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Comments about the paper entitled

“A generalized boundary integral equation for isotropic heat

conduction with spatially varying thermal conductivity” by A.J.

Kassab and E. Divo∗

Marc Bonnet†, Massimo Guiggiani‡

July 6, 2003

Abstract

An integral formulation for heat conduction problems in non-homogeneous media has
recently been proposed in [1]. The goal of this communication is to revisit and clarify
two key features of the formulation of [1]. First, the contention that the integral equation
formulation proposed in [1] does not possess the desired boundary-only character is made
and substantiated; it is shown in particular that Eq. (10) therein does not hold due to the
fact that a crucial requirement for the fundamental solution, Eq. (5c-d) of [1] is actually not
met. Second, the limiting process associated with a vanishing neighbourhood in connexion
with the particular kernel function used in [1] is revisited.

The purpose of the paper under discussion [1] was to establish a boundary-only integral
formulation for heat conduction with isotropic but spatially varying conductivity k(x) (x =
(x, y): field point), i.e. for temperature distributions T such that

div [k(x)∇T (x)] = 0 (1)

In order to do so, a variant kind of fundamental solution, denoted E(x, ξ), associated to a forcing
term D(x, ξ) containing a singular source at a given point ξ = (xi, yi), is introduced:

div [k(x)∇E(x, ξ)] = −D(x, ξ) (2)

1 Examination of the sampling property

The following, crucial, requirement on the forcing term D(x, ξ) (Eqs. (5c-d) of [1]) must be met
in order to get rid of the domain integral that arises in the reciprocal theorem (Ω denotes an
arbitrary domain required only to enclose the source point ξ):∫

Ω
T (x)D(x, ξ) dΩ(x) = T (ξ)A(ξ) with A(ξ) =

∫
Ω

D(x, ξ) dΩ(x) (3)

The above relation is the analogue, for the particular fundamental solution at hand, of the
sampling property of the Dirac distribution (the term sifting property was used in [1]). However,
the kernel E(x, ξ) obtained by the authors, i.e. (Eq. (23) of [1]):

E(x, ξ) = − 1
2π

∫
dr

rk̃(r;xi, yi)
(4)
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where (in 2D) (x, y) = (xi + r cos θ, yi + r sin θ) and having introduced for convenience the
‘averaged’ conductivity k̃:

k̃(r;xi, yi) =
1
2π

∫ 2π

0
k(r, θ;xi, yi)dθ (5)

happens to violate the crucial requirement (3). Indeed, the kernel given by Eq. (4) is readily
seen to solve the equation

div [k̃∇E] = −δ(x− ξ) =
1
r

∂

∂r

[
rk̃

∂E

∂r

]
(6)

(the second equality holds because ∂E/∂θ = 0). Hence, by subtracting the above equation from
Eq. (2), one gets the following expression for the forcing term D:

D(x, ξ) = δ(x− ξ) +
1
r

∂

∂r

[
r(k̃ − k)

∂E

∂r

]
= δ(x− ξ) +

1
2πr

∂

∂r

[
1− k

k̃

]
≡ δ(x− ξ) + ∆D (7)

Except when the material is homogeneous, the complementary term ∆D is therefore in general
nonzero at x 6= ξ, ie outside the source point ξ; this is indeed obvious in some of the examples of
the paper under discussion (see Eqs. (40,46) and Figs. 3,5,12). In fact, for sufficiently smooth
conductivities, k− k̃ = O(r) so that ∆D is even nonsingular at x = ξ. But then, it is impossible
for properties (3) to hold. In fact, using the definition of A(ξ) for a given domain Ω, one has:∫

Ω
T (x)D(x, ξ) dΩ = A(ξ)T (ξ) +

∫
Ω
[T (x)− T (ξ)]∆D(x, ξ) dΩ ≡ A(ξ)T (ξ) + J(ξ) (8)

and property (3) would mean that the integral J(ξ) in the above formula, which measures
the absolute error in the realization of (3), vanishes for any domain shape and temperature
distribution, which is false by Haar’s lemma since D is not identically zero outside the source
point. For example, Eq. (5c-d) of [1] for the same function T (which incidentally is required to
have compact support) but two different domains Ω1 ⊂ Ω2 would lead to:∫

