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To be effective a perfectly matched layer (PML) must be reflectionless to all impinging waves over a broad band of frequencies whilst
not overly increasing the computational burden. This can be difficult to achieve as one must find a balance between the discretization
error, the number of PML layers and the reflection coefficient. This work presents an optimized solution for simulating PMLs for the
finite-difference time-domain (FDTD) technique using both the mono-objective genetic algorithm (GA) and multiobjective genetic al-
gorithm (MGA). The main goal is to implement a tool capable of finding the best choice of parameters for the conductivity profile to
achieve a minimum for both the reflection and computation time.

Index Terms—Error estimation, genetic algorithm (GA), numerical techniques, optimization.

I. INTRODUCTION

THE perfectly matched layer (PML) is realized from
the physical absorption of the incident numerical wave

by means of a lossy medium. This is devised using a novel
split-field formulation of Maxwell’s equations where each
vector field component is split into two orthogonal components
[1]. Unfortunately the PML requires a considerable amount
of computational storage in contrast with analytical boundary
conditions due to the storage of split-fields and the number of
layers used to truncate the domain of study.

Reflections from the PML exist due to the finite-difference
time-domain (FDTD) discretization of the conductivity profile.
Recent efforts have been made to reduce these reflections: in [2]
a two-step conductivity profile was implemented using a micro-
genetic algorithm (GA) to obtain the optimal values for each
sub-layer, and in [3], a steady-state GA was used to optimize
the conductivity profile by minimizing a function of the local
error of a two-dimensional (2-D) FDTD code (both are mono-
objective optimization).

In this paper, we present an alternative way to design PML
boundaries that fulfill the requirements of realistic projects. This
optimization process is composed of two stochastic procedures.
First, a multiobjective genetic algorithm (MGA) is used to find
a solution for the size of a PML which minimizes the reflection
coefficient and the computational cost. Next, a GA is used to
find a better conductivity profile in order to further reduce the
reflectivity. A theoretical approach is utilized for the calculation
of the reflection coefficient for a PML [4].

II. REFLECTION FROM THE PML BOUNDARY

A numerical method was developed in [4] which computes
an exact prediction of the reflection from PML absorbing
layers without performing an FDTD simulation. This method
considers the two mechanisms which govern the amount of
reflection created by a PML boundary. These are: 1) reflections
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Fig. 1. Schematic of a metal-backed PML.

between PML/free-space and PML/PML interfaces, and 2)
the amount of decay experienced as the incident wave travels
through the PML medium [4].

The variables necessary to obtain the reflection from the PML
are: the normalized wavelength , the number of absorbing
layers , the incident angle , and the conductivity which is
gradually increased from zero to a maximum at the perfect
electric-wall (Fig. 1) to avoid an abrupt transition between the
discrete PML space and the discrete FDTD space. Several pro-
files have been suggested for grading . The most successful use
a polynomial or geometric variation of PML loss with depth .
The spatial scale of the conductivity profile using a polynomial
grading is given by

(1)

where is the depth within the PML region of total depth , and
is the order of the conductivity’s increase.
The design of an optimal PML is made difficult by the

requirement to balance the level of reflection against the dis-
cretization error in using the variables and for a
polynomial grading . A large yields a conductivity distri-
bution that is relatively flat near the PML surface. However,
deeper within the PML, increases more rapidly than for
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small . In this region, the field amplitudes are substantially de-
cayed and reflections due to the discretization error contribute
less [5].

However, if is small, reflections from the perfect elec-
tric conductor (PEC) external boundary will dominate. If is
large, reflections will be created by the abrupt changes in the
inter-layers conductivities (discretization error). If the size of
the PML is increased to lessen the inter-layers transition, the
computational time and memory requirement will be increased.
To understand this balance, we use the MGA in order to facili-
tate the choice of the best variables.

III. GENETIC ALGORITHMS

In most optimization problems several goals must be satisfied
simultaneously in order to obtain an optimal solution. As these
objectives are usually conflicting, no single solution may exist
that is best regarding all considered goals. This is what happens
in PML design. We recognize that to reduce the reflection coef-
ficient the computational effort must increase. It is important to
know this balance to make an efficient FDTD model with low
computational cost. Such a scenario requires a multiobjective
optimization engine.

