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SUMMARY

A variational Boundary Element formulation is proposed for the solution of the elastic
Kirchhoff plate bending problem. The stationarity conditions of an augmented potential
energy functional are first discussed. After addressing the topic of the choice of the test
functions a regularization process based on integrations by parts is developed, which allows
to express the formulation in terms of double integrals, the inner being at most weakly
singular and the outer regular. Standard integration procedures may then be applied
for their numerical evaluation in presence of both straight and curved boundaries. The
normal slope and the vertical displacement must be C0 and C1 continuous respectively.
Numerical examples show, through comparisons with analytical solutions, that a high
accuracy is achieved.
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1 INTRODUCTION

Boundary integral formulations have been successfully developed and applied to the
solution of plate bending problems since nearly thirty years. One of the first contribu-
tions is Jaswon and Maiti25, and early references include Hansen22, Bezine7, Altiero and
Sikarskie1, Stern42. The book edited by Beskos5 provides a survey of the boundary ele-
ment methods for plates and shells. Such formulations, based on the use of a fundamental
solution for the biharmonic equation, consist of two coupled boundary integral equations,
one strongly singular and the other hypersingular (i.e. containing singularities of order
1/r and 1/r2, respectively), associated with the representation formula of the flexural dis-
placement and its normal derivative, respectively, at a point of the boundary. Numerical
solutions are then sought for by collocating those integral equations at a finite number
of boundary points. The singular boundary element integrals must be evaluated using
either a direct method, Guiggiani19, or a regularization technique, Frangi14. Other contri-
butions include Hartmann and Zotemantel23, Brebbia, Telles and Wrobel13, Guoshu and
Mukherjee20 for static problems; Beskos6, Kitahara27 for dynamic and vibration problems;
Antes2 for Reissner-Mindlin plates.

In all the above references, the collocation approach to boundary element discretization
is used, leading to unsymmetric linear systems of equations. However, symmetric boundary
integral equation formulations and their implementation have been investigated over the
last twenty years. Early contributions include Nedelec33 for potential problems, Sirtori39

for static elasticity and Hamdi21 in acoustics. During the last few years, symmetric bound-
ary integral equation formulations received an increasing attention in various areas of com-
putational mechanics; see Sirtori et al.40, Holzer24, Kane and Balakrishna26, Bonnet11 for
2D and 3D elasticity; Gu and Yew18, Maier, Novati and Cen30, Xu et al.48 for fracture
mechanics; Maier, Diligenti and Carini28 for elastodynamics; Maier and Polizzotto31 and
Maier et al.29 for elastoplasticity, Pan, Maier and Amadei35 for coupled problems such
as poroelasticity. The symmetric boundary element formulations are surveyed by Bonnet,
Maier and Polizzotto12.

The purpose of the present paper is to derive symmetric boundary integral formula-
tions for plate bending problems. Not much effort has been directed to this particular
area of investigation. Tottenham45 outlines how a symmetric formulation can be obtained
by weighting in a Galerkin sense suitable equations containing different kind of sources:
forces, moments, bi-couples and tri-couples. Singular integrations are next performed an-
alytically under restrictive hypotheses on geometry- and field-modelling. More recently,
Giroire and Nedelec17 and Nazaret32 derived Galerkin BIE formulations for plates with
free edges, the presence of corners being allowed in the latter reference. In previous works
for linear elasticity, several approaches have led to symmetric integral formulations. A
first possibility consists in using static and kinematic sources (forces and displacement
discontinuities) to generate an auxiliary elastic state which is exploited, together with
the real field, in imposing the Betti theorem40. A second possibility consists in taking
weighted residuals of the displacement and traction boundary integral equations, using
properly chosen test functions9, 26; this is essentially a direct approach in the sense that
the unknowns are the mechanical field quantities on the boundary. Both approaches can
accommodate general boundary conditions; they are in fact equivalent in that they lead
to the same final formulation. Finally, a third approach is based upon variational princi-
ples. Polizzotto37 uses the Hu-Washizu principle46, while Tereschenko43 starts from the
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stationarity of the elastic potential energy. The latter inversigation is presented for Neu-
mann boundary conditions only, but on the other hand also makes use of the complemen-
tary energy stationarity principle to formulate an a posteriori error estimation technique.
Bonnet11 uses the stationarity of the elastic potential energy, augmented with constraints
expressing kinematical boundary conditions, so that Dirichlet, Neumann or mixed Dirich-
let/Neumann are accommodated in the analysis; the direct symmetric boundary integral
formulation thus obtained and the weighted residual formulation appear to be ultimately
identical.

In the present paper the third, variational, approach will be extended to bending of
linearly elastic Kirchhoff plates. Specifically, our symmetric Galerkin boundary element
method (SGBEM) is obtained by exploiting the stationarity condition for the Lagrangian
functional obtained by incorporating kinematical boundary conditions, in the form of
constraint terms, into the elastic potential energy associated with bending when first-order
variations of the unknown bending displacement solve the homogeneous elastic equilibrium
equation. In the derivation of such a formulation one has to deal with very high potential
singularities on the boundary, of order up to 1/r4. The evaluation of these terms is
tackled using integration by parts, which is made possible thanks to the fact that the
most singular kernels can be recast as derivatives of other, less singular, kernels with
respect to the arc length along the boundary, extending an earlier work on a regularized
collocation approach14. Our resulting formulation is direct, i.e. in terms of mechanical
unknowns on the boundary (here, the bending displacement, its normal derivative, the
normal moment and the Kirchhoff shear), and accommodates general boundary conditions.
It involves singularities at most logarithmic, for which numerical quadrature techniques
are available36. It has been implemented using either straight or circular elements. Several
numerical examples are presented, for various types of boundary conditions. Comparisons
with analytical solutions show that accurate numerical results are obtained, even when the
(potentially) highest kernel singularities are involved. It is important to stress that the
three approaches outlined above are equivalent in the sense that the symmetric boundary
integral formulations eventually obtained are identical. The variational viewpoint is thus
preferred because starting from first principles provides, in the authors view, more insight.
Although symmetric boundary integral formulations for plate problems with free edges
appeared recently17, 32, the present work is believed to be the first attempt at obtaining
such formulations for general boundary conditions.

2 GEOMETRY AND GOVERNING EQUATIONS

Geometry. A thin undeformed plate of thickness h has its mid-surface S situated in
the (x1, x2) plane in an orthonormal cartesian reference system (x1, x2, z). Denote by
n(x) = [n1, n2](x1, x2) the unit normal to the boundary Γ of S pointing outwards of S
and choose the unit tangent τ (x) = [τ1, τ2](x1, x2) to Γ so that (n, τ , e3) is a direct frame.
The following relations will be used later:

τiτj + ninj = δij

niτj − njτi = eij

τj = eijni ni = eijτj

(1)
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Note that Γ needs not to be connected: if the surface S is multiply connected (i.e. the
plate has holes), Γ is the union of an external boundary Γe and several internal boundaries.

Governing equations. The moment and shear components are defined from the three-
dimensional stress tensor as

Mij(x) =

∫ h/2

−h/2

σij(x, z)z dz , Qi(x) =

∫ h/2

−h/2

σi3(x, z) dz , (i, j) ∈ (1, 2)

Denote by w(x1, x2) the out-of-plane bending displacement. In the linear elastic Kirch-
hoff theory, the moment and shear components, respectively denoted by Mij and Qi, are
expressed in terms of w by

Mij = −Kijk`w,k` , Qi = Mij,j = −Dw,ijj (2)

where

Kijk` = D[(1− ν)δikδj` + νδijδk`] , D =
Eh3

12(1− ν2)
(3)

(the comma indicates partial differentiation with respect to the field point and the Einstein
summation convention is adopted for lower-case indices). E, ν and D are, respectively,
the elastic modulus, the Poisson’s coefficient and the flexural rigidity of the material.
Moreover, the displacement w is governed by the elastic equilibrium equation

Kijk`w,ijk` = Dw,iijj = p(x) (4)

where p(x) denotes the transverse load per unit area. The following general form of
boundary conditions on Γ is considered:{

w = w̄ on ΓT

ϕN = ϕ̄N on ΓN
,

{
MN = M̄N on ΓM

QK = Q̄K on ΓQ
(5)

where w̄, ϕ̄N , M̄N , Q̄K denote given values for the displacement w, the normal slope ϕN =
w,ini, the normal moment MN = Mijninj and the Kirchhoff equivalent shear QK . Of
course, the displacement data on ΓT implies knowledge of the tangential slope:

ϕT = ϕ̄T =
dw̄

ds
on ΓT

Besides, the Kirchhoff equivalent shear, defined as

QK = Q +
dMT

ds
(6)

(s: arc length along Γ) is a combination of the twisting moment MT = Mijniτj and the
normal shear Q = Qini, which are not independent of each other.

At any regular point of the boundary two such boundary conditions must be assigned.
For any well-posed boundary value problem, ΓT ∩ΓQ = ∅, ΓT ∪ΓQ = Γ and ΓN ∩ΓM = ∅,
ΓN ∪ ΓM = Γ except, possibly, for transition regions at corner points (see Guoshu and
Mukherjee20 for an extensive study on the boundary conditions at corner points). At any
corner point xc, a jump ∆cMT of the twisting moment is expected; moreover, either w(xc)
or ∆cMT is prescribed.
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3 STATIONARITY OF AN AUGMENTED POTENTIAL ENERGY FUNCTIONAL

Using the foregoing definitions, the potential energy functional for a Kirchhoff plate
reads

E(w) =
1

2

∫
S

w,k`Kijk`w,ij dS +

∫
ΓM

M̄NϕN ds +

∫
ΓQ

[
M̄T ϕT − Q̄w

]
ds−

∫
S

pw dS

where ϕT denotes the tangential derivative ϕT = dw/ds = w,iτi. Our goal is to establish a
variational BEM formulation from the stationarity conditions of the following augmented
potential energy functional:

F(w, λN , λT , λQ)

= E(w) +

∫
ΓN

λN [ϕN − ϕ̄N ] ds +

∫
ΓT

{λT [ϕT − ϕ̄T ]− λQ [w − w̄]} ds

where the kinematical boundary conditions on w, ϕT and ϕN in equation (5) appear as
equality constraints with associated Lagrange multipliers λN , λT , λQ.