Ω2\Ω1

T (x)D(x, ξ) dΩ(x) = T (ξ)[A2(ξ)−A1(ξ)]

and a contradiction arises. From the above equation, the integral in the l.h.s. should, apart from
the geometrical arrangement of ξ,Ω1,Ω2, depend only on the value of T at the source point ξ.
But since Ω2 \ Ω1 does not contain ξ, the above equation should hold true for any extension of
T outside Ω2 \Ω1, which is absurd. In other words, as soon as D(x, ξ) is nonzero over Ω2 \Ω1,
the integral ∫

Ω2\Ω1

T (x)D(x, ξ) dΩ(x)

cannot depend on T only through the value T (ξ). Thus, Eq. (3) is in general not true. As a
consequence, the two members of the integral equation (10) in [1] are in general not equal.

2 Limiting process for vanishing neighbourhood

Let ξ be a fixed point on the boundary ∂Ω of a two-dimensional domain Ω. We consider an
exclusion neighbourhood vε(ξ) of ξ, of radius ≤ ε (Figure 1). For any ε > 0, ξ is always an
external point for the domain Ωε(ξ) = Ω \ vε(ξ) whose boundary ∂Ωε is given by

∂Ωε = (∂Ω− eε) + sε = Γε + sε,

where sε = Ω ∩ ∂vε, eε = ∂Ω ∩ v̄ε, and Γε = ∂Ω− eε (v̄ε is the closure of vε).
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Figure 1: Exclusion of the singular point ξ by a vanishing neighbourhood vε.

The singular integral equation for heat conduction problems (T : unknown temperature field)
in non-homogeneous media can then be sought as the limiting case, for ε → 0, of the integral
identity∫

Γε+sε

E(x, ξ)k(x)
∂T

∂n
(x) dSx−

∫
Γε+sε

k(x)
∂E

∂n
(x, ξ)T (x) dSx−

∫
Ωε

T (x)D(x, ξ) dΩ(x) = 0 (9)

where E(x, ξ) is the fundamental solution defined by Eqs. (4,5).

Source point interior to the domain. First, consider an internal source point ξ 6∈ ∂Ω.
Then sε is a closed surface, and one has:∫

Ωε

D(x, ξ) dΩ(x) = −
∫

sε

k(x)
∂E

∂n
(x, ξ) dSx −

∫
∂Ω

k(x)
∂E

∂n
(x, ξ) dSx (10)

Since Γε = ∂Ω, identity (9) becomes (note that D = ∆D on Ωε):∫
∂Ω

E(x, ξ)k(x)
∂T

∂n
(x) dSx −

∫
∂Ω

k(x)
∂E

∂n
(x, ξ)T (x) dSx

+
∫

sε

E(x, ξ)k(x)
∂T

∂n
(x) dSx −

∫
sε

k(x)
∂E

∂n
(x, ξ)[T (x)− T (ξ)] dSx

−
∫

Ωε

[T (x)− T (ξ)]∆D(x, ξ) dΩ(x) + T (ξ)
∫

∂Ω
k(x)

∂E

∂n
(x, ξ) dSx = 0 (11)

Assuming that T is C0,α-regular at x = ξ, the integrals over sε vanish in the limit ε → 0 in the
same way, due to the fact that the kernel E exhibits the usual ln r singularity at x = ξ. Hence,
the following integral identity is obtained from Eq. (11) in the limit ε → 0:

T (ξ)Ã(ξ) =
∫

∂Ω
E(x, ξ)k(x)

∂T

∂n
(x) dSx −

∫
∂Ω

k(x)
∂E

∂n
(x, ξ)T (x) dSx − J(ξ) (12)

where the free-term Ã(ξ) is given by

Ã(ξ) = −
∫

∂Ω
k(x)

