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ABSTRACT

Boundary element method (BEM) formulations for usual and sensitivity problems in
small strain elastoplasticity, using the concept of the consistent tangent operator (CTO),
have been recently proposed by Bonnet, Mukherjee and Poon. “Usual” problems here
refer to analysis of nonlinear problems in structural and solid continua, for which Simo
and Taylor first proposed use of the CTO within the context of the finite element method
(FEM). The BEM approach is shown to work well in the illustrative numerical examples
in the papers by Bonnet, Mukherjee and Poon.

Stresses on the boundary of a body must be computed accurately in order for the
CTO-based algorithm to work. There are at least two approaches for calculating boundary
stresses in the BEM. The first involves local tangential differentiation of the shape functions
of boundary displacements, together with the local use of constitutive equations. The
second is the use of a hypersingular BEM formulation. The first approach has been used

in the previous work mentioned above, while the second is employed in the present work.
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Here, a new algorithm is proposed for regularization of hypersingular BEM equations for
elastoplastic problems. Numerical results are presented for the elastoplastic equivalents
of the Lame and Kirsch problems in two-dimensional linear elasticity. The results are

compared with FEM and are seen to be acceptably accurate.

1. Introduction

Boundary element method (BEM) formulations for usual and sensitivity problems in
small strain elasto-plasticity, using the concept of the consistent tangent operator (CTO),
have been recently proposed by Bonnet and Mukherjee [1996] and Poon et al.[1996]. Usual
problems here refer to analysis of nonlinear problems in structural and solid continua,
for which Simo and Taylor [1985] first proposed use of the CTO within the context of
the implicit finite element method (FEM). The CTO plays a pivotal role in this work.
It enhances the mathematical elegance of the implicit approach by furnishing the exact
derivative for the Newton-Rhapson procedure that is used to solve nonlinear algebraic
equations that arise in the implicit formulation. Quadratic convergence of the Newton
Rhapson method is achieved when the CTO is employed. Also, the CTO makes possible
accurate computation of design sensitivities. The basic BEM formulation, together with a
one-dimensional (1-D) numerical implementation, are presented in Bonnet and Mukherjee
[1996], while a general numerical implementation for two-dimensional (2-D) plane strain
problems appears in Poon et al.[1996]. The reader is referred to, for example, Vidal and
Haber [1993], Kleiber et al.[1994] and Michaleris et al.[1994] for FEM based sensitivity
analysis of nonlinear problems with the CTO.

Stresses on the boundary of a body must be computed accurately in order for the
CTO based implicit algorithm to work properly. There are at least two approaches for
calculating boundary stresses in the BEM. The first involves local tangential differentiation
of the shape functions that are used to interpolate the boundary displacements, together
with pointwise application of Hooke’s law (e.g. Zhang et al., [1992]). This method, referred
to in the present paper as the “boundary shortcut”, has been employed in Poon et al. [1996].
The second is the careful regularization of the hypersingular integral representations. This

latter approach is adopted in the present paper.



Hypersingular integrals, and their role in the BEM, is a subject of considerable current
research interest. A recent review article by Tanaka et al.[1994], for example, cites 350
references! An updated review of hypersingular integral equations can be found in Paulino
[1995], while complex variable formulations for 2-D potential problems appear in Kolhe et
al.[1996]. It is fair to say that most research papers to date, that are concerned with
hypersingular integrals, address linear problems. On the other hand, the “boundary
shortcut” approach is popular for BEM analyses of elasto-plastic problems. Examples
of the latter are Poon et al.[1996], Telles and Carrer [1991], Sladek and Sladek [1995] and
Sladek and Sladek [1995]. The paper by Leitao et al.[1995] does contain a hypersingular
integral expression for the stress at a smooth boundary point for elasto-plastic problems.
This expression, however, is not regularized, but contains Cauchy Principal Value (CPV)
and Hadamard Finite Part (HFP) integrals. In the numerical implementation, the authors
used semi-discontinuous interpolation for internal cells adjacent to the boundary, thereby
forcing all collocation nodes to be internal.

In the present work, a hypersingular representation for boundary displacement gra-
dients in elasto-plasticity is completely regularized using a novel approach. This idea
transfers tangential derivatives from the singular kernels to the displacements so that the
final regularized form contains, at most, weakly singular kernels. This approach uses trac-
tion and displacement data (the latter in the form of tangential derivatives) over the entire
boundary, as opposed to strictly local information that is used in the “shortcut” method.

