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This review concerns a methodology for solving numerically, to engineering purposes, boundary
and initial-boundary value problems by a peculiar approachcharacterized by the following
features: the continuous formulation is centered on integral equations based on the combined use
of single-layer and double-layer sources, so that the integral operator turns out to be symmetric
with respect to a suitable bilinear form; the discretization is performed either on a variational
basis or by a Galerkin weighted residual procedure, the interpolation and weight functions being
chosen so that the variables in the approximate formulationare generalized variables in Prager’s
sense. As main consequences of the above provisions, symmetry is exhibited by matrices with a
key role in the algebraized versions, some quadratic forms have a clear energy meaning,
variational properties characterize the solutions and other results, invalid in traditional boundary
element methods, enrich the theory underlying the computational applications.
The present survey outlines recent theoretical and computational developments of the title
methodology with particular reference to linear elasticity, elastoplasticity, fracture mechanics,
time-dependent problems, variational approaches, singular integrals, approximation issues,
sensitivity analysis, coupling of boundary and finite elements, computer implementations.
Areas and aspects which at present require further researchare identified and comparative
assessments are attempted with respect to traditional boundary integral-element methods.

1 INTRODUCTION

The boundary integral equation (BIE) approaches referred to in this
article as ‘traditional’ stem from the mathematical work onintegral
equations (more specifically on Somigliana’s integral representation
formulas established in 1886), as formulations of linear boundary
value problems alternative to those in terms of partial differential
equations. Traditional boundary element methods (BEMs) devel-
oped from these BIE formulations in the late 60s and in the 70s,
through modelling of boundary variables and, mostly, through col-
location as their algebraized version for approximate numerical so-
lutions. In the last two decades, thus originated BEMs have been
the subject of a very considerable effort in computational mechan-
ics, gaining a still growing popularity, competing with finite element
methods (FEMs) in some areas and spreading in engineering appli-
cations, also by means of commercial computer codes.

Despite their undeniable success, besides remarkable and now
well understood advantages in some kinds of problems, traditional
BEMs in the above sense are known to exhibit certain unpleasant
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features, among which most pertinent here is the lack of symmetry
in some matrix operators which play a key role in various theoretical
developments and analysis procedures. These nonsymmetricoper-
ators typically include: the matrix which in linear problems relates
the boundary unknowns to the vector containing the data; thematrix
which transforms the vector collecting the modelled plastic strains
into the consequent selfstress vector; the stiffness matrix which re-
lates kinematic boundary variables to static ones, with subsequent
well-expected difficulties in FE-BE coupling.

Symmetry can be understood as a synonym for harmony. In fact,
ethymologically,σνµ−µετρια meant commensuration and was re-
ferred to musical notes in Pythagoras’ canons. However, lack of sym-
metry in traditional BEMs entails undesirable effects not only of æs-
thetical nature. It is accompanied also by lack of sign-definiteness (or
semi-definiteness) and the negative consequences are far-reaching
and have both theoretical and computational significance. In fact,
typically, e.g., continuous solutions of the BIEs (or of BIE-based
formulations for nonlinear problems) and their approximations as
discrete solutions of BE models fail to be characterized by varia-
tional properties; criteria for convergence and algorithmic stability
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in time-stepping solution techniques, known in FE elastic and inelas-
tic analyses, cannot be proved for their traditional BE counterparts;
as a third example, important concepts of structural plasticity such
as shakedown and bounding theorems do not carry over to systems
discretized in the traditional BEM fashion.

It was said that ‘advances in engineering and mathematical sci-
ences usually spring from a feeling of dissatisfaction, much as the
oyster responds to the grains of sand’. The symmetric Galerkin
boundary element methods (SGBEM) of concern in this review arti-
cle can be regarded as a response to grains of sand contained in tradi-
tional BEM and pointed out above. A number of responses to those
grains , i.e. remedies to the above undesirable features of traditional
BIE-BEMs, can be found in the recent literature in terms of BIE-BE
formulations endowed with symmetries. Only the SGBEM will be
focused herein. However, it represents the symmetrizationprovision
most frequently dealt with in the present literature and, inthe writers’
opinion, is the most mature and promising one as for future prospects
from both the theoretical and computational standpoint.

The SGBEM can be singled out by means of a few of its dis-
tinct peculiarities as follows: its continuous formulation rests on
BIEs generated with recourse to both single-layer and double-layer
sources, in such a way that the integral operator turns out tobe
symmetric with respect to some suitably constructed bilinear form;
the BE-discrete model (BEs and domain cells simultaneouslyin
some problems) is constructed by weighted residuals with shape and
weight functions correlated in the sense of Galerkin and so that the
governing variables turn out to be ‘generalized variables’according
to a concept originally introduced by W. Prager in structural plas-
ticity, i.e. such that the dot products and their energy meanings are
preserved in the transition from fields of (local) variablesto vectors
of (global, nodal) variables in the discrete model.

In the early literature, the symmetric formulation for BIEsas un-
derstood here was first proposed for linear elastic analysisin a 1979
paper by Sirtori, Ref. 153; for some structures (beams and Kirch-
hoff plates) in 1985 by Hartmann et al., Ref. 79, and for elastoplastic
solids in 1987 by Maier, Polizzotto, Ref. 112. Earlier symmetric
formulations include one by Nedelec, Ref. 120 for scalar potential
problems and another in a 1977 paper by Bui, Ref. 32, devoted to
BIE for plane cracks under mode I loading.

Since the late eighties the literature on SGBEM, to be surveyed in
this paper, has grown and still grows at an accelerated pace.Two re-
cent comprehensive books on BEM in general devote chapters to the
fundamentals of the SGBEM: the former by Kane appeared in 1994,
Ref. 87, the latter by Bonnet in 1995, Ref. 27, its English translation
being expected in 1997, Ref. 29. Some aspects of the SGBEM have
been dealt with in review papers either ad hoc, ref. 103, or cover-
ing subareas of BEMs, such as the recent AMR article by Beskoson
dynamics, Ref. 22.

The present article is believed to provide the first comprehensive
systematic survey of the SGBEM. The research results achieved up
to the end of 1996, and available in the general literature, will be
reviewed in twelve sections to follow. The symmetric continuum
formulations of BIEs and their Galerkin discretizations (with gener-
alized variables in Prager’s sense) by BEs are outlined for the cate-
gories of problems so far considered in the SGBEM context, namely:
linear elastostatic (and potential) problems in Sec. 2; elastic-plastic
analysis in Sec. 3; fracture mechanics (linear elastic and quasi-brittle)
in Sec. 4; time-dependent linear problems in Sec.5 (primarily linear
elastodynamics, briefly also transient heat conduction andits ana-
logues, viscoelasticity, poroelasticity and acoustics).Section 6 is de-
voted to such diverse subjects as limit analysis and analysis of Kirch-
hoff plates by the SGBEM. Section 7 presents energy approaches and
variational theorems with reference primarily to linear elasticity and

elastoplasticity. The integrations are dealt with in Sec. 8, with spe-
cial attention to hypersingular integrands which represent a crucial
aspect in SGBEM and has been a braking factor in its development.
Other mathematical and computational issues are presentedin Sec. 9,
specifically: convergence, algorithmic stability, error estimates,p-
approaches, self-adaptive solution techniques.

Sensitivity analysis has recently become an effective toolfor solv-
ing inverse problems such as parameter identification and structural
shape optimization. Therefore it is briefly discussed in Sec. 10 in
view of the remarkable potentialities of the SGBEM in this area.

Sec. 11 concerns coupling between SGBEM and FEM, since this
may represent an attractive novelty in domain decomposition, which
is another fashionable issue in today’s computational mechanics.

Section 12 surveys the still inadequate but fast growing computer
implementations of the SGBEM and attempts some comparativeas-
sessments of computational merits. Some of the diverse, alternative
or related, symmetric formulations that appeared in the literature are
briefly surveyed in Sec. 13, with reference to representative contri-
butions. Section 14 gathers closing remarks on the consolidated re-
sults, limitations, potentialities and research needs of the SGBEM,
as emerging from the present state-of-the-art study. In assembling
the reference list, completeness in terms of meaningful contributions
has been pursued together with objectivity of selection criteria; how-
ever, undue omissions are regrettably inevitable even in a restricted
subject like SGBEM and the authors apologize for them.

NOTATION. The formalism and nomenclature of matrix algebra
are adopted in this paper, except where special purposes make in-
dicial tensor notation more convenient. Matrices and vectors are
represented by bold-face characters; exponentT marks transpose;
vector inequalities apply componentwise. The most frequently used
symbols are defined here:x, ξ are coordinate vectors in a Cartesian
orthonormal reference system, for the field point and sourcepoint
(or load point), respectively;u, p, b are displacements, tractions and
body forces;σ, ε, ϑ are vectors gathering the independent (allow-
ing for tensor symmetry) stresses, strains and imposed or inelastic
strains (with the “engineering” definition of strains). Theopen do-
main where a problem is formulated is denoted byΩ; its boundary,
assumed to be piecewise smooth, byΓ, the outward unit normal toΓ
by n atx and byν atξ. The symbolG is used for Green’s functions
defined on the homogeneous unbounded spaceΩ∞. Other symbols
are defined in the text where they are employed for the first time.

2 LINEAR ELASTIC PROBLEMS

2.1 Formulation of the boundary integral equations

All BEMs are deeply rooted in the mathematical theory of linear elas-
ticity, which provided, since its golden age in the 19th century, cen-
tral concepts such as effect superposition, influence functions and
reciprocity relationships, and basic ingredients such as Kelvin’s fun-
damental solution (1848), Somigliana’s identity (1886) and Gebbia’s
kernels (1891). Therefore, quite naturally, we will refer below to lin-
ear elastic analysis in order to start discussing the SGBEM,formu-
lating it and elucidating its distinction from, and links with, the tradi-
tional BEM. Naturally, numerous papers on SGBEM contain variants
of its formulation and developments in elastostatics; a representative
sample and source of information may be Refs. 29, 87, 135, 154

Consider a homogeneous elastic body which occupies the (clo-
sed) domainΩ̄ = Ω ∪ Γ resulting from the union of the two- or
three-dimensional open domainΩ and its boundaryΓ. The boundary
Γ is assumed to be smooth, i.e. endowed everywhere with a unique
outward normal denoted byn or ν, depending on the symbolx or
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ξ, respectively, used for the point cartesian coordinates. Two elastic
states, say the actual one (unstarred symbols) under given external
actions and some fictitious one (starred symbols) can be involved in
the following Betti’s equation:

∫

Γ

(pTu
⋆ − u

T
p
⋆) dΓξ +

∫

Ω

(bTu
⋆ − u

T
b
⋆) dΩξ

=

∫

Ω

(σTϑ
⋆ − ϑ

T
σ
⋆) dΩξ (1)

For brevity, no domain external action (b = 0, ϑ = 0) will be con-
sidered in what follows. If the fictitious state is identifiedas the
Kelvin state associated to a pointx ∈ Ω, i.e. if one setsϑ⋆ = 0

and modelsb⋆ by a Dirac distribution∆(ξ − x), then Eq. (1)
becomes Somigliana’s integral representation formula fordisplace-
ments, which, ‘taken to the boundary’ (i.e. withx ∈ Γ) provides the
usual starting point for the traditional BEM.

Instead, let the (starred) fictitious state be identified as part of the
response of the homogeneous elastic spaceΩ∞ embeddingΩ, to dis-
tributions overΓ of static discontinuitiesf ⋆ (or single-layer sources)
and of kinematic discontinuitiesd⋆ (or double-layer sources). In or-
der to set a convenient ground for the subsequent rigorous treatment
of the singular integrals (Sec. 8), it would be suitable to conceive
here the boundaryΓ as the limit configuration (sayΓ+) of a moving
surfaceΓ⋆ outsideΩ̄ (cf. e.g. Ref. 154). Thus, having setb = 0 and
ϑ = 0, we can write for anyξ ∈ Ω (not onΓ):

u
⋆(ξ) =

∫

Γ

Guu(ξ, x)f ⋆(x) dΓx +

∫

Γ

Gup(ξ, x)d⋆(x) dΓx (2)

p
⋆(ξ) =

∫

Γ

Gpu(ξ, x)f ⋆(x) dΓx +

∫

Γ

Gpp(ξ, x)d⋆(x) dΓx (3)

where the source density functions are interpreted as traction and
displacement jumps, respectively, acrossΓ:

f
⋆(x) = p

⋆(x−) − p
⋆(x+) (4)

d
⋆(x) = u

⋆(x+) − u
⋆(x−) (5)

The meaning of the new symbols are as follows: superscripts− and
+ denote points(ξ−, ξ+; x−, x+) or sets of points(Γ−, Γ+) be-
longing toΩ (outward normal:n− = n) and to the exterior domain
Ωe = Ω∞ − (Ω ∪ Γ) (outward normal:n+ = −n), respectively;
infinitely close toΓ; matricesG gather Green’s functions forΩ∞,
the former subscript specifying the effect (u for displacement,p for
traction atξ− with normalν−), the latter the source that causes it,
namely: u for static discontinuity concentrated as unit force, in the
load point (here denoted byx), like in Kelvin fundamental solution;
p for kinematic (displacement) discontinuity concentratedin x with
normal n with respect toΓ and with unit integral overΓ, like in
Gebbia solution, Refs. 29, 63, 87. The two-point influence functions
contained in matricesGhk exhibit the following properties, denoting
by r the distance defined as Euclidean norm(r = |x − ξ|):
(a) Singularities forr → 0; specifically, in three-dimensional prob-
lems:

Guu = O(1/r), Gup = O(1/r2)

Gpu = O(1/r2), Gpp = O(1/r3)
(6)

and in two-dimensional problems:

Guu = O(ln r), Gup = O(1/r)

Gpu = O(1/r), Gpp = O(1/r2)
(7)

(b) Reciprocity relationships flowing from Betti’s theoremfor r 6= 0:

Ghk(ξ, x) = G
T
kh(x, ξ), (h, k = u, p) (8)

(c) Sign definiteness of quadratic forms expressing strain energies
(see Sec. 7):

1

2

∫

Γ

∫

Γ

f
T (x)Guu(x, ξ)f (ξ) dΓξ dΓx > 0, ∀f 6≡ 0 (9)

−
1

2

∫

Γ

∫

Γ

d
T (x)Gpp(x, ξ)d(ξ) dΓξ dΓx > 0, ∀d 6≡ 0 (10)

The latter inequality should be relaxed to≥ (semidefiniteness) ifd
may represent a relative rigid-body motion betweenΩ andΩe.
(d) Links are worth noticing between kernels concerning different
sources: e.g. Gebbia’s fundamental solution can be obtained from
Kelvin’s by taking first derivatives of it with respect to load-point
coordinatesξ.

Basically, the elastic SGBIE formulation results from inserting
u⋆(ξ), p⋆(ξ) (ξ ∈ Γ), expressed as integral representations, into
Betti’s equation (1). However, the expressions (2–3) ofu⋆, p⋆ can-
not be directly used to this purpose because of the kernel singulari-
ties (6–7). Recalling classical results of elastic potential theory given
e.g. in Ref. 91, Eqs. (2–3) take the following limiting formswhen
ξ = ξ− ∈ Γ−:

u
⋆(ξ) = −

1

2
d
⋆(ξ) +

∫

Γ

Guu(ξ, x)f ⋆(x) dΓx

+ −

∫

Γ

Gup(ξ, x)d⋆(x) dΓx (11)

p
⋆(ξ) =

1

2
f
⋆(ξ) + −

∫

Γ

Gpu(ξ, x)f ⋆(x) dΓx

+ =

∫

Γ

Gpp(ξ, x)d⋆(x) dΓx (12)

where the symbols –
∫

Γ
and =

∫

Γ
denote Cauchy principal value and

Hadamard finite part integrals respectively.
Eqs. (11–12) can then be substituted into Betti’s equation (1).

written withb = b⋆ = 0 andϑ = ϑ⋆ = 0, we obtain:
∫

Γ

f
⋆T (x)

{

−
1

2
u(ξ) +

∫

Γ

Guu(x, ξ)p(ξ)

−−

∫

Γ

Gup(x, ξ)u(ξ) dΓξ

}

dΓx

+

∫

Γ

d
⋆T (x)

{

−
1

2
p(ξ) +

∫

Γ

Gpu(x, ξ)p(ξ)

− Gpp(x, ξ)u(ξ) dΓξ

}

dΓx = 0 (13)

Let the given external actions̄p, ū act on two complementary dis-
joint parts of the boundary, sayΓp andΓu respectively. Since equa-
tion (13) holds for any source distributionf ⋆ andd⋆, the two expres-
sions in brackets must vanish separately, thus providing anoverde-
termined redundant set of BIEs. However, let us setf ⋆ = 0 on Γp
andd⋆ = 0 on Γu and denote by−ḡu and−ḡp the sums of the
integrals containing the boundary datap̄ and ū (and the additional
four domain integrals in square brackets in Eq. (13) containing do-
main datāb andϑ̄, if these had not been ignored for brevity). Thus,
partitioningΓ into Γp andΓu, the following two BIEs are generated
from the Betti equation (13) in view of the arbitrariness off ⋆(x+)
onΓu andd⋆(x+) onΓp:

∫

Γu

Guu(x, ξ)p(ξ) dΓξ

−

∫

Γp

Gup(x, ξ)u(ξ) dΓξ = ḡu(x), (x ∈ Γu) (14)
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and

∫

Γu

Gpu(x, ξ)p(ξ) dΓξ

−

∫

Γp

Gpp(x, ξ)u(ξ) dΓξ = ḡp(x), (x ∈ Γp) (15)

with

ḡu(x) =
1

2
ū(x) −

∫

Γp

Guu(x, ξ)p̄(ξ) dΓξ

+ −

∫

Γu

Gup(x, ξ)ū(ξ) dΓξ (x ∈ Γu) (16)

ḡp(x) =
1

2
p̄(x) −−

∫

Γp

Gpu(x, ξ)p̄(ξ) dΓξ

+ =

∫

Γu

Gpp(x, ξ)ū(ξ) dΓξ (x ∈ Γp) (17)

As functions ofx ∈ Ω∞, ḡu and ḡp are discontinuous acrossΓ
(namely:ḡu(x

+)− ḡu(x
−) = ū(x), ḡp(x

+)− ḡp(x
−) = p̄(x)).

The singularity issue can also be dealt with using a regularization
approach (Sec. 8), which avoids Cauchy principal values or finite
part integrals.

Let matricesΨ collect shape functions defined over the whole
boundaryΓ, identically vanishing outside the relevant nodal ‘sup-
port’ and endowed with suitable continuity properties (dictated by
integration requirements, see Sec. 8). The discretizations of both
the actual boundary fields and the source distributions, respectively,
materialize as follows:

p(ξ) = Ψp(ξ)P , u(ξ) = Ψu(ξ)U

f ⋆(x) = Ψ
⋆
p(x)F , d⋆(x) = Ψ

⋆
u(x)D

(18)

Let the governing vectors in (14-15) be partitioned according to the
subdivision of the boundaryΓ into its freeΓp and constrainedΓu
portions, i.e. (withh = u, p):

P T = [P̄
T
, XT

p ], UT = [XT
u , Ū

T
], Ψh = [uΨh,

p
Ψh]

F T = [F T
u , F T

p ], DT = [DT
u , DT

p ], Ψ
⋆
h = [uΨ⋆

h,
p
Ψ
⋆
h]

(19)

The matrices resulting from the double integrations implied by Eq.
(13) when Eqs. (18) and (19) are substituted into it, can be repre-
sented in the form:

Ĝ
ij

hk =

∫

Γi

∫

Γj

i′
Ψ
⋆T
h′ (x)GT

hk(x, ξ) j
′

Ψk′(ξ) dΓξ dΓx (20)

where subscriptsh, k (= u, p) refer to the nature of the source and
of the actual field;h′, k′ (= p, u) to the variable which is work-
conjugate toh, k; i, j (= u, p) refer to the boundary portionΓu or
Γp; i′, j′ (= p, u) to its complement (Γp or Γu).

Through modelling, Eqs. (18), and partitioning, Eqs. (19),and
account taken of Eq. (20), Eq. (13) becomes:

F T
p [Ĝ

pu

uuXp − Ĝ
pp

upXu − Bf
p ] +

F T
u [Ĝ

uu

uuXp − Ĝ
up

upXu − Bf
u] +

DT
p [Ĝ

pu

puXp − Ĝ
pp

ppXu + Bd
p] +

DT
u [Ĝ

uu

puXp − Ĝ
up

ppXu + Bd
u] = 0

(21)

where vectorsB contain boundary data, Eqs. (16-17), and would
contain also domain datāb, ϑ̄ if any.

In the discretized Betti equation (21) the vectors premultiply-
ing the expressions in brackets are arbitrary and the diverse ways in

which they are used to generate linear equations (as many equations
as boundary unknowns contained inXT = [XT

p , XT
u ]) characterize

various BEMs as briefly discussed in Sec. 2.2.
The SGBEM of concern herein arises when the following provi-

sions are taken in Eq. (21):
(i) as in the classical Galerkin’s weighted residual approach, the
source interpolations acting as weight functions are chosen equal to
the interpolation functions adopted in order to model the actual fields
within each pair of static(p, f ⋆) and of kinematic(u, d⋆) variables,
namely:

Ψ
⋆
i = Ψi, (i = p, u) (22)

(ii) settingF u = 0 andDp = 0, the selected equations emerging
from (21) are:

[

Ĝ
uu

uu −Ĝ
up

up

−Ĝ
pu

pu Ĝ
pp

pp

] {

Xp

Xu

}

=

{

Bf
u

Bd
p

}

(23)

or, more compactly, with self-evident meaning of the new symbols:

AX = B, with AT = A (24)

The symmetry of the coefficient matrixA, Eq. (23), can be proven
by taking into account the Galerkin assumption Eq. (22) and the reci-
procity properties (8) of the kernels in the double integration formu-
lae, Eq. (20), which must be suitably interpreted and implemented as
discussed in Sec. 8.

2.2 Miscellaneous issues and remarks

It is worth noticing that the discretized Betti equation (21) provides
an unified basis from which, besides SGBEM, other BEMs proposed
in the literature naturally descend with different choicesof the source
distributions and interpolation functions. Three of thesealternative
choices and consequent BE approaches are mentioned below.