The first variation of the augmented potential energy functional F is then given by

δF =

∫
S

w,k`Kijk`δw,ij dS +

∫
ΓM

M̄NδϕN ds +

∫
ΓQ

[
M̄T δϕT − Q̄δw

]
ds−

∫
S

pδw dS

+

∫
ΓN

λNδϕN ds +

∫
ΓT

{λT δϕT − λQδw} ds (7)

It is important to note that, since the kinematical boundary conditions are incorporated
into the Lagrangian δF , the variations δw, δϕT , δϕN in the above equation are not sub-
jected to constraints. Setting δF equal to zero and exploiting the identity∫

S

Mijδw,ij dS =

∫
Γ

[Mijnjδw,i −Qδw] ds +

∫
S

Mij,ijδw dS (8)

one obtains equation (4) and equation (5) and recognizes that the Lagrange multipliers
λN , λT and λQ are respectively the normal moment on ΓN , the twisting moment and the
shear force on ΓT , calculated from the displacement w.

Now let us restrict the first variation δF to variations δw which solve the homogeneous
elastic equilibrium equation, that is

Kijk`δw,ijk` = 0 (9)

For any such w one has∫
S

Mijδw,ij dS =

∫
S

δMijw,ij dS =

∫
Γ

[δMijnjw,i − δQw] ds (10)

Imposing that δF = 0 for any such δw and substituting the above identity into equation
(7) leads to the following equality:∫

Γ

[Qδw −Mijnjδw,i + w,iδMijnj − wδQ] ds +

∫
S

pδw dS = 0 (11)
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Note that, since the plate is in static equilibrium, one has∫
Γ

[Q(a + bixi)−Mijnjbi] ds +

∫
S

p(a + bixi) dS = 0

where a and bi are constants. Thus in (11) the kinematical test function δw (δw,i respec-
tively) needs only to be defined up to a linear (constant) function of the coordinates.

Using ninj + τiτj = δij, one has

Mijnjδw,i = MNδϕN + MT δϕT

Then, an integration by parts of MT δϕT gives∫
Γ

MT δϕT ds = −
∑

c

∆cMT δw(xc)−
∫

Γ

d

ds
MT δw ds (12)

where the xc are the (finitely many) corner points of Γ and ∆cMT is the jump of twisting
moment at xc. Equation (11) thus admits the alternative form∫

Γ

[QKδw −MNδϕN + δMijnjw,i − δQw] ds +
∑

c

∆cMT δw(xc) +

∫
S

pδw dS = 0 (13)

The stationarity equation (13) above is our starting point for building a Galerkin BIE
formulation. Except for the last integral it involves boundary values of physical unknowns
and test functions. This is a consequence of having considered only those test functions
δw in elastic equilibrium, equation (9). It is worth noting at this point that eq. (13) is
nothing else than the reciprocity theorem applied to any bending displacements w and δw
that solve eqs. (4) and (9) respectively.

In order to put the stationarity equation (13) to actual use, it is now necessary to find
a representation of all possible δw satisfying equation (9). This task relies on the use of
integral representation formulas and is the subject of the next section.

4 TEST FUNCTIONS

4.1 Displacement test functions

Let S̃ be a surface enclosed by a contour Γ̃ of unit outward normal ñ(x̃) and unit
tangent τ̃ (x̃), such that S ⊂ S̃ strictly. The contour Γ̃ is defined by means of a one-to-one
mapping onto Γ:

x ∈ Γ → x̃ = F (x; h) (0 ≤ h < h0 � 1) (14)

chosen such that for any corner point xc of Γ, x̃c = F (xc, h) is a corner point of Γ̃ and
otherwise smooth. The mapping (14) depends on a small parameter h in such a way that

|F (x; h)− x| ≤ Ch F (x; 0) = x (15)

According to these definitions, the exterior boundary Γe is surrounded by its counterpart
Γ̃0 whereas the internal boundaries Γ− Γe, if any, surround their counterpart Γ̃− Γ̃e; this
remark will have later relevance in some integration-by-parts manipulations.
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Any δw defined on S̃ and satisfying equation (9) may be represented by means of the
integral representation (interior problem for S̃):

δw(x) =

∫
Γ̃

[W ?(x, x̃)δQK(x̃)− Φ?
N(x, x̃)δMN(x̃)] ds̃

+

∫
Γ̃

[
M?

ij(x, x̃)ñj(x̃)δw,i(x̃)−Q?(x, x̃)δw(x̃)
]
ds̃

+
∑

c̃

W ?(x, x̃c)δ∆c̃MT (16)

where the comma followed by a tilded lower-case letter indicates differentiation with re-
spect to the corresponding x̃ coordinate, s̃ is the arc length defining the x̃ point position.
The kernel function, or fundamental solution, W ?(x, x̃), is any bending displacement gen-
erated at x̃ by a unit point force acting at x, i.e. any solution to equation (4) with
p(x̃) = δ(x− x̃). One such solution is given by42

W ?(x, x̃) =
1

16πD
r2 ln(r2/r2

0) r = |x̃− x| (17)

where r0 is an arbitrary constant value. In the sequel, following Tottenham45, r0 is assumed
such that ln r2

0 = 1. The normal slope, moment and shear associated with this fundamental
solution are respectively given by

Φ?
N(x, x̃) = W ?

,̃ı(x, x̃)ñi(x̃) =
1

8πD
r ln r2 ∂r

∂ñ
(18)

M?
ij(x, x̃) = −Kijk`W

?
,k̃ ˜̀(x, x̃) = − 1

8π

{
2(1− ν)r,̃ır,̃ + 2νδij + (1 + ν)δij ln r2

}
(19)

Q?(x, x̃) = −DW ?
,̃̃̃ı(x, x̃)ñi(x̃) = − 1

2πr

∂r

∂ñ
(20)

with

r,̃ı =
∂r

∂x̃i

=
x̃i − xi

r
= −r,i

∂r

∂ñ
= r,̃ıñi

Moreover, from equation (17), the following symmetry properties hold:

W ?(x, x̃) = W ?(x̃, x) M?
ij(x, x̃) = M?

ij(x̃, x) W ?
,a(x, x̃) = W ?

,ã(x̃, x) (21)

Introduce the complementary surface S̃+ = IR2 − S̃; its boundary is again Γ̃ and, for
consistency, the unit tangent and normal relative to S̃+ are τ̃+ = −τ̃ and ñ+ = −ñ. Any
δw+ defined on S̃+, satisfying equation (9), verifies the exterior representation formula

0 =

∫
Γ̃

[
W ?(x, x̃)δQ+

K(x̃) + Φ?
N(x, x̃)δM+

N (x̃)
]
ds̃

−
∫

Γ̃

[
M?

ij(x, x̃)ñj(x̃)δw+
,i (x̃)−Q?(x, x̃)δw+(x̃)

]
ds̃

−
∑

c̃

W ?(x, x̃c)δ∆c̃M
+
T (x̃c) (22)
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Now, considering simultaneously an interior problem for the bounded plate S̃ and an
exterior problem for the unbounded plate S̃+ having the same boundary data on Γ̃, adding
equation (22) to equation (16) gives the most general representation for δw in S̃:

δw(x) =

∫
Γ̃

[
W ?(x, x̃)Q̃K(x̃)− Φ?

N(x, x̃)M̃N(x̃)
]
ds̃

+

∫
Γ̃

[
M?

ij(x, x̃)ñj(x̃)w̃,̃ı(x̃)−Q?(x, x̃)w̃(x̃)
]
ds̃

+
∑

c̃

W ?(x, x̃c)∆c̃M̃T (23)

where w̃ = δw − δw+, M̃N = δMN − δM+
N , Q̃K = δQK + δQ+

K and ∆c̃M̃T = δ∆c̃MT −
δ∆c̃M

+
T . The jump of the cartesian derivatives w̃,i = δw,i− δw+

,i must be continuous along

S̃. Moreover, the present definition of δw, δw+ and so on implies that

w̃ = 0 on Γ̃T , ϕ̃N = 0 on Γ̃N , M̃N = 0 on Γ̃M , Q̃K = 0 on Γ̃Q. (24)

In addition, for a given corner point xc, w̃(xc) = 0 if w(xc) is prescribed and ∆cMT

unknown, ∆cM̃T = 0 otherwise. Any test function δw of the form (23) solves the ho-
mogeneous elastic equilibrium equation, i.e. Kijk`δw,ijk` = 0. Moreover, from the above
derivation, one readily sees that any sufficiently regular δw that solves Kijk`δw,ijk` = 0
admits a representation of the form equation (23).