A just published paper by Huber et al.[1996] has come to the authors’ attention upon
completion of the writing of the present paper. In this paper, the authors have derived a
3-D hypersingular BIE for elastoplasticity and have used it to compute surface stresses.
Their method is an extension of the approach proposed by Guiggiani et al.[1992] for linear
elasticity. The present paper proposes a different regularization approach from theirs.
Also, the present paper uses the CTO in an implicit BEM while Huber et al.[1996] do not
use the CTO in their work.

Ideally, C! elements, for discretization of both the geometry and boundary variables,
should be used in the present work. Here, however, standard isoparametric quadratic C°

elements are used. Slope continuity of the domain boundary (across boundary elements) is



enforced using a special construction proposed by Guiggiani ( private communication,
detailed in part 1 of appendix A), while a continuous boundary interpolation of the
displacement tangential gradient results from a “least squares fit” idea presented in Polch
et al.[1987]. Numerical results are presented for the elasto-plastic counterparts of the Lamé
and Kirsch problems in 2-D linear elasticity. Corners on the boundary are not modeled in
this work. This is a subject for future research. It is important to mention again that the
formulation presented in this paper is valid for general elasto-plastic problems, within the
small strain assumption. Numerical results, presented for certain illustrative examples, are
seen to be acceptably accurate. The smoothing approaches due to Guiggiani and Polch et
al.[1987], mentioned above, are seen to be crucial for the success of the numerical scheme.
It is expected that the use of C! elements would further improve the accuracy of the

numerical solutions. This will be attempted in the future.

2. Implicit BEM solution scheme for elasto-plasticity

This section summarizes, for the sake of completeness, the CTO-based BEM solution
strategy for small strain elasto-plasticity proposed in Bonnet and Mukherjee [1996] and
Poon et al.[1996].

The boundary integral equation (BIE) (without body forces) in the presence of plastic
strain reads:

/ (ui(2) — i ()| P* (z, 2)dS, — / pi(2)UF (2, 2)dS,
N

o2

= /QUilfj(a?, Z)Cz'jabé‘gb(z)de (1)

where x is any fixed source point on the boundary 0€2, and p, u, €P denote the traction,
displacement, and plastic strain, respectively. Uik,Pik are the Kelvin displacement and

traction kernels. The variable field point is denoted by z and ; = 0/0z;. The tensor Cjjx

is the usual Hookean elasticity tensor, which, for isotropic elasticity, has the form

2Gv
Cijki = 725@'51% + G (61651 + 0i10;1)

1—2v
where G is the shear modulus, v the Poisson’s ratio and é is the Kronecker delta.
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The matrix equation obtained by discretizing the above BIE reads:

[H{u} - [GH{p} = [QI{C : "}

which, after the standard operation of “collecting” boundary unknowns, becomes (y being

the vector of boundary unknowns):

[A{y} = {f} +[QHC : "} (2)
Next, the displacement at an internal point is given by:
{pZ VUF(z,2) — ui(z)PF(z,2)} dS,
+ /Q Ui’fj (x, 2)Cijarer, (2)dV, (3)

which, after differentiation w.r.t. x, and regularization, yields:

ue(@) = [ w@Phas. — [ p@Uk @ 2.
- Cuurely(@) [ ne(=)Uky (e, 2)as.
- | Uk, 2)Cuimlety () = el @)av: (@)

The well-known kinematic relationship between strain components and displacement gra-

dients allows us to write:

{e} = [G'p} — [H'{u} + [Q{C : "}
—[ARy} +{f} +[QUHC : "} ()

Note that certain integrals in (4) become hypersingular when  lies on the boundary. In
fact, a computable, fully regularized boundary strain representation is the central theme
of this paper. This will be discussed in detail in the next section. For now, suffice to
say that the strain at a boundary point is expressable in terms of boundary tractions and

displacements and domain plastic strains, as given in (5) above.



Substituting for {y} from (2) into (5) yields:

{e} = {n} +[SH{C : €%} (6)
where , , .
{n} ={F"} - [AT][A]"{f}
[S] = [Q1-[A"[A]7[Q]
Note that {n} denotes the purely elastic solution, i.e. the one obtained for the same
loading but in the absence of plastic strain.

