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Abstract

This paper investigates the evaluation of the sensitivity, with respect to tangential perturbations of the

singular point, of boundary integrals having either weak or strong singularity. Both scalar potential and

elastic problems are considered. A proper definition of the derivative of a strongly singular integral

with respect to singular point perturbations should accommodate the concomitant perturbation of

the vanishing exclusion neighbourhood involved in the limiting process used in the definition of the

integral itself. This is done here by resorting to a shape sensitivity approach, considering a particular

class of infinitesimal domain perturbations that “move” individual points, and especially the singular

point, but leave the initial domain globally unchanged. This somewhat indirect strategy provides a

proper mathematical setting for the analysis. Moreover, the resulting sensitivity expressions apply

to arbitrary potential-type integrals with densities only subjected to some regularity requirements at

the singular point, and thus are applicable to approximate as well as exact BEM solutions. Quite

remarkable is the fact that the analysis is applicable when the singular point is located on an edge and

simply continuous elements are used. The hypersingular BIE residual function is found to be equal to

the derivative of the strongly singular BIE residual when the same values of the boundary variables

are substituted in both SBIE and HBIE formulations, with interesting consequences for some error

indicator computation strategies.

1 Introduction

Boundary integral equation (BIE) formulations lead to numerical techniques, namely boundary ele-

ment methods (BEMs), that are now well established and widely applied. After a boundary value

problem has been numerically solved using a standard boundary element method, it is sometimes

necessary, or merely worthwhile, to be able to formulate and compute directional derivatives of field

variables, or more generally of BIE residuals, at an observation point on the boundary and along a

tangential direction. This of course leads to investigation of such derivatives for singular integrals of

scalar or elastic potential theory. A relevant practical issue is the evaluation of in-plane strain, hoop

stresses, etc. from a given (usually approximate) BEM solution. Another one concerns the evaluation

of derivatives of BIE residuals under perturbations of the collocation points; a related idea is used to

define local a posteriori error indicators in [8].

Concerning derivatives of the most singular integral operators encountered in standard BIE for-

mulations (i.e. of the form of double-layer potentials), the Lyapunov-Tauber theorems of classical



potential theory give results for the limit on the boundary of the normal derivative of scalar double-

layer potentials or of the traction operator applied to vector elastic potentials, see e.g. the books by

Kellogg [11] and Kupradze et al. [12]. These results allow one to formulate Neumann problems using

either single- or double-layer potentials. On the other hand, general results for tangent derivatives of

strongly singular potential integrals are not given in the classical literature on potential theory.

More recently, many studies have been devoted to so-called hypersingular boundary integral equa-

tion (HBIE) formulations, which basically result from differentiation of strongly singular (SBIE) for-

mulations with respect to components of the collocation point. Of course, both SBIE and HBIE give

an identically zero residual (considered as a function of the collocation point) when the exact solution

of a given problem is substituted into them. In practice, BIEs are discretized and collocated at a finite

number of boundary points, and an approximate solution is obtained. For instance, the discrete SBIE

is solved, and the SBIE residual may take nonzero values at boundary points that were not used for

collocation. Then, if the previous approximate solution is substituted into the HBIE, is the HBIE

residual function equal to the derivative of the SBIE function? This question is related to the study

of e.g. local error estimation [8]. Its answer is not a priori obvious because both BIE formulations are

defined in terms of a limiting process involving a vanishing exclusion neighbourhood of the singular

point y, so that in a proper definition of the derivative of a strongly singular integral with respect to

y the vanishing neighbourhood should “move” with y.

We address this particular difficulty in a somewhat indirect way, by resorting to a domain sensitivity

approach. Specifically, the main idea used in this paper is the introduction of domain perturbations,

depending on a time-like parameter p, that “move” individual points but leave the initial domain

(p = 0) globally unchanged. This way, the concomitant change of singular point and exclusion

neighbourhood is properly taken into account. The analysis then uses adequately chosen domain

differentiation formulas. The sensitivity with respect to tangential perturbations of the singular point

of boundary integrals having either weak or strong singularity, of the type used for both scalar and

elastic BIE formulations, is formulated. From the results obtained, it is apparent that the HBIE

residual function is indeed equal to the derivative of the SBIE residual function when the same values

of the boundary variables are substituted in both SBIE and HBIE formulations. It is worth pointing

out that this relationship between residuals issue is not raised in the formulation of hypersingular

representations of potential gradients or stress tensors on the boundary, like in [6], although they

allow one to evaluate tangential derivatives of the potential or displacement field. In particular the

latter approach uses the fact that the density variables solve the relevant governing equations, whereas
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the present analysis addresses arbitrary potential-type integrals with densities only subjected to some

(fairly weak) regularity requirements at the singular point. An advantage of this viewpoint is that

the resulting formulas apply to approximate as well as exact BEM solutions, which is convenient in

devising strategies for error indicator computation.