In line with a previous work11 for three-dimensional elasticity, the limit Γ̃ → Γ, i.e.
h → 0, will be taken in the above definition of the test function δw together with its
derived quantities δϕN , δMij, δQ; the resulting expressions will then be substituted in
the stationarity condition equation (13). The resulting equation must hold true for every
ϕ̃T , ϕ̃N , M̃N , Q̃K , ∆c̃M̃T under the constraints (24). Hence, following the usual variational
calculus argument, five independent equations will be obtained by considering first the
case ϕ̃T 6= 0, ϕ̃N = M̃N = Q̃K = ∆M̃T = 0, next ϕ̃T = 0, ϕ̃N 6= 0, M̃N = Q̃K = ∆M̃T = 0,
and so on.

First, multiply equation (23) by p(x) and integrate the result over S. The most singular
kernel, Q?(x, x̃), is integrable over S, so that the limiting process h → 0 can be performed
at once and simply yields:∫

S

p(x)δw(x) dS =

∫
S

p(x)

∫
Γ

[
W ?(x, x̃)Q̃K(x̃)− Φ?

N(x, x̃)M̃N(x̃)
]
ds̃ dS

+

∫
S

p(x)

∫
Γ

[
M?

ij(x, x̃)ñj(x̃)w̃,̃ı(x̃)−Q?(x, x̃)w̃(x̃)
]
ds̃ dS

+
∑

c̃

∫
S

p(x)W ?(x, xc)∆c̃M̃T dS (25)

Moreover, as shown in Appendix B, the domain integrals in the above formula can be
reformulated as boundary integrals for some particular classes of loading p, e.g. when p is
a harmonic function (this includes of course the case of uniform p).

In contrast, the singularity of the kernel Q?(x, x̃) is such that a single curvilinear
integral becomes divergent in the limit h → 0, which thus cannot be directly taken in
equation (23). However, as shown in Appendix A.1, one has

Q?(x, x̃) =
d

ds̃
R?(x, x̃), with R?(x, x̃) = − 1

2π
θ(x, x̃) (26)
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where θ(x, x̃) = (ê, r) is the angle between an arbitrarily chosen reference direction e and
the position vector r = x̃− x. Then the strongly singular term in (23) can be integrated
by parts. To this end, it is important to note that the function x̃ → θ(x, x̃) presents a
jump of magnitude 2π across an arbitrarily chosen point x̃0 ∈ Γ̃e, whereas it is continuous
for x̃ ∈ Γ̃ − Γ̃e, since x is interior to Γ̃e but exterior to any component of Γ̃ − Γ̃e; this
distinction will be materialized by the use of a function κ, defined on the plate boundary
by:

κ(x) = 1 (x ∈ Γe) κ(x) = 0 (x ∈ Γ− Γe) (27)

Moreover, in anticipation of the eventual limit process h → 0, the particular choice x̃0 =
F (x, h) is made.

The potentially strongly singular term in (23) is now integrated by parts:∫
Γ̃

Q?(x, x̃)w̃(x̃) ds̃ =− 1

2π
[θ(x, x̃)w̃(x̃)]

x̃−0
x̃+
0

+ eij

∫
Γ̃

R?(x, x̃)ñj(x̃)w̃,̃ı(x̃) ds̃

=− w̃(x̃0)κ(x̃0) + eij

∫
Γ̃

R?(x, x̃)ñj(x̃)w̃,̃ı(x̃) ds̃ (28)

Then, equation (23) becomes:

δw(x) =

∫
Γ̃

[
W ?(x, x̃)Q̃K(x̃)− Φ?

N(x, x̃)M̃N(x̃)
]
ds̃

+

∫
Γ̃

P ?
ij(x, x̃)ñj(x̃)w̃,̃ı(x̃) ds̃ +

∑
c̃

W ?(x, x̃c)∆c̃M̃T + w̃(x̃0)κ(x̃0) (29)

using the auxiliary, weakly singular, kernel P ?
ij(x, x̃) = M?

ij(x, x̃)− eijR
?(x, x̃).

At this point, one notes that all integrals in (29) are at most weakly singular, so that
the same identity holds, with Γ̃ replaced by Γ (and hence τ̃ , ñ replaced by τ , n as well),
for the limiting case Γ̃ → Γ. Upon multiplication of the resulting identity by QK(x) and
integration for x ∈ Γ and recalling that x̃0 = F (x, h), one finally gets:∫

Γ

QK(x)δw(x) ds =

∫
Γ

∫
Γ

QK(x)
[
W ?(x, x̃)Q̃K(x̃)− Φ?

N(x, x̃)M̃N(x̃)
]
ds̃ ds

+

∫
Γ

∫
Γ

QK(x)P ?
ij(x, x̃)nj(x̃)w̃,̃ı(x̃) ds̃ ds

+

∫
Γ

QK(x)w̃(x)κ(x) ds +
∑

c̃

∆c̃M̃T

∫
Γ

QK(x)W ?(x, xc) ds (30)

Similarly, equation (29) with x = xc gives

∑
c

δw(xc)∆cMT =
∑

c

∆cMT

∫
Γ

[
W ?(xc, x̃)Q̃K(x)− Φ?

N(xc, x̃)M̃N(x̃)
]

ds̃

+
∑

c

∆cMT

∫
Γ

P ?
ij(xc, x̃)ñj(x̃)w̃,̃ı(x̃) ds̃

+
∑

c

∑
c̃

∆cMT W ?(xc, x̃c)∆c̃M̃T +
∑

c

w̃(xc)∆cMT κ(xc) (31)
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Note that the kernel R?(x, x̃) is defined up to an additive constant (which value is irrele-
vant) and, besides, is necessarily such that, for x, x̃ ∈ Γe:

R(x, x+)−R(x, x−) = −1

i.e. for a fixed x ∈ Γe, the 2π angle jump on Γe must occur precisely at x̃ = x.

4.2 Gradient of displacement test functions

Let us now differentiate equation (29) with respect to xk:

δw,k(x) =

∫
Γ̃

[
W ?

,k(x, x̃)Q̃K(x̃)−W ?
,kı̃(x, x̃)ñi(x̃)M̃N(x̃)

]
ds̃

+

∫
Γ̃

P ?
ij,k(x, x̃)ñj(x̃)w̃,̃ı(x̃) ds̃ +

∑
c̃

W ?
,k(x, x̃c)∆c̃M̃T (32)

As shown by Frangi14, the kernel derivative W ?
,k can be interpreted as the displacement

at x̃ caused by a unit concentrated moment applied at x in the k-th direction.
In the above equation, the kernel P ?

ij,k(x, x̃) is potentially strongly singular. However,
as shown in Appendix A.2, the following identity holds:

P ?
ij,k(x, x̃)ñj(x̃) = −P ?

ij,k̃
(x, x̃)ñj(x̃) = −ejk

d

ds̃
P ?

ij(x, x̃) (33)

so that the integral containing P ?
ij(x, x̃) can be integrated by parts. Following the same

steps as for equation (28), equation (32) becomes

δw,k(x) =

∫
Γ̃

[
W ?

,k(x, x̃)Q̃K(x̃)−W ?
,kı̃(x, x̃)ñi(x̃)M̃N(x̃)

]
ds̃

−
∫

Γ̃

ekjP
?
ij(x, x̃)

d

ds̃
w̃,̃ı(x̃) ds̃ +

∑
c̃

W ?
,k(x, x̃c)∆c̃M̃T + w̃,k(x̃0)κ(x̃0) (34)

At this stage, all integrals in (34) are again at most weakly singular, so that the same iden-
tity holds, with Γ̃ replaced by Γ, for the limiting case Γ̃ → Γ. Finally, upon multiplication
of the resulting identity by MN(x)nk(x) and integration for x ∈ Γ, one gets∫

Γ

MN(x)δϕN(x) ds =

∫
Γ

∫
Γ

MN(x)Φ?
N(x̃, x)Q̃K(x̃) ds̃ ds

−
∫

Γ

∫
Γ

MN(x)W ?
,kı̃(x, x̃)nk(x)ni(x̃)M̃N(x̃) ds̃ ds

−
∫

Γ

∫
Γ

MN(x)P ?
ij(x, x̃)τj(x)

d

ds̃
w̃,̃ı(x̃) ds̃ ds

+

∫
Γ

MN(x)ϕ̃N(x)κ(x) ds +
∑

c̃

∆c̃M̃T

∫
Γ

MN(x)Φ?
N(x̃c, x) ds

(35)
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4.3 Moment and shear test functions

The moment δMij and shear δQ associated to δw through equations (2) are obtained
by means of eqs. (19,20); they are given by:

δMij(x) =

∫
Γ̃

[
M?

ij(x̃, x)Q̃K(x̃)−M?
ij,k̃

(x̃, x)ñk(x̃)M̃N(x̃)
]
ds̃

−
∫

Γ̃

KijabP
?
k`,ab(x, x̃)ñ`(x̃)w̃,k̃(x̃) ds̃ +

∑
c̃

M?
ij(x̃c, x)∆c̃M̃T

δQ(x) =

∫
Γ̃

[
Q?(x̃, x)Q̃K(x̃)−Q?

,k̃
(x̃, x)ñk(x̃)M̃N(x̃)

]
ds̃

− ni(x)

∫
Γ̃

KijabP
?
k`,abj(x, x̃)ñ`(x̃)w̃,k̃(x̃) ds̃ +

∑
c̃

Q?(x̃c, x)∆c̃M̃T

The limiting expression when h → 0 of the quantity∫
Γ

(δMij(x)w,i(x)nj(x)− δQ(x)w(x)) ds (36)

is now sought. This task necessitates, again, some integrations by parts. First, using again
equation (26) and noting that the function x → θ(x, x̃) is continuous over the external
boundary Γe and has a −2π-jump over Γ−Γe at some point x0 (the minus sign of the jump
stems from consistency of orientation conventions for the external and internal boundary
curves), one has:∫

Γ

w(x)Q?(x̃, x) ds =w(x0)(1− κ(x0)) + eij

∫
Γ

nj(x)w,i(x)R?(x̃, x) ds (37)∫
Γ

w(x)Q?
,k̃
(x̃, x) ds =eij

∫
Γ

nj(x)w,i(x)R?
,k(x̃, x) ds (38)

(using τi = −eijnj). Next, using equation (38), one has∫
Γ

∫
Γ̃

{
w,i(x)nj(x)M?

ij,k̃
(x̃, x)− w(x)Q?