(A) If corresponding shape and weight functions are equal according
to Eq. (22) but kinematic discontinuities (double-layer) sources are
renounced by settingd⋆ = 0, then a nonsymmetric Galerkin BEM
is formulated as proposed in Refs. 128, 129. The loss of symmetry,
which occurs unlessΓp = ∅, is partly compensated for by the avoid-
ance of hypersingular kernels implied by the displacement jumps as
sources. More recently, spectral discretizations in connection with
this nonsymmetric GBEM have been proposed in Ref. 115.

(B) If the weight functionsΨ⋆ are assumed as Dirac distributions as-
sociated to boundary points (so that the Galerkin approach,Eq. (22),
is abandoned in favor of collocation at nodes) and only kinematic
sources are employed (i.e.f ⋆p = 0), then a nonsymmetric BEM
emerges from Eq. (21), with attractive features in linear elastic frac-
ture mechanics. This is basically the method developed by Crouch
and Starfield, though mostly in the variant of an indirect formulation,
Ref. 47. Several contributions, e.g. those by Gu and Hew, Ref. 72,
and Altiero and Gioda, Ref. 2, are within this line of thought.

(C) Finally, if Ψ
⋆
i 6= Ψi because the interpolation functions are

Dirac functions and only static sources are adopted (i.e.d⋆p =
0, d⋆u = 0), the starting point of the traditional BEM is recovered
from Eq. (21).

The following comments may supplement what precedes and pro-
vide links with what follows.

(a) The two BIEs in Eqs. (14,15) can be rewritten in a compact (op-
eratorial) fashion:

Ly = g (25)

wherey stands for both the unknown fields on the boundaryΓ =
Γu ∪ Γp, g for the data functions on the r.h.s. of Eqs. (14-15) and
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L denotes the (linear, integral) operator which transforms the former
into the latter. Making use of the reciprocity properties ofthe kernel
G in (14-15), it can be easily proven, e.g. Refs. 29, 135, 154, that for
any pair of boundary fieldsy andz:

∫

Γ

z
T
Ly dΓ =

∫

Γ

y
T
Lz dΓ ∀y, z (26)

Equation (26) expresses the symmetry (or self-adjointness) of the op-
eratorL with respect to the bilinear form defined there overΓ. An
important consequence of this symmetry (attainable by a straightfor-
ward and traditional path of reasoning, e.g. Ref. 162) is a variational
characterization (i.e. stationarity as a sufficient and necessary condi-
tion) of the boundary solution, saŷy, namely:

δ(1)Φ(y) = 0 (27)

with

Φ =
1

2

∫

Γ

y
T
Ly dΓ −

∫

Γ

g
T
y dΓ

Because of the sign properties (9), (10), the functionalΦ turns
out to exhibit a saddle point at solution̂y, with minimization and
maximization with respect top over Γu andu over Γp separately,
Refs. 135, 154. The energy approach to, and interpretation of, the
SGBEM in elasticity and elastoplasticity developed in Sec.7 will
cover the above variational properties as a special case andwill put
them in broader perspectives.

(b) So far, the provisions necessary to confer a meaning to the sin-
gular integrals have been tacitly assumed for granted and ignored.
However, the presence of singularities stronger than thoseinvolved
in the traditional BEM and in most of its variants representsa crucial
feature of the SGBEM (and perhaps the very reason of its delayed
developments). Therefore, Sec. 8 and parts of Secs. 9 and 12 of this
review will primarily be devoted to various meaningful singularity-
related issues.

(c) In the consolidated literature on traditional BEMs, a distinction is
often made between direct and indirect approaches. The difference
concerns the nature of the boundary variables chosen as unknowns
(actual quantities or fictitious [source] fields). It is shown in Sec. 8
that indirect SGBEM formulations can be easily derived fromdirect
ones, once regularization or other correct interpretationof the singu-
lar integrals is made. Indirect SGBEM formulations do not seem to
otherwise involve new essential features in mathematical or compu-
tational terms. Therefore only direct approaches have beenconsid-
ered above and will be dealt with in what follows, with the exception
of a short discussion of indirect formulations in Sec. 8.

(d) Potential problems, such as those concerning steady-state heat
and electricity conduction, Darcy filtration through porous media,
De Saint-Venant torsion and the motion of compressible inviscid
fluids, are seldom referred to in research papers on SGBEM, ex-
cept to special purposes such as hypersingular integrationtechniques
(secs. 8, 12) in view of the formal simplification entailed bythe scalar
nature of the unknown fields. In fact, the essential mathematical fea-
tures (ellipticityin primis) are the same as in linear elastostatics and
this makes it redundant to deal with such situations herein explicitly.

3 ELASTIC-PLASTIC QUASI-STATIC ANALYSIS

3.1 Integral equations and their space discretization

Clearly, the formulation of BIEs for elastoplastic analysis can be ob-
tained as a generalized version of that for elastic analysis. However,
instead of extending the path of reasoning based on Betti’s theorem

of Sec. 2, an alternative and simpler path will be followed below for
the sake of approach diversity.

In the presence of material nonlinearities the SGBEM is be-
lieved by the writers to exhibit special advantages over traditional
BEMs because a number of potentially useful results can be trans-
ferred from continua to discrete models. Therefore, in thisSection,
a rather detailed conspectus is presented of results which concern
quasi-static elastoplastic analysis (see Refs. 42, 80, 81,96, 103, 104,
106, 108–110, 112, 126, 133, 140, 142, 143), to be supplemented by
those aspects of plasticity briefly dealt with in Secs. 4.3,5.1,6.1.

Let Ωp ⊂ Ω̄ be the subdomain where plastic yielding is reason-
ably expected. Ignoring plasticity for a while, assume thatthe homo-
geneous elastic body considered be embedded in a suitable homoge-
neous solid (here, like in Sec. 2, the unbounded spaceΩ∞), of which
Green’s influence functionsG are analytically known. Besides the
static and kinematic sources on the boundaryΓ (f ⋆ and d⋆) em-
ployed in Sec. 2,imposed strainsϑ⋆ are assumed inΩp as proposed
in Ref. 112. The following effects onΩ∞ due to all these sources are
expressed by superposition: (i) displacements, to identify with data
ū in the actual body, in pointsx of Ω neighbouring the constrained
boundaryΓu; (ii) tractions, to identify with datāp in pointsx of Ω
infinitely close to the free boundaryΓp; (iii) stresses inΩp.

The linearity ofΩ∞ permits to superpose effects by means of in-
fluence functions. These functions, indexh running over the above
three kinds of effects (h = u, p, σ), can be identified with funda-
mental solutions or Green’s functions ofΩ∞, and precisely with:
Kelvin’s kernelsGhu for static sourcesf ⋆; Gebbia’s kernelsGhp for
displacement jump sourcesd⋆; Bui’s kernelsGhσ for strain sources
ϑ⋆. We name the Green’s functions of the third kind after Bui in
view of the substantial correction (addition of the ‘convective term’)
provided in Ref. 33 to the kernelGσσ as it was widely used, until
1978, without that term in elastoplastic analysis by traditional BEM.

The actual elastic-plastic state in the solid considered isrecovered
by means of three provisions: (i) interpretingϑ⋆ as unknown plastic
strainsεp; (ii) making explicit the circumstance that the exterior do-
mainΩ∞−Ω̄ is undeformed and unstressed, i.e. settingu⋆(ξ+) = 0

andp⋆(ξ+) = 0 in the expressions of the boundary sources inter-
preted as discontinuities accrossΓ ; (iii) entering the boundary data,
i.e. u⋆(ξ−) = ū on Γu andp⋆(ξ−) = p̄ on Γp and the boundary
unknownsu⋆(ξ−) = u onΓp andp⋆(ξ−) = p onΓu.

Thus the integral expressions originally written as superpositions
of the effectsu andp onΓ− andσ in Ω, due to sourcesf ⋆, d⋆ onΓ
andϑ⋆ = εp in Ω, yield the three integral equations:
∫

Γu

Guu(x, ξ)p(ξ) dΓξ −
∫

Γp

Gup(x, ξ)u(ξ) dΓξ

+

∫

Ωp

Guσ(x, ξ)εp(ξ) dΩξ = ḡu(x), (x ∈ Γu) (28)

−

∫

Γu

Gpu(x, ξ)p(ξ) dΓξ +

∫

Γp

Gpp(x, ξ)u(ξ) dΓξ

−

∫

Ωp

Gpσ(x, ξ)εp(ξ) dΩξ = ḡp(x), (x ∈ Γp) (29)

∫

Γu

Gσu(x, ξ)p(ξ) dΓξ −
∫

Γp

Gσp(x, ξ)u(ξ) dΓξ

+

∫

Ωp

Gσσ(x, ξ)εp(ξ) dΩξ = ḡσ(x) + σ(x). (x ∈ Ω)

(30)

Like in Eqs. (14-15),̄gh (h = u, p, σ) denote the resulting terms
gathering data on the boundary and also on the domain (body forces
and thermal strains were ignored in Sec. 2 for brevity).

Among the nine kernels that show up in Eqs.(28–30), four have



Appl Mech Rev vol 51, 1998 Bonnet, Maier and Polizzotto: Symmetric Galerkin BEM 6

been employed for elastic analysis and commented upon in Sec. 2.
As for the kinds of properties considered there, the new five kernels
can be easily seen to exhibit the following features:

(α) Those concerning stresses as effects, i.e.Gσh (h = u, p, σ)
are singular like those concerning traction effects, i.e.Gph (h =
u, p, σ); Bui kernels have the same singularities as Gebbia kernels,

(β) The reciprocity relationships (8) hold for all kernels, i.e. for
(h, k = u, p, σ),

(γ) The quadratic form associated, for any domain, toGσσ, is neg-
ative semi-definite, like that associated toGpp over any closed sur-
face, in view of the common meaning of the sign-inverse of theelas-
tic strain energy due to (generally non-compatible) strains imposed
in Ω∞ as external actions.

If the left-hand sides of Eqs. (28–30) together are interpre-
ted as consisting of an integral operator̂L acting on fields
{pT , uT , εpT }T , then, using properties (β) and (γ), L̂ can be shown
to exhibit symmetry with respect to a bilinear form defined over Γ
andΩp. Clearly, remark (a) of Sec. 2.2 does not apply, as Eq. (30)
contains the unknown fieldσ(x).

Symmetry is preserved when the discretization is performedin
accordance with two provisions: (i) field modelling (18) extended to
Ωp by εp(ξ) = Ψθ(ξ)Θp, denoting byΘp the vector of ‘gener-
alized’ plastic strains; (ii) Galerkin weighted residual statement ac-
cording to Eqs. (22) with(h = u, p, σ), carried out for Eqs. (28–30).
In fact, the double integrations like in Eq. (20) withh, k andi, j run-
ning over the augmented index set(u, p, σ), if suitably executed in
view of the integrand singularities (cfr. Sec. 8), generatesymmet-
ric algebraic linear equations. These can be written in the following
compact form, which augments Eq. (24) to elastic-plastic analysis
purposes:

AX + CΘ
p = BΓ (31)

C
T
X + ĜσσΘ

p = BΩ + Σ (32)

where:

A
T = A, Ĝ

T

σσ = Ĝσσ, Σ =

∫

Ω

Ψ
T
θ (ξ)σ(ξ) dΩξ (33)

Equation (31) condenses the Galerkin-discretized BIEs (28) and (29).
Let its solution with respect to the vectorX of boundary unknowns
be substituted into Eq. (32), which is the Galerkin discretized ver-
sion of integral equation (30). This move is implicitly or explic-
itly recurrent in the traditional elastoplastic analysis by BEM, e.g.
Refs. 15, 31, 49, 158 (it is not so in computational plasticity by FEMs,
where it would require the inversion of the whole elastic stiffness ma-
trix). In the present SGBEM the equation resulting from these trivial
manipulations,namely

ZΘ + Σ
e = Σ (34)

turns out to exhibit the following special features:

Z
T = Z ; −

1

2
Θ
pT

ZΘ
p ≥ 0 ∀Θp (35)

Clearly, the interpretation of Eq. (34) is equal to that of its coun-
terpart from traditional BEMs, i.e.: actual stresses are the sum of
the linear elastic stress responseΣ

e to external actions and self-
equilibrated (in a suitable approximate way, Ref. 136) stresses due
to plastic strains through the influence matrixZ . The properties
(35) (i.e. symmetry ofZ and the meaning of strain energy for the
quadratic form associated to it) are in the SGBEM the same as those
of kernelGσσ for the continuumΩ∞ in local variables, whereas they

are not valid in conventional BEMs. As a consequence of Eqs. (35),
the eigenvalues ofZ are real, those that vanish correspond to stress-
less systems of plastic strains and their number can be regarded as
a measure of the ability of the cell-discretization to accommodate
mechanisms in plastic collapse and shakedown analysis of perfectly
plastic solids and structures (see Ref. 103 and Sec. 6.1).

3.2 Constitutive laws in local and generalized variables

The main peculiarities of SGBEM in inelastic analysis emerge even
in the narrow context of associative, single-yield mode, perfect (non-
hardening) plasticity, to which therefore the considerations in this
Subsection will be restricted for brevity. Let the elastoplastic mate-
rial model be described in the following classical fashion:

σ = E(ε − εp)

ϕ =
∂ϕ

∂σT
(σ)σ − y ≤ 0, ; ε

p =
∂ϕ

∂σ
(σ)λ̇

λ̇ ≥ 0, ϕλ̇ = 0

(36)

Here,ϕ denotes the yield function,y a yield limit (meant to be a
material constant),̇λ the plastic multiplier. As usual, the ‘equivalent
stress’y + ϕ is assumed to be positively homogeneous of order one
in the stresses. The elasticity law (36a) postulates strainadditivity;
Eqs. (36b) express the yield criterion and the normality rule; Eqs.
(36c) the so-called ‘consistency’ or ‘loading-unloading’rule.

The space discretization in the boundary and domain integral
equations and their Galerkin approximate enforcement (Sec. 3.1) has
entailed a link between the plastic strain model

ε
p(x) = Ψθ(x)Θp (37)

and the stress-governing parametersΣ overΩp, defined by Eq. (333).
It is highly desirable that vectorsΘ andΣ gather ‘generalized vari-
ables’ in Prager sense (W. Prager and M. Save introduced thisnotion
for structural plasticity in the late fifties), namely that:

Σ
T
Θ
p =

∫

Ωp

σ
T (x)εp(x) dΩ, ∀Σ,Θp (38)

The identity (38) entails the preservation of the scalar product (and
its energy meaning) of conjugate variables occurring in pairs (kine-
matic and static) in passing from the local quantities to theglobal
ones which govern the discrete model. This preservation is necessary
(even if not sufficient) in order to endow the discrete model with the
essential features of the original continuum solid or structure. In par-
ticular, Eq. (38), if combined with the symmetries of the boundary
integral operator (Sec. 2.1), has far-reaching consequences in terms
of attractive peculiarities of the SGBEM, as discussed in Sec. 7.

Condition (38) is complied with if the shape functions modelling
stresses are suitably derived from those chosen for strains, i.e. if:

σ(x) = Ψσ(x)Σ, with Ψσ = Ψθ

[
∫

Ωp

Ψ
T
θ (x)Ψθ(x) dΩ

]−1

(39)
ThenΘ

p in turn becomes weighted averages ofεp, shape functions
Ψσ acting as weights, in full similarity to Eq. (33). Clearly, the
same shape functions will be used for total as well as plasticstrains,
i.e. ε(x) = Ψθ(x)E.

A fully analogous modelling procedure will be applied to the
other pair of conjugate variable fieldsλ̇ andϕ by introducing interpo-
lationsΨλ and consequent, through a dependence like Eq. (39), in-
terpolationsΨϕ, with vectorsΛ̇ andΦ gathering Prager-generalized
plastic multipliers and yield functions, respectively. The same pro-
cedure would hold for possible internal variables occurring in pairs
in cases of hardening (instead of ideal) plasticity.
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After the above preliminaries, straightforward manipulations lead
from the material model in local variables to constitutive laws in
weighted-average variables, generalized in Prager’s sense, namely:

Σ = K(Θ −Θ
p), Φ =

∂Φ

∂Σ
T

(Σ)Σ − Y ≤ 0

Θ̇
p =

∂Φ
T

∂Σ
(Σ)Λ̇, Λ̇ ≥ 0, Φ

T
Λ̇ = 0

(40)

where:

K =

∫

Ωp

Ψ
T
θ (x)EΨθ(x) dΩ Y =

∫

Ωp

Ψ
T
λ (x)y(x) dΩ

K andY having the meanings of cell-wise stiffness matrix (symmet-
ric, positive-definite, block-diagonal and intrinsic or ‘natural’, i.e.
unaffected by rigid-body motions) and yield limit vector for all cells,
respectively.

The relations (40) can be interpreted as a description of the
elastic-plastic global behaviour of the potentially yielding subdomain
Ωp, cell-by-cell in a generally decoupled format. It is worth noting
that the cell-wise constitution (40) reflects both the spacemodelling
and the local material model; of the latter it possesses all essential
features (perfect plasticity and Drucker’s stability, i.e. normality and
convexity) as it can be easily proven; clearly, this does notrule out
local violations of the material model (36), (see Refs. 43, 104, 112).

Supplemented by displacement modelling (missing in quasistatic
analysis by all BEMs), the above kind of relationships can begener-
ated also in the FEM context, and in fact variants of them havebeen
dealt with there under various labels such as ‘consistent’ FEs, multi-
field models (e.g. Ref. 43), discretizations in ‘natural’ variables).

3.3 The space-discrete finite-step problem

The incremental elasto-plastic constitutive laws (40) forall cells
in Ωp have to be integrated in timet. Among various popular
time-integration schemes, we choose here the implicit backward-
difference method, according to which the (nonholonomic, path-
dependent) rate relations (40) generate the following (stepwise holo-
nomic) finite-step relations:

∆Σ = K(∆Θ − ∆Θ
p), Φ =

∂Φ

∂Σ
T

(Σ)(Σ̄ + ∆Σ) − Y ≤ 0

∆Θ
p =

∂Φ
T

∂Σ
(Σ)∆Λ, ∆Λ ≥ 0, Φ

T∆Λ = 0

(41)
where all variables (likēΣ) at the starting instant̄t are known, the
unknowns are the finite increments denoted by∆ over the time inter-
val ∆t, and the gradients of generalized yield functionsΦ are meant
at the final instant̄t + ∆t (i.e their argument isΣ = Σ̄ + ∆Σ).

The elastoplastic cell constitution (41) forΩp must be associated
to the linear Eq. (34) resulting from the elasticity integral equations,
rewritten here for increments:

Z∆Θ
p + ∆Σ

e = ∆Σ (42)

Equations (41) and (42) together constitute the relation set that gov-
erns the SGBEM-discretized nonlinear boundary-value problem over
the finite time step∆t, the input increments of external actions being
captured in the linear elastic stress response∆Σ

e.
For the numerical solution to this nonlinear problem various pro-

cedures are available in the FE context of computational inelastic-
ity and can be transferred to the BE context. The so-called ‘modi-
fied’ Newton-Raphson iterative method seems to be the most directly
transferable and the most popular so far in the BE literature(see e.g.
Refs. 15, 31, 49, 158). In fact, each iteration (say ther-th) basically

consists of two phases: (i) ‘prediction’, namely a linear, global com-
putation of∆Θr with elastic stiffness for known∆Θp

r−1 (provided
by previous iteration or assumed at initialization); (ii) ‘correction’,
namely a nonlinear local (cellwise) solution of Eqs. (41) for given
∆Θr. The use of the original elastic stiffnesses in the predictive
phase is more natural in BEMs, but by no means mandatory: clas-
sical Newton-Raphson procedures with consistent tangent matrices
can be adapted at the price of some manipulations, both in traditional
BEMs (e.g. Refs. 145, 158) and in SGBEM, Ref. 101.

The finite-step problem of inelastic analysis represents one of the
topics where the SGBEM exhibits clear advantages over traditional
BEMs. In fact, using the symmetry of the matrix operatorsA and
Z in the elasticity equations, combined with the domain fieldsmod-
elling by Prager-generalized variables, permitted to achieve, among
others, the following results, Ref. 42, on the finite-step problem (40–
41) (actually in a more general context allowing for hardening and
multi-yield modes): (a) the solution, if any, is characterized by an ex-
tremum property; (b) the modified Newton-Raphson procedurecon-
verges to the solution, if any, and the objective function contemplated
in theorem (a) monotonically decreases along the iterationsequence;
(c) algorithmic stability, i.e. the contractivity of a ‘natural norm’ (in
Simo’s sense, Ref. 152) along the time-step sequence is ensured un-
conditionally, i.e. for any time amplitude∆t.

Like in classical plasticity of stable materials, only lackof hard-
ening may jeopardize solution existence and uniqueness in the incre-
mental boundary value problem. The above conclusions, and others
of similar type expected in the same line of thought, allow aninsight
into, and the controllability of, inelastic analyses. Theyprivilege the
SGBEM since they are not available, neither are likely to be,in the
traditional BEMs.

3.4 Material instabilities

In traditional BEMs only classical, Druckerian elastoplasticity ap-
pears to have been envisaged as constitutive model. Unstable ma-
terial behaviours (in the sense of negative second-order work for
some deformation disturbances) are technically importantand form
at present a subject of intensive research. Violations of Drucker’s
stability postulate such as softening (negative hardening) and lack
of normality, may cause material instability which in turn has far-
reaching mathematical and computational consequences in elastic-
plastic analyses. In the BE area, loss of ellipticity and mesh depen-
dence has been pointed out, Refs. 40, 103. Various provisions in-
tended to restore objectivity and, in particular, to removehypersensi-
tivity to space discretizations, have been proposed in recent years,
mostly with reference to FEMs: link through fracture energybe-
tween mesh length and constitutive softening; adaptive remeshing
(Zienkiewicz et al.); fictitious time-dependence; polar Cosserat me-
dia; nonlocal continua; gradient plasticity.

