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Algebraic Multilevel Methods for Edge Elements
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An algebraic multilevel method is proposed for the resolution of linear systems coming from an edge-element discretization of EM
models. Graph-flow problems are introduced to ensure a natural compatibility condition linking nodal and edge interlevel transfer op-
erators. The efficiency of our method is compared to classical solvers on two-dimensional and three-dimensional eddy current problems.

Index Terms—Algebraic multigrid methods, edge elements.

I. INTRODUCTION

HE finite-element discretization of partial differential

equations (PDEs) leads to large sparse linear systems.
This is often the most time-consuming part of the finite-element
computations. This part can be optimized in view of specific
applications. The multilevel approach, also called multigrid,
consists of considering the linear system at different mesh
scales, which can substantially reduce the computational time.
Although the multilevel concept is relatively generic, the prac-
tical components are narrowly linked to PDE, finite-element,
and mesh properties. In this paper, we deal with EM models
discretized by the lowest-order edge elements on an unstruc-
tured mesh, i.e., without a hierarchy of nested grids.

The starting point is the construction of coarse-nodal and
coarse-edge functions which satisfy a natural compatibility re-
lation: The gradient of coarse-nodal functions are linear combi-
nations of coarse-edge functions. This relation is introduced as a
constraint in an energy-minimization problem for constructing
coarse bases. By linking the compatibility relation to graph-flow
problems, the minimization problem can be reduced to a linear
system. The efficiency of our approach is compared to classical
solvers on two-dimensional (2-D) and three-dimensional (3-D)
eddy current problems.

II. FORMULATION
The following problem has to be solved on a domain {2

Find E € V}, such that: o(E,E’) = F(E'), VE' € 1}
{with a(BE,E) = [,6curl E-curl E' + [, aE-E'.

ey
Vo is an edge element subspace of H(curl, ), V}, is the affine
space taking into account essential boundary conditions, F' is
a source term, and ¢ and « are strictly positive functions. This
formulation includes many static and transient EM models. It
leads to solve the linear system

Az =b. 2)

where the components of x are the coefficients of the solution
in the edge-element basis.
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III. ALGEBRAIC MULTILEVEL METHOD
A. A Simple Two-Level Case

Suppose that two levels of discretization are known for the
problem under consideration. For instance, one could have dis-
cretizations on two nested meshes 1y and 1}, where the sub-
script h is used for the fine level and H for the coarse level.
Thus, Ay, zp, and by, are, respectively, the matrix, the solution
vector and the right-hand side on the fine level. A prolongation
matrix P transfers information from the coarse to the fine level.
The transposed matrix P7 is called restriction.

Two complementary steps are needed for the two-level algo-
rithm [1, Section 1.5].

1) Smoothing. The “oscillating” part of the error is damped
by a linear iteration called smoother S (Gauss—Seidel
type methods are often used) z;, «— S(Ap,zn,bn). The
new residual 7, = Az — by, is then transferred to the
coarse level: rg — PTry,.

2) Correction. The “smooth” part of the error is computed
on the coarse level 8 «— A;IIr g and is prolongated to
the fine level as a correction: zj, < zj, — Pfy.

The method is iterative and the two steps are repeated until the
norm of the residual ||| is sufficiently small. More complex
variants are possible, using for instance pre- and postsmoothing.
Replacing the correction step by a two-level method leads to the
recursively defined multilevel method.

B. Algebraic Multilevel

Using a hierarchy of nested grids is the straightest way to im-
plement multilevel techniques. Nevertheless, in some applica-
tions, only information at the fine level is available for building
coarse levels; this is the case for unstructured meshes. Algebraic
strategies must then be followed.

The main task is to define a coarse basis or equivalently the
prolongation matrix P. For the recursive application of the mul-
tilevel method, the coarse matrix is assembled by the Galerkin
product Ay = PTA,P.