,k̃
(x̃, x)

}
ñk(x̃)MN(x̃) ds̃ ds

=

∫
Γ

∫
Γ̃

w,i(x)nj(x)P ?
ij,k̃

(x̃, x)ñk(x̃)MN(x̃) ds̃ ds (39)

Upon noting that, similarly to equation (33), one has

P ?
ij,k̃

(x̃, x)nj(x)ñk(x̃) = −ejk
d

ds
P ?

ij(x̃, x)ñk(x̃) = τ̃j(x̃)
d

ds
P ?

ij(x̃, x)

and that the cartesian derivatives w,i are continuous throughout Γ, the following integra-
tion by parts applies:∫

Γ

∫
Γ̃

w,i(x)nj(x)P ?
ij,k̃

(x̃, x)ñk(x̃)M̃N(x̃) ds̃ ds

= −
∫

Γ

∫
Γ̃

d

ds
w,i(x)P ?

ij(x̃, x)τ̃j(x̃)M̃N(x̃) ds̃ ds−
∫

Γ

ϕN(x)M̃N(x0)(1− κ(x0)) ds (40)
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Then, from the identity:

KijabP
?
k`,abj(x, x̃)ni(x) = Kk`ab

d

ds
R?

,ab(x, x̃) (41)

which is established in Appendix A.3, one has∫
Γ

w(x)ni(x)

∫
Γ̃

KijabP
?
k`,abj(x, x̃)ñ`(x̃)w̃,k̃(x̃) ds̃ ds

= eij

∫
Γ

w,i(x)nj(x)

∫
Γ̃

Kk`abR
?
,ab(x, x̃)ñ`(x̃)w̃,k̃(x̃) ds̃ ds (42)

(note that R?
,ab(x, x̃) is continuous for x ∈ Γ). Besides, it is shown in Appendix A.4 that

the tensor Z?
ik(x, x̃) given by

Z?
ik(x, x̃) = −D2

[
(1− ν2)W ?

,aã(x, x̃)δik + (1− ν)2W ?
,ik̃

(x, x̃)
]

is such that[
eijKk`abR

?
,ab(x, x̃)−KijabP

?
k`,ab(x, x̃)

]
nj(x)ñ`(x̃) =

d

ds

d

ds̃
Z?

ik(x, x̃) (43)

Note that this kernel has also been found, independently and recently, by Giroire and
Nedelec17. Combining eqs. (42) and (43), one obtains:∫

Γ

∫
Γ̃

{
w,i(x)nj(x)KijabP

?
k`,ab(x, x̃)− w(x)KijabP

?
k`,abj(x, x̃)ni(x)

}
ñ`(x̃)w̃,k̃(x̃) ds̃

= −
∫

Γ

∫
Γ̃

w,i(x)
d

ds

d

ds̃
Z?

ik(x, x̃)w̃,k̃(x̃) ds̃ ds

= −
∫

Γ

∫
Γ̃

d

ds
w,i(x)Z?

ik(x, x̃)
d

ds̃
w̃,k̃(x̃) ds̃ ds (44)

The kernels in eqs. (37), (38), (40), (44) are at most weakly singular. Following the
now usual argument, the limiting expression for Γ̃ → Γ of equation (36) is:∫

Γ

(δMij(x)w,i(x)nj(x)− δQ(x)w(x)) ds

=

∫
Γ

∫
Γ

[
w,i(x)nj(x)P ?

ij(x̃, x)Q̃K(x̃) +
d

ds
w,i(x)τj(x̃)P ?

ij(x̃, x)M̃N(x̃)

]
ds̃ ds

+

∫
Γ

∫
Γ

d

ds
w,i(x)Z?

ik(x, x̃)
d

ds̃
w̃,k̃ ds̃ ds

−
∫

Γ

w(x)Q̃K(x)(1− κ(x)) ds +

∫
Γ

ϕN(x)M̃N(x)(1− κ(x)) ds

+
∑

c̃

∆c̃M̃T

∫
Γ

w,i(x)P ?
ij(x̃c, x)nj(x) ds−

∑
c̃

∆c̃M̃T w(x̃c)(1− κ(x̃c)) (45)

5 THE VARIATIONAL FORMULATION

At this point, the sought-for variational boundary integral formulation is set up by
means of the following steps:
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1. Equations (25), (30), (31), (35), (45) are substituted into the stationarity equation
(13);

2. Every occurrence of w,i and w̃,̃ı is replaced by niϕN + τiϕT and niϕ̃N + τiϕ̃T respec-
tively;

3. The boundary condition structure is explicitly incorporated, i.e. all integrals are
split over the appropriate boundary subsets ΓT , ΓN , ΓM , ΓQ of Γ, the boundary data
ϕ̄T , ϕ̄N , M̄N , Q̄K (and hence the true unknowns) are made to appear explicitly, the
constraints (24) on the test functions on Γ being taken into account. Similarly, the
summations over corners are split according to whether ∆MT or w is prescribed.

Those numerous but straightforward manipulations result in the final form of the station-
arity equation (13). It has the following general structure:

∀(ϕ̃T , ϕ̃N , M̃N , Q̃K , ∆M̃T (xc))∫
ΓQ

GQϕ̃T ds +

∫
ΓM

GM ϕ̃N ds +

∫
ΓN

GNM̃N ds +

∫
ΓT

GT Q̃K ds +
∑

c

G∆∆M̃T (xc) = 0

where GQ, GM , GN , GT , G∆ are integral operators. According to the usual argument of
the calculus of variations, this imply that each of the five terms of the above sum should
vanish separately. The stationarity equation (13) thus leads to the following system of
equations:

(∀Q̃K , M̃N , ϕ̃N , ϕ̃T , M̃T )
Q̃K

M̃N

ϕ̃N

ϕ̃T

∆M̃T



T 
BQQ BQM BQN BQT BQ∆

BMQ BMM BMN BMT BM∆

BNQ BNM BNN BNT BN∆

BTQ BTM BTN BTT BT∆

B∆Q B∆M B∆N B∆T B∆∆




QK

MN

ϕN

ϕT

∆MT

 =


Q̃K

M̃N

ϕ̃N

ϕ̃T

∆M̃T



T 
LQ

LM

LN

LT

L∆

 (46)

where the bilinear forms fTBXY g ≡ BXY (f, g) (with (X, Y ) ∈ {Q,M,N, T, ∆}) are given
as follows:

BQQ(QK , Q̃K) =

∫
ΓT

∫
ΓT

QK(x)W ?(x, x̃)Q̃K(x̃) ds̃ ds

BQM(MN , Q̃K) =−
∫

ΓN

∫
ΓT

MN(x)Φ?
N(x̃, x)Q̃K(x̃) ds̃ ds

BQN(ϕN , Q̃K) =

∫
ΓM

∫
ΓT

ϕN(x)M?
N(x̃, x)Q̃K(x̃) ds̃ ds

BQT (ϕT , Q̃K) =

∫
ΓQ

∫
ΓT

ϕT (x)[R?(x̃, x) + M?
T (x̃, x)]Q̃K(x̃) ds̃ ds

BQ∆(∆MT , Q̃K) =
∑

c

∆cMT

∫
ΓT

W ?(xc, x̃)Q̃K(x̃) ds̃ (47)
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BMM(MN , M̃N) =

∫
ΓN

∫
ΓN

MN(x)W ?
,kı̃(x, x̃)nk(x)ni(x̃)M̃N(x̃) ds̃ ds

BMN(ϕN , M̃N) =

∫
ΓM

∫
ΓN

DN
i ϕN(x)P ?

ij(x̃, x)τj(x̃)M̃N(x̃) ds̃ ds

BMT (ϕT , M̃N) =

∫
ΓQ

∫
ΓN

DT
i ϕT (x)P ?

ij(x̃, x)τj(x̃)M̃N(x̃) ds̃ ds

BM∆(∆MT , M̃N) =−
∑

c

∆cMT

∫
ΓN

Φ?
N(xc, x̃)M̃N(x̃) ds̃ (48)

BNN(ϕN , ϕ̃N) =

∫
ΓM

∫
ΓM

DN
i ϕN(x)Z?

ik(x, x̃)DN
k ϕ̃N(x̃) ds̃ ds

BNT (ϕT , ϕ̃N) =

∫
ΓQ

∫
ΓM

DT
i ϕT (x)Z?

ik(x, x̃)DN
k ϕ̃N(x̃) ds̃ ds

BN∆(∆MT , ϕ̃N) =
∑

c

∆cMT

∫
ΓM

M?
N(xc, x̃)ϕ̃N(x̃) ds̃ (49)

BTT (ϕT , ϕ̃T ) =

∫
ΓQ

∫
ΓQ

DT
i ϕT (x)Z?

ik(x, x̃)DT
k ϕ̃T (x̃) ds̃ ds

BT∆(∆MT , ϕ̃T ) =−
∑

c

∆cMT

∫
ΓQ

[M?
T (xc, x̃) + R?(xc, x̃)ϕ̃T (x̃) ds̃ (50)