Nowadays the last one of the above provisions appears to mate-
rialize a good compromise between regularization effectiveness and
computational economy. It is also the only one investigatedin the
BE area so far, specifically in the context of SGBEM only, Ref.103.
A typical constitutive law of nonlocal, gradient plasticity is obtained
if the yield criterion of Eq. (36b1) is generalized to:

ϕ =
∂ϕ

∂σT
(σ)σ − y − hλ + c∇2λ ≤ 0 (43)

The two additional terms are: a linear softening term (with negative
hardening constant:h < 0); a diffusive term containing the Lapla-
cian∇2 of the cumulative (time-integrated) plastic multiplierλ and
a material constantc. The presence of a partial differential opera-
tor in the plastic constitutive laws requires suitable conditions to be
assumed on the boundary∂Ωp of the subdomainΩp where plastic
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yielding cannot a priori be ruled out. The (nonlinear) boundary con-
ditions, of dubious mechanical interpretation, proposed by Aifantis
and Mühlhaus involves the space gradient∇ and read:

(nT∇λ)∆λ = 0 on∂Ωp (44)

A variational saddle-point theorem, proposed for FEM in Ref. 44,
permits one to regard Eq. (44) as a natural boundary condition and
to achieve a generalized, gradient-plasticity version of the cell con-
stitutive laws without the explicit presence of that boundary condi-
tion, but with the addition in the yield criterion, Eq. (41a), of the
hardening-softening terms(H +C)Λ where matricesH andC de-
pend on the material constantsh < 0 and c, respectively, and on
the cell mesh as well (Ref. 104). Thus the SGBEM of the preceding
section was extended to softening associative plasticity with conse-
quent regularization (in the sense of mesh independence also in the
presence of softening), however at the price of a coupling among the
cells in the correction phase of the solution procedure (coupling due
to theC0 continuity requirement generated on the plastic multiplier
field by the Laplace operator).

4 FRACTURE MECHANICS

4.1 Linear elastic fracture analysis

Integral equation methods are frequently applied to the solution of
fracture mechanics problems, either in a (semi)-analytical fashion,
for simple geometrical configurations, or as a boundary element nu-
merical solver. The main advantages provided by BEMs in thisarea
are the much increased ease of geometrical modelling, especially in
three-dimensional situations and for the simulation of crack propaga-
tion, and the high accuracy attainable in the evaluation of stress inten-
sity factors. Moreover, the BIE/BEM approach is almost unavoidable
for the numerical solution of dynamical problems like scattering of
waves by cracks, fault modelling in seismology, and other related sit-
uations which frequently involve very large or unbounded domains.
Ref. 48 provides an effective introduction to the traditional BEM in
fracture mechanics.

Due to the well-known degeneracy of the Somigliana identity
when collocated at points of the crack faces, hypersingulartraction
BIE (HBIE) and their space discretization by collocation are often
considered, and a substantial amount of research is undertaken in this
area. Implementations of HBIE must be based on either regulariza-
tion methods or direct evaluation of finite-part integrals.Either way,
the ‘density function’ (e.g. the crack opening displacement (COD),
i.e. the displacement jump accross the crack surface) must be C1,α-
continuous at the collocation point. This requirement has severe con-
sequences on the available choices of shape functions and colloca-
tion points, especially for 3D problems. The so-called ‘dual’ BEM
for cracks combines displacement and traction collocationBIEs, and
thus faces similar implementational difficulties.

On the other hand, it seems that only scattered efforts have been
directed towards the application of SGBIE formulations to crack
problems. Compared to HBIE formulations and collocation HBEM,
the main advantage of the SGBEM is that it needs onlyC0,α-
continuity for the kinematic unknown on the crack surface, thereby
allowing the use of standardC0 interpolations. Moreover, it will be
pointed out in Sec. 10 that the symmetric character of Galerkin BIE
formulations is valuable for sensitivity analysis; this fact leads to in-
teresting techniques, briefly described in Sec. 10, for the evaluation
of the energy release rate considered as the domain derivative of the
potential energy at equilibrium.

Focussing now on a SGBIE formulation for linear elastic fracture
mechanics, letΩ denote an elastic solid containing an internal crack

idealized by an open surfaceΓd, and denote byΓ the external bound-
ary. In addition to the usual boundary data on the external portions
Γu, Γp, assume a prescribed self-equilibrated loading on the crack
faces:

p(x±) = ∓p̄ x ∈ Γd

(conventionally, the surfaceΓd is oriented so that the positive unit
normaln is directed fromS− to S+). Consistently with the orienta-
tion convention onΓd, the kinematic unknown on the crack surface
is the CODw = u+ − u−, whereas the source distributionw⋆ on
Γd is interpreted as a fictitious COD. Then, ignoring again domain
external actions for brevity like in Sec. 2, a SGBIE formulation can
be obtained by invoking Betti reciprocity identity

∫

Γ

(

p
T
u
⋆ − u

T
p
⋆) dΓξ =

∫

Γd

(

p
T
w
⋆ − w

T
p
⋆) dΓξ (45)

with a fictitious auxiliary state(u⋆, p⋆) defined, overΩ∞ embed-
dingΩ, in terms of densitiesd⋆, f ⋆ onΓ andw⋆ onΓd:

u
⋆(ξ) =

∫

Γ

[Guu(ξ, x)f ⋆(x) + Gup(ξ, x)d⋆(x)] dΓx

+

∫

Γd

Gup(ξ, x)w⋆(x) dΓx (46)

p
⋆(ξ) =

∫

Γ

[Gpu(ξ, x)f ⋆(x) + Gpp(ξ, x)d⋆(x)] dΓx

+

∫

Γd

Gpp(ξ, x)w⋆(x) dΓx (47)

The right-hand side in Betti theorem, Eq. (45), uses the fact(known
from potential theory) that

u
⋆(ξ+) − u

⋆(ξ−) = w
⋆(ξ) (ξ ∈ S)

with u⋆ defined by (46). Then, the considerations developed in
Sec. 2 can be followed again with obvious modifications caused by
the presence of the new crack surfaceΓd and relevant kinematic un-
known w. Modelling the latter using shape functionsΨw(x) =
Ψw(x) defined overΓd, one eventually arrives at the symmetric lin-
ear system of equations:









Ĝ
uu

uu −Ĝ
up

up Ĝ
uc

up

−Ĝ
pu

pu Ĝ
pp

pp −Ĝ
pc

pp

Ĝ
cu

pu −Ĝ
cp

pp Ĝ
cc

pp



















Xp

Xu

Xw











=











Bf
u

Bd
p

Bw
c











(48)

using notation (20) but with superscriptsi, j = u, p, c referring to
the surfacesΓu, Γp, Γd, respectively. The new right-hand sideBw

c

will be made explicit in Sec. 8.3.
SGBIE formulations for the special case of a crack (or a set of

cracks) isolated in an infinite elastic medium, easier to conceive (ex-
cept for the regularization issue, which is left aside untilSec. 8), have
been studied since about twenty years, see e.g. Ref. 32. In fact, the
system (48) becomes simply:

Ĝ
cc

ppXw = −

∫

Γd

Ψ
T
w(x)p̄(x) dΓx (49)

Similar SGBIE formulations have been obtained for scattering of
elastodynamic waves by isolated cracks, see e.g. Ref. 12. Itis in-
teresting to note that direct and indirect Galerkin BIE formulations
coincide for problems involving cracks in infinite media, the primary
unknown being in both cases the CODw; moreover, the strain en-
ergyW stored in the infinite body is given (see Eq. (80) of Sec. 7)
by

W = −
1

2
X
T
wG

cc
ppXw
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The interpolations functionsΨw(x) for the COD, usually taken
of the same type as theΨu(x), need only to be continuous overΓd.
Near the crack front, one may use any of the special interpolation
functions that have been developed in conventional BEM to represent
the square-root behaviour of the COD, e.g. quarter-node elements.
The SGBEM system of equations (48) can be used to perform usual
linear fracture mechanics analyses. The implementation ofstandard
post-treatments likeJ-integral computation or stress intensity factors
evaluation using COD extrapolation is straightforward.

Numerical experiments in linear elastic fracture mechanics ana-
lysis were first achieved for cracks in infinite media, like ine.g.
Refs. 72, 169. However, 2D numerical experiments for bounded
isotropic domains with internal cracks are reported in Ref.68, 171,
based respectively upon direct and indirect Galerkin BIE formula-
tions. An implementation for fracture analysis in plane orthotropic
elasticity is reported in Ref. 70. Finally, Ref. 95 presentsa SGBEM
implementation for three-dimensional linear fracture analysis for
bounded elastic bodies, based on a formulation very close toEq. (48).

4.2 Quasi-brittle fracture analysis

The computer simulation of fracture processes in concrete and
concrete-like materials (often collectively referred to as ‘quasi-
brittle’ and including many geomaterials and several kindsof ceram-
ics) is mostly based on the ‘cohesive crack model’ stemming from pi-
oneering works of Barenblatt (1962) and Dugdale (1967): displace-
ment discontinuity loci are allowed and endowed with an interface
rigid-plastic softening law while linear elasticity is assumed every-
where else. This model rules out stress singularities at thetips and
entails a ‘process zone’ behind the tip. Such now popular idealiza-
tion naturally suggests to conceive the analysis as a coalescence of
two substantially diverse ingredients (a) an experimentally corrobo-
rated constitutive nonlinear dependance of the tractionsp from the
displacement jumpw (and sometimes also of its previous time his-
tory) in all points of the locus, sayΓd, where nonzerow are reason-
ably expected; (b) a linear relationship between the same variables
through the body or structure deprived ofΓd (i.e. of any kinematic
discontinuity) and subjected to the given external actionsin a linear
elastic regime. In compact symbols, the above two ingredients at
time instantt read, respectively:

p(x, t) = f (w(x, τ ), 0 ≤ τ ≤ t), x ∈ Γd (50)

p(x, t) = p
E(x, t) +

∫

Γd

Zd(x, ξ).w(ξ) dΓξ (51)

The latter equation exhibits the following noteworthy features: (i) it
reflects the overall geometry of the domain and the elasticity of the
material inΩ; (ii) all loads are allowed for through the (linear elastic)
tractionpE response to them acrossΓd only; (iii) the influence func-
tion matrixZ , or Green’s kernel of the considered body, is symmetric
due to the Betti’s reciprocity identity, and negative semidefinite due
to its energy meaning (definite ifΩ is simply connected with respect
to Γd):

Zd(x, ξ) = Z
T
d (ξ, x)

−
1

2

∫

Γd

∫

Γd

w
T (x)Zd(x, ξ).w(ξ) dΓx dΓξ ≥ 0

(52)

The confinement of all nonlinearity to the locusΓd with lesser
dimensionality with respect toΩ and the consequent formulation
(50) of the analysis problem, clearly advocate a BIE-BE approach
for its numerical solution. The above listed features, especially
those in (iii), provide a strong motivation for solving and analyzing

quasi-brittle fracture problems by the present SGBEM, because this
method leads to approximate discrete formulations which preserve
all those properties, while the traditional BEM does not. Such priv-
ilege of the SGBEM rests not only on expected computational gains
(e.g. in terms of accuracy at equal number of unknowns), but espe-
cially on the achieved possibility of physical insight and evaluations.

The importance of an enrichment of the theory underlying thenu-
merical computations becomes quite apparent in quasi-brittle frac-
ture mechanics if the constitutive law ofΓd is focused. In gen-
eral, the relationship symbolically represented by Eq. (50) is nonlin-
ear, nonholonomic, softening, sometimes nonassociative and multi-
dissipative (i.e. with a multiplicity of yield modes) and can often be
described by means of internal variable rigid-plastic models.

The following kinds of analysis problems can be singled out,de-
pending on the engineering situation and on the consequent special-
ization of the relationship (50).

(A) Problems in rates (or in infinitesimal increments) allowing for the
irreversible, nonholonomic nature of the quasi-brittle fracture pro-
cess. Then the locusΓd reduces to the current process zone (where
currentlyw 6= 0 andp 6= 0). An important purpose of rate formula-
tions is to check overall stability (characterized by the positiveness,
in any possible virtual kinematic disturbance, of the overall second-
order work done by an external agency which preserves equilibrium
while promoting the kinematic disturbance), see Ref. 107. Another
purpose is to capture the onset of possible bifurcation (in the sense
of path-equilibrium branching) and to compute the whole multiplic-
ity of rate solutions as beginning of other alternative fracturing pro-
cessses, see e.g. Ref 39. Finally, in the very special but frequent case
of mode I only (i.e. because of symmetry) along an a priori known
path with piecewise-linear decay of tractionp for increasing open-
ing displacementw, the rate solution can be amplified (by solving
a trivial linear programming problem) up to the activation of a new
yielding mode, thus reducing the time-stepping ‘exact’ analysis to a
sequence of steps, each one of which simply consisting of a nonlinear
rate solution and its linear amplification.

(B) Problems in total variables, i.e. based on a holonomic formula-
tion. For instance, in simulating three-point bending tests (e.g. to pa-
rameter identification purposes), the crack propagation path along the
symmetry axis and a monotonic increase of the displacement jump
w (‘regularly progressive yielding’ in the plasticity jargon) can be
reasonably conjectured. In cases like this, where irreversibility man-
ifestations can a priori be ruled out and the discontinuity locusΓd
assumed, the analysis can be formulated as a non-linear elastic prob-
lem (in the spirit of the ‘deformation theory’ of plasticity), cf. Ref 24.

(C) Formulations of the cohesive model which are in a sense interme-
diate between (A) and (B) naturally occur when the time evolution
of the fracture process has to be simulated without prior knowledge
and with full nonlinearity of the interface law. Then, like in computa-
tional plasticity (cf. Sec. 3.3), a stepwise-holonomic time-integration
scheme has to be derived, including in each finite step the updating
of internal variables to allow for irreversibility and a direction search
algorithm for the (process zone) tip advancement.

Focussing now on the linear-elastic background described by the
integral equation (51), its discretization according to the SGBEM can
be carried out by the same path of reasoning followed in Sec. 3for in-
elastic analysis, basically with the only difference that all constitutive
nonlinearities envisaged are confined to the kinematic discontinuity
locusΓd with the same dimensionality as the boundaryΓ (instead
of a subdomainΩp). This difference implies that double-layer (dis-
placement jump) sources, to be identified with the unknownsw, are
adopted within the domainΩ on Γd (instead of concentrated strain
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sourcesθ to be identified with plastic strains inΩp). Otherwise the
conceptual and operative sequence is the same as in Sec 3, namely:
embedding inΩ∞; superposition of effects (p and u on Γ− and
p on Γd) in Ω∞ through its Green functionsGij with i, j = u, p
(no longer alsoσ); introduction of boundary data and unknowns on
Γ− and, as forΓ+, attribution of a stressless undeformed state to
Ω∞ − Ω̄, thus leading to BIEs analogous to Eqs. (28)-(30), formally
with subscriptp instead ofσ, Γd instead ofΩp andw instead ofε;
modelling the unknown fields and enforcement of the integralequa-
tion in the Galerkin weighted-residual fashion; double integrations
on elements alongΓ andΓd to generate matrices of coefficients and
vectors of data, like in Eqs. (31)-(33); condensation of theboundary
unknowns, cf. Eqs. (34). This sequence leads to a discrete counter-
part to Eq. (51) in the form

P = P
E + ZdW (53)

The noteworthy circumstances in this SGBE formulation is that ma-
trix Zd is endowed with the same essential features of its continuum
counterpart, Eqs. (52), and thatP andW governing the unknowns
on Γd are vectors of generalized variables (tractions and displace-
ment jumps, respectively), i.e. they are conjugate in a virtual work
sense. Once again, it is worth stressing that the above features, on
one hand, would be missing in a traditional BEM and, on the other
hand, are especially beneficial in quasi-brittle fracture,where ma-
terial instability (softening) and its structural consequences are the
peculiar ingredient and the main origin of computational difficulties.

In fact, let us consider as an illustration rate problems (A), and
only them for brevity. Borrowing again the formalism of incremental
‘nonstandard generalized’ plasticity, a broad class of interface rela-
tionships for the discontinuity locusΓd (now reduced to the instanta-
neous process zone) can be represented in terms of rates as follows,
after the transition from local to generalized variables consistently
with the Galerkin discretization which led to the elasticity Eq. (53):

Ẇ =
∂Φ̂

T

∂P
Λ̇, Ṡ = −

∂Φ̂
T

∂Q
Λ̇, Q̇ =

∂2Π

∂S∂ST
Ṡ (54)

Φ̇ =
∂Φ

∂P T
Ṗ +

∂Φ

∂QT
Q̇ ≤ 0, Λ̇ ≥ 0, Φ̇

T
Λ̇ = 0 (55)

HereΦ̂ andΦ are vectors of yield functions and plastic potentials,
respectively;S andQ denote kinematic and static internal variables,
respectively, andΠ their potential. All derivatives are evaluated in
the current situation, at which the incremental process starts. The
combination of Eqs. (54-55) with Eq. (53) in rates leads to a linear
complementarity problem (LCP) of the type (Ref. 102):

−Φ̇ = Ḃ + M Λ̇ ≥ 0, Λ̇ ≥ 0, Φ̇
T
Λ̇ = 0 (56)

having set

M =
∂Φ

∂QT

∂2Π

∂S∂ST
∂Φ̂

T

∂Q
−

∂Φ

∂P T
Zd

∂Φ̂
T

∂P
,

Ḃ = −
∂Φ

∂P T
Ṗ
E

Among several remarks and developments on the LCP (56), those
mentioned below are especially pertinent to SGBEM.
(a) Matrix M is symmetric ifΦ̂ = Φ, i.e. with associative co-
hesive crack models; it is not definite nor semidefinite in general,
because the former addend on the right-hand side is not so forsoft-
ening behaviour (though the latter addend is positive definite or at
least semidefinite).

(b) In view of (a) the solution set can be empty or contain a finite
number of elements, the latter event having the mechanical meaning

of a branching of the system evolution (see e.g. Ref. 39). To com-
pute the whole multiplicity of solutions of a LCP like (56) ishere
an important task but also still a challenge to applied mathematics.
In fact, enumerative methods, which guarantee to provide all solu-
tion (with finite termination), entail a computing time exponentially
growing with the problem size; on the other hand, efficient, asymp-
totic iterative Newton-type methods lead to a solution depending on
the initialization, but hardly lead to all of them (see Refs.24, 25).

(c) In various ways the LCP (56) is amenable to generally nonconvex
quadratic programming, hence to optimization procedures alternative
to those mentioned in (b).

(d) The quadratic form associated to matrixM , if Φ̂ = Φ, can
be shown to provide with its copositiveness a necessary and suffi-
cient condition for overall stability, with its positive semidefiniteness
a sufficient one for it (Ref. 24).

(e) The interface law drastically simplifies for fracturingprocesses
in the case of cohesive crack model for mode I with linear soften-
ing. In the holonomic (B) and stepwise-holonomic (C) formulations
outlined earlier, the LCP structure may be preserved in the case of
piecewise linear models or may give way to more general nonlinear
complementarity problems (NLCP), remarks (a) to (c) still basically
holding with suitable adjustments.

As a conclusive remark, it can be stressed that the SGBEM is ide-
ally suited to quasi-brittle fracture analysis. In fact, SGBEM not only
leads to formulations which economically exploit the linear back-
ground of the problems and the confinement of nonlinearity tothe
discontinuity locusΓd, but also faithfully reflects, through the prop-
erties ofZd, the underlying mechanics of the problem and, hence,
gives rise to beneficial consequences, as those listed (a) to(e) above,
which can hardly be proved in the context of traditional BEMs.

4.3 Further remarks on fracture mechanics

A variety of issues in mechanics of materials and structuresare
closely related to the developments outlined in what preceeds and
equally susceptible to advantageous applications of the SGBEM.
They will be briefly mentioned below.

Delamination phenomena in inhomogeneous structural compo-
nents can be regarded as a special decohesion process with a priori
known locusΓd of potential displacement discontinuities and, hence,
is implicitly covered by the remarks of Sec. 4.2 on quasi-brittle frac-
ture, provided geometric effects are negligible (e.g. simulations of
local buckling in laminates would require extensions of SGBEM not
available so far).

Unilateral contact, without or with friction or with more sophis-
ticated interface models, represent a subject per se, extensively dealt
with in the BE literature, see e.g. Antes and Panagiotopoulos, Ref. 6.
In some important engineering situations, unilateral contact is related
to fracture: e.g. it must be allowed for in integrity assessments of
concrete dams in the presence of cracks (and possibly of joints) under
variable loads (e.g. earthquakes, seasonal thermal cycles, reservoir
level fluctuations). SGBEM in contact was investigated specifically
in Ref. 139 and in association to quasi-brittle fracture in Ref. 107.
Methodologically, from the present standpoint unilateralcontact may
be considered as basically covered by the discussion of Sec.4.2.

Elastic-plastic fracture mechanics encompasses at present several
unsettled questions in physical interpretations, mathematical models
and computing procedures. Traditional BEMs and their recent de-
velopments applied to ductile (large yield zone) fracture,have been
extensively discussed by Leitão, Ref. 92. As for the SGBEM,the
following remarks may supplement this monograph.

(a) Elastic-plastic fracture processes in metal structures are fre-
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quently simulated in industrial environments by geometricapproa-
ches (tip advancement criteria based on crack-tip opening angle
(CTOA) at the onset of and during crack propagation, respectively)
or energy approaches (based onJ-integral or other path-independent
integrals). Since these approaches still imply discrete modelling
of fractures in association with classical constitutive elastic-plastic
laws, stable in the sense of Drucker, the comparisons between
SGBEM and traditional BEMs pointed out in Secs 3.1 to 3.3 (plastic-
ity) and 4.1, 4.2 (brittle and quasi-brittle fracture) can be transferred
to ductile fracture analysis by the aforementioned approaches.

(b) The present trend in elastic-plastic fracture mechanics is to-
wards the use of micromechanically corroborated material models
(such as Gurson model with porosity internal variables), capable to
describe in a diffused fashion the damage process up to material sepa-
ration. These models exhibit softening and, hence, requireprovisions
apt to remove subjectivities like mesh dependence. A particular one
of such remedies, i.e. gradient plasticity, was discussed with ref-
erence to SGBEM in Sec. 3.4. It is worth noting that the cohesive
models for discrete crack simulations (Sec. 4.2) do not exhibit the
above subjectivity, since dissipative damage process are ‘squeezed’
into the discontinuity locusΓd.