At this point we recall Hooke’s law and the additive decomposition of strain:

oc=C:(e—¢gP) (7)
{C:e?}={C:e}—{o}
giving:
{e} = {n} +[S]({C: e} —{o})

[S]{o — Ce} — {n} + [I[{e} = {0} (8)

with the corresponding incremental form:
[S]{Acn — Chen} — {Ann} + [T]{Ae,} = {0} (9)

This is as far as we can get using equilibrium principles (Somigliana’s identity) and the
elastic Hooke’s law. To proceed further, we need a discretized form of the elasto-plastic
constitutive relation, one that relates Ao, to Ae,. This is accomplished by the Radial
Return Algorithm (RRA) (Simo and Taylor [1985]). Conceptually, the RRA serves the

following function:

Input: On, En, €0, Ag,

Output: & =o,41 and &,




The consistent tangent operator (CTO), denoted in the present paper by C, 11, comes
from “differentiating” the RRA. Being a fourth order tensor, it provides a linear mapping
from an infinitesimal perturbation in the input strain increment d Ae,, to the corresponding

infinitesimal change in the output stress d&:
oo
0Ae,,
Both the RRA and the CTO are explained in detail in Simo and Taylor [1985] and

Cn+1 =

briefly summarized in Bonnet and Mukherjee [1996].

Combining the equilibrium and constitutive equations in the form

{on} +{Aon} = {7}

(where Ao, (Agy, ) comes from the BEM equation (9) while &(Aey,, -, ) (which is

0n11) comes from the RRA), we obtain a nonlinear equation for Ag,, of the form:
{G(Ae,)} = [S]{o(en, On, e, Aey,) — o, — CAe, } — {An,} + [I]{Ae,} = {0} (10)

The consistent tangent operator C), 11 appears upon application of Newton’s method.

The additive correction de?, = Aei*t! — Ag?, to Aet, solves the equation

([SNIC ~ Cy ] — N){0er} = {G(Ae},)} (11)
The quantity ([S][C—C%,]—[I]) = ([D%,]— [I]) is hereafter called the global CTO (see
Kleiber et al.[1994] for the FEM version). Once the nonlinear equation (10) is solved for
Aeg,,, all the variables at time t,,,1 are readily computed. It is interesting to note that the
Newton step (11) involves the difference [C — CY, ;] between the elastic constitutive law
and the local CTO, rather than the local CTO itself; this is entirely consistent with the
fact that eqn (9) accounts for equilibrium as well as the elastic constitutive law. Because
of the difference [C — C¥ ,,], a matrix partitioning scheme exists whereby the effective
system size depends only on the size of the plastically deforming zone. This is explained
in Poon et al.[1996].
It is worth mentioning that the current CTO-based formulation lends itself to accurate
sensitivity computations. An accompanying sensitivity formulation (not shown in this
paper) reveals that the stiffness matrix for the (linear) sensitivity problem is precisely the

converged value of the global CTO. The reader is referred to Poon et al.[1996] for details.

7



3. Hypersingular boundary strain computation

The primary motivation behind the present paper is the observation that, when the
“boundary shortcut” (local tangential differentiation of the shape functions interpolating
the boundary displacements, together with pointwise application of Hooke’s law) is used
in conjunction with eqn (5), the numerical results can exhibit fluctuations around the
reference solution. This is reported for the elastic case in Guiggiani [1994] and for the
elastoplastic case in Poon et al.[1996]. The use of shape function differentiation, and the
localized nature of the shortcut, are believed to contribute to the error. Attempts to
avoid the shortcut, by dealing carefully with the hypersingular boundary strain (or stress)
representation, can lead to more accurate results. This is demonstrated for the elastic case
in Guiggiani [1994]. Elastoplastic problems are considered in the present work. It is found,
however, that for the numerical examples considered in this paper, both the “shortcut” and
hypersingular numerical results compare well with finite element method (FEM) results.

A computable formula for the integral representation of the displacement gradient
Uq,p() (and hence the strain) at a boundary point « in the presence of initial (e.g. plastic)
strain P is developed, within the context of small strain elastoplasticity. The formula is
derived using an indirect regularization technique, and applies with fair generality in 2D
or 3D situations. The numerical examples, however, are restricted to the specific case of
2D plane strain deformation.

It is a convenient practice that, when collocating at a boundary point, we introduce
an exclusion (or inclusion) zone and deform the boundary accordingly (Figure 1). The
size of the exclusion zone, as well as the distortion of the boundary, tend to zero by a
limiting process. By explicitly integrating over (0€2 — e.) + s, this approach avoids special
interpretations of boundary integrals (e.g. in the Cauchy principal value sense) and the
companion specification of “corner” tensors. The choice between exclusion and inclusion
neighborhoods is rather immaterial. The representation formulae differ only by the source

point displacement. As indicated in Figure 1, we opt for the exclusion zone.