∂E

∂n
(x, ξ) dSx (13)

It is worth noting (still using the C0,α regularity assumption for T ) that∫
Ωε

[T (x)− T (ξ)]D(x, ξ) dΩ(x) =
∫

Ωε

[T (x)− T (ξ)]∆D(x, ξ) dΩ(x) = J(ξ)

Hence, from the analysis of Sec. 1, a boundary-only representation formula for T cannot be
obtained in general.
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Source point on the boundary. A similar analysis can be conducted. Using the fact that∫
Ωε

D(x, ξ) dΩ(x) = −
∫

Γε+sε

k(x)
∂E

∂n
(x, ξ) dSx

one obtains in the limit ε → 0 the following statement:

T (ξ)Â(ξ) =
∫

∂Ω
E(x, ξ)k(x)

∂T

∂n
(x) dSx − lim

ε→0

∫
Γε

k(x)
∂E

∂n
(x, ξ)T (x) dSx − J(ξ) (14)

where the free-term Â(ξ) is given by

Â(ξ) = − lim
ε→0

∫
Γε

k(x)
∂E

∂n
(x, ξ) dSx = −

∫
∂Ω

k(x)
∂E

∂n
(x, ξ) dSx (15)

Here again, the domain integral is not expected to vanish. The above integral is convergent in
the ordinary sense in the limit ε → 0 because ∂E/∂n is proportional to ∂r/∂n.

3 Discussion

From the analysis conducted in Sec. 1, the integral representation (13) and the integral equation
(15) involve in general a domain term. It is thus not correct to state, as was done in [1],
that recourse to the kernel E leads to boundary-only integral formulations for heat conduction
problems in non-homogeneous media. However, since E is in some sense an ‘averaged’ version,
associated with the ‘averaged’ conductivity k̃, of the (unknown) fundamental solution associated
with the ‘true’ conductivity k, it is reasonable to expect the domain integrals in Eqs. (13) and (15)
to be lower than those associated with the usual fundamental solution G(x, ξ) = −(2πk)−1 ln r
for homogeneous conductivity k.

The kernel E given by Eqs. (4,5) is not strictly speaking a fundamental solution: the con-
ductivity k̃, and hence the partial differential operator in Eq. (6), depends on the source point ξ.
However, for a fixed choice of ξ the kernel E behave like the more usual fundamental solutions.

It is also important at this juncture to remark that using the relative accuracy of satisfaction
of Eq. 8 as a measure of the exactness of is misleading. The ratio of A(ξ)T (ξ) to the integral term
J(ξ) can assume any arbitrarily small value by adding a constant to the sought-for temperature.
The reason for this behaviour is that J is insensitive to the choice of this constant. On the
other hand, fact, what is under scrutiny here is the exactness of a mathematical formulation,
and hence the absolute validity of Eq. (3).

Besides, when k(x) is a polynomial in x, y (or x, y, z in 3D) involving only odd powers of the
coordinates, k̃ = k(ξ): in this case, E(x, ξ) reduces to the classical fundamental solution for a
medium with a constant conductivity equal to k(ξ). This is the case for the bi- and tri-linear
conductivity distributions (Eqs. (33,36) in [1]).

The free terms Ã(ξ) and Â(ξ) correspond to Eqs. (8) and (30) of [1]. They depend on the
source point location and on the domain geometry, and therefore must be numerically computed
for each equation of the BEM discrete system and for each interior-point temperature evaluation
requested by the user. For homogeneous media, Ã(ξ) = 1 and Â(ξ) = 1/2 at smooth boundary
points (i.e the usual geometry-independent values are recovered as special cases) while of course
all domain integrals vanish.