B∆∆(∆MT , ∆M̃T ) =
∑

c

∆cMT

∑
c̃

W ?(xc, x̃c)∆c̃M̃T (51)

and the linear forms fTLX ≡ LX(f) as follows:

LQ(Q̃K) =−
∫

ΓQ

∫
ΓT

Q̄K(x)W ?(x, x̃)Q̃K(x̃) ds̃ ds

+

∫
ΓM

∫
ΓT

M̄N(x)Φ?
N(x̃, x)Q̃K(x̃) ds̃ ds

−
∫

ΓN

∫
ΓT

ϕ̄N(x)M?
N(x̃, x)Q̃K(x̃) ds̃ ds

−
∫

ΓT

∫
ΓT

ϕ̄T (x)[M?
T (x̃, x) + R?(x̃, x)]Q̃K(x̃) ds̃ ds

+

∫
ΓT

w̄(x)Q̃K(x)(1− κ(x)) ds

−
∫

S

∫
ΓT

p(x)W ?(x, x̃)Q̃K(x̃) ds̃ dS

−
∑

d

∆dMT

∫
ΓT

W ?(xc, x̃)Q̃K(x̃) ds̃ (52)
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LM(M̃N) =

∫
ΓQ

∫
ΓN

Q̄K(x)W ?
,̃ı(x, x̃)ni(x̃)M̃N(x̃) ds̃ ds

−
∫

ΓM

∫
ΓN

M̄N(x)W ?
,kı̃(x, x̃)nk(x)ni(x̃)M̃N(x̃) ds̃ ds

−
∫

ΓN

∫
ΓN

DN
i ϕ̄N(x)P ?

ij(x̃, x)τj(x̃)M̃N(x̃) ds̃ ds

−
∫

ΓN

ϕ̄N(x)M̃N(x)(1− κ(x)) ds

−
∫

ΓT

∫
ΓN

DT
i ϕ̄T (x)P ?

ij(x̃, x)τj(x̃)M̃N(x̃) ds̃ ds

+

∫
S

∫
ΓN

p(x)Φ?
N(x, x̃)M̃N(x̃) ds̃ dS

+
∑

d

∆dMT

∫
ΓN

Φ?
N(xd, x̃)M̃N(x̃) ds̃ (53)

LN(ϕ̃N) =−
∫

ΓQ

∫
ΓM

Q̄K(x)Φ?
N(x̃, x) ds̃ ds

−
∫

ΓM

∫
ΓM

M̄N(x)P ?
ij(x, x̃)τj(x)DN

i ϕ̃N(x̃) ds̃ ds

+

∫
ΓM

M̄N(x)ϕ̃N(x)κ(x) ds

−
∫

ΓN

∫
ΓM

DN
i ϕ̄N(x)Z?

ik(x, x̃)DN
i ϕ̃N(x̃) ds̃ ds

−
∫

ΓT

∫
ΓM

DT
i ϕ̄T (x)Z?

ik(x, x̃)DN
i ϕ̃N(x̃) ds̃ ds

−
∫

S

∫
ΓM

p(x)M?
N(x, x̃)ϕ̃N(x̃) ds̃ dS

−
∑

d

∆dMT

∫
ΓM

M?
N(xd, x̃)ϕ̃N(x̃) ds̃ (54)
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LT (ϕ̃T ) =−
∫

ΓQ

∫
ΓQ

Q̄K(x)[M?
T (x, x̃) + R?(x, x̃)]ϕ̃T (x̃) ds̃ ds

−
∫

ΓQ

Q̄K(x)w̃(x)κ(x) ds−
∑

d

w̃(xc)∆cMT κ(xc)

−
∫

ΓM

∫
ΓQ

M̄N(x)P ?
ij(x, x̃)τj(x)DT

i ϕ̃T (x̃) ds̃ ds

−
∫

ΓN

∫
ΓQ

DN
i ϕ̄N(x)Z?

ik(x, x̃)DT
k ϕ̃T (x̃) ds̃ ds

−
∫

ΓT

∫
ΓQ

DT
i ϕ̄T (x)Z?

ik(x, x̃)DT
k ϕ̃T (x̃) ds̃ ds

−
∫

S

∫
ΓQ

p(x)[M?
T (x, x̃) + R?(x, x̃)]ϕ̃T (x̃) ds̃ dS

+

∫
S

∫
ΓQ

p(x)Q?(x, x̃)w̃(x̃) ds̃ dS

−
∑

d

∆dMT

∫
ΓQ

[M?
T (xc, x̃) + R?(xd, x̃)ϕ̃T (x̃) ds̃ (55)

L∆(∆M̃T ) =−
∑

c̃

∆c̃M̃T

∫
ΓQ

Q̄K(x)W ?(x, xc) ds

+
∑

c̃

∆c̃M̃T

∫
ΓM

M̄N(x)Φ?
N(xc, x) ds

−
∑

c̃

∆c̃M̃T

∫
ΓN

ϕ̄N(x)M?
N(xc, x) ds

−
∑

c̃

∆c̃M̃T

∫
ΓT

ϕ̄T (x)[M?
T (xc, x) + R?(xc, x)] ds

+
∑

c̃

w̄(xc)∆cM̃T (1− κ(xc))

−
∑

c̃

∆c̃M̃T

∫
S

p(x)W ?(x, x̃c) dS

−
∑

d

∑
c̃

∆dMT W ?(x, x̃)∆c̃M̃T (56)

In establishing the above formulas, use has been made of the relations

Pijninj = MN , Pijτinj = MT + R

and, for convenience, of the operators

DN
a f(x)

Def
=

d

ds
[naf ](x) =

[
na

d

ds
f +

1

ρ
τaf

]
(x)

DT
a f(x)

Def
=

d

ds
[τaf ](x) =

[
τa

d

ds
f − 1

ρ
naf

]
(x)

(57)
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The indices (c, c̃) (resp. d) range over those corners at which ∆MT is unknown (resp.
prescribed).

The symmetry properties of the various kernel functions imply that the variational
formulation (46) is symmetric, i.e.

BXY (f, g) = BY X(g, f) X,Y ∈ {Q,M,N, T, ∆}

Besides, the domain integrals can be transformed into boundary integrals whenever the
loading function p(x) is harmonic, as is explained in Appendix B.

6 PARTICULAR BOUNDARY CONDITION CONFIGURATIONS

The formulation presented in the previous section holds for the most general types of
boundary conditions. Let us now consider two specific cases: clamped plates and simply-
supported plates.

6.1 Clamped plate

In this case, one has ΓM = ΓQ = ∅ and ΓN = ΓT = Γ with ϕ̄N = ϕ̄T = 0; all twisting
moment jumps are unknown. As a result, the formulation (46) reduces to

(∀Q̃K , M̃N , M̃T )


Q̃K

M̃N

∆M̃T


T BQQ BQM BQ∆

BMQ BMM BM∆

B∆Q B∆M B∆∆


QK

MN

∆MT

 =


Q̃K

M̃N

∆M̃T


T 

LQ

LM

L∆


(58)

with

LQ(Q̃K) =−
∫

S

∫
Γ

p(x)W ?(x, x̃)Q̃K(x̃) ds̃ dS

LM(M̃N) =

∫
S

∫
Γ

p(x)W ?
,̃ı(x, x̃)ni(x̃)M̃N(x̃) ds̃ dS

L∆(∆M̃T ) =−
∑

c̃

∆c̃M̃T

∫
S

p(x)W ?(x, x̃c) dS

6.2 Simply-supported plate

In this case, one has ΓN = ΓQ = ∅ and ΓM = ΓT = Γ, with M̄N = ϕ̄T = 0; all twisting
moment jumps are unknown. As a result, the formulation (46) reduces to

(∀Q̃K , ϕ̃N , M̃T )


Q̃K

ϕ̃N

∆M̃T


T BQQ BQN BQ∆

BNQ BNN BN∆

B∆Q B∆N B∆∆


QK

ϕN

∆MT

 =


Q̃K

ϕ̃N

∆M̃T


T 

LQ

LN

L∆


(59)
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with

LQ(Q̃K) =−
∫

S

∫
Γ

p(x)W ?(x, x̃)Q̃K(x̃) ds̃ dS

LN(ϕ̃N) =−
∫

S

∫
Γ

p(x)M?
N(x, x̃)ϕ̃N(x̃) ds̃ dS

L∆(∆M̃T ) =−
∑

c̃

∆c̃M̃T

∫
S

p(x)W ?(x, x̃c) dS

6.3 Free plate

In this case, one has ΓN = ΓT = ∅ and ΓM = ΓQ = Γ, with M̄N = Q̄K = 0; a zero value
is prescribed for all twisting moment jumps. As a result, the formulation (46) reduces to

(∀ϕ̃N , ϕ̃T )

{
ϕ̃N

ϕ̃T

}T [
BNN BNT

BTN BTT

]{
ϕN

ϕT

}
=

{
ϕ̃N

ϕ̃T

}T {
LN

LT

}
(60)

with

LN(ϕ̃N) =−
∫

S

∫
Γ

p(x)M?
N(x, x̃)ϕ̃N(x̃) ds̃ dS

LT (ϕ̃N) =

∫
S

∫
Γ

p(x)[M?
T (x, x̃)−R?(x, x̃)]ϕ̃T (x̃) ds̃ dS

The same formulation has been obtained by Giroire and Nedelec17, where, however, the
possibility of corner points is not addressed.