0Q n(y)

y

Figure 1. Source point and exclusion neighborhood
3.1 Indirect regularization approach

The starting point is the exterior representation formula for the domain ¢ with

boundary (02 — e.) + s, which reads

0= / {(PH(@, y)ui(y) — UF(z, y)pi(y) } dS,
(0Q—ec)+se

—/Q ij(:n,y)efj(y)dVy (12)

€

where ij is the Kelvin stress kernel. A regularization of (12) will be followed by the
limiting process € — 0.
The first step involves regularization of the domain integral. Consider the purely

plastic state

vi(y) =€i;(x)y;  o(y)=0, p(y) =0 (13)

(note that the constant strain tensor €};(x) is geometrically compatible). The exterior

representation formula for the above plastic state reads

€

— P (o k(2 , — k(x
0= e >{ Lo, P umws, = [ 9 ,y>dvy} (14)



Subtracting (14) from (12), one gets:

0 :/ {Pik(:c, y)ui(y) — U (x, Y)pi(y)} dS,
(092—ec)+se
- s‘fj(w)/ PF(x,y)y;(y)dS,
(0Q2—ec)+se

- | S v ) - @) v, (15)

€

Next, the derivative of Eq. (15) with respect to z, is taken, resulting in

0 :/ {Pi’fZ(wa y)ui(y) - Ui’ff(w’ y)pi(y)} dSy
(aQ—6€)+5€
— e (x) / Pfy(x, y)y;(y)dsS,
(69—65)+56

- [ = ) [ @) - @) 4,

€

~et, (o) Lo P s, - [ 5 @) )

€

Since ef; () in the identity (14) is arbitrary, one readily notes that the expression multiply-
ing efj’ ;(x) (i.e. the last line) in the above formula vanishes. Notations like Ui’fe and U ilff’
respectively, denote derivatives of kernel functions with respect to y, and x,. Furthermore,
the Kelvin solution has the property that Ui’fz = —Ui’fe.

One important hallmark of the present regularization approach is the transfer of
derivatives from the kernel to the field variable, by means of integration by parts. The order
of singularity of the kernel is reduced at the expense of having to deal with (tangential)
derivatives of field variables.

The differential operator:

f—=Daupf = naf,b - nbf,a

where n, is the unit outward normal, has the property that

/ Doy fdS =0 (17)
S
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for any piecewise regular closed surface S and any continuous and piecewise differentiable
function f. Using this identity, one can effect the following transformation, for a generic

boundary field variable f(y)
/ P, ) (4)dS,
(0Q2—ec)+se
=[S eynwiwas,
(0Q2—ec)+s.

=— / {ngEfj (x,y)+ me (z,y) ne(y)}f(y)dsy
(0Q2—ec)+se —

=0

- / Sk (2, y)D;efdS, (18)
(0Q2—ec )+s.

k

In the foregoing derivation, use has been made of the fact that ¥7; ; = 0 for any y # =z,

together with the following “antisymmetric” property of the operator Dgp:

/ gDapf dS = — / fDubg dS
S S

the proof of which involves a trivial application of the product rule.
The major accomplishment of formula (18) is to reduce the kernel from hypersingular
to strongly singular, meanwhile shifting a tangential derivative to the field variable f.

Application of formula (18) to (16) (with f = u; and f = y;) gives

0 :/ {25 (@, y)Djeui(y) + U, (, y)pi(y) } dS,
(0Q2—e¢)+se

@ [ Peyds,rd@ [ ShEyndw)ds,
¥(69—ee)+s€ P (0Q2—ec)+s.
-0
- / Sk (2,9) [0 (y) — <2)(2)] 4V, (19)

€

The domain integral, being weakly singular, can be handled by a mapping method
(see, e.g. Lean and Wexler [1985]) . Our immediate goal is to regularize the boundary

integrals. To this end, we appeal to additive strain decomposition and Hooke’s law:

C:eP=C:e—0

11



or

eP=e—-C':0o

The collection of boundary integrands in (19) is transformed as follows:

¥ (@, y) Djeus (y) — UF (@, 9)pi(y) + X5 (@, y)ne(y)el; (z)
=35 (¢, y)nj(y)uie(y) + 55 (@, y)ne(y) ui j (@) — ui;(y)]
— UF; (@, y)nu(y)oij(x) — UL (2, y)ni(y)oi; (y)
=PF (, y)uie(y) + 5 (@, y)ne(y) [u () — uij(y)]

+ U (@, y)n;(y)[oi;(y) — 0ij(x)] + DjeUf (2, y)oij ()

Eq. (19) therefore becomes

0= / PE (e, ) [ui.o(y) — use(@))dS,
(02—ee)+se
+ / S (@, ) (y)[ui; (@) — ui; (4)]dS,
(0Q2—ec)+s.
v Uk @) - oy @)ds,
(0Q2—ec)+s.