(c) As emphasized e.g. in Ref. 92, in elastic-plastic fracture by
traditional BEMs, recourse is made to the so-called ‘dual’ formula-
tion (in the sense that displacements are Somigliana-represented on
one side of the potential crack and tractions on the other, inorder to
avoid both ill-conditioning and zonewise multidomain formulations).
It is worth noting that in SGBEM the issue does not arise despite
single-domain formulation, as could be observed in Secs. 4.1-4.2.

(d) Finally, ductile fracture processes usually imply yielding
zones large with respect to the crack extension and local geometric
features (e.g. thickness), but small with respect to a typical length of
the overall geometry. This is the case of a fracture event in apressure
vessel or a pipeline, the economical simulation of which mayma-
terialise into three-dimensional BE modelling around the propagat-
ing cracks and shell FE modelling elsewhere in the structure. Thus,
BE-FE coupling becomes a particularly favorable option, for which
SGBEM has a special appeal, as shown in Sec. 11 of this survey.

5 TIME-DEPENDENT PROBLEMS

5.1 Linear elastic dynamics

SGBEM formulations of linear elastodynamic analysis problems for
three-dimensional solids were formulated in Ref. 141. The method
therein employed is similar to that of elastostatics, but the Wheeler-
Sternberg formulas, Refs. 41, 58, were used instead of Somigliana’s.
With a notation similar to that previously employed in elastostatics,
the Wheeler-Sternberg formulas can be written:

{

u
p
σ

}

=

{

∫

Γu

Ghu ⋆ p dΓ −

∫

Γp

Ghp ⋆ u dΓ − ḡh

}

,

(h = u, p, σ) (57)

where the asterisks denote convolution integrals, i.e., for instance,

Ghu ⋆ p =

∫ t

0

Ghu(x, ξ, t − τ )p(ξ, τ ) dτ. (58)

The two-point time-dependent matrix-valued functionsGhk =
Ghk(x, ξ, t − τ ), (h, k = u, p, σ), collect Stokes fundamental so-
lutions. Their explicit expressions are presented in the Appendix of
Ref. 100. Interpreted as influence or Green’s functions, thekernels

Ghk give in x ∈ Ω∞ at timet the effect specified by the first sub-
script of Ghk (i.e. displacements forh = u, tractions on the sur-
face element of normaln(x) for h = p and stresses forh = σ)
and caused by a unit discontinuity source applied atξ 6= x in Ω∞

at timeτ < t, this source being specified by the second subscript
of Ghk through a conjugation rule (i.e. unit impulse of force for
k = u, relative displacement layer on the surface element with nor-
mal n(ξ) for k = p and distortion fork = σ). The symmetry prop-
erties, Eq. (8), still hold:GT

hk(x, ξ, t) = Gkh(ξ, x, t) ∀x, ξ 6= x,
∀t ≥ 0 and for allh, k = u, p, σ. It can be assumed thatτ ≥ 0 and,
hence,Ghk(x, ξ, 0) = Ġhk(x, ξ, 0) = 0 ∀x, ξ 6= x. The terms
−ḡh (h = u, p, σ) account for the given load history and initial con-
ditions, i.e.:

−ḡh =

∫

Γp

Ghu ⋆ p̄ dΓ −

∫

Γu

Ghp ⋆ ū dΓ

+

∫

Ω

Ghu ⋆ b̄ dΩ +

∫

Ω

Ghσ ⋆ ϑ̄ dΩ

+

∫

Ω

ρĠhpu0 dΩ +

∫

Ω

ρGhuu̇0 dΩ (h = u, p, σ)

(59)

whereρ is the mass density and the overbars denote given functions
of space coordinates and time.

Equations (57) provide the displacementsu(x, t), tractions
p(x, t) = σ(x, t) · n(x) and the stressesσ(x, t) at pointx ∈ Ω∞

as superpositions of the responsesḡh to loads and initial conditions
(u0, u̇0), as well as to the unknown force layerp onΓu and relative
displacement layer−u on Γp. By their very nature, they satisfy the
motion equations inΩ but not the boundary conditions. The latter
conditions, enforced in a symmetric Galerkin mode, read:

∫

Γu

Ψ
T
u (u − ū) dΓ = 0,

∫

Γp

Ψ
T
p (p − p̄) dΓ = 0 (60)

whereΨu andΨp are shape function matrices modeling in space the
boundary unknownsu andp, namely:

u(x, t) = Ψu(x)Xu(t) onΓu

p(x, t) = Ψp(x)Xp(t) onΓp
(61)

Substituting from (57) foru andp into Eq. (60) and using Eq. (61),
one obtains:

Auu ⋆ Xp − Aup ⋆ Xu = Bu(t)

Apu ⋆ Xp − App ⋆ Xu = Bp(t)
(62)

having set:

Ahk(t) =

∫

Γh

∫

Γk

Ψ
T
h (x)Ghk(x, ξ, t)Ψk(ξ) dΓ dΓ

= A
T
kh(t), (h, k = u, p) (63)

Bh(t) =

∫

Γh

Ψ
T
h (x)¯̄gh(x, t) dΓ, (h = u, p) (64)

where:

¯̄gu = ū + ḡu onΓu, ¯̄gp = p̄ + ḡp onΓp (65)

Equations (62) are the space-discretized equations of motion and
constitute a symmetric system of Volterra integral equations of the
first kind in time, with unknownsXp(t) and−Xu(t), these un-
knowns being the time histories of the nodal values of the boundary
tractionsXp(t) and of the sign-reversed displacements−Xu(t).
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Their integration can be achieved using a time-stepping procedure,
see e.g. Ref. 88.

An alternative is as follows. Let Eq. (62) be rewritten in thecom-
pact form

A ⋆ X = B(t), ∀t ≥ 0 (66)

where

A =

(

Auu Aup

Apu App

)

X =

(

Xp

−Xu

)

B =

(

Bu

Bp

)

and let the time-primitivẽA(t) of A(t) be introduced, i.e.

A(t) = ˙̃
A(t), Ã(0) = 0.

Note thatÃ can be derived from the primitive fundamental solutions

G̃hk asA is derived from theGhk = ˙̃
Ghk (G̃hk = 0 for t =

0), Ref. 141. Thus, through integration by parts, Eq. (66) canbe
reformulated as

Ã ⋆ Ẋ = B(t) − Ã(t)X(0). (67)

Denoting byt0 = 0, t1, t2, . . . a subdivision of the time axis into
equal intervals of length∆t, using the notationX (n) = X(tn) and
writing Eq. (67) attn with initial conditions attn−1, one arrives at
the equation

∫ tn

tn−1

Ã(tn − τ )Ẋ(τ ) dτ = ∆B(n) − Ã(∆t)X (n−1) (68)

where∆B(n) = B(n) − B(n−1). ModellingX as e.g. piecewise-
linear in time, i.e.Ẋ(τ ) = Ẋ (n) = ∆X (n)/∆t in then-th interval
and noting thattn − τ = ∆t − (τ − tn−1) = ∆t − τ ′, one obtains
from Eq. (68):

J∆X (n) = ∆B(n) − Ã(∆t)X (n−1) (69)

where the matrixJ is symmetric and step-independent, i.e.

J =
1

∆t

∫ ∆t

0

Ã(∆t − τ ′) dτ ′.

The principal submatrices ofJ , i.e. Juu andJpp, can be shown to
be, respectively, positive and negative definite.X (0) can be com-
puted taking into account the initial conditions(u0, u̇0). Applying
Eq. (69) sequentially forn = 1, 2, . . ., the vectorsX (1), X (2), . . .
collecting the station values of the boundary unknowns thatsolve the
motion equations (67) can be computed. The numerical implemen-
tation of the above integration procedure is still lacking.

In Ref. 141, the Galerkin boundary conditions (60) were derived
making use of a variational procedure based on the Hu-Washizu prin-
ciple for dynamics (cf. Sec. 7). The same equations (60) can be ob-
tained by an alternative variational approach to the dynamic problem
proposed in Refs. 99 and 100 (see Sec. 7).

5.2 Elastic-plastic dynamics

The SGBEM for elastodynamics outlined in Sec. 5.1 was extended
to elastic-plastic dynamics (Refs. 125 and 127) through a procedure
quite similar to that employed in statics. The key concept consists
of replacing the imposed strains̄ϑ of Eq. (59) by the sum̄ϑ + εp,
whereεp(x, t) denotes the unknown plastic strains, but adding the
new integral withεp as a third integral before the data vectorsḡh in
Eq. (57). With this obvious changes, Eq. (57) reads:







u

p

σ







=

{

∫

Γu

Ghu ⋆ p dΓ −

∫

Γp

Ghp ⋆ u dΓ

}

+

{

∫

Ω

Ghσ ⋆ ε
p dΩ − ḡh

}

, (h = u, p, σ) (70)

where the data vectors̄gh are still given by Eqs. (59). These equa-
tions describe the elastic response ofΩ∞ to the given loads and ini-
tial conditions, as well as to the plastic strainsεp(x, t) treated as
imposed strains. The Galerkin boundary conditions (60) still hold. A
domain discretization is required for the fieldεp and can be achieved
in exactly the same way as in statics (see Sec. 3), that is, subdividing
the domain in appropriate cell elements and writing

ε
p(x, t) = Ψϑ(x)Θp(t) in Ω

whereΨϑ is the relevant shape function matrix andΘ
p(t) collects

node values of plastic strains. Thus, following the same path as in
elastodynamics, one arrives at an equation similar to (66),i.e.

A ⋆ X + C ⋆ Θ
p = B(t), ∀t ≥ 0 (71)

where:

C =

{

Cu

Cp

}

, Ch(t) =

∫

Γh

∫

Ω

Ψ
T
hGhσΨϑ dΩ dΓ (h = u, p).

(72)
The motion equation (71) must be supplemented by the equation

Σ = C
T ⋆ X + Ĝσσ ⋆ Θ

p − B̄Ω, ∀t ≥ 0 (73)

where, similarly to the quantities defined in Secs. 2 and 3 butnow
with the dependence on time:

Σ(t) =

∫

Ω

Ψ
T
θ σ dΩ, B̄Ω(t) =

∫

Ω

Ψ
T
θ ḡ dΩ, (74)

Ĝσσ(t) =

∫

Ω

∫

Ω

Ψ
T
θ GσσΨθ dΩdΩ. (75)

The generalized stressesΣ are conjugate (or dual) tȯΘ
p

in the sense
of Prager that the productΣT

Θ̇
p

equals the total continuum plastic
dissipation, see Sec. 3.2. Equation (73) is obtained by substituting
into Eq. (74)1 the expression (57) ofσ.

Equations (71) and (73) are Volterra equations of the first kind
which must be solved, through a typical step-by-step procedure of
numerical plasticity, with the aid of a set of additional relations
which, like in quasi-static plasticity (cf. Eqs. 40, Sec. 3), account
for the plastic material model suitably approximated for the cell ag-
gregate, see Ref. 127.

The SGBEM in the above formulation for elastic-plastic dynam-
ics was not numerically tested so far, to the writers’ knowledge.
Probably the main obstacle to overcome in computer implemen-
tations and practical applications rests in the generation, through
Eqs. (63), (72) and (74)2, of matricesA (which intervenes also in
linear elastic dynamics, Sec. 5.1),C , Ĝσσ in Eqs. (71) and (73). In
fact, as a remarkable and computationally crucial difference from the
quasi-static time-independent context, the entries of these matrices
are functions of time, not numerical coefficients. Such difficulty can
be attenuated, as proposed in Refs. 99 and 100, if matrices ofnum-
bers are generated by performing, once and for all in a coordinated
fashion, the four integrations required (two in space and two in time
over the step or, in elasticity, over the time interval of interest).

As an alternative to the preceding formulations, a SGBEM for
dynamic inelastic analysis has recently been formulated and imple-
mented (Ref. 101) with recourse to static fundamental solutions. This
approach avoids the aforementioned difficulty. In fact, itsstarting
point merely consists in adding to each l.h. side of Eqs. (28)-(30) a
domain integral containing inertial forces−ρü(ξ). To compensate
for the presence of these unknown body forces inΩ, displacements
u(x) in Ω have to be represented as effects as well, giving rise to
a further integral equation. The unpleasant consequence isthat the
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domain integrals with unknowns to model are not only the usual ones
with plastic strains but also these reflecting the inertia effects. The
price seems to be worth paying since, after space-modelling, the con-
struction (by double integrations) of the coefficient matrices is car-
ried out like in the quasi-static regime, Sec. 3.1. Subsequently, any
integration scheme of inelastic dynamics may be employed toformu-
late the finite-step problem basically like in Secs. 3.2 and 3.3. In the
presence of constitutive instabilities, Sec. 3.4, the stabilising effects
of inertia should be properly allowed for and exploited likein FEM.

Numerical tests and comparisons with solutions generated by a
commercial FE code (ABAQUS) and by traditional BEM from the
literature, partly presented in Ref. 101, turn out to be quite encour-
aging.

The use of static kernels in dynamic problems has already been
developed in traditional BEM, sometimes with the provisionof trans-
forming the additional inertial domain integral into boundary inte-
grals by Nardini-Brebbia’s ‘dual reciprocity technique’ (Ref. 118).
While this technique has still to be tested in the context of concern
herein, the SGBEM based on static kernels for inelastic dynamics
has been enriched (Ref. 101) by theoretical results with computa-
tional interest, such as those established for SGBEM in quasi-static
plasticity (Ref. 42) and mentioned in Sec. 3.3.

5.3 Other time-dependent problems

Like in other branches of computational mechanics, the develop-
ments in the SGBEM of concern herein tend to primarily focus on
elasticity and plasticity, partly because of the centrality of these ar-
eas in structural mechanics and engineering, where the motivations
of those developments and the background of most researchers are
located. Outside the core areas dealt with in what precedes,some at-
tention has been paid so far to the SGBIE-BE approaches in thefol-
lowing categories of linear evolutive analysis problems inchronolog-
ical time (in contrast to event-ordering time variable of quasi-static
inelastic analysis).
(a) Transient heat conduction, implicitly covering through analogy
other diffusion phenomena described by strictly identicalmathemat-
ical models, such as Darcy filtration in porous media.

(b) Linear viscoelasticity based on the classical constitutive law ex-
pressed by a convolutive integral understood in the sense ofStieltjes
in order to cover input variables (stress or strain tensor) discontinu-
ous in time.

(c) Poroelasticity in Biot sense of an elastic solid skeleton the poros-
ity of which is fully saturated by a liquid. By analogy, othertwo-
phase coupled problems can be regarded as implicitly covered, such
as linear thermoelasticity.

(d) Linear acoustics in media with uniform (and in some casespiece-
wise uniform) constitutive properties. The mathematical model is
usually the scalar or vector wave equation, and other physical kinds
of wave propagation, e.g. electromagnetic waves, are covered. Most
applications of computational acoustics deal with unbounded media.

Traditional BEM have been extensively studied in the last few
decades for the numerical solution of the above initial-boundary
value problems arising in a number of diverse technologies.Surveys
of the abundant relevant literature can be found, e.g., in the books
Refs. 13, 29, 31. As for the present SGBEM the few results available
so far can briefly be outlined as follows.

The studies so far available on SGBIE-BEM for problem cate-
gories (a), (b) and (c) (Refs. 35, 36, 153 respectively) havein com-
mon a strategy consisting of the following phases: (i) time-dependent
Green’s functions (fundamental solutions) were taken fromthe liter-
ature or ad hoc constructed for the homogeneous spaceΩ∞ (of a

linear conductive, viscoelastic or poroelastic medium, respectively)
considering the effects of not only single-layer but also double-layer
sources; (ii) using both these kinds of sources on suitably chosen
complementary parts of the boundary of the bodyΩ, BIEs are gen-
erated such that they can be interpreted as a (linear) integral operator
(in space and convolutive in time) which transforms the unknown
fields onΓ over a given time intervalT , sayy(ξ, τ ), into known
data-capturing fields, sayg(x, t), x ∈ Γ, 0 ≤ t ≤ T ; (iii) the inte-
gral operatorL is shown to be self-adjoint with respect to a bilinear
form, convolutive in time, defined overΓ × T ; (iv) the above bilin-
ear form and symmetry property ofL provide a quadratic functional
(convolutive in time) ofy, the stationarity of which characterizes the
solution overΓ × T ; (v) field modelling (under suitable continuity
constraints dictated by the kernel singularities in space)and its sub-
stitution into the above functional, through the variational property
(iv) and by four integrations (two in space and two convolutive in
time), leads to a linear algebraic equation system, which governs the
modelled approximate solution overΓ × T and is endowed with a
symmetric matrix of coefficients.

The same strategy outlined in what precedes will be described
with some formal details in Sec. 7 with reference to linear elastody-
namics and was pointed out for elastostatics in Sec. 2.2, comment
(a). Therefore, only the supplementary remarks which follow appear
to be appropriate here.

(A) The line of thought centered on the generation of a symmetric
integral operator overΓ× T and on the consequent variational theo-
rem, represents a noteworthy unifying framework (alternative to the
Galerkin weighted-residual approach) to formulations of SGBEM in
a variety of problems, especially viable in those where energy con-
cepts are not as natural and perceptible as in elasticity andplasticity.
The methodology has origin in classical works (by Gurtin, Ref. 74,
Tonti, Ref. 162 and others) on linear mechanical initial-boundary
value problems formulated in terms of partial differentialequations.

(B) A variational characterization of the boundary solution over a
time interval can be regarded as a central ingredient in the develop-
ment of SGBEM for time-dependent problems. Further progress can
be achieved in this direction by generating a variational characteriza-
tion in terms of saddle point with separation of variables, similar to
that easily proved in elastostatics (Secs. 2.2 and 7; Refs. 135, 154),
namely with a minimum with respect to the static variables and a
maximum with respect to the kinematic ones. For transient heat con-
duction and its analogues, problems of kind (a), this result(emerging
in elasticity as a straightforward corollary of the variational proper-
ties (A)) has been established in Ref. 37. In fact, the boundary solu-
tion over the unbounded time interval0 ≤ t ≤ ∞ has been shown to
be characterized by a minimum with respect to the time-histories of
fluxes on the Dirichlet boundary and by a maximum with respectto
the time-histories of temperatures on the Neumann boundary, when
the functional involved is constructed based on a special weighted
bilinear form in the Laplace transforms of the unknown boundary
fields according to Rafalski’s (1969) ‘orthogonal projection method’
for linear partial differential equations.

(C) In the problems listed at the beginning of this Section, the double-
layer, or ‘kinematic’, sources needed for the SGBEM consistof dis-
continuities, concentrated (i.e. Dirac-modelled) in space and time,
of the following quantities, respectively: (a) temperatures, (b) dis-
placements, (c) displacement and pressure, (d) acoustic pressure or
velocity potential (while the more familiar single-layer sources con-
cern: heat flux, tractions, tractions and fluid flux, normal velocity,
respectively). Explicit expressions (concerning 2D and/or 3D ‘free
space’Ω∞) could be found in the earlier literature only for some of
these kernels. Other ad hoc expressions, for isotropic media, have
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been derived (and presented in Appendices) in the first papers on
SGBEM on viscoelasticity, Ref. 35, and poroelasticity, Ref. 123.

(D) For the classes (a), (b) and (c) of time-dependent problems, the
SGBEM has been formulated and preliminarly discussed from some
standpoints of computational interest (e.g.: marching solution proce-
dures, Ref. 36, BE-FE coupling, Ref. 37). However, engineering-
oriented implementations and comparative numerical testsof the
SGBEM (see Sec. 12) are still missing in these areas, and so are,
to the writers’ knowledge, investigations of relevant computational
theoretical issues such as algorithmic stability typically important in
time-dependent problems.

(E) In linear acoustics and wave propagation the SGBEM has at-
tracted since several years a considerable attention and application-
oriented effort research effort, e.g. Refs. 76, 77, even if unfortunately
with limited crossfertilization among neighbouring areas.

6 OTHER ANALYSIS PROBLEMS

6.1 Limit and shakedown analysis, deformation bounds

Solving a limit analysis problem requires consideration ofeither
equilibrated stress states with the static approach, or compatible
plastic strain fields with the kinematic approach, whereas the elas-
tic properties of the material behavior turn out to be irrelevant, i.e.
limit analysis exhibits the nature of a rigid-plastic theory. There-
fore, the boundary integral equation method (BIEM) and the relevant
discretized forms as the BEM seem to be unsuitable to solve limit
analysis problems, since the BIEM is deeply rooted in the material
elastic behaviour through the fundamental solutions and essentially
operates by superposing elastic states, i.e. complete elastic solutions
to suitable auxiliary problems. As pointed out in Refs 110, 111, this
apparent drawback can be overcome by expressing any equilibrated
stress field as the superposition of two (elastic) stress fields, one of
which is the BIEM response to the pertinent loads and the other is a
self-stress field obtained as the BIEM response to an arbitrary field
of initial plastic strains; analogously, a compatible plastic strain field
is one whose BIEM stress response identically vanishes. From the
same standpoint, the BIEM appears to be applicable to shakedown
analysis problems, which also require consideration of analogous
stress and strain fields. In fact, limit analysis can be regarded as a
special case of shakedown analysis obtainable by considering a pro-
portional loading instead of an amplification of a domain of variable
repeated loads.

Another difficulty, pointed out in Refs 110, 111, 135, 136, arises
when the BIE is approximated by the conventional direct BEM,
which does not preserve self-adjointness and leads to nonsymmetric
solving equation systems. This implies that the BEM stress response
to any initial plastic strain field is not necessarily a self-stress field
and that, as a consequence, the identically vanishing of thestress re-
sponse does not guarantee that the related initial strain field is com-
patible. For these reasons, the conventional direct BEM is not well
suited to limit and shakedown analysis, whereas the SGBEM is. It
has been proven in Refs 135, 136 that the SGBEM stress response
to any initial plastic strain field is a self-stress field and that any ini-
tial plastic strain field whose SGBEM stress response vanishes iden-
tically is compatible; in other words, the SGBEM does provide a
means to construct self-stresses and compatible initial strains, with a
degree of redundancy depending on the mesh, just like the FEM.