C. Edge Element Features

Hiptmair [2] and Arnold et al. [3] have proposed appropriate
smoothers for edge elements, specifically dealing with the
kernel of the curl operator. For algebraic multilevel methods,
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the construction of the prolongation matrix must also be con-
sidered. Due to relations between first-order conforming nodal
elements and lowest-order edge elements [4], an important
compatibility relation must be ensured

EH
grad(ﬁf:ZGgl)\f, Vne{l,...,NT} 3)
e=1

where (¢H),_, nu is the coarse-nodal basis, (\7)._; pn
is the coarse-edge basis, and G¥ is the discrete analog of the
gradient operator on the coarse level. The matrix G can be
viewed as the node-edge incidence matrix of an oriented coarse
graph S¥ defined by the relations

¢ index of —1, if node n is the origin
an edee in SH < Ggl = { +1, if node n is the end
s 0, otherwise.

“4)

Enforcing (3) is a main issue for algebraic multilevel
methods, as it was first highlighted by Reitzinger and Schoberl
[5]. The compatibility condition was also used by Bochev et al.
in [6], [7].

Edge and nodal coarse bases are constructed so as to sat-
isfy the inclusion of finite-element spaces, the “coarse” being
included in the “fine,” which is expressed by the following al-
gebraic relations:

Nh
¢ = Prigr, Wne{l,...,N"}
p=1
Eh'
AE=3"poteal, VYee{l,...,E"}. (5)
i=1

The matrices P"°4 and P°98 are, respectively, the nodal and
edge prolongation matrices which have to be constructed.

The analog of relation (3) is also assumed to be satisfied at
the fine level

Eh

grad ¢y = > G AL

i=1

Vpe{l,...,N"}. (6)

From relations (5) and (6), the compatibility condition (3) is
algebraically written

PedgGH — Gthod. (7)

IV. NEwW APPROACH

In order to compute an efficient coarse basis verifying the
compatibility relation, the “energy-minimizing coarse basis”
concept from [8] is applied. First, a decomposition of the do-
main into overlapping subdomains is introduced €2 = Uﬁ:l Q.
The support of the coarse nodal function ¢ is enforced to
be included in €2,,, by setting equal to zero values in the nth
column of Prod,

Moreover, in order to ensure that the constant functions be-
long to the coarse nodal space, the sum of each row of P"°4 is

enforced to be equal to one.
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We compute the prolongation matrix P*°¢ by usual tech-
niques, for example, by smoothed aggregation [9].

Then, we define a node-edge incidence matrix GH or, equiv-
alently, an oriented coarse graph such that for any coarse edge
e, whose extremities are nodes n and m, 2, and €, inter-
sect. Thus, for each coarse edge e, we introduce the subdomain
U, = 2, N, and the coarse edge function A\Z whose support
is enforced to be in I/, by setting equal to zero values in the eth
row of Peds,

Then, we solve the following optimization problem:

{TO find Peds minimizing ZeEzHl ﬂZKgﬂe 8)
under the constraint (7).

Here, 3. is the vector where the nonzero values of the eth
column of P°8 are gathered, and K, is a symmetric positive
definite matrix. More precisely, K. may be defined by the
discretization of the form a from (1) on U, but variants can
also be introduced to minimize the overhead of computing the
solution of (8).

V. SOLVING THE OPTIMIZATION PROBLEM
A. Main Concept

For each fine egde index ¢ such that a coarse edge of index e
exists with the coefficient Pfﬁg not enforced to vanish, we intro-
duce a matrix G, This matrix is the node-edge incidence ma-
trix of the subgraph S™! obtained from the coarse graph S by
removing the edges of index e for which the coefficient Pf;dg is
enforced to vanish. Let us denote that Pfdg is the row vector de-
fined from the components of the ith row of P°%# by extracting
the components with edge indices in S, and (G" Pm°d); is
the row vector defined from the components of the ith row of
(G Prod) by extracting the components with node indices in
SHi,

Then, it is proved in [10] that a necessary and sufficient con-
dition of existence of a solution P48 to (7), for any P"°9, is the
connectivity of subgraphs SH+. It is also shown that to find a
solution P48 satisfying (7) is equivalent to solve the flow prob-
lems

PiedgGH,i — (GhPHOd)i. (9)

The solution of such a linear system can be written as
/ "
Pt = (Pee) 4 (pr)

where in a graph context

(10)

« the term (Pf8)’ is a particular solution of the flow
problem, which can be computed from a spanning tree of
the subgraph S™i;

« the transposed of (Pf%)” belongs to the kernel of
(GHEHT | which can be defined from a set of independent
cycles of the subgraph S,

Thus, the degrees of freedom for the minimization phase are the
components in the kernel of (G™1)T for each i, for which we
can easily build bases.