- [ b ) [ ) - el av, (20)

€

Identity (17) for f = UF(x,y) on the closed surface (0 — e.) + s. has been used,
together with the following one which holds true because x is exterior to the closed surface
(092 — €c) + Se
wi o) / P¥(x,y)dS, = 0
(09—ec)+se

At this point, if we make the further assumption that Vu € C%“ at z, then all integrals
over s in (20) vanish in the limit € — 0, while all integrals over 92 — e, are convergent in
the ordinary sense. The regularization is complete.

The validity of the assumption Vu € C% warrants careful investigation. Two
immediate difficulties are spelled out as follows:

(i) It is shown in Timoshenko and Goodier [1970] that Vu is not continuous at general

corners, even for linear elasticity.
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(ii) At a smooth boundary point, the continuity of both Vu and the unit tangent
implies a continuous tangential derivative du/ds. However, this physical continuity is
violated in the discretization process at the end nodes of C° elements if one computes the
tangential derivative by shape function differentiation.

As far as the above difficulties are concerned:

(i) The present numerical examples do not contain sharp corners and it is assumed
that Vu € C%e.

(ii) The proper way to handle it is by using C! elements, such as Overhauser and
Hermite. Here we apply the idea in Polch et al.[1987] who developed the idea in the context
of 3D crack problems. Simply put, a new C" interpolation for du/ds is introduced, in such
a way that it approximates the shape function differentiation of (the C? interpolation of) u
in a least squares sense. This tactic is henceforth referred to as the “smoothing technique”
and is explained in Appendix A.

Getting back to the hypersingular formulation, we note that the limiting form of eq.
(20) is not suitable for our application, because the complete displacement gradient at a
field point u; j(y) is not available from the boundary displacement interpolation. Further

transformation of (20) is needed.

3.2 Reformulation of the strain representation formula

In view of the corner difficulty mentioned earlier, from now on, we deal strictly with
smooth points on the boundary.

Consider a partition 02 = E1 + ...+ Ep + T of 022, where Eq,..., Eys are the M
elements sharing « (Figure 2).

We are seeking a practically computable form for the limit when € — 0 in eq. (20),

that is:
0= /a L Pl )~ ()]s,
<[ sl (@) - @S,
+ /69_ U (2, y)n;(y)loi(y) — oij(2)]dS,

13
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S ————

Eo

Figure 2. Boundary partitioning
- [ 4o [ ) — @] 0%, + O)

accounting for the fact that integrals over s. vanish in the limit and the domain integral
is convergent.
First, the integrands containing the unwanted field point displacement gradients are

transformed as follows:

P (e, y)ui o(y) — SF; (@, y)ne(y)ui ()
=% (2, y)n;(y)uie(y) — S (x, y)ne(y)us ;(y)

:E,’fj (a:,y)ngui(y) (21)

Then, the boundary is split according to the partition 0Q—e. = (E1—e.)+...+(Ey—ee )+
defined above. Using (21) at the singular point @ for the integrals over F,, — e., we get

(with appropriate addition-subtractions and some cancellations)
0= [ =@ w)Dyui(w)ds, + | Uke.ynw)is,
r r

M
+2 {[Em—es 2% (2, y)[Dfjui(y) — Dijyui(x)]dsS,

=1

‘)
E,,—e.

- [ 2 i) [ (0) - )] ¥y + Cuslese) + OC) 22

UFy(, y)pi(y) — pi (w)]dsy}

14



with

Cre(x,e) = — u;o(x) / Pik(w,y)dSy + u; () /1“ Efj(w,y)ng(y)ds

e Z/m e 9 ) = (@)lds,

S Z / W) (y) — nf (x)]dS,

E,—e.