The conventional direct BEM was employed in Ref 110 to ad-
dress limit analysis and in Ref 111 to address shakedown analysis in
perfect plasticity. The validity of nonsymmetric formulations rests
on the assumption that the mentioned deficiencies of the conven-

tional direct BEM can be interpreted as modelling errors andthus
can be reduced to within acceptable limits by adopting suitable dis-
cretizations. The safety factor formulated by SGBEM or traditional
BEM exhibits the same mathematical programming setting (inpar-
ticular, linear programming if the yield surface is piecewise linear)
as in the FEM, but with the following peculiarities: in the static ap-
proach, the self-stress variables required by the static (lower bound)
theorem are expressed in terms of initial plastic strain variables; in
the kinematic approach, the compatible initial plastic strain variables
required by the kinematic (upper bound) theorem are replaced by
stress-free strain variables.

A discussion of the shakedown analysis problems for perfectplas-
ticity within the framework of BIEM is given in Ref 124 where the
classic Melan’s and Koiter’s theorems, Ref 114, are reproposed with
the pertinent BIEM language, and their duality relationship assessed.
The SGBEM is used in association with a consistent domain dis-
cretization cells aimed at the interpolation of the plasticflow laws by
means of the maximum plastic work theorem (see also Refs 97, 133,
135, 136).

A related topic where BIE methods can be usefully applied is con-
cerned with the deformation bounding techniques, Ref. 131.These
are analytical/numerical procedures which are able to provide use-
ful information about the actual plastic deformations produced in a
body subjected to some load history, without performing a cumber-
some step-by-step analysis. Deformation bounds may be a necessary
complement of shakedown analysis in consideration that this analy-
sis gives no information regarding the plastic deformationoccurred
in the transient elastic-plastic response preceding elastic adaptation.
An early attempt to formulate bounding techniques by BIE waspre-
sented in Ref 105, where symmetry is shown to be a pre-requisite for
any successful formulation of this type, and procedures of ‘forced
symmetrization’ were proposed in order to make the conventional
direct BEM applicable to this aim (Ref. 98). The SGBEM was em-
ployed in Ref 132 to show that the so-called ‘pertubation method”
previously devised in Ref 131 can be given a BIE format. A general
bounding principle was there formulated which is able, in principle,
to provide bounds to several types of plastic deformations,e.g. plas-
tic strains, plastic dissipation, generalized residual displacements at
the boundary, and the like. No numerical applications were presented
in the papers quoted above.

6.2 Elastic analysis of plates

Nonsymmetric boundary integral formulations for plate bending,
based on the use of the fundamental solution for biharmonic prob-
lems, have been studied by various authors, see the book Ref.23 or
the relevant chapters in Refs. 13, 31. They consist of two coupled
boundary integral equations, one strongly singular and theother hy-
persingular (i.e. containing singularities of order1/r and1/r2, re-
spectively), associated with the representation formula of the flexural
displacement and its normal derivative, respectively, at apoint of the
boundary. The traditional BE approach rests, as usual, on collocating
those integral equations at a finite number of boundary points.

On the other hand, not much effort has been directed to SGBIE
formulations. Tottenham, Ref. 163, outlines how a symmetric for-
mulation can be obtained by weighting in a Galerkin sense suitable
equations containing different kind of sources: forces, moments, bi-
couples and tri-couples. Singular integrations are next performed
analytically under restrictive hypotheses on geometry andfield mod-
elling. More recently, Galerkin BIE formulations for plates with free
edges have been derived in Refs. 66, 119, the latter allowingfor the
presence of corners.

In a recent work, Ref. 59, a direct symmetric boundary integral
formulation has been sought in the form of the stationarity condi-
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tions of the Lagrangian functional obtained by incorporating kine-
matic boundary conditions, in the form of constraint terms,into the
potential energy associated with bending when first-order variations
of the unknown bending displacement solve the homogeneous elas-
tic equilibrium equation. In deriving such a formulation one has to
deal with very high potential singularities on the boundary, of order
up to1/r4; this fact may explain the past lack of research effort in
this area. The evaluation of these terms is tackled using integrations
by parts, thanks to the fact that the most singular kernels are shown
to be derivatives of other, less singular, kernels with respect to the
arc length along the boundary, in an approach similar in principle
to that developed in Sec. 8.1. This result in a SGBIE formulation
which is direct, i.e. in terms of mechanical unknowns on the bound-
ary (bending displacement, normal slope, normal moment andKirch-
hoff shear), accommodates general boundary conditions, and include
unknown jumps of twisting moment at corners. For the case of free
edges, this formulation and that of Ref. 66 are identical. The sin-
gularities involved are at most logarithmic, like in two-dimensional
elasticity after regularization, so that the numerical quadrature tech-
niques briefly discussed in Sec. 12 are applicable. This formulation
has been implemented with either straight or circular boundary el-
ements, and successfully tested against several analytical solutions.
Finally, a BE expression of the stiffness matrix of an unloaded plate
has been derived following a method similar to that presented in
Sec. 11 for 2-D and 3-D elasticity.

Only very few practical applications of SGBEM have yet been
published. One of the initial motivations for the aforementioned
work was the study of cracks and delamination, using energy con-
cepts like energy release rate. Like in classical linear fracture me-
chanics, Secs. 4 and 10, a domain derivative approach to the com-
putation of energy release rate in cracked or delaminated plates cru-
cially benefits from the symmetry of the SGBIE formulation. In a
first attempt in this direction, Ref. 61, encouraging numerical results
have been achieved.

7 VARIATIONAL AND ENERGY APPROACHES

The energy principles of mechanics can be used through suitable
variational procedures to characterize the system’s response to given
external actions. These principles, together with the related varia-
tional procedures, have a remarkable role in the framework of the
discretization methods in order to give firm basis to the discretiza-
tion operations; that is, in order to derive, from a given continuum a
discrete system with qualitatively the same essential features. In this
way, the discrete solution is not only an approximate solution of the
original problem, but also the true solution for the discretized me-
chanical system. Such an approach to the continuum solutionprob-
lem has several beneficial consequences from both the numerical and
theoretical points of view. Namely, on one hand, error and conver-
gence analyses are in general easier to accomplish and convergence
of the numerical solution to the exact one is likely to occur even with
a greater convergence rate; on the other hand, the self-adjointness of
the original problem is preserved and the discretized equation set can
be employed as an effective analytical basis for theoretical investiga-
tions within the framework of discrete mechanics.

The Finite Element Method (FEM) is potentially susceptibleto
possess the above mentioned requisites of the energy-baseddis-
cretization methods, but the same cannot be stated for the conven-
tional BEM. The first attempt to formulate an energy-based BEM
can apparently be attributed to Reissner, who proposed in Ref. 148 a
boundary stationarity principle for linear elasticity anda related Ritz
type solution procedure. Zienkiewicz et al. employed in Ref. 176

the same stationarity principle to obtain a symmetric BEM formula-
tion on the basis of a standard BEM procedure. Substantiallyequiv-
alent formulations were proposed and numerically implemented by
Schnack (Refs. 150, 151), Dumont (Refs. 56, 57), De Figuereido and
Brebbia (Ref. 52), Davı̀ (Ref. 50) and other authors (see Sec. 13).
All these formulations, often referred to as hybrid BEMs (HBEM),
are characterized by symmetry and require single integrations over
the boundary. They are thus quite interesting to numerical solution
purposes, but have not been shown to possess the desirable requisites
of a genuine energy-based discretization method.

As mentioned in Sec. 2.1, kernelsGuu andGpp can be associated
with strain energies. Specifically, consider the displacement fieldu

generated in the elastic spaceΩ∞ = IR3 by a single-layer sourcef :

u(x) =

∫

Γ

Guu(x, ξ)f (ξ) dΓξ (76)

whereΓ is any closed oriented surface of IR3. Then, the strain energy
W∞ for the wholeΩ∞ is given by:

W∞ =
1

2

∫

Γ

(pT (x−)u(x−) − p
T (x+)u(x+)) dΓx (77)

having taken into account that the displacement field (76) (i) solves
the local elastic equilibrium equation and (ii) verifies radiation con-
ditions at infinity. Hence, using Eq. (4) and the continuity acrossΓ
of the field (76), one can write:

W∞ =
1

2

∫

Γ

∫

Γ

f
T (x)Guu(x, ξ)f (ξ) dΓξ dΓx (78)

Similarly, considering the displacement fieldu generated inΩ∞ =
IR3 by double-layer sourcesd:

u(x) =

∫

Γ

Gup(x, ξ)d(ξ) dΓξ (79)

Eq. (5) and computingp(x±) from (79),W∞ still given by Eq. (77)
becomes:

W∞ = −
1

2

∫

Γ

∫

Γ

d
T (x)Gpp(x, ξ)d(ξ) dΓξ dΓx (80)

Hence, the interpretation of kernelsGuu andGpp in terms of (pos-
itive) strain energies clearly entails the sign-definiteness of the rele-
vant quadratic forms, Eqs. (9), (10). The kernelsGuu, Gpp appear
also in the expression of the strain energy stored in a bounded elastic
solid (see Sec. 11).

In Sec. 2, SGBEM elastostatic formulations have been discussed
from a weighted-residual viewpoint. The same final formulation can
be obtained from variational principles, as explained in what fol-
lows. Hu-Washizu and Hellinger-Reissner principles of linear elas-
ticity were used in Refs. 131–137 to derive energy-based BEMfor-
mulations which happen to coincide with the symmetric Galerkin
ones, see Refs. 112, 155. With such formulations, the BE discretized
model turns out to be well defined, so that the related discrete equa-
tion set has a unique solution in terms of generalized boundary dis-
placements and tractions. For given generalized boundary data (ei-
ther diplacements or tractions at every boundary node), there is a
unique boundary response in terms of generalized variables(either
tractions, or displacements). This set of generalized boundary vari-
ables is representative of a class of continuum solutions that are
equivalent to one another, in the sense that the boundary displace-
ments and tractions of every solution have different distributions, but
result into the same (unique) generalized boundary values,respec-
tively. Following similar lines of thought, continuous SGBIE for-
mulations for three-dimensional elastostatics (Ref. 28) and Kirchhoff



Appl Mech Rev vol 51, 1998 Bonnet, Maier and Polizzotto: Symmetric Galerkin BEM 16

plate theory (Ref. 59) are shown to express the stationarityconditions
for an augmented elastic potential energy in which the kinematical
boundary data appear as constraints.

The same BEM formulation can also be derived using another
variational principle, that is, the so-called min-max principle pro-
posed in Refs. 133, 138. For an elastic body subjected to volume
forcesb̄ in Ω, imposed displacements̄u on Γu and tractions̄p on
Γp, let us consider the functional

Π[p, u] =
1

2

∫

Γu

∫

Γu

p
T (x)Guu(x, ξ)p(ξ) dΓx dΓξ

−

∫

Γu

∫

Γp

p
T (x)Gup(x, ξ)u(ξ) dΓx dΓξ

+
1

2

∫

Γp

∫

Γp

u
T (x)Gpp(x, ξ)u(ξ) dΓx dΓξ

−

∫

Γu

p
T

ḡu dΓx +

∫

Γp

u
T

ḡp dΓx (81)

whereḡu (x ∈ Γu) andḡp (x ∈ Γp) are functions of the data, i.e.:

ḡu(x) =
1

2
ū(x) −

∫

Γp

Guu(x, ξ)p̄(ξ) dΓξ

−

∫

Ω

Guu(x, ξ)b̄(ξ) dΩξ + −

∫

Γu

Gup(x, ξ)ū(ξ) dΓξ

ḡp(x) =
1

2
p̄(x) −−

∫

Γp

Gpu(x, ξ)p̄(ξ) dΓξ

−

∫

Ω

Gpu(x, ξ)b̄(ξ) dΩξ + =

∫

Γu

Gpp(x, ξ)ū(ξ) dΓξ

It can be proved that the solution in a suitable function set to the
saddle-point problem:

min
p

max
u

Π[p, u] (82)

provides the tractionsp = p|Γu and the displacementsu = u|Γp

pertaining to the solution of the boundary-value problem, and that
conversely the latter solution solves problem (82). The proof rests
on two requisites of the functional (81): (i) the symmetry properties
(8) of the kernelsGrs; and (ii) the positive and negative definiteness
of, respectively, the first and the third double integral of (82).

Modelling p as ph = Ψp(x)Xp on Γu and u as uh =
Ψu(x)Xu onΓp, one has

Π[ph, uh] =Π̃(P , U )

≡
1

2
P
T
Ĝ
pp

ppP − P
T
Ĝ
pu

puU

+
1

2
U
T
Ĝ
uu

uuU − P
T
Rp + U

T
Ru (83)

whereĜ
ij

rs are defined by Eq. (20) and

Ru =

∫

Γp

Ψ
T
u ḡp dΓ Rp =

∫

Γu

Ψ
T
p ḡu dΓ

Matrix Ĝ
uu

uu turns out to be positive definite and̂G
pp

pp negative defi-
nite. The min-max problem

min
(P )

max
(U )

Π̃(P , U ) (84)

is the discrete counterpart of (82). The relevant Kuhn-Tucker condi-
tions read:

Ĝ
pp

ppP − Ĝ
pu

puU = Rp, Ĝ
up

upP − Ĝ
uu

uuU = Ru (85)

and are the equations governing the modelled boundary fields. The
boundary min-max principle above has been extended as to include
frictionless unilateral contact boundary conditions in Ref. 139 and
deformation-theory plasticity in Refs. 140, 142, 143.

Another, related, energy interpretation of the SGBEM as de-
scribed in Sec. 2 is available. It is based on the fact, established
in Sec. 11, that the strain energyW in Ω associated with any elasto-
static state is given by

W =
1

2

∫

Γ

∫

Γ

p
T (x)Guu(x, ξ)p(ξ) dΓx dΓξ

−
1

2

∫

Γ

∫

Γ

u
T (x)Gpp(x, ξ)u(ξ) dΓx dΓξ (86)

Then, the following augmented potential energyL is introduced:

L =W −

∫

Γ

p̄
T (x)u(x) dΓx

+

∫

Γ

∫

Γ

λ
T (x)

{

Gup(x, ξ)u(ξ) − Guu(x, ξ)p(ξ)

}

dΓx dΓξ

where λ(ξ) is the Lagrange multiplier field associated with the
boundary compatibility constraint (i.e. the fact thatu, p are the
traces onΓ of an elastostatic stateu, σ in Ω). Then, by express-
ing the stationarity ofL, one finds that (i)λ = p and (ii) the un-
known partsp|Γu andu|Γp solve the now usual SGBIE formulation.
The above interpretation is ana posteriorione in the sense that the
weighted residual SGBIEs are used (with particular choicesof the
test functions) to establish Eq. (86), see Sec. 11.

Energy based variational formulations were also achieved for
elastodynamics in Ref. 141. The Hu-Washizu principle extended
to dynamics is there employed together with the classical Stokes
fundamental solutions. Through semidiscretization by boundary el-
ements, the original initial-boundary value problem is transformed
into a discrete set of Volterra time-integral equations of the first kind,
which can be numerically solved through a suitable time-stepping
algorithm. The potentialities of this formulation, thoughalready ex-
tended to plasticity in Ref. 125–127, deserve further study.

An alternative variational BEM formulation was given by Maier
et al. in Ref. 99, 100 with the use of a boundary integral operator
which is grounded on works on convolutive variational principles by
Gurtin, Ref. 74, and Tonti, Ref. 162. Let us set:

y(x, t) =

[

p(x|Γu , t)

u(x|Γp , t)

]

, ḡ(x, t) =

[

ḡu(x|Γu , t)

ḡp(x|Γp , t)

]

(87)

whereḡu and ḡp depend on the assigned loading and initial condi-
tions like in Eq. (59) but with̄ϑ = 0, that is:

ḡu = ū − ϕ̄u , ḡp = p̄ − ϕ̄p (88)

where

ϕ̄h =

∫

Ω

Ghub̄ dΩ +

∫

Γp

Ghup̄ dΓx −

∫

Γu

Ghpū dΓx

]

− ρ

∫

Ω

(

Ghu|(t=0)u̇0 + Ġhu|(t=0)u0

)

dΓξ (h = u, p)

denoting byu0 andu̇0 the given initial displacements and velocities.
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The above mentioned boundary operator is defined as follows:

Ly ≡



























∫ t

0

∫

Γu

Guu(x|Γu , ξ; t − τ )p(ξ, τ ) dΓξdτ

−

∫ t

0

∫

Γp

Gup(x|Γu , ξ; t − τ )u(ξ, τ ) dΓξdτ

∫ t

0

∫

Γu

Gpu(x|Γp , ξ; t − τ )p(ξ, τ ) dΓξdτ

−

∫ t

0

∫

Γp

Gpp(x|Γp , ξ; t − τ )u(ξ, τ ) dΓξdτ



























. (89)

This operator turns out to be symmetric (or self-adjoint) both in space
and time with respect to the time-convolutive bilinear form:

〈L y, y
′〉 =

∫ T

0

∫

Γ

y
′T (x, T − t)L y (x, t) dΓx dt, (90)

such that the equality

〈L y, y
′〉 = 〈L y

′, y〉 (91)

holds for arbitraryy andy′. As a consequence, the unknown bound-
ary displacements and tractions pertaining to the dynamic response
of the body to given loading and initial conditions can be obtained as
the displacements and tractions that make stationary the functional

F (p|Γu , u|Γp) ≡
1

2
〈L y, y〉 − 〈y, ḡ 〉. (92)

Through discretization by boundary elements with interpolations as

ph(x; t) = Ψp(x; t)P onΓu × T

uh(x; t) = Ψu(x; t)U onΓp × T
(93)

whereT denotes the time interval of interest, like in Sec. 2.2 for
elastostatics, the functional (92) transforms into a quadratic function.
The above variational formulation has been shown to be quitepower-
ful since it has been applied to a variety of time-dependent problems,
cf. Sec. 2.2, such as elastodynamics over piecewise homogeneous
domains (Ref. 100), viscoelasticity (Ref. 35) and transient heat con-
duction (Refs. 36, 37).

8 REGULARIZED SGBE FORMULATIONS

8.1 Regularization

The various fundamental solutions involved in SGBEM are singu-
lar whenx = ξ. In linear elastostatics, their singularities have been
specified by Eqs. (6) and (7). For other classes of problems (potential
theory, acoustics, elastodynamics, diffusion. . . ), the singular behav-
ior of the kernels is similar. In particular it is well known that cor-
responding dynamic and static fundamental solutions have the same
singularity (i.e. their difference is nonsingular).

From Eqs. (6)-(7), it is apparent that the various Galerkin BIE for-
mulations encountered in the previous sections cannot in general be
implemented in a straightforward way. In particular, the integral of
the so-called hypersingular kernelGpp(ξ, x) over a single surfaceΓ
can be defined only in the sense of Hadamard finite part or othersim-
ilar limiting processes, which requireC1,α continuity of the source
density function at the singular point. Its integral over the Cartesian
productΓ×Γ is convergent for 3D, and still divergent for 2D. More-
over the strongly singular kernelsGup, Gpu are integrable overΓ
only in the sense of the Cauchy principal value or other similar limit-
ing processes, which require aC0,α behavior of the density function

at the singular point. Henceforth,C0,α(Γ) is the set of functionsf
such that

∃α, 0 < α ≤ 1, ∃C > 0, ∀(x, y) ∈ Γ × Γ,

|f(y) − f(x)| < C |y − x|α

andC1,α(Γ) is the set of functions havingC0,α first-order deriva-
tives.

In view of the above circumstances, it is convenient to rearrange
somehow the SGBIE formulation in order to eliminate all difficulties
related to integrability before performing the actual discretization.
This step is usually known asregularization. This issue has been
addressed in several ways.

The symmetric formulation of Balakrishnaet al., Ref. 9, consists
of using weighted residuals of regularized displacement and traction
BIE; the integrability of kernelGpp is then settled at the first (inner)
integral level, at the expense of having to rely onC1,α behavior for
the unknown displacement. The somewhat involved resultingfor-
mulation otherwise allows for 2D and 3D implementation using any
usual interpolation scheme.

In the 2D implementation of Sirtori et al., Ref. 154, the rele-
vant double integrals are temporarily taken on two close butdistinct
curvesΓ andΓ⋆, whereΓ⋆ surroundsΓ and is in one-to-one cor-
respondence withΓ; then a piecewise linear discretization is intro-
duced forΓ, Γ⋆ and the unknown boundary variables and test func-
tions. This particular choice of discretization allows to evaluate an-
alytically all integrals while the discretizedΓh, Γ⋆h are kept distinct;
then, the limitΓ⋆ → Γ is taken analytically. In Ref. 154, a complex
variable formalism was found convenient, while in Ref. 98, where
this procedure was extended to elastic-plastic 2D analysis, real vari-
ables have been preferred in view of future 3D implementations.

A recent generalization of the limiting approach of Ref. 154and
98, applicable to either two- or three-dimensional situations, allows
to formulate regularized SGBIE in full generality; in particular three-
dimensional situations fall within this framework. Essentially, the
regularization technique consists of a limiting processΓ⋆ → Γ car-
ried out beforeany discretization. This is made possible by a key
property of theGpp kernel, which permits its reformulation as a re-
peated surface curl. Then,Stokes’ formula is applied with respect to
bothx andξ, resulting in the appearance of a new, weakly singular,
kernel. This approach is presented below for elastic problems with-
out body forces, following Ref. 28. The SGBIE formulation comes
e.g. from applying the Betti reciprocity identity

∫

Γ

[pTu
⋆ − u

T
p
⋆] dΓξ = 0 (94)

with a fictitious auxiliary state(u⋆, p⋆) defined in terms of densities
d⋆, f ⋆ on the auxiliary surfaceΓ⋆ exterior toΓ:

u
⋆(ξ) =

∫

Γ⋆

[Guu(ξ, x)f ⋆(x) + Gup(ξ, x)d⋆(x)] dΓx (95)

p
⋆(ξ) =

∫

Γ⋆

[Gpu(ξ, x)f ⋆(x) + Gpp(ξ, x)d⋆(x)] dΓx (96)

8.1.1 Strongly singular kernels

Consider first the well-known limit-to-the-boundary relations:

lim
ξ→Γ

∫

Γ

u
T (x)Gpu(x, ξ) dΓx

=
1

2
u(ξ) + −

∫

Γ

u
T (x)Gpu(x, ξ) dΓx (97)
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and

lim
x→Γ⋆

∫

Γ⋆

Gup(x, ξ)d⋆(ξ) dΓξ

= −
1

2
d
⋆(x) + −

∫

Γ⋆

Gup(x, ξ)d⋆(ξ) dΓξ (98)

denoting by the symbol –
∫

Γ
a Cauchy principal value (CPV) integral.