We also observe that, whatever the matrix P2°9 is, a matrix
P95 satisfying (7) can be built from the rows (P£#)’; it can be



PERRUSSEL et al.: ALGEBRAIC MULTILEVEL METHODS FOR EDGE ELEMENTS

used as prolongation matrix, but the energy-minimization prop-
erty is not satisfied.

B. From the Optimization Problem to a Linear System

Introducing appropriate numbering and projection operators
for the support constraints, problem (8) is reduced to the reso-
lution of the linear system

(11)

where we have gathered information from all the subgraphs.

(BTDB)I' = =BT D P

e The solution I' is the vector whose components give the
coefficients of ((P*€)”)T in the bases of the kernel of
(GHAT

» The matrix B gathers the basis vectors of these different
kernels. It is a sparse full-rank matrix which is assembled
during the resolution of flow problems (9).

e The matrix D is block diagonal and its diagonal blocks are
the matrices K. involved in (8).

« The vector P° gathers the particular solutions (Pf8)’
from all flow problems (9).

C. Properties of System (11)

The matrices K. being symmetric positive definite (SPD), the
matrix BT DB is SPD, and we can use the conjugate gradient
(CG) to solve the system. In most cases, the matrix is not as-
sembled; we have only to compute matrix-vector products, i.e.,
operations with B, D, and BT.

For evaluating the behavior of the CG method on system (11),
a rough estimate of the conditioning number of the matrix is
given by the inequality

conds (BT DB) < condy (BT B)condy (D) (12)

where cond denotes the conditioning number relative to the
2-norm.

The matrix B B is similar to a block-diagonal matrix whose
blocks are of the form (B™1)T BHi where B gathers the
basis of the kernel of (G™)?". Therefore, the conditioning of
BT B remains low and independent of the global dimension of
the problem.

Depending on the choice of the matrices K, the conditioning
of D may be slightly dependent of the global dimension.

Anyway, observe that the system (11) has not to be solved
accurately because its solution is only needed to improve the
convergence of iterative methods for the initial system (2).

VI. NUMERICAL EXAMPLES AND COMMENTS
A. Description of Test Problems

A 2-D eddy current problem in a L-shape conducting domain
Q is solved (Fig. 1). An E-field formulation is used where an
exterior magnetic field H is imposed on the domain boundary.
An implicit Euler scheme with time parameter At is used for
time discretization. A problem similar to (1) with the coeffi-
cients § = At/p and o = o has to be solved at each time step.
The source term is given by the electric field E at the previous
instant and OH , /0t on the exterior boundary at the current in-
stant.
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Parameters

|
'*;i o =10"Sm™,
‘ = 103,
f (frequency for H field)
= 100 Hz,
At =1/(20f).

Fig. 1. Domain 2 and parameters of the problem.

Fig.2. Fine graph with partition in bold lines and coarse graph. (a) Initial graph
and partition in bold lines. (b) Representation of the coarse graph related to 2(a).

In order to evaluate the efficiency according to the increase
of the number of degrees of freedom (DOFs), different meshes
are used with a decreasing maximal diameter A, of the mesh
elements.

As Reitzinger and Schoberl do in [5], we introduce a partition
of the fine nodes:

(13)

Fig. 2(a) illustrates an automatically determined partition where
node aggregates are separated by bold lines. This partition in-
duces a decomposition of domain €2 into overlapping subdo-
mains €,, defined by

0, = | supp (4))-

pEH,

(14)

The graph S is constructed as follows: an edge of extremities
n and m is introduced if, and only if, Qn and Qm intersects.
The coarse graph corresponding to the partition of Fig. 2(a) is
represented in Fig. 2(b).

Each subdomain Qn is extended to all the nearest nodes in
order to define the domain €2,, involved in the definition of the
support of the coarse nodal function ¢ . Without such an ex-
tension, no degree of freedom would be available for the mini-
mization problem and our method would coincide with the Re-
itzinger and Schoberl method (RS method).

For the 3-D eddy current problem, the formulation and the
coefficients used are analogous to the 2-D case; the only differ-
ence is the chosen domain: the unit cube.