— oy;() / U (@, y)n; (y)dS,

- oy(e Z [ U @) -y @)as, (23)

Finally, since all integrals over F,, — e. that appear in (22) and (23) are regular, the

limiting form for € — 0 exists, and its expression follows at once:

0 :/ Eﬁj(m’y)Dﬂ“i(y)dSy“‘/Uke(“’ y)pi(y)dsS,
* Z {/ (z, y)[Djjui(y) — Digus(x)]dS,

+/ Uy, y)[pi(y )—Pi(w)]dsy}

En

+ /Q CijaUp po(, ) [€F;(y) — €F;(@)] dV;, + Cre() (24)

with

Cur(e) = - usa(a) [ Ph(,y)dS, + us(a) [ Sh(e v)new)is,
i z/ (2,9} (y) - n (@)]dS,
(e Z / (2, 9)[n7(y) — nf (2)]dS,
—0,(a) / Uk (@, y)n; (9)dS,

—oii(@) S [E U, (2, y) [ (y) — n()]dS, (25)

Note that the domain integral has been transformed into a form more suitable for our

symbolic strain representation, eq. (5).
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3.3 Transition to 2D plane strain

Notice that eq. (13), when applied to 2D plane strain, precludes the existence of k.
This is physically incorrect and the formulae developed in the previous sub-section should
be regarded as 3D results. Fortunately, the corresponding plane strain formulae assume

identical forms. This can be seen by treating plane strain as a special 3D configuration:

Q= Dx] — 00, +00] 0Q = 0D X] — 00, +00]
u(y) = u1(y1,y2)e1 + u2(y1, y2)e2

p(y) =t1(y1,y2)e1 + t2(y1,y2)e

Then, the integrals are re-interpreted in a manner such as the following;:

/ Yoz, y)pi(y)dS, / / U y(®, y)dys pi(y1, y2)dsy
N oD

o

k
Uk, In plane strain

Moreover, it turns out that the following is true for the Kelvin solution
+o00
/ US 34(, y)dys = 0
—0oQ
so that the terms containing ef; in eq. (24) vanish in the ys-integration process. For-
mulae (24) and (25) are then formally identical in 2D plane strain and 3D, provided the

appropriate kernels are used.

Also, the operator D, f has an additional interpretation in 2D:

f — Dabf = na,f,b - nbf,a = ebaf,'r

where e, is the 2D alternating tensor, and , denotes the partial derivative along the unit
tangent (tangential derivative). Note: the orientation of the unit tangent ¢ is such that
t X n=e;3.

Referring back to formulae (24) and (25), one notices the coupling among the displace-
ment gradient components (bear in mind that k£ and £ are the free indices). The pertinent

components being sought (for the purpose of getting strain components) are uy 1, u2 2, u1,2
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and uy 1. By ranging the free indices k, £ from 1 to 2, one can form a system of 4 equations
involving the 4 sought-after unknowns. The 4 by 4 system can then be easily inverted,
either numerically through Gaussian elimination, or “exactly” through Cramer’s rule, to
recover the individual uq 1, 42 2, u1,2 and uy ;. These are then easily translated into strain
components €;;. The other side of the equation will contain, besides the nodal tractions
and plastic strains, displacement tangential derivatives over the boundary. These in turn,
are related to the boundary nodal displacements through the “smoothing technique”. The

end result is that the symbolic strain representation from the previous section (eq. (5))

{e} = [G'{p} — [H'{u} + [Q{C : '}

is preserved.

3.4 Domain partitioning into a potentially plastic part and its complement

For computational efficiency, the domain discretization should be done only for the
potentially plastic zone. The 2D domain €2 is partitioned into 2p, which is potentially
plastic and covered with internal cells, and its complement 2¢, which remains elastic and
not discretized. The objective of this section is to transform the domain integral in eq.
(24) into one which integrates over Qp only, with appropriate modifications of certain
boundary integrals. We introduce some new notations as shown in Figure 3, and note

that, forx € I'p :

/QCZ'jabUf,bl(way) el (y) — &b ()] aV,

:/Q CijabUf,be(ma Y) [Efj(y) - 5%(5”)] dVy — Efj(m)/ﬂ Efj,e(ma y)dV,

C
— [ Coullul@y) (W) - @] av - @) [ Sh@ynf@as,
Qp FeUl'pc
where the superscript in ”e specifies that the normal points away from Q¢

= | Cunltuula.v) [hw) ~ (@) aVy + () [ U@ g w)as,
.

I'cUl'pe

—eij(2) 23 (z, y)ng (y)dS,
TcUl'pc
where Hooke’s law in the form of eq. (7) has been used
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Figure 3. Domain partitioning

= /Q CijatUs e (2, y) [} (y) — eF;(2)] dV,, + 03(x) / U y(z, y)ng (y)dS,

T'cUl'pc
~ug@) [ Sheyef s,
TcUl'pc

where identity (17) has been applied with f = UF

In addition, [i._ ... PF(z,y)dS, = 0since z lies outside Q¢. It follows that, in expression
(25) of Cre(x), the surface I' = 90— E,,, must be replaced by I' = T pUl'pe =Y By, ie.
by the nonsingular part of the boundary of the potentially plastic zone Qp. For & € ',
the integration is still over I' = 9Q — Y E,,. Of course, as mentioned before, the domain
integral in eq. (24) is now over Qp.