It follows that, in the limitΓ⋆ → Γ:

lim
Γ⋆→Γ

∫

Γ⋆

∫

Γ

u
T (x)Gpu(x, ξ)f ⋆(ξ) dΓξ dΓx

=
1

2

∫

Γ

u
T
f
⋆ dΓx

+

∫

Γ

{

−

∫

Γ

u
T (x)Gpu(x, ξ) dΓξ

}

f
⋆(ξ) dΓx (99)

and

lim
Γ⋆→Γ

∫

Γ

∫

Γ⋆

p
T (x)Gup(x, ξ)d⋆(ξ) dΓx dΓξ

= −
1

2

∫

Γ

p
T
d
⋆ dΓx

+

∫

Γ

p
T (x)

{

−

∫

Γ⋆

Gup(x, ξ)d⋆(ξ) dΓx

}

dΓξ (100)

At this point, the inner CPV integrals can be either evaluated by a
direct method (Guiggiani and Gigante, Ref. 73), or regularized using
the ‘rigid-body’ identity

−

∫

S

Gpu(x, ξ) dΓξ = (κ(ξ) −
1

2
)1 (ξ ∈ S) (101)

whereS is a closed surface,1 denotes identity matrix andκ(ξ) = 1
or 0 depending on whether the unit normaln to S (implicitly present
in the kernelGpu(x, ξ)) is interior or exterior to the surfaceS. For
instance: (i) if the domain boundaryΓ is connected, one hasκ =
1 for an exterior problem andκ = 0 for an interior problem; (ii)
if the domain boundaryΓ is made of two or more disjoint closed
components, both casesκ = 1 or 0 arise.

Besides, in 2D situations, the kernelsGup, Gpu can be recast as
derivatives of other kernels with respect to the arc-length, as shown in
Ref. 65; hence regularization through integration by partsis available
in this case, and has indeed been used in Refs. 60, 104, 154.

8.1.2 Hypersingular kernel

Turning now to the most singular kernel,Gpp, recall that the Kelvin
displacement kernelGuu is such that

Guu(x, ξ) = Guu(ξ, x) = Guu(ξ − x) (102)

which in turn implies that

∇xGuu(x, ξ) = −∇ξGuu(x, ξ) = ∇Guu(ξ − x) (103)

where∇f(ξ − x) denotes the gradient off(z) taken atz = ξ −
x. Indeed, from the Galerkin representation formula for solutions in
isotropic elasticity (with shear modulusµ and Poisson ratioν), one
has

Guu = 2(1 − ν)∇2F1− ∇∇F (104)

where1 denotes the identity matrix in IR3 and the scalar function
F (ξ − x) for 3D and 2D situations, respectively, reads:

F (ξ − x) =
1

16πµ(1 − ν)
r

F (ξ − x) =
−1

16πµ(1 − ν)
r2 ln r

and are biharmonic:∇4F = 0 for anyξ 6= x. Theik-component of
Gpp is then given by

[Gpp(x, ξ)]ik = −CijabCkℓcd[Guu(x, ξ)]ac,bdnj(x)nℓ(ξ)

= Zijkℓ(x, ξ)nj(x)nℓ(ξ)

whereC is the elastic tensor andf,b(ξ − x) denotes the partial
derivative ∂

∂zb
f(z) taken atz = ξ − x. Inserting Eq. (104) in the

above formula, one obtains the expression of theZijkℓ(x, ξ) com-
ponents in terms ofF as follows:

1

µ2
Zijkℓ = − 4ν[F,ijkℓ − δijF,ppkℓ − δkℓF,ppij ]

− 2(1 − ν)[2F,ijkℓ − δikF,ppjℓ

− δjℓF,ppik − δiℓF,ppjk − δjkF,ppiℓ] (105)

Then, δ being the Kronecker symbol ande the Ricci permutation
tensor, using the algebraic identityeaepecfp = δacδef − δafδbe, one
obtains

eiepejfqekgreℓhsδpqδrsF,efgh

= F,ijkℓ − δijF,ppkℓ − δkℓF,ppij + δijδkℓ∇
4F

and similar relations under permutations ofi, j, k, ℓ. Finally, since
∇4F = 0 for any ξ 6= x, substitution of the above identities into
Eq. (105) leads to the following expression ofGpp:

[Gpp(x, ξ)]ik = Rξ
qR

x
sBiqks(x, ξ) (106)

in terms of thesurface curldefined as

Rcf(ξ) ≡ eabcna(ξ)
∂f

∂xb
(107)

and in terms of the new kernel

Biqks = eiepekgrµ
2[4νδpqδrs

+ 2(1 − ν)(δprδqs + δpsδqr)]
∂2F

∂ξe∂xg
(108)

This kernel turns out to be only weakly singular (O(1/r) for 3D and
O(ln r) for 2D problems).

The surface curl, Eq. (107), is associated to the following form of
the Stokes’ formula:

∫

S

Rcf dS =

∫

∂S

fτc ds (109)

whereS is any regular surface andτ is the unit tangent to its edge
∂S, if present (i.e. ifS is not closed). Thus, application of the above
identity together with (106) leads to

∫

Γ

∫

Γ⋆

u
T (x)Gpp(x, ξ)d⋆(ξ) dΓξ dΓx

=

∫

Γ

∫

Γ⋆

Rqui(x)Biqks(x, ξ)Rsd
⋆
k(ξ) dΓξ dΓx (110)

Note that no contour term appears sinceΓ andΓ⋆ are closed surfaces
and bothu andd⋆ are continuous. At this point, since the kernel
Biqks is weakly singular, Eq. (110) is valid in the limitΓ⋆ → Γ.

For two-dimensional problems, the above considerations about
the hypersingular kernelGpp still apply, with some simplifications.
Let e3 be the direction of invariance, and define the unit tangentτ to
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the boundary curveΓ by τ = e3 ∧ n, or τb = eab3na. Thus,Rcf ,
Eq. (107), reduces toδc3d/ds (s: arc length) and

[Gpp(x, ξ)]ik =
d

dsξ

d

dsx
Bik(x, ξ)

Bik(x, ξ) =
µ

2π(1 − ν)
[ln rδik − r,ir,k]

(111)

The above expression is used in Ref. 60.
To recapitulate, the final SGBIE formulation, ready for imple-

mentation, is obtained through the following steps: (i) substitute
Eqs. (95-96), withf ⋆ = 0 on Γ⋆p andd⋆ = 0 on Γ⋆u, into (94); (ii)
take the limit expressions given by Eqs. (99), (100) and (110); (iii)
split Γ into Γu, Γp and separate knowns̄u, p̄ and unknownsu, p.

It is worth noting that in general the unknown displacementu and
the kinematical trial functiond⋆, both defined onΓp, do not belong
to the same function space, since they must realize continuous ex-
tensions onΓ of ū and the null function onΓp, respectively. Then,
one way to guarantee a symmetric final formulation is to introduce a
functionû chosen so that̂u = ū onΓu, continuous onΓ and other-
wise arbitrary, and define onΓp the new unknownv = u − û; then
bothv andd⋆ are continuous and vanish onΓu. For pure Neumann
boundary conditions, the introduction ofû, v is not necessary.

Assume that the boundaryΓ, boundary variablesu, p and trial
functionsd⋆, f ⋆ are discretized in the usual BEM fashion. Follow-
ing the notations of Eqs. (18), (19) of Sec. 2,û andv can be simply
defined as the interpolations of the prescribed displacement nodal
values and of the unknown ones, respectively, namely:

û = Ψu[0
T , Ū

T
]T v = Ψu[X

T
u , 0T ]

The final outcome of the regularization procedure is, of course, the
linear system of equations (23), i.e.

[

Ĝ
uu

uu −Ĝ
up

up

−Ĝ
pu

pu Ĝ
pp

pp

] {

Xp

Xu

}

=

{

Bf
u

Bd
p

}

but now the various submatrices are given by

Ĝ
pp

pp =

∫

Γp

∫

Γp

RΨ
T
u (x)Bpp(x, ξ)RΨu(ξ) dΓx dΓξ (112)

Ĝ
up

up =

∫

Γp

∫

Γu

Ψ
T
u (x)Gpu(x, ξ)Ψp(ξ) dΓx dΓξ (113)

Ĝ
pu

pu =

∫

Γu

∫

Γp

Ψ
T
p (x)Gup(x, ξ)Ψu(ξ) dΓx dΓξ (114)

Ĝ
uu

uu =

∫

Γu

∫

Γu

Ψ
T
p (x)Guu(x, ξ)Ψp(ξ) dΓx dΓξ (115)

and the subvectors by

B
f
u =

∫

Γu

κ(ξ)ūT (ξ)Ψp(ξ) dΓξ

+

∫

Γ

∫

Γu

[ûT (x) − û
T (ξ)]Gpu(x, ξ)Ψp(ξ) dΓx dΓξ

−

∫

Γp

∫

Γu

p̄
T (x)Guu(x, ξ)Ψu(ξ) dΓx dΓξ (116)

and

B
d
p =

∫

Γp

(κ(ξ) − 1)p̄T (ξ)Ψu(ξ) dΓξ

−

∫

Γ

∫

Γp

Rû
T (x)Bpp(x, ξ)RΨu(ξ) dΓx dΓξ

+

∫

Γp

∫

Γp

p̄
T (x)Gup(x, ξ)[Ψu(ξ) − Ψu(x)] dΓx dΓξ

−

∫

Γp

p̄(x)TΨu(x)

∫

Γu

Gup(x, ξ) dΓx dΓξ (117)

whereκ(ξ) has the same meaning as in Eq. (101).
All singleinner surface integrals in the above formulas are at most

weakly singular and, hence, have a meaning in the usual Riemann
sense. In particular, the integrals overΓp of Ĝ

up

up andĜ
pu

pu are at most
weakly singular by virtue of the fact that the relevant interpolation
functionsΨu are continuous and vanish along the separation curve
betweenΓu andΓp.

It is worth stressing that Eqs. (112) to (117) hold for interior
as well as exterior problems, and that they can accommodate non-
connected boundaries. They provide in all respects an adequate basis
for a purely numerical implementation, i.e. relying solelyon numer-
ical quadrature techniques. This fact is very valuable for general-
purpose implementations to come, especially for three-dimensional
SGBEM algorithms, because it enables one to use curved elements
and high-degree interpolations, like in traditional collocation BEMs.
Of course, the purely numerical approach to SGBEM implemen-
tation is by no means the only correct one, and various other ap-
proaches, mixing numerical and analytical quadrature, have been
successfully developed, see e.g. Refs. 79 and 81.

8.2 Indirect SGBEM formulation

Following classical methods of potential theory, letΩ be bounded
and introduce its unbounded complementΩ+ = Ω∞ \ Ω. Consider
an interior and an exterior problem simultaneously, with equal dis-
placement data onΓu and opposite traction data onΓp: ū+ = ū and
p̄+ + p̄ = 0. Combining the SGBEM formulations for both prob-
lems, using Eqs. (112) to (117), yields a new formulation, named
indirect, in terms of new nodal unknownsXϕ = X+

u − Xu and
Xπ = X+

p + Xp. The corresponding linear system of equations is:
[

Ĝ
uu

uu −Ĝ
up

up

−Ĝ
pu

pu Ĝ
pp

pp

] {

Xπ

Xϕ

}

=

{

L̂
u

u

L̂
p

p

}

(118)

L̂
u

u =

∫

Γu

p̄
T
Ψp dS L̂

p

p =

∫

Γp

p̄
T
Ψu dS

A significant simplification occurs in that all double-integral terms on
the right-hand side are cancelled out, because the kernelsGup, Gpu

depend linearly on the exterior unit normal to the relevant domain,
andGpp depends quadratically on it.

Indirect SGBE formulations are natural symmetrizations ofindi-
rect BEM obtained from e.g. single-layer representations for Dirich-
let problems and double-layer representations for Neumannprob-
lems. Such, formulations have been applied to radiation andscatter-
ing problems. For instance, an early indirect SGBIE formulation for
mixed boundary value problems in exterior acoustics was established
in Ref. 76; various symmetric indirect formulations for Dirichlet and
Neumann problems are presented in Ref. 121.

8.3 Crack problems

The regularization approach for cracked bodies follows thesame
steps as in Sec. 8.1, but with the Betti theorem and fictitiousstate
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defined by Eqs. (45), (46), (47); an auxiliary surfaceS⋆ must be in-
troduced in order to consider the limiting situationS⋆ → S. As a
result, the new termBψ

ϕ in the right-hand side of (48) is given by

B
ψ
ϕ =

∫

S

p̄
T (ξ)Ψu(ξ) dΓx

+

∫

Γ

∫

S

Rû
T (x)Bpp(x, ξ)RΨϕ(ξ) dΓx dΓξ

−

∫

Γp

∫

S

p̄
T (x)Gup(x, ξ)Ψϕ(ξ) dΓx dΓξ

(119)

whereasBd
u, B

p
p are still given by Eqs. (116), (117).

8.4 Further comments on the regularization procedure

The kernel decomposition (106) is given by Nedelec in Ref. 121, see
also Han, Ref. 78. For a scalar fundamental solutionG of Laplace
equation, such that∆xG + δ(ξ − x) = 0, it takes the simpler form

G,ij(x, ξ)ni(x)nj(ξ) = −eiepni(x)ejfpnj(ξ)G,ef (x, ξ)

For frequency-domain elastodynamics, the representation(104) of
the fundamental displacement reads for 3D problems:

Guu = 2(1 − ν)[∇2F + k2
LF ]1− ∇∇F

F =
1

4πµk2
T

(eikLr − eikT r)
1

r

(120)

with k2
L = ρω2/(λ + 2µ), k2

T = ρω2/µ, λ andµ being the Lamé
constants. Then, an analysis similar to that conducted for the static
case yields

[Gpp(x, ξ)]ik

= Rξ
qR

x
sBiqks(x, ξ) + 2(1− ν)k2

LCijabCkℓcdδacF,bdnj(x)nℓ(ξ)

+
{

[2(1 − ν)(δikδjℓ + δjkδiℓ) + 4νδijδkℓ]∇
4F

}

nj(x)nℓ(ξ)
(121)

whereBiqks takes the form (108) withF given by Eq. (120). One
can show using series expansions that the second derivatives of F
have a weakO(1/r) singularity; the factor ofk2

L is hence only
weakly singular. Besides, one has

∇4F =
1

4πµk2
T

(k4
LeikLr − k4

T eikT r)
1

r

which is also weakly singular. A similar, more general, result has
been achieved by Bécache et al., Ref. 17 for anisotropic elastody-
namic fundamental solutions, both in frequency and time domain.

The above outlined regularization approach has been recently ex-
tended to Kirchhoff plate bending in Ref. 59. In this work, extensive
use is made of integration by parts; the most singular kernelpresent
in the formulation, initially of orderO(1/r4), is recast in the fash-
ion of (106) as a fourth-order derivative with respect to arc-length of
another,O(ln r)-singular, kernel.

An interesting and promising alternative to regularization is rep-
resented by the fully numerical integration techniques developed in
Refs. 1, 54 and 116

9 CONVERGENCE AND OTHER MATHEMATICAL
FEATURES

The mathematical properties of the variational integral formulations,
namely symmetry and sign-definiteness, prove quite useful to ad-
dress general questions such as existence and uniqueness ofsolution

to the continuous problem and convergence study of the correspond-
ing discretized problem.

Many fundamental boundary-value problems have been analyzed
this way by Nedelec and co-workers, Refs. 11, 120–122. For in-
stance, the variational formulation for the Dirichlet problem with
boundary datāu ∈ H1/2(Γ) using a single-layer potential of un-
known densityq is











bD(q, q′) = 〈ū, q′〉 ∀q′ ∈ H−1/2(Γ)

bD(q, q′) =
1

4π

∫

Γ

∫

Γ

q(ξ)q′(x)

|x − ξ|
dΓξ dΓx

(122)

and the variational formulation for the Neumann problem with
boundary datāq ∈ H−1/2(Γ) using a double-layer potential of un-
known densityq is











bN(u, u′) = 〈q̄, u′〉 ∀u′ ∈ H1/2(Γ)

bN(u, u′) =
1

4π

∫

Γ

∫

Γ

Riu(ξ)R′
iu(x)

|x − ξ|
dΓξ dΓx

(123)

where a double integration by parts regularization has beencon-
ducted andRiu is the surface curl defined by Eq. (107).

The mathematical definition of the function spaceHs(Γ), s > 0
is (see e.g. Ref. 166):

Hs(Γ) =

{

f , |f |2Hs(Γ) ≡
∑

|α|≤[s]

∫

Γ

|Dαf |2 dΓ

+
∑

|α|=[s]

∫

Γ

∫

Γ

|Dαf(x) − Dαf(ξ)|2

|x − ξ|n−1+2(s−[s])
dΓx dΓξ < +∞

}

(124)

(n = 2 or 3: dimension of the geometrical space) where[s] is
the integer part ofs, α is a n-tuple of positive integers,|α| =
|α1 + . . . |αn|| and Dαf = (f,α1,...,f,αn

); the spaceH−s(Γ)
is the dual space ofHs(Γ) with respect to theL2 scalar product
(f , g)L2(Γ) =

∫

Γ
fT g dΓ. The regularity of the functions ofHs(Γ)

increases with the value ofs. It is interesting to note that for half-
integer values ofs a kernel function similar to the fundamental solu-
tions used in BEMs appears in the definition of the norm|f |Hs(Γ).

Thanks to symmetry and sign-definiteness, the bilinear forms
bD, bN are shown to becoercive, i.e. there exists positive constants
βD, βN such that

bD(q, q) ≥ βD |q|2H−1/2(Γ) bN(u, u) ≥ βN |u|2H1/2(Γ)/IR

Then, existence and uniqueness of the solution to problems (122) or
(123) follows directly from Lax-Milgram theorem. Moreover, using
Lagrangian elementsPk for the unknown density andPm for the
surfaceΓ, the following convergence results, in terms of the mesh
size parameterh, are given in Ref. 122:

∫

Γ

∣

∣u(ξ) − uh(P
−1(ξ)

∣

∣

2
dΓξ ≤ C1h

m + C2[h
k+1 + hm+1]

∫

Γ

∣

∣q(ξ) − qh(P
−1(ξ)

∣

∣

2
dΓξ ≤ C1h

m + C2h
k+1

(125)
(the orthogonal projectionP onto Γ is used in order to ‘transport’
onto the exact boundaryΓ the approximate solutionqh or uh de-
fined on the approximate boundaryΓh). They suggest to choose in-
terpolations so thatm = k + 1 (e.g. flat triangles with piecewise
constant unknowns) for the Dirichlet problem, andm = k (e.g. flat
triangles with piecewise linear unknowns) for the Neumann problem.
Convergence results of similar nature are known for SGBIE formu-
lation of fundamental boundary value problems associated with e.g.
Helmholtz or linear elasticity equations.
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A more general approach to the mathematical study of Galerkin
BIE formulations is found e.g. in Wendland, Refs. 166, 167. It is
based on the fact that the various integral operatorsv → Gv:

Gv(ξ) ≡

∫

Γ

G(ξ, x)v(x) dΓx + (free term)

that arise in boundary integral formulations for elliptic problems, are
particular instances ofpseudo-differential operators, i.e. they admit
a decomposition of the form

(Gv)(x(τ )) = Cv +

∫

IRn−1

∫

IRn−1

g(τ , t, η).v(x(t))dt dη (126)

with
g(τ , t, η) = e2iπ(τ−t).η

a0(τ , η)Ψ(|t − τ |)

and wheret ∈ IRn−1 → x(t) is a local parametrization ofΓ, Ψ(ρ)
is aC∞ cut-off function with compact support and such thatΨ = 1
in a neighbourhood ofρ = 0. Theprincipal symbola0(t, η) is C∞

with respect toη; moreover it is homogeneous of degreeα:

a0(t, λη) = λa0(t, η)

for a certain value ofα, called theorder of G. In definition (126),
C : Hs(Γ) → Hs−α(Γ) is a compact mapping for somes nearα.

The integral operatorG is then said to bestrongly elliptic if and
only if there exists a positive constantγ and a complex matrix-valued
function Θ ∈ C∞(Γ) such that, for allx(τ ) ∈ Γ, all η ∈ IRn−1

with |η| = 1 and allχ ∈ Cn, the principal symbol verifies

Re{χT .[Θ(τ ).a0(t, λη)].χ̄} ≥ γ |χ|

The principal symbol is strongly related to the degree of singular-
ity of the integral operator. In particular, the integral operators with
elastostatic kernelsGuu, Gpp are found to be strongly elliptic (with
Θ = 1) of orderα = −1 andα = +1 respectively (see e.g. Eqs.
(2.1.18)–(2.1.24) of Ref. 167); this is also true of the corresponding
dynamic integral operators.

A general convergence result is available for boundary element
discretization of Galerkin formulations associated with strongly el-
liptic integral operators of orderα, in connection with the use of the
generic family of so-calledSd,rh finite element approximations sys-
tems in(n − 1) dimensions (Babuska and Aziz, Ref. 8), where the
polynomial degreed of the interpolation functions and the regularity
degreer < d − 1 are nonnegative integers, andh denotes the max-
imum element size. This family of interpolations includes usualC0

Lagrange interpolationsPm (for d = m + 1, r = 1) and piecewise
constant interpolations on triangles (ford = 1, r = 0). The result
states that, forα ≤ 2r + 1 (n = 2) or α ≤ 2r (n = 3) and for any
real numberst, s such thatα ≤ t ≤ α/2 ≤ s ≤ d, the approxi-
mationvh to the true solutionv of the Galerkin formulation for the
integral equationGv = b is such that

|vh − v|Ht(Γ) ≤ chs−t |v|Hs(Γ) (127)

(see Eq. (124) for the definition of theHs norm). Estimates (125),
neglecting the effect of geometrical modeling, are particular in-
stances of the above result. Also, Eq. (127) is further generalized to
systems of integral operators of different orders, so should also apply
to SGBIE formulations of mixed boundary-value problems, although
no emphasis is put on this issue in the references quoted herein.