7 NUMERICAL IMPLEMENTATION

A computer code has been implemented allowing the discretization of the plate bound-
ary with either straight or circular arc elements (constant curvature elements). The verti-
cal displacement field is modelled using hermitian cubic shape functions while the normal
slope and the normal moment are approximated with lagrangian quadratic shape func-
tions; both quadratic and linear shape functions have been tried for the Kirchhoff shear.
The required C1 (C0 respectively) continuity of w (resp. ϕN , MN , QK) at a smooth point
on the boundary is thus easily enforced.

At a corner node, the enforcement of the cartesian gradient continuity across elements
is achieved through the supplementary conditions

n1
i Φ

1
N + τ 1

i Φ1
T = n2

i Φ
2
N + τ 2

i Φ2
T

where indices 1 and 2 pertain to the relevant element and ΦT and ΦN are the nodal values
of the tangential and normal slopes. Besides, the static boundary variables MN , QK are
expected to jump across either corners or endpoints of ΓM or ΓQ.

The system of equations (46) requires at most the evaluation of double logarithmic-
singular integrals. Any such integral may be reduced to the form

I =

∫ 1

−1

∫ 1

−1

z(ξ, η) ln[r(ξ, η)]dξdη

17



where z(ξ, η) is a regular function and ξ and η are intrinsic coordinates. Basically, three
different cases have to be dealt with: integration over separate elements (no singularity),
integration over adjacent elements (singularity at ξ = 1, η = −1 or ξ = −1, η = 1 depend-
ing on the relative position of the two elements) and integration over coincident elements
(singularity along the diagonal ξ = η). In the second case, as shown by Parreira and
Guiggiani36 or Frangi and Novati15, simple Gauss-Legendre quadrature rules can be used
after introducing suitable coordinate transformations concentrating sample points near
the singularity. In the last case the coordinate transformations{

η = α− β − αβ
ξ = α + β − αβ

(η ≥ ξ, )

{
η = α + β − αβ
ξ = α− β − αβ

(η ≤ ξ)

lead to

I =

∫ 1

−1

∫ 1

−1

z(ξ, η) ln
2r(ξ, η)

|ξ − η|
dξdη + 2

∫ 1

0

(1− β) lnβ

∫ 1

−1

[z(α, β) + z(α,−β)] dαdβ

The first integral is regular, while the second one can be evaluated by means of Gauss-
Legendre (for the inner integral) and Gauss logarithmic (for the outer integral) quadrature
rules.

8 NUMERICAL EXAMPLES

In this section, some numerical examples are presented for simple situations where
an analytical solution is available for comparison. Since one of the authors also published
recently a paper14 on the regularized collocation approch to BEM formulation (CBEM) for
Kirchhoff plate bending, some comparisons to the CBEM numerical results are presented
for completeness.

Examples 1–3: square plate. A square plate (side length a = 1, ν = .3, D = 1)
is subjected to a uniform pressure p = 1. Four different meshes (labelled A, B, C and
D), having respectively two, four, eight and twenty elements on each side, are considered.
Thanks to geometrical and loading symmetry, results will be shown for a half-side. Three
different sets of boundary conditions are considered:

1. Clamped plate. Following Stern42 and Williams47, the normal moment at corners is
imposed equal to zero in this case.

2. Figure 1 should appear here.

Figure 2 should appear here.

Table 1 should appear here.

Table 2 should appear here.
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In Figures (1) and (2), the numerical results for the normal moment and the shear
are plotted against the analytical solution of Timoshenko and Woinowsky-Krieger44.
Table 1 displays numerical values of L2 relative average errors between computed
and analytical nodal values of the relevant boundary variables, while table 2 shows
the numerical values found for the concentrated forces (jumps ∆cMT of twisting
moment) at corners, which vanish in the exact solution.

3. Simply-supported plate. An analysis of the asymptotic behaviour of the solution
at corner points (Williams47), or the imposition of additional relations at corners
(Guoshu and Mukherjee20), shows that the equivalent shear QK at corners must
vanish; this additional condition has been used for the present computations.

Figure 3 should appear here.

Figure 4 should appear here.

Table 3 should appear here.

Table 4 should appear here.

In Figures 3 and 3, the numerical results for the normal slope and the shear are
plotted against the analytical solution44. Table 3 displays numerical values of L2

relative average errors between computed and analytical nodal values of the relevant
boundary variables, while table 4 shows the numerical values found for the ∆cMT .

4. Plate with two opposite sides simply-supported and the other ones free. In this case,
for which an analytical solution is also known44, no additional hypothesis needs
to be introduced for the unknowns at corner points. From the boundary element
formulation viewpoint, this set of boundary conditions is the most delicate one since
the kernels of highest singularities are involved in the original (i.e. non-regularized)
formulation.

Figure 5 should appear here.

Figure 6 should appear here.

Figure 7 should appear here.

Table 6 should appear here.

Table 5 should appear here.

Figure 5 displays the numerical results for the normal slope, while table 5 shows the
L2 relative average errors between computed and analytical nodal values of the relevant
unknowns. Concerning the equivalent shear QK , the results using quadratic interpolation
(labelled ‘3-noded’) show a strong tendency to spatial oscillations, see figure 6, and are
poor for the coarser meshes A and B; also, poor results and slow convergence with mesh
refinement is observed for the corner forces, see table 6. The same oscillatory tendency,
with somewhat milder impact, is observed on the numerical results obtained by collocation
BEM14. However, when a piecewise linear interpolation (labelled ‘2-noded’) is used instead
for QK , the results for both shear and corner forces improve dramatically (see figure 7 and
table 6).
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Example 4: Simply-supported circular plate. A circular (with radius R = 1)
simply-supported plate subjected to a uniform pressure p = 1 is considered (ν = .3,
D = 1). Circular-arc shaped elements are used, allowing an exact representation of the
problem geometry. The analytical solution is known:

QK(ρ) = −p0
R

2
ρ , ϕN =

p0R
3

16D
ρ

(
ρ2 − 3 + ν

1 + ν

)
where ρ = r/R and r is the distance from the center of the plate. The comparison is shown
in table 7 for the boundary variables, which are constant due to axisymmetry. Using eight
elements of equal size, an excellent agreement with the exact solution is reached.

Table 7 should appear here.

Galerkin vs. collocation. As far as relative accuracy is considered, both Galerkin
and collocation approaches give good results, and neither outperforms the other one in all
cases, as is apparent in tables 1–6.

As of yet, neither method has been optimized with respect to the respective numerical
integration procedures; in particular the number of Gauss points is not currently adjusted
to the relative interelement distance. For this reason, it is not easy to formulate meaningful
conclusions concerning the respective computational efficiencies. A typical value of the
integration time ratio observed between Galerkin and collocation BEM formulations is
1.5. On the other hand, the optimization of the Gauss point number for both methods
is expected should logically reduce the integration computer time by a bigger amount for
the SGBEM, where double integrals are computed instead of the single integrals of the
CBEM. Also, the final linear system of equations obtained by the SGBEM is symmetric.
Thus both the computer solution time and the storage required are half those entailed
by the CBEM. This means that a SGBEM is, in an asymptotic sense (i.e. for sufficiently
fine meshes), computationally more efficient than a CBEM; this has been pointed out for
elasticity3.

9 STIFFNESS MATRIX OF AN ELASTIC KIRCHHOFF PLATE

In the context of coupled BEM /FEM approaches, the stiffness matrix of the elastic,
BEM-modelled, transverse load-free (i.e. p = 0) part of the plate can be computed using
the SGBE approach. Indeed, let (ϕN , ϕT , MN , MT , ∆MT ) denote any compatible set of
boundary variables (i.e. the boundary variables associated to a solution w to (4)).

First, considering the moment MN , shear QK and jumps ∆MT as induced by prescribed
values of ϕN , ϕT (i.e. ΓN = ΓT = Γ, ΓM = ΓQ = ∅), the formulation (46) takes the form:

(∀Q̃K , M̃N , M̃T )
Q̃K

M̃N

∆M̃T


T BQQ BQM BQ∆

BMQ BMM BM∆

B∆Q B∆M B∆∆


QK

MN

∆MT

 =


Q̃K

M̃N

∆M̃T


T LQN LQT

LMN LMT

L∆N L∆T

{
ϕN

ϕT

}
(61)

where the linearity of the right-hand side with respect to ϕN , ϕT is emphasized.
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Then, considering the normal and tangential gradients ϕN , ϕT as induced by prescribed
moment MN , shear QK and twisting moment jumps ∆MT (i.e. ΓM = ΓQ = Γ, ΓN = ΓT =
∅), the formulation (46) becomes:

(∀ϕ̃N , ϕ̃T , M̃T ){
ϕ̃N

ϕ̃T

}T [
BNN BNT

BTN BTT

]{
ϕN

ϕT

}
=

{
ϕ̃N

ϕ̃T

}T [
LNQ LNM LN∆

LTQ LTM LT∆

] 
QK

MN

∆MT

 (62)

Now, the test functions are particularized: let M̃N = MN , Q̃K = QK , ∆M̃T = ∆MT

in (61) and ϕ̃N = ϕN , ϕ̃T = ϕT in (61). Upon detailed inspection of eqs. (52) to (56),
one can show that:

QK

MN

∆MT


T LQN LQT

LMN LMT

L∆N L∆T

{
ϕN

ϕT

}
−

{
ϕN

ϕT

}T [
LNQ LNM LN∆

LTQ LTM LT∆

]
QK

MN

∆MT


=

∫
Γ

[w(x)QK(x)− ϕT (x)MT (x)] ds +
∑

c

w(xc)∆cMT (63)

where the summation ranges over all corners. The right-hand side of the above equation
is twice the strain energy W associated with a bending displacement field w over S which
solves the homogeneous elastic equilibrium equation (9):