A similar investigation has been carried out for the displacement gradient expression
(4) at an internal point. The end result is that, for the practically useful case € Qp (since
only the plastic region Qp is meshed), the right hand side of eq. (4) must be modified as
follows: replace 02 in the third term by 0€Q2p and €2 in the last term by Qp.

4. Numerical results

Two physical problems are solved, namely, a hollow cylinder subjected to internal
pressure loading, and the stretching of a square plate with a circular hole. Both deform

under plane strain conditions.
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For both problems, the geometry and deformation modes are highly symmetric. For
example, only one quarter needs to be modelled in the second example. However, the
corners introduced by such exploitation of symmetry have not been addressed by the
current treatise. As a consequence, both the cylinder and the square plate are modeled in
full, with a complete circle as the inner boundary. Each of the outer corners of the square
plate is approximated by a circular arct with a finite, but negligible, radius of curvature.

Emphasis is on comparing the hypersingular approach to the “boundary shortcut”.
In the absence of closed form solutions, reference results are furnished by running the
commercial finite element code ABAQUS [1995] on a fine mesh.

The hollow cylinder has inner radius 1 and outer radius 2. The square plate has
inner radius 1 and outer side length 4. The elastic constants are: G =1, v = 0.3 where
G denotes the shear modulus and v the Poisson ratio. The material deforms plastically

according to the classical J2 theory, with isotropic strain hardening of the form:
k = 2G(0.001 + 0.001(e?)™)
where (Poon et al. [1996]), e? is the equivalent plastic strain, defined as:
D)
o= [ A ear

o V3

in terms of the plastic strain rate d? = P, and
|d?(T)[| = ++/dijdi;

Further, the yield condition is:

f(s,5) = sl = \/g/‘é(ep) =0

where s = o — 1 (tro)I is the deviatoric stress and & is the (isotropic) strain hardening
function. Finally m = 0.2 (nonlinear strain hardening). The usual practice of non-

dimensionalization (e.g. dividing stresses by the shear modulus, radial distances by the

T Actually, a distortion of such, constructed by the special means described in part 1 of

Appendix A
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inner radius, etc.) becomes unnecessary with the current choice of material and geometrical
parameters.

Quadratic interpolation of nodal quantities is used in the present work. The BEM
implementation uses 3-noded boundary elements and 6-noded, triangular internal cells.
Only the potentially plastic zone Qp (see Figure 3) is discretized in all the elastoplastic
examples. The FEM setup (ABAQUS) employs 8-noded quadrilateral elements.

In the legend boxes, “HBEM” and “SBEM” stand for hypersingular BEM and shortcut
BEM respectively.

4.1 Example 1

The first example demonstrates the supreme accuracy of the present approach in
the linearly elastic case. The hollow cylinder is subjected to a small internal pressure of
10~%, which is below the pressure at first yield (recall the shear modulus is 1 and the
initial Mises yield stress is 0.002.) The inner and outer boundaries of the hollow cylinder
are each divided into 36 equal divisions. Stresses are also computed at some internal
points. Excellent agreement is obtained at between the HBEM and Lamé’s exact solution.
Numerical results for the radial and hoop stresses, as functions of position along a radius

of the cylinder, available in Poon (PhD thesis, Cornell University, USA).

4.2 Example 2

This example uses the mesh shown in Figure 4. The internal pressure is large enough
so that the plastic front is roughly at » = 1.5. The internal cells are sufficient to cover
the plastic zone. The entire load is applied in one single step, thanks to the power of the
CTO. Figure 5shows the distribution of radial stress through the cylinder, computed from
the HBEM and SBEM together with a fine mesh ABAQUS solution. The same is true in

Figure 6for the distribution of hoop stress. The numerical results are acceptable, though
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Figure 4. Example 2: BEM mesh

certainly not as accurate as in the linearly elastic case. The BEM results are those on the

6 = 0 radial segment — there are slight fluctuations in the 6 direction, of the order of 1%.

x107*
T

sigma_r /G

L L L L L L L L
11 1.2 13 14 15 1.6 1.7 18 19 2

r/a

Figure 5. Example 2 (hypersingular and shortcut): radial stress
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sigma_theta /G

1.2 I I I I I I I I I
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

r/la

Figure 6. Example 2 (hypersingular and shortcut): hoop stress
Similar observations and comments apply in this example as in the previous one. The

results from the “shortcut” and hypersingular approaches, in this case, are comparable.