Multiobjective optimization seeks to optimize the compo-
nents of a vector-valued cost function. Unlike single objective
optimization, the solution to this problem is not a single point,
but a family of efficient points called Pareto optimal front (POF).
Each point on this surface is optimal in the sense that no im-
provement can be achieved in a cost vector component that does
not lead to degradation in at least one of the remaining compo-
nents. Each element in the efficient set constitutes a nondomi-
nated (noninferior or nonsuperior) solution to the multiobjective
problem [6].

The main goal of the MGA is to find the efficient group of
solutions. With this set of solutions it is possible to understand
the dependence between each objective, which allows making
efficient choices for the final solution decision. The MGA is de-
rived from the GA, which is a stochastic procedure based on the
concepts of natural selection in genetics [7]. Basically, the algo-
rithm starts with a set of feasible solutions called the population.
The solutions provided by the population are used to form a new
population. This is motivated by the hope that the new popula-
tion will be better than the old one. The new solutions generated
are selected according to their fitness (evaluation of objectives).
This is repeated until some condition is satisfied, for example,
the number of generations.

The GA and MGA used in this work are described in [8].

IV. PML OPTIMIZATION

Theoretically, the PML interface is reflectionless in the con-
tinuum space [9]; this is not the case in the discretized space
where there is local step-discontinuity of the conductivity. Since
all numerical methods are carried out in the discretized space,
one must exercise care to reduce the unwanted reflection due
to the finite spatial sampling. A straightforward approach to re-
ducing this unwanted reflection is to make the PML parameters
change smoothly along the PML thickness so that the change

from grid to grid is small. However, to do this we have to re-
duce the size of the discretized grid which leads to an increase
of the number of unknowns and the computational burden.

The design of an effective PML requires balancing the reflec-
tion error, the numerical discretization error and the computa-
tional cost associated to the number of the PML layers. There-
fore, there is an issue of optimization in determining the PML
parameters for best performance.

To address the issue of optimization, we considered the
problem where a plane wave is incident on a metal-backed
PML obliquely at an angle with the -axis. The goal is to
design a PML with the minimal thickness (or minimal com-
putational cost) and maximal absorption quality (or minimal
reflectivity for a given range of incidence angles) that are
conflicting objectives and hence becomes a multiobjective
optimization problem.

The MGA are then coded to find multiple nondominated solu-
tions (the Pareto-front) using a fixed conductivity profile given
by (1). The PML parameters to adjust are

...
...

... (2)

where each line represents a feasible solution, is the current
generation and is the population size.

The variables to be optimized are then the order of the con-
ductivity increase, the maximal conductivity and the number
of layers. They are adjusted to minimize the reflection coeffi-
cient for an incident wave range. This becomes the first objec-
tive function. The second objective function is to minimize the
approximate operations associated to a domain surrounded by

PML layers.
In addition to the MGA procedure, we introduced a GA inves-

tigation to improve the conductivity profile given by (1). This
investigation used some samples of the POF (set of best solu-
tions found). The conductivity value of each layer is adjusted
from a set of feasible solutions determined by a variation be-
tween % of the value found by the MGA.

V. NUMERICAL RESULTS

In order to find the best configuration for the PML absorbing
layers we implemented the MGA to work with two goals: to
minimize the reflection coefficient and to minimize the compu-
tational cost associated with the number of layers [10]. For an

computational space, and assuming , the ap-
proximate operations (AO) count is given by

(3)

The parameters to be adjusted by the MGA are the variables
necessary to obtain the reflection from the PML: the number of
PML layers [4 to 24], the order of the conductivity profile
(1) [0 to 10], the maximum normalized magnetic conductivity

[0 to 1e8]. A computational domain of
cells was assumed with the normalized wavelength .
The reason for this normalization is that the spatial discretiza-
tion size can then be neglected as a factor which may affect the



TRAVASSOS et al.: OPTIMAL CONFIGURATIONS FOR PERFECTLY MATCHED LAYERS IN FDTD SIMULATIONS 565

TABLE I
SOLUTIONS FOUND BY THE MGA FOR 0 –50 ANGLE ABSORPTION

Fig. 2. Reflection coefficient of an optimized PML for from 0 to 50 .

amount of reflection from a PML boundary. It is also useful to
use the form, as this is also used as a criterion by which the
FDTD-mesh discretization sizes are chosen [4].

The objective of the optimization procedure was to find a
PML with the least reflection over a range of incident angles,

from to .
In this first procedure, efficient solutions are obtained using a

population of 100; a crossover probability of 0.9 and a mutation
probability of 0.025. Real-coded MGA are run for 50 genera-
tions. Several MGA executions had been carried out to guar-
antee the POF found. Some samples of the POF are shown in
Table I for and at 2 increments.