In contrast, convergence results concerning the more widely used
collocation BEM formulations are scarce. They mostly address
spline discretizations for 2D formulations, Refs. 7, 166, 167.

Few results have yet appeared concerning the mathematical study
and actual implementation of adaptive SGBEM methods. A notable

contribution, Ref. 156, addressesh − p adaptive Galerkin BEM for
two- and three-dimensional Dirichlet and Neumann problemsfor the
Laplace equation on domains having polygonal or polyhedralbound-
aries, including screens (i.e. open surfaces across which the primary
variable is allowed to jump) in unbounded domains. In this setting,
the author establishes exponential convergence (with respect to the
number ofDOFs) of anh − p adaptive strategy, and provides numer-
ical experiments for both two- and three-dimensional examples.

Two-dimensional formulations are addressed in Ref. 168, where
estimates of the error

∫

I
|u − uh|

2 ds for a given intervalI ⊂ ∂Ω
are expressed in terms of a norm of the residualR = b−Gu over any
intervalJ with I ⊂ J ⊂ ∂Ω, thus providing the basis for a posteriori
error estimation using residuals. Ana posteriorilocal error estimator
based on the computation of the Galerkin residuals obtainedby re-
versing the boundary condition types is introduced and numerically
tested for 2D potential problems in Ref. 130. Two-dimensional
h − p- andp-versions of the SGBEM are expounded and their faster
rate of convergence is numerically experimented in Refs. 82, 83.

10 SENSITIVITY ANALYSIS FOR STRUCTURAL
IDENTIFICATION AND OPTIMIZATION

Sensitivity analysis using boundary element methods is a growing
area of investigation. In particular, BIE formulations forshape sensi-
tivity of field variables or objective functions using analytical domain
differentiation are frequently invoked in connection withshape opti-
mization or inverse problems.

In general, there is no privileged relationship between sensitiv-
ity analysis and Galerkin symmetric BIE formulations. Of course,
SGBIE allow to formulate governing equations of adjoint problems
or of field variables sensitivities, and thus provide one possible solu-
tion tool for the intermediary computations needed in most sensitiv-
ity analyses involving boundary value problems. However, one area
of sensitivity analysis in which the SGBIE do play a privileged role
is shape sensitivity problems in elasticity in the presenceof cracks,
as shown by the following considerations.

In shape sensitivity analysis, the adjoint variable approach is the
most efficient one to objective function sensitivity evaluation, espe-
cially when the governing equations are linear. Usually (i.e. in the
absence of geometrical singularities like cracks), it is easy to formu-
late such objective function sensitivities in terms of boundary inte-
grals only, even when domain integral functionals are considered.
However, the relevant derivations break down in the presence of
cracks due to the appearance at some point of the calculationof non-
integrable crack front singularities (essentially, what happens is that
Eulerian derivatives of the strain energy density are non-integrable at
the crack front); see e.g. Ref. 30. Thus the combined application of
BEM and classical adjoint variable techniques is problematic. In this
case, the SGBIE framework allows to circumvent those difficulties.

For instance, let us consider again the cracked elastic solid de-
fined in Sec. 4 with Neumann boundary conditions alone (i.e. given
tractionp̄ onΓ, traction-free crack faces), together with an objective
functionJ :

J =

∫

Γ

f(u) dS (128)

For example,2f = −p̄.u gives the potential energy and2f =
|u − umeas|

2 gives theL2-distance between computed (for an as-
sumed crackS) and measured displacements, frequently used to
solve crack identification problems. One has to assess the sensitivity
of J to domain perturbations that affect the crackS but leave the ex-
ternal boundaryΓ fixed. To this purpose, infinitesimal perturbations
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of the form

y
p → y

p+δp = y
p + θ(y)δp + o(δp) with lim

δp→0

|o(δp)|

δp
= 0

of a domainΩp are introduced, whereδp is the small variation of
some shape parameterp upon whichΩ is dependent, andθ is thedo-

main transformation velocity. The material derivative
⋆

f (y) (also
termed total or lagrangian derivative) of a generic field variable
f(yp, p) in the domain transformation is defined as:

⋆

f (y, p) = lim
δp→0

1

δp
[f(yp+δp, p + δp) − f(yp, p)] with y = y

p

=

(

∂f

∂p
+ f,mθm

)

(y, p) (129)

using the notation:f,m ≡ ∂f/∂ym. The material derivative of a
generic regular integrals over a moving surfaceSp is given by:

d

dp

∫

Sp

f dS =

∫

Sp

{

⋆

f +fDiθi

}

dS (130)

whereDi = ∂i−ni∂n denotes the tangential part of a partial deriva-
tive (Diθi is thesurface divergencedivSθ of θ).

Domain formulation

Define theadjoint displacement fieldua as the solution to the elastic
problem with Neumann boundary data

p̄
a = −

∂f

∂u
onΓ p̄

a = 0 onS (131)

Then, apply Betti reciprocity identity to the adjoint stateua and the
material derivative

⋆
u (the latter is formally a displacement field that

solves a certain elasticity problem with initial strain-like body forces
defined in terms of the original elastic state (u, ε, σ)). Such applica-
tion of Betti’s identity leads to the result

dJ

dp
=

∫

Ω

[

σ
T
ε
adiv θ − σ

T (∇u
a.∇θ) − σ

aT (∇u.∇θ)
]

dΩ

(132)
It turns out that the above expression can be recast as a boundary-
only formula using a series of integration by parts and the equilib-
rium relations satisfied by the initial and adjoint states. However, this
manipulation breaks down in the presence of cracks because carte-
sian derivatives of the strain energy density are encountered in the
process and are not integrable in the vicinity of the crack front. Then,
the use of Eq. (132) in a BEM context becomes impractical.

For the special case of potential energy at equilibrium,ua =
− 1

2
u and Eq. (132) defines the so-calledθ-method for computing

the energy release rate in linear elastic fracture mechanics, Ref 53.

Boundary formulation.

Recall that the governing SGBIE formulation reads

[

Ĝ
pp

pp −Ĝ
pc

pp

−Ĝ
cp

pp Ĝ
cc

pp

] {

Xu

Xϕ

}

=

{

Bd
p

Bψ
c

}

(133)

where the notations of Secs. 2,4 are used. Moreover, since the exter-
nal boundaryΓ is fixed, one has

dJp
dp

=

∫

Γ

fT,u
⋆
u dS =

{
∫

Γ

fT,uΨu dS

}

⋆

Xu (134)

Then, consider the (discrete) adjoint solution{Xa
u
T , Xa

ϕ
T } to the

following problem:
[

Ĝ
pp

pp −Ĝ
pc

pp

−Ĝ
cp

pp Ĝ
cc

pp

] {

Xa
u

Xa
ϕ

}

=

{
∫

Γ
fT,uΨu dS

0

}

(135)

Note that, in general, this problem is not equivalent to one men-
tioned above with Neumann data (131). Besides, applicationof the
lagrangian derivative operation to the SGBE formulation (133) leads

to a governing linear system of equation for{
⋆

Xu,
⋆

Xϕ} of the fol-
lowing form:

[

Ĝ
pp

pp −Ĝ
pc

pp

−Ĝ
cp

pp Ĝ
cc

pp

]







⋆

Xu

⋆

Xϕ







=







0
d

dp
Ĝ
pc

pp

d

dp
Ĝ
cp

pp −
d

dp
Ĝ
cc

pp







{

Xu

Xϕ

}

+







0

d

dp
B
ψ
c







(136)

where the detailed expressions of the variousd/dp come from appli-
cation of formula (130) and the fact that neitherΓ nor p̄ are modified
under the crack perturbation has been taken into account.

Now, left-multiply Eq. (136) by{
⋆

X
T

u ,
⋆

X
T

ϕ} and Eq. (135) by
{Xa

u
T , Xa

ϕ
T }, then subtract the resulting equations from one an-

other. Taking advantage of the symmetric character of the matrix
governing operator, one obtains the result

dJp
dp

=

{
∫

Γ

fT,uΨu dS

}

⋆

Xu

=

{

Xa
u

Xa
ϕ

}T






0
d

dp
Ĝ
pc

pp

d

dp
Ĝ
cp

pp −
d

dp
Ĝ
cc

pp







{

Xu

Xϕ

}

+ X
aT

ϕ
d

dp
B
ψ
c

(137)

One sees here the essential role played by the symmetry of thegov-
erning integral operator: it allows to express the final result (137)

without explicit reference to the lagrangian derivatives{
⋆

X T
u ,

⋆

X T
ϕ}

of the boundary unknowns. Equation (137) thus expresses thesen-
sitivity of any objective function of the form (128) to domain per-
turbations in a boundary-only form that accommodates cracks. In
particular, it can be applied to the special case of potential energy,
leading to aθ-integral method for a boundary-only approach to the
computation of energy release rate, see Ref. 26.

11 COUPLING OF BEM WITH FEM

The BEM and the FEM possess specific computational features that
make them complementary to each other. Whereas the FEM is
well suited for problems with nonlinearities and inhomogeneities
in bounded domains, the BEM turns out to be especially appropri-
ate for linear homogeneous problems with unbounded domainsor
in the presence of singularities (e.g. crack problems). Forthis rea-
son, often in engineering practice there is computational advantage
in making use of both methods. Zienkiewicz et al. first in Ref.176
dealt with this topic in elasticity by dividing the problem domain
into two subdomains, one for FE discretization, the other for BE dis-
cretization. Their main idea was to generate a boundary element
node stiffness matrix to assemble with the other finite element ma-
trices within a FEM package. Two difficulties arose in the above
treatment, one concerned with the impossibility to obtain asym-
metric stiffness matrix by means of the conventional directBEM,
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the other concerned with the correct way to enforce the continuity
conditions for displacements and tractions through the interface be-
tween the two subdomains. The ‘forced symmetrization’ of the indi-
rect BEM stiffness matrix suggested in Ref. 176 has been criticized
by various researchers (see e.g. Ref. 113). Symmetric hybrid ele-
ment coupling formulations (see Sec. 13) were given by Belytschko
et al., Ref. 18, 19 and by others, Refs. 55, 93, 151, based on energy
methods substantially equivalent to the Reissner boundarystationar-
ity principle, Ref. 148. As to the interface continuity conditions, the
most common strategy adopted consists in using the same modelling
for the displacements and/or tractions on the two interfacesides.
The correct way these continuity conditions are to be complied with
was discussed by Hsiao in a review paper, Ref. 84, devoted to the
BEM/FEM coupling methods. BEM/FEM coupling via domain de-
composition, including algorithms and parallel realizations, appear
among the contributions in Refs. 75, 165.

A more general view point for the BEM/FEM coupling problem
consists in adopting a single variational statement for thetwo sub-
domains such as to obtain the two sets of governing equationsas the
pertinent Euler-Lagrange equations with the interface continuity con-
ditions as natural boundary conditions. Such a variationalapproach
leads to consistent FE and BE discretizations with independent mod-
ellings on the interface. Examples of this approach were given by Be-
lytschko et al. in Ref. 19, 20 and Zeng et al. in Refs. 173–175.The
symmetric Galerkin BEM was employed to this purpose by Costa-
bel in Refs. 45, Costabel and Stephan in Ref. 46, Hsiao in Ref.84.
Wendland in Ref. 166 provided error estimates of the discretization
procedure and proved the related convergence features.

The ability of the symmetric Galerkin BEM to provide the exact
(symmetric) stiffness matrix associated to the relevant generalized
boundary displacement can be shown as follows.

Let Ω denote again an elastic body, whose boundaryΓ is closed.
Let (u, p) denote anycompatible(i.e. which is the trace on the
boundary of an elastostatic stateu, σ in Ω) pair of displacements
and tractions onΓ. The elastic strain energyW for any such state is
given by

W =
1

2

∫

Ω

σ
T (x)ε(x) dΩx =

1

2

∫

Γ

p
T (x)u(x) dΓx (138)

For simplicity, consider only discretized forms of(u, p) according
to Eq. (18). In particular,W is then given by

W =
1

2
P
T

{
∫

Γ

Ψ
T
p (x)Ψu(x) dΓx

}

U (139)

for any compatible pair(U , P ).
First, considering the tractionp as induced by given displacement

u (i.e. Γu = Γ, Γp = ∅), the discretized displacement and traction
are related by the following matrix equation, which comes directly
from Eq. (23) and the regularized expressions (115), (116):

ĜuuP = (Eup + Lup)U (140)

where

Ĝuu =

∫

Γ

∫

Γ

Ψ
T
p (x)Guu(x, ξ)Ψp(ξ) dΓx dΓξ

Eup =

∫

Γ

κ(ξ)ΨT
p (ξ)Ψu(ξ) dΓξ (141)

Lup =

∫

Γ

∫

Γ

Ψ
T
p (x)Gup(x, ξ)[Ψu(ξ) −Ψu(x)] dΓx dΓξ

Then, considering the displacementu as induced by the given
tractionp (i.e. Γp = Γ, Γu = ∅), the following matrix equation also
holds, as a direct consequence of Eqs. (23), (112), (117):

ĜppU = (Epu + Lpu)P (142)

having set

Ĝpp =

∫

Γ

∫

Γ

RΨ
T
u (x)Bpp(x, ξ)RΨu(ξ) dΓξ dΓx

Epu =

∫

Γ

(κ(x) − 1)ΨT
u (x)Ψp(x) dΓx (143)

Lpu =

∫

Γ

[Ψu(x) − Ψu(ξ)]Gpu(x, ξ)ΨT
p (ξ) dΓx dΓξ

Finally, premultiplying Eq. (140) byP T and Eq. (142) by−UT

and adding the resulting relations, we obtain:

P
T
ĜuuP − U

T
ĜppU = P

T
EupU − U

T
EpuP (144)

where use was made of the equalityLT
pu = Lup, flowing from

Eqs. (141b) and (143b). At this point, one has simply to observe
that

P
T
EupU − U

T
EpuP = P

T (Eup − E
T
pu)U ,

Eup − E
T
pu =

∫

Γ

[κ(x) − (κ(x) − 1)]ΨT
p (x)Ψu(x) dΓx

=

∫

Γ

Ψ
T
p (x)Ψu(x) dΓx

Therefore Eq. (144), in view of Eq. (139), becomes

2W = P
T
ĜuuP − U

T
ĜppU (145)

in which vectorsU andP must be compatible in the above sense.
Now, solving Eq. (140) forP and substituting the result into the
above equation (145) leads to:

W =
1

2
U
T
KU (146)

where:
K = (Eup + Lup)

T
Ĝ

−1

uu (Eup + Lup) − Ĝpp (147)

On the other hand, solving Eq. (142) leads to the complementary
strain energy interpretation ofW , i.e.:

W =
1

2
P
T
KcP (148)

having set:

Kc = Ĝuu − (Epu + Lpu)
T
Ĝ

−1

pp (Epu + Lpu)

In the foregoing analysis, the domainΩ may represent a subdo-
main of some region of space. The above results, Eqs. (146), (148)
then provide the subdomain stiffness matrix, which can e.g.be added
to the stiffness matrix for the complementary subdomain, obtained
by a FE approach. Note thatK andKc are symmetric. Besides,
eitherΩ or its complement with respect toΩ∞ is bounded, so that
the above results allow to take care of an unbounded, linearly elas-
tic, portion while a FE modelling is used for the bounded comple-
ment, e.g. because of nonlinear behavior. Note, however, that the
actual computation ofK or Kc needs the assembly of several inte-
gral operators overΓ and the inversion of either̂Guu or Ĝpp (the
latter being invertible only after provisions for removingrigid-body
solutions have been made). Besides, equation (145) is only approx-
imately true in a discretized setting, partly because (140)and (142)
cease to hold simultaneously in the discrete case (i.e. withthe same
U , P in both). However, the continuous counterpart of (145) is true.
These considerations are analyzed in detail in Ref. 155.

Incidentally, the latter point gives ana posteriori justification of
the use of discretized variables in the analysis. An explicit continu-
ous expression forW in terms of eitheru or p on Γ is indeed not



Appl Mech Rev vol 51, 1998 Bonnet, Maier and Polizzotto: Symmetric Galerkin BEM 24

available except when special choices are made for the fundamental
solutions. For example, ifGuu is the Green’s function of the domain
Ω, i.e. if Guu(x, ξ) = 0 for anyξ ∈ Γ, thenK = −Ĝpp.

Energy-based formulations of the BEM/FEM coupling problem
in the framework of elastostatics were given in Ref. 144 through cou-
pled variational principles that combine the boundary min-max prin-
ciple of Refs. 133, 138 with classical principles of elasticity. These
coupled principles take on the form of a saddle-point principle on
making use of the minimum total potential energy or the the mini-
mum complementary energy. In any case, the continuity conditions
at the interface of the FE and BE subdomains are satisfied as natural
conditions, which means that, in the numerical treatment ofthe prob-
lem, the trial functions need not satisfy the continuity conditions.

Coupling across interfaces between individually homogeneous
SGBE-discretized subdomains of an inhomogeneous solid wasfor-
mulated and implemented in Ref. 69 for two-dimensional static prob-
lems, and discussed on a variational basis in Ref. 100 for elastody-
namics.

12 COMPUTER IMPLEMENTATIONS AND
COMPUTATIONAL EXPERIENCES

It has been shown in Sec. 8 that SGBIE formulations are amenable to
regularizedform, in the sense that the various double integrations can
be given the form of a weakly singular integral followed by a nonsin-
gular integral. This provides a convenient basis for implementation.
In fact, in the regularized SGBIE formulation, the kinematic (resp.
static) boundary variables and trial functions can be modelled using
a continuous (resp. piecewise continuous) interpolation.Thus, all
the usual BEM discretization techniques are applicable.

Let us then discuss the implementation of the SGBEM using stan-
dard BEM modelling. The boundaryΓ is divided into elementsΓe,
each being mapped onto a reference (or ‘master’) elementMe (either
the square−1 ≤ η1, η2 ≤ 1 or the triangleη1, η2 ≥ 0, η1 + η2 ≤ 1
for three-dimensional problems). Nodes and shape functions are in-
troduced in the usual fashion, so that the location of a pointx on
Γ is expressed in terms of vector shape functionsΨ

k
Γ(η) and nodal

coordinatesak in the physical space of the problem,k running over
the nodes of elementΓe. The modelling of the geometry and the un-
knowns can thus be symbolically expressed, on a given element Γe,
in terms of the intrinsic coordinatesη as

x(η) = ΨΓ(η)A

u(x) = Ψu(η)Xu (149)

p(x) = Ψp(η)Xp

Note that the possibility of discontinuous unknown and trial tractions
must be allowed for in the definition ofΨp, e.g. using nonconformal
interpolation or multiple traction nodes where necessary.

Then, upon substituting the above formulas, double integrals over
element productsΓa × Γb must be computed and assembled, and
three situations arise as follows (χ andη will denote the intrinsic
coordinates on the master elementsMa andMb, respectively).
(i) Disjoint elements:Γa ∩ Γb = ∅. The two elements do not share
a common side or vertex, so that the integral over either element is
nonsingular. The numerical evaluation of the double element integral
is straightforward using e.g. a Gaussian product rule. Likein more
traditional BEMs, the number of Gauss points should be adjusted
according to the relative proximity of the two elements (thenumber
of Gauss points required increases asΓa, Γb get closer to each other).
(ii) Coincident elements:Γa = Γb. In two-dimensional situations, a

typical element integral is

Iaa =

∫

Γa

∫

Γa

g(x, ξ) ln r dΓx dΓξ

=

∫ +1

−1

∫ +1

−1

f(η, χ) ln r dη dχ (150)

wherer = |x − ξ| and the regular functionf(η, χ) gathers interpo-
lation functions, nonsingular parts of kernel functions and element
jacobians. Then, following e.g. Refs. 129 or 60, one can introduce
new intrinsic variablesa, b:

η = a − b , χ = a + b dη dχ = 2 da db (151)

Algebraic manipulations allow to show thatr can be expressed as

r2 = b2r̂2(a, b) (152)

with r̂(a, b) 6= 0 at the singularityχ = η whereb = 0 as a con-
sequence. The integralIaa finally takes the form (̃f denoting the
function resulting fromf after the change of variables):

Iaa ≡Iraa + Isaa

=

∫ 1

0

db

∫ 1−b

b−1

[

f̃(a, b) ln r̂2(a, b) + f̃(a,−b) ln r̂2(a,−b)
]

da

+ 2

∫ 1

0

db

∫ 1−b

b−1

[f̃(a, b) + f̃(a,−b)] ln b da (153)

In Eq. (153), the inner integral in the first addendIsaa, as well as
both integrals in the second oneIraa, can be evaluated using standard
quadrature rules (e.g Gaussian), while the outer integral in Isaa should
be computed using a logarithmic Gaussian rule, Ref. 157.

For another type of potentially singular integral, of the form

Jaa =

∫ +1

−1

∫ +1

−1

f(η, χ)[Ψ(χ) − Ψ(η)]
1

r
dη dχ

one observes, similarly to (152), that:

Ψ(χ) − Ψ(η) = bΨ̂(a, b)

with Ψ̂(a, b) 6= 0 at the singularityχ = η where, hence,b = 0.
HenceJaa is in fact nonsingular and can be computed using standard
quadrature rules.

In three-dimensional situations, one has to consider singular in-
tegrals of the form ( dη and dχ denoting dη1 dη2 and dχ1 dχ2 re-
spectively):

Iaa =

∫

Ma

∫

Ma

f(η, χ)
1

r
dη dχ (154)

which can be treated as a weakly singular integral with respect toχ

followed by a regular integral with respect toη. In order to do so,
for any fixedη, the parent elementMa is divided into up to four
triangles, each defined by one element edge and the common vertex
η, and the1/r singularity is taken care of using an adequate change
of variables. For instance, for quadrilateral elements, the triangle
containing the edgeχ1 = +1 is transformed into new intrinsic coor-
dinates−1 ≤ a, b ≤ 1 according to:

χ1 = η1 +
1

2
(1 − η1)(a + 1)

χ2 = η2 +
1

2
(b − 1)(a + 1)

(155)

Then, some algebra on the interpolation functions yields:

r =
1

2
(a + 1)r̂(a, b) Ψu(χ) − Ψu(η) =

1

2
(a + 1)Ψ̂(a, b)
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where once again̂r(a, b) 6= 0 at the singularityχ = η, i.e. a = −1
there. Besides, one has

dχ =
1 − η1

2

1 + a

2
da db

As a result, the integrands

1

r
dη =

1

r̂

1 − η1

2
da db

and

1

r2

[

Ψu(χ) − Ψu(η)
]

dη =
1

r̂2
Ψ̂(a, b)

1 − η1

2
da db

are nonsingular. Therefore, the correspondingχ-integral can be eval-
uated using Gaussian quadrature, in the(a, b) coordinates. Transfor-
mations similar to (155) must be performed separately for the other
triangles. Note that it is possible to resort to a polar coordinate trans-
formation onMa, instead of (155); the resulting integral is again
nonsingular due to similar considerations as above.