2 Basic definitions and relations

In this section we summarize some basic results that will be used extensively throughout the paper.

More details can be found in previous papers dealing with shape sensitivity of BIE formulations [2],

[3], [14] and in Appendix A of the recent book [1].

Let us consider, in a three-dimensional Euclidean space equipped with a Cartesian orthonormal

basis (e1, e2, e3), a body Ωp whose shape depends on a time-like parameter p. The body Ω = Ω0

corresponding to p = 0 is traditionally assumed as the “initial” configuration. Points of Ωp are

denoted by xp and yp, whereas points of Ω are simply denoted by x and y.

Let the initial domain Ω be bounded by a Kellogg’s regular surface ∂Ω = Γ with outer unit normal

n [11]. On the boundary we can define some tangential differential operators. First, we define the

tangential gradient ∇Sf of a scalar field f defined on Ω

∇Sf(x) := ∇f − n (∇f · n) = ∇f − n
∂f

∂n
(1)

which is the projection of the gradient ∇f onto the tangent plane at x ∈ ∂Ω.

The r-th Cartesian component of ∇Sf can be denoted by Drf if we adopt the following definition

for the tangential partial derivative Dr

Drf := f,r −nr
∂f

∂n
= f,r −nr(f,m nm), (2)

where the notation f,m = ∂f/∂xm has been introduced.

The surface divergence divSv of a vector field v can now be defined as

divSv := ∇S · v = Dmvm. (3)

It is convenient to define another tangential differential operator Drs

Drsf := nrDsf − nsDrf = nrf,s−nsf,r . (4)

Among the many versions of Stokes’ theorem, we are mainly interested in the following ones∫
S

Drsf dS = ejrs

∮
∂S

fτj ds, (5)∫
S

Drg dS =
∮

∂S
gνr ds−

∫
S

gnr2κ dS (6)
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where ∂S is the contour of the (possibly) open surface S and

κ(x) = −1
2
divSn(x) = −1

2
Dana(x)

is the mean curvature of S at x. The vector τ is defined by

τ = n× ν, (7)

where ν is the unit vector normal to ∂S and tangent to S and pointing towards the outside of S. ejrs

denote the permutation symbols (e123 = e231 = e312 = 1, e132 = e213 = e321 = −1, and equal to zero

otherwise). Formula (6) is obtained by putting f = gns in (5).

A geometrical transformation from Ω onto Ωp is given by a mapping

x ∈ Ω → xp = Φ(x; p) ∈ Ωp, (8)

where ∀x ∈ Ω,Φ(x; 0) = x, as already stated. Similarly to continuum mechanics, it is assumed that

any such mapping is a diffeomorphism between Ω and Ωp.

The corresponding initial transformation velocity θ(x) is a vector field on Ω defined by

θ(x) :=
∂Φ
∂p

∣∣∣∣
p=0

. (9)

In other words, the geometrical transformation (8) can be expanded in the following form

xp = x + θ(x) p + o(p).

Now, let us consider a generic scalar field f(p,xp) defined on the changing domain Ωp and also

depending explicitly on p. Its total derivative
∗
f with respect to p, evaluated at p = 0, is given by the

following well-known expression

∗
f(x) :=

df

dp

∣∣∣∣
p=0

=
(

∂f

∂p
+ f,m θm(x)

) ∣∣∣∣
p=0

=
(
ḟ + ∇f · θ(x)

) ∣∣∣∣
p=0

, (10)

where ḟ = ∂f/∂p. Depending on the context, the total derivative
∗
f can also be termed material or

Lagrangian derivative. The function ḟ can be consistently called Eulerian derivative.

The kernel functions that appear in boundary integral equations are two-point functions like K(xp−

yp) which do not depend explicitly on p. Adopting the notation just defined, and assuming that both
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Figure 1: Exclusion of the singular point y by a vanishing neighbourhood vε(y).

points follow the geometrical transformation (8), we have from (10) the following expression for the

total derivative of K with respect to p

∗
K(y,x) :=

dK

dp

∣∣∣∣
p=0

= K,m (x− y)[θm(x)− θm(y)], (11)

where K,m = ∂K/∂xm = −∂K/∂ym.