4.3 Example 3

This example concerns the uniaxial stretching of a square plate with a circular hole.
The geometry, loading, and axes convention are shown in Figure 7. For the sake of

conciseness, each result is shown as a set of four sub-figures, arranged in the following

manner:

top left: o, at y = 0 as a function of

top right: Mises equivalent stress at y = 0 as a function of z

bottom left: gy at » = 1 as a function of 6

bottom right: BEM mesh

The five results presented are:
o coarse mesh, linearly elastic, hypersingular: Figure 8

o coarse mesh, elastoplastic, hypersingular: Figure 9
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o coarse mesh, elastoplastic, shortcut: Figure 10
¢ fine mesh, elastoplastic, hypersingular: Figure 11

o fine mesh, elastoplastic, shortcut: Figure 12

IR

Figure 7. Example 3: Geometry, loading, and axes convention
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Figure 8. Example
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Figure 9. Example 3: coarse mesh, elastoplastic, hypersingular
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Figure 10. Example 3: coarse mesh, elastoplastic, shortcut
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Figure 11. Example 3: fine mesh, elastoplastic, hypersingular
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Figure 12. Example 3: fine mesh, elastoplastic, shortcut
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Note the following pertinent remarks:

* Apart from the linearly elastic case, all others share the same loading magnitude.

* All cases are analyzed using one load step.

* The circles in the BEM mesh denote nodes of the (quadratic) boundary elements.
Unlike the hollow cylinder case, the boundary discretization cannot be inferred from
the internal cells.

* In the fine mesh cases, the area occupied by the internal cells barely covers the plastic
zone.

* The numerical results from both the “shortcut” and hypersingular approaches, espe-

cially with the fine mesh, are seen to agree well with the FEM results.

5. Conclusion

In conclusion, the present hypersingular algorithm represents a novel approach to
deal with hypersingular kernels arising in the context of small strain elastoplasticity. The
linearly elasic results turn out to be perfect. The elastoplastic results, while acceptably
accurate, are expected to improve further with the adoption of C' boundary elements.
Another possibility is the Galerkin BEM, where the continuity requirements are reduced

and C° elements are sufficient.
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Appendix A: smoothing technique

To illustrate the basic ideas, it suffices to consider two adjacent boundary elements:

1 S

and the hypersingular boundary integral equation is being collocated at node 3.
(1) Choice of mid-nodes 2,4: the geometrical construction sketched below ensures a C!
curve at node 3 (tangents at nodes 1,3,5 are prescribed by the user, location of nodes 2,4

is then deterministic):

Ay is the mid-point of [I, J] with
J = Al N A3

I = midpoint of [A;, Aj3]

Hermite interpolation is not necessary for C! curve generation. Note that
(i) Nodes A;, As, tangents A;, Az are “exact” (i.e. those of the exact curve being
modelled).
(ii) Node Az is in general not located on the exact curve.

(2) Tangential gradient interpolation
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;From the usual C° interpolation:

du 1 25: AN,

bk —
ds ~ T(0) 2= de
s = s(£) on either Ey or Ejj.
Idea: introduce a continuous interpolation
du du >
— =) Ne(&) (o2 ) =D Nu(©)dr
ds — ds /. —

in terms of a new set of nodal values di = (du/ds)

To relate the {dx} to the {ug}, the following least-squares prolem is introduced:

5 5 2

. 1/ 1 dNy,
min — E Nidi — = g —U J d¢
{dk} 2 EiUE;; (k:1 RER J E k) SN~~~

i.e. the “new” interpolation must be closest (in the L? sense) to the “old” one.

The condition %(% f ...d&) =0 for 1 </ <5 gives the set of linear equations:

5 5
> Apdy = Bupuy
k=1 k=1

where

Ap, = / NiNyJ d€
EjUE;;

dNp,
By, =/ — - Ned§
E/UE;; dé-

[A] and [B] are 5 x 5 matrices. Given the {uy} set, one solves for the {dy} set. Then

the “new” interpolation is plugged in the singular integrals containing (‘j—g(y) — ‘Gil—g(:c)) or

similar quantities.

The extension of this basic idea to an arbitrary number of contiguous boundary

elements is straightforward.

The idea for this C° interpolation for tangential gradient appears (for 3D plane crack

problems) in Polch et al.[1987].
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