The subsequent, nonsingular, integration with respect toη is per-
formed using Gaussian quadrature. This means, in particular, that all
sampleη points actually used e.g. to define (155), lie in the interior
of Ma.
(iii) Adjacent elements:Γa 6= Γb, Γa ∩ Γb 6= ∅. Unlike (i) and
(ii), this case is specific to SGBEMs inasmuch no similar calculation
arise in traditional collocation BEMs. This is, like (ii), acase of
singular integration, but the singularity, weaker, occurswhenx, ξ are
located on the edge shared by the two elements. In two-dimensional
situations, a typical element integral is

Iab =

∫

Γa

∫

Γb

g(x, ξ) ln r dΓx dΓξ

=

∫ +1

−1

∫ +1

−1

f(η, χ) ln r dη dχ (156)

where the singularityr = 0 now occurs forη = 1, χ = −1. In-
troduce the transformation (151) ifχ − η ≥ 0 (no singularity) and,
otherwise, the new variablesγ, δ such that:

η = γ(δ − 1) + 1 , χ = γ(δ + 1) − 1 ,

dη dχ = γ dδ dγ

with −1 ≤ δ ≤ 1, 0 ≤ γ ≤ 1. As a result, one obtains:

r = γr̂(δ, γ) ; Iab =2

∫ 1

0

db

∫ 1−b

b−1

f̃(a, b) ln r da

+ 2

∫ 1

0

γ ln γ dγ

∫ 1

−1

˜̃
f(δ, γ) dδ (157)

+

∫ 1

0

γ dγ

∫ 1

−1

ln r̂2(δ, γ)
˜̃
f(δ, γ) dδ

where all integrations are performed using standard means,except
for the γ-integration in the second integral, for which logarithmic
Gaussian quadrature should be used instead.

A similar approach can be developed for adjacent integrations in
three-dimensional problems, see in particular Ref. 5 whereall cases
of double singular integrations are addressed for the SGBIEformu-
lation of the Neumann problem and in a rather general discretization
setting.

Whatever the particular discretisation approach used, a system of
linear equations of the form (23), i.e.

[

Ĝ
uu

uu −Ĝ
up

up

−Ĝ
pu

pu Ĝ
pp

pp

] {

Xp

Xu

}

=

{

Bf
u

Bd
p

}

(158)

is eventually reached, at least for boundary-value problems with
mixed Dirichlet and Neumann data.

It is important to note that the matrix is symmetric but not sign-
definite (except for the special cases of pure Dirichlet and pure Neu-
mann problems). Thus, Cholesky decomposition does not apply, ex-
cept for the special cases. However, direct linear solvers for indefinite
symmetric matrices are expounded in Ref. 67 and codes are provided
e.g. in software libraries like LAPACK, Ref. 4. Such direct solvers,
as well as the Choleski algorithm for sign-definite symmetric matri-
ces, need aboutn3/6 arithmetic operations forn × n matrices; in
contrast, direct solvers for unsymmetricn × n matrices need about
n3/3 arithmetic operations.

Due to its particular structure, the coefficient matrix alsolends it-
self to iterative solution techniques like biconjugate gradient or gen-
eralized minimal residual (GMRES). In such techniques, a natural
preconditioner is the block-diagonal system of equations obtained
by ignoring the non-diagonal blockŝG

up

up, Ĝ
up

pu in Eq. (158), which
makes advantageous use of the Choleski decompositions of the di-
agonal blocksĜ

uu

uu and−Ĝ
pp

pp. Iterative solvers are discussed in
Refs. 71 (in general terms) and 75, 165 (in connection to SGBEM).

The techniques outlined above for the computation of double
element integrals allow, in principle, to use any of the classical
BEM discretization schemes, and accommodates curved elements
and high-degree interpolations. In practice, general-purposes imple-
mentations of SGBEM methods based on purely numerical schemes
are not commonly found in the literature. SGBEM implementa-
tions that follow the ‘purely numerical’ approach are presented in
Refs. 60, 129 for two-dimensional elasticity and in Refs. 59for bend-
ing of Kirchhoff elastic plates. Symbolic manipulations have been
used in Refs. 9, 10 to implement two-dimensional SGBEM formu-
lations with curved elements, for both thermal and elastic problems.
An implementation for fracture analysis in plane orthotropic elastic-
ity is reported in Ref. 70. SGBEM implementations for 3D prob-
lems comparable to general-purpose 3D CBEMs are scarce. Ref. 95
presents a direct SGBEM implementation for three-dimensional lin-
ear fracture analysis of bounded elastic bodies, based on a formula-
tion very close to Eq. (48) and using eight-noded boundary elements
and numerical integration throughout; it is to our knowledge the best
attempt in this direction.

In addition to general numerical integration techniques, many
specific techniques have been developed and implemented. Inpartic-
ular, exact analytical element integrations for the case ofstraight line
elements with piecewise linear or constant interpolation have been
performed for two-dimensional problems, either using a complex
variable formalism, Ref. 154, or directly in real variables, Ref 38.
Also, exact expressions for some of the element integrals (mostly the
singular ones, which are critical) have been employed e.g. in Ref. 85.
The firstp- andhp-versions of the SGBEM have been proposed, im-
plemented and tested in Refs. 82, 83

Perhaps the main obstacles to attempts at general implementa-
tions of SGBE methods, especially for three dimensions, arethe
complexity of the formulation (compared to traditional collocation
BE methods) and the fact that a general regularization approach was
not known until a few years ago. The general regularization issue
is now well understood in principle, but many potential applications
are yet to be made.

In addition to other desirable features provided by symmetry, as
discussed in various passages of the present survey, the main com-
putational gain provided by SGBE methods over traditional BEMs
is related to the symmetry of the final system of equations, whereby
a factor of two is gained in both solution computer time and com-
puter storage. An objection frequently raised against SGBEmethods
is that the double integrals are expected to incur significantly higher
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demands in numerical quadrature and thereby slow down the assem-
bly stage. However, this is not necessarily the case. Indeed, consider
as an example a very fine mesh ofN (say) quadrangular eight-noded
curved elements, with the usual polynomial interpolation functions.
From Euler formula, this mesh contains3N + 2 nodes. Neglecting
coincident, adjacent or otherwise singular integrations (whose rel-
ative proportion of the overall integration burden decreases as the
mesh is refined) and assuming that a uniform numbernG of Gauss
points is used for each single element integral, a rough count shows
that the Galerkin approach needs function evaluations at a total of
N(N + 1)n2

G/2 pairs of Gauss points for the (symmetric) matrix
andN2n2

G pairs of Gauss points for the right-hand side, whereas the
collocation BIE needs aboutN(3N + 2)nG function evaluations for
each of the two global matrices. This naive count gives a ratio of
aboutnG/4 between the computational demands for Galerkin and
traditional BEMs (note that by ‘functions’ we mean3 × 3 matrices
of functions). Given that four Gauss points are asymptotically (i.e.
for pairs of very distant elements) sufficient in this context, the above
count leads to a ratio of about unity. The integration task, although
of course influenced by many other factors, can neverthelessbe rea-
sonably expected to have similar computational needs in both ap-
proaches. Numerical experiments presented in Kane’s monograph,
Ref. 87, show a factor of about two. Besides, the solution stage
asymptotically dominates the assembly stage (O(N3) vs. O(N2)),
so that the factor two gained in matrix inversion becomes asymptot-
ically decisive; this is also made apparent e.g. in Kane’s numeri-
cal results and their discussion. In this respect, the availability of a
proper scheme for automatic adjustment of Gauss points according
to the ratio interelement distance to element typical length, such as
that proposed for collocation BEMs in Ref. 149, is crucial, the more
so because in SGBEM integration times grow with thesquareof the
typical number of Gauss points on an element.

Many of the applications of symmetric BE methods to date ad-
dress rather specific situations. In particular, research effort has been
devoted to problems in unbounded media. Scattering of acoustic or
elastic waves by cracks is addressed in Refs. 3 (three-dimensional
problems and frequency domain) and 16 (two-dimensional problems
and time domain). Computations for wave radiation in exterior do-
mains is addressed e.g. in Ref. 77 for acoustics and Ref. 21 for elec-
tromagnetism. A SGBEM formulation for scattering by thin scatter-
ers or scatterers with corners is investigated and numerically tested
in Ref. 172. Other papers deal with fracture mechanics problems: in
Ref. 72, a SGBE formulation for plane cracks in three-dimensional
unbounded media is used to compute stress intensity factors; Yin and
Ehrlacher, Ref. 171, present a complex-variable approach to SGBEM
for fracture mechanics in plane elasticity; the domain derivative ap-
proach to the computation of energy release rate outlined inSec. 10
is treated in Ref. 26; Xu et al. in Ref 169 present SGBEM-basednu-
merical simulations of crack growth in fiber-reinforced composites.
Most of the above-mentioned situations present relativelysimple ge-
ometries; besides, they appear usually as either Dirichletor Neumann
problems (i.e. do not involve mixed-type boundary conditions).

13 SYMMETRIZATIONS BY ALTERNATIVE
APPROACHES

The inability of the conventional BEMs to produce symmetricequa-
tion systems induced many researchers to carry out a ‘forcedsym-
metrization’ of the unsymmetric equation sets, Refs. 89, 90, 98, 176.
Different procedures were proposed to different specific purposes,
mainly for BEM applications to problems in which symmetry repre-
sents a feature of paramount importance, like BEM/FEM coupling,

Refs. 90, 176 (Sec. 11), and plastic deformation bounding tech-
niques, Ref. 105 (Sec. 6.1). These symmetrization procedures,
though justified by their proposers with more or less appropriate ar-
guments and numerical experiments, have been criticized for lack of
firm rational basis, Refs. 14, 19, 94, 164, and it was even recognized,
Refs. 19, 94, 164, that forced symmetrization may lead to worse nu-
merical results than those obtainable by unsymmetric BEMs.

As noticed in Sec. 7, truly symmetric BEM formulations referred
to as hybrid BEM (HBEM) formulations in the literature were ob-
tained through energy-based approaches, all of which can basically
be related to Reissner’s boundary stationarity principle of Ref. 148.
These HBEM formulations exhibit a number of features (e.g. sim-
ple integration over the boundary, symmetric positive-definite stiff-
ness matrix for the boundary nodes), which make them an attrac-
tive and effective alternative to the SGBEM. HBEMs were presented
in Refs. 20, 52, 55, 56, 93, 150, 151, 173, 174, with differentmotiva-
tions, starting points and purposes. In order to give a briefaccount
of the essential features of HBEMs, the formulation of Ref. 52 is
considered here as a representative one.

Reissner’s boundary stationarity principle for elasticity, in an ex-
tended form used for hybrid finite element formulations, Ref. 161,
considers the functional:

H =
1

2

∫

Γ

p
T
u dΓ −

∫

Γ

(u − ũ)T p̃ dΓ −

∫

Γp

p̄
T
ũ dΓ

−
1

2

∫

Ω

u
T div σ dΩ −

∫

Ω

b̄
T
u dΩ (159)

where the independent unknown fields are:σ andu in Ω̄, p̃ andũ

on Γ, whereasp is the traction associated toσ on Γ, i.e. p = σ.n;
σ andu are related to each other by Hooke’s law, i.e.σ = Eε(u),
whereε(u) = ∇

su (∇s: symmetric part of the gradient operator
∇); ũ is required to satisfy the essential boundary conditionũ = ū

on Γu. It can be easily proved, Ref. 52, that the Euler-Lagrange
conditions that characterize the stationarity ofH with respect to the
above four fields read:

div σ + b̄ = 0 in Ω

u = ũ, p = σ.n = p̃ onΓ, p̃ = p̄ onΓp
(160)

With the HBEM, the functionalH is discretized by representingu
andp in terms of a discrete set of point sources and Kelvin’s fun-
damental solutions, as well as by interpolatingũ and p̃ from nodal
values through suitable shape functions:

u(x) = Gu(x)F , p(x) = Gp(x)F

ũ(x) = Ψu(x)U , p̃(x) = Ψp(x)P

MatricesGu andGp are constructed with the kernelsGuu andGup,
respectively, and vectorF collects point sources (i.e. concentrated
forces) with location points over the boundary (or possiblyoutside
of it). Assumingσ = GσF +σb, whereGσ is constructed with the
kernelsGσσ andσb denotes some stress field in equilibrium withb̄

in Ω, the functionalH becomes:

H =
1

2
F
T
CF − F

T
LP + U

T
MP − U

T
ℓ̄p − F

T
ℓ̄Ω (161)

having set

C =

∫

Γ

G
T
uGp dΓ L =

∫

Γ

G
T
uΨp dΓ, M =

∫

Γ

Ψ
T
uΨp dΓ

ℓ̄p =

∫

Γp

Ψ
T
p̄ dΓ ℓ̄Ω =

1

2

∫

Ω

G
T
u b̄ dΩ
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The first addend on the r.h. side of eq. (161) is a quadratic form
which, being representative of the strain energy stored inΩ as a con-
sequence of the sourcesF , is positive for anyF 6= 0, so thatC is
symmetric and positive definite, the productCF provides the gener-
alized displacement vector dual of the source vectorF . The Kuhn-
Tucker conditions that characterize the stationarity ofH of Eq. (161)
read:

CF = LP + ℓ̄Ω, L
T
F = M

T
U MP = ℓ̄p

which are the algebraic equivalent of Eqs. (160), respectively. Slight
manipulations of the above equations give

Ku = ℓ̄ ≡ ℓ̄p + ML
−1

ℓ̄Ω,

where the matrix

K = ML
−1

C(L−1)TM
T

is the relevant symmetric positive-definite stiffness matrix.
The above formulation, extended to elastodynamics in Refs.51,

62, has been applied to solve numerically sample problems with
quite satisfactory results, Refs. 36, 62, 126, 127, 143, 144. Though
an effective and computationally convenient alternative to SGBEM
in elastic problems, HBEM reveals deficiencies in inelasticanalysis
and, more in general, as a tool for theoretical investigations. One
of the reasons for this circumstance is that the HBEM makes use of
the fictitious sourcesF which in general do not represent any real
quantity of the related problem. In fact, the SGBEM turns outto be
preferable for a wide class of inelastic problems, primarily as a con-
sequence of the way the functionalH , Eq. (159), is approximated
within the HBEM.

It can be shown that, by interpretingH in a mechanically consis-
tent way, the SGBEM can be generated from HBEM. To this purpose,
let us set̃p = p on Γ, ũ = u on Γp, andũ = ū on Γu; moreover,
let equilibrium equations (160a) be satisfied inΩ. Thus, eq. (159)
becomes

− H =
1

2

∫

Γu

p
T
u dΓ −

1

2

∫

Γp

u
T
p dΓ

−

∫

Γu

p
T
ū dΓ +

∫

Γp

u
T
p̄ dΓ +

1

2

∫

Ω

b̄
T
u dΩ (162)

wherep = σ.n, σ = E∇
su and u is a solution to the Navier

equation of elasticity theory. Let the unknown fields of eq. (162)
be represented by means of Kelvin’s solutions for suitable sources
applied inΩ∞, in whichΩ is thought to be embedded. These sources
consist of the following quantities: body forcesb̄ in Ω, simple layer
(forces)p̄ in Γp and double layer (relative displacements)−ū in Γu;
simple layer (unknown forces)p⋆ in Γu and double layer (unknown
relative displacements)−u⋆ in Γp. These produce the following
effects:

u = Ju(p
⋆, u⋆) − ḡu, σ = Jσ(p

⋆, u⋆) − ḡσ (in Ω)

u = Ju(p
⋆, u⋆) − ḡu, p = p

⋆ − ḡp (onΓu) (163)

p = Jp(p
⋆, u⋆) − ḡp u = u

⋆ − ḡu onΓp

where:−ḡh, (h = u, p, σ), denote effects inΩ∞ due to the given
external actions, Eqs. (16), (17) and (30);Jh (h = u, p, σ), effects
due to the unknown sourcesp⋆, −u⋆, i.e.

Jh(p
⋆, u⋆) =

∫

Γu

Ghup
⋆ dΓ −

∫

Γp

Ghpu
⋆ dΓ, (h = u, p, σ).

Substituting Eq. (163) into Eq. (162), after some reordering, gives:

−H =
1

2

∫

Γu

p
∗T

Ju(p
⋆, u⋆) dΓ −

1

2

∫

Γp

u
∗T

Jp(p
⋆, u⋆) dΓ

−

∫

Γu

p
∗T (ū + ḡu) dΓ +

∫

Γp

u
∗T (p̄ + ḡp) dΓ

+
1

2

[
∫

Γu

p
∗T

ḡu dΓ −

∫

Γp

u
∗T

ḡp dΓ

−

∫

Γu

ḡ
T
p Ju(p

⋆, u⋆) dΓ +

∫

Γp

ḡ
T
uJp(p

⋆, u⋆) dΓ

+

∫

Ω

b̄
T
Ju(p

⋆, u⋆) dΩ

]

+ C̄ (164)

whereC̄ denotes a collection of integrals dependent on the external
actions only. Noting that the expression within the square brackets
vanishes by Betti’s theorem (applied toΩ∞ subjected to the known
and unknown sources, respectively), remembering Eqs. (81)and (16-
17), one finally obtains:

−H = Π[p∗, u∗] + C̄ .

This result means that, to within the inessential constantC̄ , the func-
tional −H coincides with that pertaining to the boundary min-max
principle of Sec. 7, which is known to constitute a specific energy
basis for the SGBEM.

To conclude this section, other contributions to the issue of sym-
metric BEM formulations are briefly reviewed. In Ref. 86, theau-
thors simply start from the usual (domain) weak formulationof a
linear (e.g. potential) problem. Both the physical unknownand
its associated test function are modelled using shape functions that
satisfy the relevant (homogeneous) partial differential equation (and
thus are constructed using integral representation formulas), allow-
ing to convert the energy bilinear form into a boundary integral. To
avoid problems caused with singularities, the shape functions are de-
fined using sources distributed on a curve external to the boundary.
Also, setting up the ‘stiffness’ matrix then requires three-fold inte-
grations. In Refs. 159 and 160, the minimum total and complemen-
tary energy principles of elasticity are employed and the field and
boundary variables are suitably represented, through Kelvin kernels,
in terms of discrete sources located outside the boundary. Depending
on the kinds of unknown fields discretized and of sources employed,
BEM formulations are obtained in the form of dual quadratic pro-
gramming problems. These formulations are in some way similar to
the HBEM formulations since they all use indirect representations
of the unknown fields. In Ref. 34, a symmetric system of boundary
integral equations is obtained, for linear elasticity, using representa-
tions of the kinematic and static field variables in terms of Helmholtz
and Beltrami potentials, respectively (called ‘conjugatevariables’ in
that paper), and formulating the conditions under which thequadratic
error in (elastic) constitutive equation, integrated overthe domain oc-
cupied by the solid, is stationary.

14 FUTURE PROSPECTS AND CONCLUSIONS

Compared to the past and continuing developments of the traditional
BEM in almost all areas of applied mathematics and engineering sci-
ences, the SGBEM, as a relatively young branch of the BIE-based
methodology, at the present time turns out to be little developed, es-
pecially in terms of numerical applications. The main reason for this
is, in the authors’ opinion, the conceptual, mathematical and com-
putational difficulties implied by the hypersingular integrals featur-
ing the method. Though several strategies have been, and arebeing,
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formulated and implemented in particular application contexts (see
Secs 8 and 12), no general effective interpretations and consequent
computational methods have been proposed yet for evaluating these
hypersingular integrals with the desirable confidence. In the majority
of application areas, the conventional BEM may still appearto be a
computationally more attractive, easier to implement, user-friendlier
alternative than the SGBEM.

However, as Francis Bacon wrote, “in more difficult things we
should not expect that someone sows and harvests soon, but hope
that they mature gradually” (verbatim:in rebus difficilioribus non est
expectandum ut quis simul serat et metat, sed opus est ut per gradus
maturescant). In the maturing process of the SGBEM, among the
next stages at least the following advances are reasonably expected:
a general method, mathematically justified in a way accessible to en-
gineers, for the treatment of hypersingular integrands, assatisfactory
as the Cauchy principal-value theory and possibly emergingas opti-
mal in most cases from the diverse trends of nowaday research; cri-
teria of algorithmic stability in time-stepping solutionsof evolutive
analyses, especially of those concerning nonlinear time-dependent
problems, more particularly in the presence of constitutive material
instabilities; coupling between SGBEM and FEM exploiting com-
mon frameworks of variational theorems; computer implementations
apt to enrich the numerical experience (in particular in theareas
where none is available so far) and to validate the reasonably well-
founded promises of SGBEM in comparative terms of accuracy and
cost-effectiveness.

In Warner Koiter’s words, “research in engineering sciences can-
not be considered to be completed until its full numerical evaluation
has been obtained, and the results have been presented in a form
accessible to other engineers”. In this direction, research on the
SGBEM has undoubtedly still a long way to go, but, in the writers’
opinion, it is likely to attract interest and contributionsfrom more
and more researchers in engineering mechanics and applied mathe-
matics. Its motivation will not be merely the æsthetical search for
symmetry or the dissatisfaction for its loss, as mentioned in the In-
troduction, but primarily by the ability of the SGBEM of preserving
essential features of the original (continuum, differential) formula-
tions of physical problems, its versatility and its specialfitness to
various problems of engineering interest, such as fractureand inelas-
tic analysis and sensitivity analyses for structural optimization and
identification.
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