squaekets
vanishes by Betti's theorem (applied @ subjected to the known
and unknown sources, respectively), remembering Eqs a(81§16-

17), one finally obtains:

where the matrix
K=ML'Cc(L """ mM"

is the relevant symmetric positive-definite stiffness ixatr

The above formulation, extended to elastodynamics in Refs.
62, has been applied to solve numerically sample problentis wi B
quite satisfactory results, Refs. 36,62,126,127, 143, TAdough  This result means that, to within the inessential congtarthe func-
an effective and computationally convenient alternativéGBEM  tional —H coincides with that pertaining to the boundary min-max
in elastic problems, HBEM reveals deficiencies in inelaatialysis principle of Sec. 7, which is known to constitute a specifiergy
and, more in general, as a tool for theoretical investigatioOne basis for the SGBEM.
of the reasons for this circumstance is that the HBEM makesofis ~ To conclude this section, other contributions to the isigym-
the fictitious sources" which in general do not represent any reametric BEM formulations are briefly reviewed. In Ref. 86, tug-
quantity of the related problem. In fact, the SGBEM turnstoupe thors simply start from the usual (domain) weak formulatidra
preferable for a wide class of inelastic problems, prinyaas a con- linear (e.g. potential) problem. Both the physical unknosnd
sequence of the way the function&l, Eq. (159), is approximated its associated test function are modelled using shapeifurscthat
within the HBEM. satisfy the relevant (homogeneous) partial differentiplagion (and

It can be shown that, by interpretitfg in a mechanically consis- thus are constructed using integral representation fasyubllow-
tent way, the SGBEM can be generated from HBEM. To this pugpogng to convert the energy bilinear form into a boundary indgTo
let us setp = ponT, @ = uwonT,, andas = @ onT',; moreover, avoid problems caused with singularities, the shape fanstare de-
let equilibrium equations (160a) be satisfied(In Thus, eq. (159) fined using sources distributed on a curve external to thedemy.
becomes Also, setting up the ‘stiffness’ matrix then requires thfekl inte-

grations. In Refs. 159 and 160, the minimum total and comgiem
g %/ pTudl — % / WP pdr tary energy principles of elasticity are employed and thiel faad
Ty Ty

—H =TI[p*,u"] + C.

boundary variables are suitably represented, throughiiK&brnels,
in terms of discrete sources located outside the boundapeifding
on the kinds of unknown fields discretized and of sources eyepl,
BEM formulations are obtained in the form of dual quadratio-p
gramming problems. These formulations are in some way airtol
the HBEM formulations since they all use indirect repreatahs
of the unknown fields. In Ref. 34, a symmetric system of bownda
integral equations is obtained, for linear elasticityngsiepresenta-

1 _
7/ pa dF+/ uTpdl + —/ b ud) (162)
w T, 2 Ja
wherep = o.n, o = EV°u andu is a solution to the Navier
equation of elasticity theory. Let the unknown fields of ed62)
be represented by means of Kelvin's solutions for suitableces

applied inQ., in which$2 is thought to be embedded. These sourc
consist of the following quantities: body forcasn Q, simple layer
(forces)p in T, and double layer (relative displacements} in T',;
simple layer (unknown forceg)* in I, and double layer (unknown
relative displacements}«* in I',.  These produce the following
effects:

u_JU(p*7u*)7gu7 U:JO'(p*/u‘*)igo (In Q)
=Ju(p",u*)—g,, p=p"—g, (OnT,) (163)
7Jp(p*7u*) gp u:u*igu Oan

where: —g,,, (h = u,p, o), denote effects ifilo, due to the given
external actions, Egs. (16), (17) and (30} (h = u,p, o), effects
due to the unknown sourcgs, —u*, i.e.

Jh(p*,u*) = Ghup* dF—

T

Gppyu*dl, (h=u,p,o0).

Tp

etlsons of the kinematic and static field variables in terms efrtholtz

and Beltrami potentials, respectively (called ‘conjugedeables’ in
that paper), and formulating the conditions under whiclotredratic
error in (elastic) constitutive equation, integrated dierdomain oc-
cupied by the solid, is stationary.

14 FUTURE PROSPECTS AND CONCLUSIONS

Compared to the past and continuing developments of thititnaal
BEM in almost all areas of applied mathematics and engingesci-
ences, the SGBEM, as a relatively young branch of the BlIedas
methodology, at the present time turns out to be little deped, es-
pecially in terms of numerical applications. The main reefsw this

is, in the authors’ opinion, the conceptual, mathematical @om-
putational difficulties implied by the hypersingular intety featur-
ing the method. Though several strategies have been, armbizgg
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formulated and implemented in particular application eats (see  [8]
Secs 8 and 12), no general effective interpretations andecprent
computational methods have been proposed yet for evadpttase
hypersingular integrals with the desirable confidencehémbajority
of application areas, the conventional BEM may still appedre a [l

computationally more attractive, easier to implementr-fisendlier
alternative than the SGBEM.

However, as Francis Bacon wrote, “in more difficult things we
should not expect that someone sows and harvests soon, [beit hd10]
that they mature gradually” (verbatirm rebus difficilioribus non est
expectandum ut quis simul serat et metat, sed opus est utgrugy
maturescarnt In the maturing process of the SGBEM, among the
next stages at least the following advances are reasongbdcied: 11]
a general method, mathematically justified in a way accksgiten-
gineers, for the treatment of hypersingular integrandsatisfactory

as the Cauchy principal-value theory and possibly emerggpti- [12]
mal in most cases from the diverse trends of nowaday reseenich

teria of algorithmic stability in time-stepping solution§ evolutive
analyses, especially of those concerning nonlinear tiepeddent [13]
problems, more particularly in the presence of constituthaterial
instabilities; coupling between SGBEM and FEM exploitimgre  [14]
mon frameworks of variational theorems; computer impletagons

apt to enrich the numerical experience (in particular in éheas [15]

where none is available so far) and to validate the reaspedll-
founded promises of SGBEM in comparative terms of accurady a
cost-effectiveness.

In Warner Koiter's words, “research in engineering scisncan-
not be considered to be completed until its full numericall@ation
has been obtained, and the results have been presented ima fd17]
accessible to other engineers”. In this direction, redeart the
SGBEM has undoubtedly still a long way to go, but, in the wste

(16]

opinion, it is likely to attract interest and contributiofrem more  [18]
and more researchers in engineering mechanics and appdittebm
matics. Its motivation will not be merely the aestheticalrebdor
symmetry or the dissatisfaction for its loss, as mentiomethé In-  [19]
troduction, but primarily by the ability of the SGBEM of pegsing
essential features of the original (continuum, differaidtformula- 20
tions of physical problems, its versatility and its speditaless to
various problems of engineering interest, such as fractuddnelas- )
tic analysis and sensitivity analyses for structural optation and
identification.
[22]
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