W =
1

2

∫
S

w,ijKijk`w,k` dS =
1

2

∫
Γ

[w(x)QK(x)− ϕT (x)MT (x)] ds +
1

2

∑
c

w(xc)∆cMT

That fact can easily be established from equation (8) and using (6) and (12). In view of
the equalities (61,62), the above result means that the strain energy is also given by

2W =


QK

MN

∆MT


T BQQ BQM BQ∆

BMQ BMM BM∆

B∆Q B∆M B∆∆


QK

MN

∆MT

−
{

ϕN

ϕT

}T [
BNN BNT

BTN BTT

]{
ϕN

ϕT

}
(64)

= 2

{
ϕN

ϕT

}T [
KNN KNT

KTN KTT

]{
ϕN

ϕT

}
(65)

where QK , MN , ∆MT have been expressed in terms of ϕN , ϕT using equation (61), so that
the stiffness operator K is given by:

2

[
KNN KNT

KTN KTT

]
=

LQNLQT

LMNLMT

L∆NL∆T

T BQQ BQM BQ∆

BMQ BMM BM∆

B∆Q B∆M B∆∆

−1 LQNLQT

LMNLMT

L∆NL∆T

− [
BNN BNT

BTN BTT

]
(66)

The above result is interesting in that the stiffness matrix of an elastic plate without
transverse load (i.e. p = 0) is expressed in terms of the boundary displacement and slope
variables, i.e. the trace on the boundary of the variables that appear naturally in a FEM
modelling. Hence, a coupled BEM / FEM approach for complex systems is available,
whereby (for instance) elastic and unloaded subregions are treated as ‘macro-elements’ in
a variational formulation using equation (66) for the relevant stiffness matrices.
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10 COMMENTS

In this closing section, after briefly commenting on the various approaches leading to
SGBE formulations, some applications and extensions of the present approach are briefly
discussed.

Variational approach vs. weighted residuals. The variational viewpoint has been
adopted in this paper, i.e. the Galerkin formulation is formulated here as the stationarity
condition of the potential energy applied to adequately chosen test functions. Besides, the
derivation of test functions δw using the integral representation approach would become
very awkward were they to verify the homogeneous kinematic boundary conditions in
addition to the local equilibrium. This led to introduce the kinematic boundary conditions
explicitely, augmenting the potential energy functional with constraint terms.

However, the test function δw, eq. (23) can be formulated directly, interpreting
w̃, M̃N , Q̃K , ∆M̃T as kinematic and static source distributions. The same final Galerkin
direct BIE formulation is then achieved by directly substituting δw, etc. into the reci-
procity identity (13); this is essentially the approach followed in some earlier papers on
elastic problems, e.g. Sirtori et al.40. In turn, the ‘source distribution’ approach is yet
just another way to formulate the boundary integral equation in weighted residual form.

Summing up, the weighted residual, source distribution and variational viewpoints
leads to the same Galerkin BIE formulation. The main justification for our adopting the
latter lies in the extra insight gained about the basic principles underlying the formulation.

Other applications. The SGBEM approach has specific advantages in some specific
situations. In particular, as shown in Sec. 9 above, it plays a crucial role in formulating
the stiffness matrix of a given region in terms of boundary kinematical variables.

Besides, SGBIE formulations are useful in energy methods for fracture mechanics.
Specifically, the energy release rate G for a cracked elastic body can be formulated as
(minus) the kernel of the domain derivative of the potential energy at equilibrium with
respect to (virtual) crack extensions. It has been shown10, for three-dimensional elastic
bodies, that a combined use of SGBIE and material differentiation allows to compute G
without having to compute the first-order domain derivative of the equilibrium elastic
solution, the latter being eliminated by virtue of the symmetry of the governing elastic
formulation. This idea has been recently pursued further for cracked Kirchhoff plates16,
using the present SGBIE formulation; satisfactory numerical results have been obtained.

The present SGBIE approach is also adaptable to elastic plates resting on Winkler
foundations, i.e. with a transverse load p − kw, where k is the foundation stiffness. The
initial stationarity statement (13) must be modified accordingly. A fundamental solution
for the differential operator Dw,iijj + kw (k constant) is given38 by

W ?
winkler(x, x̃) = − 1

2π(kD)1/2
kei

(
4

√
k

D
r

)
= W ?(x, x̃) + (higher order terms)

where kei denotes the Kelvin function of order zero. The difference between the fundamen-
tal solutions W ?

winkler(x, x̃) and W ?(x, x̃) or their derivatives of any order is nonsingular.
Hence, the integrations by parts techniques used here can be applied to the SGBIE for-
mulation of Winkler plates as well, using the splitting W ?

winkler = W ? + (W ?
winkler −W ?).
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A Galerkin formulation of the domain-BIE approach to Winkler plates8, using the
usual fundamental solution W ?, eq. (17), is less straightforward due to the fact that the
test functions (23) do not solve the homogeneous partial differential equation for Winkler
plates. Thus, an additional, non-trivial, investigation is necessary for the symmetrization
of the domain-BIE approach. The multiple reciprocity approach proposed by Sladek and
Sladek41 should prove helpful for this development.

11 CONCLUSIONS

A symmetric BE method for linear elastic Kirchhoff plates has been developed. The
formulation stems from the imposition of the stationarity conditions of an augmented po-
tential energy functional to those test functions that satisfy the homogeneous local elastic
equilibrium equation. A regularization approach based on integrations by parts has been
developed, so that the governing bilinear form in the final variational integral formulation
involves a weakly singular boundary integral followed by a nonsingular boundary integral.
The formulation is valid for an arbitrary plate shape and arbitrary boundary conditions. A
BE implementation has been developed. Numerical results, on examples involving rectan-
gular or circular plates under uniform pressure, exhibit very good accuracy when compared
to exact solutions. The stiffness matrix of an elastic plate with p = 0 has been expressed
in terms of the kinematical variables on the plate boundary, for e.g. coupling or subregion
purposes.
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A DETERMINATION OF THE REGULARIZED KERNELS

A.1 The R? kernel

Let us consider a (r, θ) polar coordinate system centered at x, so that r = x̃−x = rer

and ∇̃r = er. Introducing a parametrization (r(s̃), θ(s̃)) of the closed curve Γ̃ in terms of
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the arc-length s̃, the unit normal on Γ̃ is then given by

ñ = −dr

ds̃
eθ +

rdθ

ds̃
er

Thus, from definition (20):

Q?(x, x̃) = − 1

2π

ñ.er

r
= − 1

2π

dθ

ds̃
=

d

ds̃
R?(x, x̃) (67)

which establishes the expression equation (26) of R?(x, x̃). Moreover, since

∇̃θ =
1

r
eθ =

1

r
(ez ∧ er)

it follows that
R?

,̃ı(x, x̃) = eijDW ?
,aã(x, x̃) R?

,̃ı̃ı(x, x̃) = 0 (68)

Finally, one notes that

R?(x̃, x) = R?(x, x̃) + π , R?
,̃ı(x, x̃) = −R?

,i(x, x̃) (69)

A.2 Integration of P ?
ij,k̃

ñj

First, using (68), one has

M?
ij,k̃

(x, x̃)−R?
,k̃
(x, x̃)eij = M?

ij,k̃
(x, x̃)− eijek`DW ?

,aa˜̀(x, x̃)

so that, using the identity eijekp = eij3ekp3 = δikδjp − δipδjk[
M?

ij,k̃
(x, x̃)−R?

,k̃
(x, x̃)eij

]
ñj = M?

ij,k̃
(x, x̃)ñj + DW ?

,aaı̃(x, x̃)ñk − δikDW ?
,aã(x, x̃)ñj

= M?
ij,k̃

(x, x̃)ñj −M?
ij,̃(x, x̃)ñk + δikQ

?(x, x̃) (70)

Then, using (67), δik = eijekj, and the identity

ñjf,k̃ − ñkf,̃ = ejk
df

ds̃
(71)

equation (70) readily leads to

P ?
ij,k̃

(x, x̃)ñj(x̃) = −ekj
d

ds̃
P ?

ij(x, x̃)

and hence to the desired result, equation (33).

A.3 Integration of KijabP
?
k`,abjni

First, it is easy to show that the following symmetry property holds:

KijabM
?
k`,ab(x, x̃) = Kk`abM

?
ij,ab(x, x̃)
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so that one has

KijabP
?
k`,abj(x, x̃)ni(x)

= Kk`abM
?
ij,abj(x, x̃)ni(x)−Kijabek`R

?
,abj(x, x̃)ni(x)

= Kk`ab

(
M?

ij,abj(x, x̃)ni(x)−M?
ij,ijb(x, x̃)na(x)

)
−Dek`R

?
,aai(x, x̃)ni(x)

= eaiKk`ab
d

ds
M?

ij,bj(x, x̃)

= Kk`ab
d

ds
R?

,ab(x, x̃)

using (68) and (71). Thus the desired result (41) is established.

A.4 The Zik kernel

The aim of this section is to find a kernel Z?
ik(x, x̃) such that

A?
ik(x, x̃) ≡

[
eijKk`abR

?
,ab(x, x̃)−KijabP

?
k`,ab(x, x̃)

]
nj(x)ñ`(x̃) =

d

ds

d

ds̃
Z?

ik(x, x̃)

First, the definition of P ?
k`(x, x̃) implies that

A?
ik(x, x̃) =

[
eijKk`abR

?
,ab(x, x̃) + ek`KijabR

?
,ab(x, x̃)−KijabM

?
k`,ab(x, x̃)

]
nj(x)ñ`(x̃)

Then, using the elastic constitutive law, equations (2)–(3), one obtains

−KijabM
?
k`,ab(x, x̃) = D2(1−ν)

[
(1− ν)W ?