B. Results

The critical part of the computation is the construction of the
coarse basis from the initial mesh. Results with decreasing h a5
are given in Table I for the 2-D case and Table II for 3-D case.
The number of unknows for system (11) is comparable to the
number of DOFs in the 2-D case; it can be between twice and
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TABLE 1
RESOLUTION OF SYSTEM (11), 2-D CASE

hmax=0.2 0.1 0.05  0.025
Number of DOFs 119 401 1522 6143
Number of unknowns in (11) 84 226 1143 4670
CG iterations (A or S) 5 6 7 9
CG iterations (Id) 2 2 2 3
TABLE 11
RESOLUTION OF SYSTEM (11), 3-D CASE
hmax=0.4 0.2 0.1 0.05
Number of DOFs 302 1559 11037 84403
Number of unknowns (11) 447 2910 25540 209087
CG iterations (A) 4 8 13 26
CG iterations (S) 5 11 13 22
CG iterations (Id) 3 5 5 6
TABLE 1II
MEAN NUMBER OF ITERATIONS AFTER 20 TIME STEPS, 2-D CASE
solver Pmax=0.2 0.1 0.05 0.025
SSOR 26 36 67 135
RS method 4 (2) 7(2) 11.53) 1854
without min. 4(2) 6(2) 10 (3) 16.5 (3)
1d 4(2) 6(2) 10 (3) 13 (3)
S 4(2) 6(2) 9(3) 11 .(3)
A 4(2) 6(2) 9(3) 11 (3)
TABLE IV

NUMBER OF ITERATIONS FOR THE FIRST TIME STEP, 3-D CASE

solver Amax=0.4 0.2 0.1 0.05
SSOR 50 63 113 173
RS method 3(2) 52 82 1403
without min. 3(2) 6(2) 82 140
Id 3(2) 52 82 1403
S 3(2) 52) 82 1403
A 3(2) 52) 72) 13(3)

three times the number of DOFs in the 3-D case. For the matrices
K., we test several choices:

* matrices extracted from the global matrix A of the problem
denoted by A in Tables [-1V;
e matrices extracted from the matrix defined from
Jo 6 curl E - curl E/ and a local regularization denoted by
S in Tables I-1V;
e matrices are all equal to the identity, i.e., D is also the
identity in (11), denoted by Id.
The number of nonpreconditioned CG iterations needed to di-
vide by 10 the norm of the residual, when computing the mini-
mization system (11), is almost independent of the mesh size in
the 2-D case; in the 3-D case, it remains true for choice Id, but
not for choice A.
The CG with various preconditioners is used for computing
the solutions at each time:

¢ the classical SSOR method;

¢ the RS method;

¢ our multilevel method for the Id, A, and S cases and also
for the case denoted “without min” where we only use the
prolongation matrix built from the rows (P{4¢)’.
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For multilevel preconditioner, we use a V(1,1)-cycle [1] with
the smoother proposed in [3]. The number of levels is given
in brackets when applicable. The computation stops when the
norm of the residual is divided by 1019, the initial value is the
solution for the previous time step. The mean number of itera-
tions for this computation is favorable for our method as shown
in Table III for the 2-D case. For the 3-D case, we only give the
number of iterations for the first step in Table IV; the interest of
our method is less obvious in this case, and the cost of solving
(11) is not justified.

Observe that our method requires extra work to obtain the
coarse basis compared to the RS method. Nevertheless, for time-
domain computation, this initial effort is justified in the 2-D
example, but not in the 3-D example.

VII. CONCLUSION

We propose an algebraic multilevel method for linear systems
coming from incomplete first-order edge element discretization.
Many parameters in this generic presentation can be tuned in
view of specific applications. For instance, for the time-har-
monic problem with |ah2,,,| < 1, the method denoted by S
or by Id can be used. In order to balance the computational
work between the construction of the coarse basis and the reso-
lution of the initial system, the number of unknowns in problem
(11) can also be decreased by removing some columns in B.
Nonetheless, constraint (7) and, therefore, compatibility rela-
tion (3) is always ensured. Finally, an efficient implementation
has to be implemented in order to test the methods on realistic
examples.
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