Considering the simple polynomial grading of (1), it is clear
that optimal values for the polynomial order and the maximum
conductivity can be found to achieve suitable solutions with a
reasonable number of layers (Table I).

In order to further improve these results, we decided to find
an alternative conductivity profile based upon the results of the
MGA analysis. To do this we selected some solutions found
by the MGA and we performed a process of evolution of the
conductivity profile.

Fig. 2 shows the results for where it can be
seen that for the same number of layers the maximum reflection
coefficient in the range is improved by modifying the behavior
of the conductivity scaling.

The objective function minimized corresponded to the
maximal reflection coefficient in the specified angle range.
The convergence has been attained in about 100 generations
with a population of 50 individuals in several GA executions.

TABLE II
OPTIMIZED TEN-LAYER CONDUCTIVITY PROFILE FOR 0 –50

ANGLE ABSORPTION

Fig. 3. Difference between the conductivity profile given by (1) and the
optimized solution for .

The crossover and mutation probabilities were set to 0.9 and
0.05, respectively. Each generation took about 20 s with a PC
Pentium IV at 1 GHz. The entire optimization process took
about 45 minutes considering the limits described above.

Table II and Fig. 3 present the conductivity profile and the dif-
ference between the polynomial grading of (1) and the new pro-
file found by the GA approach. The FDTD algorithm computes
the electromagnetic fields at positions in space which are either
on the boundaries of mesh cells or half way between. Hence for
a PML of depth there are actually (the latest is a
PEC wall) different conductivity values.

As shown in Fig. 3 the GA procedure produces subtle mod-
ifications throughout the PML absorber. Interestingly, for the
majority of cells within the PML where reflections due to the
discretization error contribute less, these modifications are all
of a very similar magnitude. These changes to the conductivities
lead to improvements of almost 16 dB for the maximal reflec-
tion error.

Fig. 4 shows the reflection from the optimized PML construc-
tions as a function of the normalized wavelength. The observa-
tion that one can make is that the optmization procedure im-
proved the reflection within a range of around 5 dB across most
of the spectrum.

Table III shows the Pareto-front obtained for the case when
and . With this scenario, the optimization

process became more complex due to the proximity of the tan-
gential incidence to the PML. The MGA procedure experienced
some difficulty in finding an improved parameter set due to the
reflection coefficient found for 70 . In this case the largest dis-
cretization error is manifested at , the PML surface. The
results for the conductivity profile (1) and the optimized profile
for this range are shown in Fig. 5.

Table IV shows the optimized profile for 10 layers. Note how
much different these values are to those obtained for a PML
designed to absorb across the 0 –50 range (Table II).
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Fig. 4. Reflection from the optimized PML constructions as a function of
normalized wavelength with .

TABLE III
SOLUTIONS FOUND BY THE MGA FOR 40 –70 ANGLE ABSORPTION

Fig. 5. Reflection coefficient of an optimized PML for from 40 to 70 .

The results of the optimizations for other layer combinations
are tabulated in Table V. It is evident that when is small
the gains achieved through the use of this procedure are much
greater than when the number of layers is large. This is attributed
to the fact that the GA procedure improves the transition be-
tween adjoining conductivity levels. For thin PMLs the relative
change between these levels is greater than for the thicker PMLs,
hence optimizing these has a greater impact.

In summary, these results show that Berenger’s split-field
PML can achieve better wide-angle performances in using mul-
tiobjective genetic algorithms to find better design parameters.

TABLE IV
OPTIMIZED TEN-LAYER CONDUCTIVITY PROFILE FOR 40 –70

ANGLE ABSORPTION

TABLE V
RESULTS OF THE OPTIMIZED PROFILE FOR 40 –70 ANGLE ABSORPTION

In addition, the optimized PML requires less memory for a de-
sired reflectivity compared with the common design procedure.

VI. CONCLUSION

This paper demonstrated the application of the GA and MGA
procedures in conjunction with a theoretical approach for com-
puting the reflection coefficient to find an improved design con-
figuration for a PML boundary layer. The objectives that were
achieved were the minimization of the reflection coefficient and
the computational cost of the electromagnetic analysis. This ap-
proach removes the burden of seeking adequate ABC absorption
from the FDTD user.

Finally, it was demonstrated that the range of incident an-
gles for which the polynomial-type PML boundaries are most
effective could be maximized by optimizing the conductivity
grading.
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