,ijk̃ ˜̀(x, x̃) + νδijW
?
,aak̃ ˜̀(x, x̃) + νδk`W

?
,ijãã(x, x̃)

]
where the equilibrium equation W ?

,aab̃b̃
(x, x̃) = W ?

,ããb̃b̃
(x, x̃) = 0 has been used. Now,

repeated applications of (71) give, again using W ?
,aab̃b̃

(x, x̃) = 0

−KijabM
?
k`,ab(x, x̃)nj(x)ñ`(x̃)

ex

=D2(1− ν)

[
eijñk(x̃)

d

ds
W ?

,j ˜̀̀̃ (x, x̃) + ek`ni(x)
d

ds̃
W ?

,jj ˜̀(x, x̃)

+ (1− ν)eijek`
d

ds

d

ds̃
W ?

,j ˜̀(x, x̃)

]
(72)

while, using properties (68) and (69) of the kernel R?(x, x̃) and its derivatives, one has

1

D(1− ν)
eijKk`abR

?
,ab(x, x̃)nj(x)ñ`(x̃)

=eijR
?
,k̃ ˜̀(x, x̃)nj(x)ñ`(x̃)

=− eijek`nj(x)
d

ds̃
R?

,˜̀
(x, x̃)

=Dek`nj(x)eije`m
d

ds̃
W ?

,aam̃(x, x̃)

=Dek`

[
δi`nm(x)

d

ds̃
W ?

,aãm(x, x̃)− ñ`(x̃)
d

ds̃
W ?

,aãi(x, x̃)

]
=eki

d

ds

d

ds̃
R?(x, x̃)−Dek`ñ`(x̃)

d

ds̃
W ?

,aãi(x, x̃) (73)
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and, similarly

1

D(1− ν)
ek`KijabR

?
,ab(x, x̃)nj(x)ñ`(x̃)

= eik
d

ds

d

ds̃
R?(x, x̃)−Deijñj(x̃)

d

ds
W ?

,aãk̃
(x, x̃) (74)

Finally, substituting equations (72), (73), (74) and since eki + eik = 0, one finds

A?
ik(x, x̃) =D2(1− ν)eij

[
ñk(x̃)

d

ds
W ?

,j ˜̀̀̃ (x, x̃)− ñj(x̃)
d

ds
W ?

,aãk̃
(x, x̃)

]
+ D2(1− ν)ek`

[
ni(x)

d

ds̃
W ?

,jj ˜̀(x, x̃)− n`(x)
d

ds̃
W ?

,aãi(x, x̃)

]
+ D2(1− ν)2eijek`

d

ds

d

ds̃
W ?

,j ˜̀(x, x̃)

=D2

[
(1− ν)2eijek`

d

ds

d

ds̃
W ?

,j ˜̀(x, x̃)− 2δik(1− ν)
d

ds

d

ds̃
W ?

,aã(x, x̃)

]
(75)

which readily leads to the desired result

A?
ik(x, x̃) =

d

ds

d

ds̃
Z?

ik(x, x̃)

Z?
ik(x, x̃) =−D2

[
(1− ν2)δikW

?
,aã(x, x̃) + (1− ν)2W ?

,ik̃
(x, x̃)

]

B CONVERSION OF DOMAIN INTEGRALS INTO BOUNDARY INTEGRALS

In the case of uniform pressure acting on the plate, the domain integrals may be
transformed into contour integrals, following Balas and Sládek4.

It is easy to show4 that one has

W ?(x, x̃) = F ?
,aa(x, x̃) with F ?(x, x̃) =

1

128πD
r4(ln r − 1)

On the other hand, the third Green’s formula leads to∫
S

p(x)W ?(x, x̃) dS =

∫
S

p,aa(x)F ?(x, x̃) dS

+

∫
Γ

{
p(x)F ?

,a(x, x̃)na(x)− p,a(x)na(x)F ?(x, x̃)
}

ds

Thus, for any load p(x) which is a harmonic function, the above identity converts
∫

S
pW dS

into boundary integrals. For the special case of a uniform load, p(x) = p0, one gets∫
S

p(x)W ?(x, x̃) dS = p0

∫
Γ

F ?
,a(x, x̃)na(x) ds
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In a similar manner, one has∫
S

p(x)W ?
,̃ı(x, x̃) dS =

∫
S

p,aa(x)F ?
,̃ı(x, x̃) dS

+

∫
Γ

{
p(x)F ?

,aı̃(x, x̃)na(x)− p,a(x)na(x)F ?
,̃ı(x, x̃)

}
ds∫

S

p(x)M?
ij(x, x̃) dS =−Kijk`

∫
S

p,aa(x)F ?
,k`(x, x̃) dS

−Kijk`

∫
Γ

{
p(x)F ?

,ak`(x, x̃)na(x)− p,a(x)na(x)F ?
,k`(x, x̃)

}
ds

Finally, using (68) it is easy to show that

R?(x, x̃) = G?
,aa(x, x̃) , with G?(x, x̃) =

1

4
r2R?(x, x̃)

As a consequence, the kernel

H?
ij(x, x̃) = −Kijk`F

?
,k`(x, x̃)− eijG

?
,aa(x, x̃)

is such that
H?

ij,aa(x, x̃) = P ?
ij(x, x̃)

and one has∫
S

p(x)P ?
ij(x, x̃) dS =

∫
S

p,aa(x)H?
ij(x, x̃) dS

+

∫
Γ

{
p(x)H?

ij,a(x, x̃)na(x)− p,a(x)na(x)H?
ij(x, x̃)

}
ds

Finally, if the load p(x) is not harmonic, a multiple reciprocity approach (Nowak and
Brebbia34) could be developed by using repeatedly the above line of reasoning.
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Figure 1: Clamped plate: normal moment.
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Figure 2: Clamped plate: Kirchhoff shear.
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Figure 3: Simply-supported plate: normal slope.
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Figure 4: Simply-supported plate: Kirchhoff shear.

35



0.00
�

0.10� 0.20� 0.30� 0.40� 0.50�
Node position�

0.000

0.005

0.010

0.015

V
er

tic
al

 d
is

pl
ac

em
en

t

�

Simply supported-free plate

Exact
Mesh A
Mesh B
Mesh C
Mesh D

Figure 5: Simply-supported-free plate: vertical displacement along a free side.
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Figure 6: Simply-supported-free plate: normal slope along a simply-supported side.
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Figure 7: Simply-supported-free plate: Kirchhoff shear along a simply-supported side
(3-noded interpolation).
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Figure 8: Simply-supported-free plate: Kirchhoff shear along a simply-supported side
(2-noded interpolation).
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Mesh Ref. 14 present
MN A .536 10−1 .116

B .947 10−2 .221 10−1

C .132 10−2 .262 10−2

D .279 10−3

QK A .634 .421
B .306 .240
C .671 10−1 .675 10−1

D .156 10−1

Table 1: Clamped plate: L2 relative errors for the normal moment and Kirchhoff shear
nodal values along a supported half-side.

Mesh Ref. 14 Present
A −.31204 10−1 −.15681 10−1

B −.10118 10−1 −.68198 10−2

C −.15677 10−1 −.15412 10−2

D .68153 10−4

T.&W.-K.44: 0.

Table 2: Clamped plate: twisting moment jump
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Mesh Ref. 14 present
ϕN A .304 10−2 .976 10−2

B .819 10−3 .155 10−2

C .105 10−3 .286 10−3

D .286 10−3

QK A .545 10−1 .737 10−1

B .104 10−1 .137 10−1

C .515 10−2 .472 10−2

D .177 10−2 .177 10−2

Table 3: Simply-supported plate: L2 relative errors for the normal slope and Kirchhoff
shear nodal values along a supported half-side.

Mesh Ref. 14 Present
A .58788 10−1 .59215 10−1

B .63592 10−1 .63330 10−1

C .64728 10−1 .64572 10−1

D .64907 10−1

T.&W.-K.44: .64965 10−1

Table 4: Simply-supported plate: twisting moment jump
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Mesh Ref. 14 3-noded QK 2-noded QK

w A .597 10−1 .205 10−2 .226 10−2

B .725 10−2 .120 10−3 .160 10−3

C .898 10−3 .101 10−3 .833 10−4

D .211 10−6 .402 10−6

ϕN A .142 10−1 .790 10−2 .109 10−1

B .188 10−2 .571 10−3 .859 10−3

C .226 10−3 .332 10−4 .711 10−4

D .276 10−4 .278 10−4

QK A .111 .508 .106
B .160 .226 .456 10−1

C .837 10−1 .149 .173 10−1

D .400 10−1 .486 10−2

Table 5: Simply-supported-free plate: L2 relative errors for the bending displacement,
normal slope and Kirchhoff shear nodal values along a supported half-side.

Mesh Ref. 14 3-noded QK 2-noded QK

A −.49758 10−1 −.67960 10−1 −.48859 10−1

B −.52573 10−1 −.54539 10−1 −.48026 10−1

C −.49695 10−1 −.50800 10−1 −.48101 10−1

D −.48552 10−1 −.48101 10−1

T.&W.-K.44: −.48089 10−1

Table 6: Simply-supported-free plate: twisting moment jump

Equivalent shear force Normal slope

Exact -.5 −.961538 10−1

Numerical -.499748 −.961520 10−1

Table 7: Simply-supported circular plate
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