4 Illustrative numerical examples

In order to illustrate tha above considerations and have some quantitative idea of the approxi-
mate character of Eq. (3), two 2D examples are now considered.
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The first example is analytical. We take k = (1 + x)(1 + y) and Ω = {0 ≤ x, y ≤ 2}. A
solution to Eq. (1) is T = (1 + x)2 − (1 + y)2. One then finds

k̃ = (1 + xi)(1 + yi) (i.e. constant)
∂

∂r
(k̃ − k) = (1 + yi) cos θ + (1 + xi) sin θ + 2r cos θ sin θ

To keep analytical calculations simple, we consider only source points on the horizontal median
of Ω, i.e. such that yi = 1. After some calculations, one finds for such source points:

A(xi, 1) = 1 +
1

2π(1 + xi)

[
(2− xi)θ1 − xiθ2 − Log

1 + x2
i

5− 4xi + x2
i

]
(16)

J(xi, 1) =
1

π(1 + xi)

[
3(xi − 1) + 3(2− xi)2θ1 + (13− 11xi + 3x2

i )θ2

− (1 + xi)π +
1
2
Log

1 + x2
i

5− 4xi + x2
i

]
(17)

The functions A(xi, 1) and J(xi, 1) are plotted for 0 ≤ x ≤ 2 in Fig. 2, where J(xi, 1) is clearly
nonzero. The source distribution D(x, ξ), shown in Fig. 3 for xi = 0.505, yi = 1.255, visibly
assumes nonzero values outside the source point.
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Figure 2: Example 1: variation of A(xi, 1) (dashed line) and J(xi, 1) (solid line).

The second example is numerical (it is Ex. 1 of [1]). We take k = (1 + x/a)3 and Ω =
{0 ≤ x, y ≤ a}, for some length a. A solution to Eq. (1) is T = 4a2/(3(a + x)2) (having
dropped the factor T0 = 100 and the additive constant). Here, one has k̃ = k(ξ) + 3r2(xi +
a)/(2a3). The integral J(ξ) has been evaluated numerically (cutting the square domain into four
triangles meeting at ξ, mapping each triangle onto a square and using a 200×200 point Gaussian
quadrature rule on each subdomain). The values of J(ξ) for 0 < xi, yi < a, shown in Fig. 4,
are clearly nonzero. For completeness, the values J̃(ξ) taken by J(ξ) using the homogeneous
medium fundamental solution associated with the constant conductivity k(ξ) is depicted in
Fig. 5. A numerical calculation gives:{∫

Ω
J2(ξ) dΩ(ξ)

}1/2

≈ 0.367×
{∫

Ω
J̃2(ξ) dΩ(ξ)

}1/2
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Figure 3: Example 1: forcing function D(x, ξ) for xi = 0.505, yi = 1.255 (horizontal units refer
to a regular 50× 50 grid used for the plot).

In other words, for this particular example, J(ξ) as a function of ξ is, in a L2-norm average
sense, 0.367 times smaller than the domain integral J̃2(ξ) encountered when using the ‘best’
homogeneous-medium fundamental solution.
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Figure 4: Example 2: variation of J(xi, 1) (horizontal units refer to a regular 50× 50 grid used
for the plot).
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Figure 5: Example 2: variation of J̃(xi, 1) (horizontal units refer to a regular 50× 50 grid used
for the plot).

5 Conclusion

From the present analysis, our contention is that the approach proposed in [1], contrarily to the
claim made in that paper, does not lead to an integral equation without domain integrals. In
particular, the integral equation, Eq. (10) of [1], is found to be only approximately, not exactly,
satisfied. The arguments detailed here for two-dimensional situations extend to three dimensions
as well.

One may notice that equations (3) are not discussed or verified a posteriori in the develop-
ments of [1]; they are treated as a priori requirements, then implicitly assumed to be satisfied
by the proposed fundamental solution. Equations (3) are tested numerically in an example
given in the end of the paper, but (i) the formulation is presented in [1] as an exact statement,
which truth thus cannot established through numerical examples, and (ii) it has been pointed
out above that such comparison can be made arbitrarily favorable by adjusting the value of the
additive constant in T (x).

The comments made herein address only the mathematical exactness of the formulation
being examined; they are not meant to imply or suggest that the latter is without merit as an
approximation.
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