The total derivative of the integral of a nonsingular function f(p,xp) over a changing (possibly

open) surface Sp is given, from e.g. [13], by either of the formulas

d

dp

(∫
Sp

f(p,xp) dS

)∣∣∣∣
p=0

=
∫

S

[
∗
f + f divSθ

]
dS (12)

=
∫

S

[
ḟ +

(
∂f

∂n
− 2κf

)
(θ · n)

]
dS +

∮
∂S

(θ · ν)f ds, (13)

where S = S0. Formulas (12) and (13)) are equivalent; they relate the derivative of the integral to

Lagrangian or Eulerian derivatives of the function f , respectively.

According to Petryk and Mroz [13], we can express the total (material) derivative of each Cartesian

component of the unit normal n(xp) as

∗
ni(x) :=

dni

dp

∣∣∣∣
p=0

= −nm(Diθm). (14)

3 Singular boundary integrals

Singular boundary integrals arise naturally in the boundary element method (BEM) whenever the

source (collocation) point y is taken to the boundary. Due to the singularity of the kernel functions

K involved, a limiting process is necessary for the definition of these integrals.

Let y be a fixed point on the boundary ∂Ω of a three-dimensional domain Ω. We consider an

exclusion neighbourhood vε(y) of y, of radius ≤ ε (Figure 1). For any ε > 0, y is always an external
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point for the domain Ωε(y) = Ω− vε(y) whose boundary ∂Ωε is given by

∂Ωε = (∂Ω− eε) + sε = Γε + sε,

where sε = Ω ∩ ∂vε, eε = ∂Ω ∩ v̄ε, and Γε = ∂Ω− eε.

The typical singular boundary integral can be defined by means of a limiting process

I(y) = lim
ε→0

∫
Γε(y)+sε(y)

K(x− y)v(x) dSx, (15)

where the density v(x) is a sufficiently regular function.

There are instances (e.g., [8]) in which we may assume that the position of the source point y on

∂Ω depends on a time-like parameter p. Since the vanishing neighbourhood vε(y) is attached to y, the

parameter p also affects the surface of integration in (15) (although p does not affect ∂Ω). Somewhat

similar considerations occur for the correct evaluation of the Cartesian derivatives of the integral

representation for displacement at interior points y in the presence of initial strain [4]. Obviously, a

necessary condition for the function yp = y(p) to be a diffeomorphism is that the point y lies either

on a smooth part of ∂Ω or, at most, on an edge (two tangent planes). In the last case, the point yp

has to move along the edge itself.

Still following ref. [8] and for greater generality, the density function v can be taken to explicitly

depend on p (this is the case, e.g., of approximate numerical solutions that clearly depend on the

specific set of collocation points).

Hence, we can define the function I(p)

I(p) = lim
ε→0

∫
Γε(yp)+sε(yp)

K(x− yp)v(p,x) dSx, (16)

which can be seen as I(yp) with a p-dependent density function.

In this paper we address the problem of the evaluation of the derivative

dI

dp

∣∣∣∣
p=0

. (17)

Derivatives of this type are basically what are required for the evaluation of the sensitivity of an

approximate BEM solution with respect to the position of the collocation points [8].

4 Tangential derivatives of singular boundary integrals

To evaluate the derivative dI/dp we rely on a domain sensitivity approach. Although in the present

context neither the shape of the body nor the discretization are affected by the parameter p, the
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sensitivity viewpoint provides a convenient mathematical means to describe exclusion neighbourhoods

vε(y) moving according to perturbations of the singular point y.

To this end, let us consider a geometrical transformation x → Φ(x, p) as in (8) but with initial

transformation velocity θ (defined in (9)) such that

θ(x) · n(x) = 0 (∀x ∈ ∂Ω), and θ(y) 6= 0 (18)

In other words, the transformation velocity is almost everywhere orthogonal to the boundary normal

of the body. Under any such transformation, Ω is globally invariant (up to order O(p)), while

y → y + a p + o(p),

where

a = θ(y) (19)

is the transformation velocity of the source point. Therefore, the initial (i.e. of first-order with respect

to p about p = 0) effect of the perturbation of the position of the singular point y on I(p) is adequately

taken into account. At the same time, vε(y) is “moved” (and possibly distorted, but this is irrelevant)

along with the singular point, so that the singular integral (16) is properly defined for small p ≥ 0.

Notice that if ∂Ω has more than two tangent planes at y, then there are no transformation velocity

fields such that a · n(y) = 0.

Essentially, with a transformation satisfying (18) we can use all the results already available from

sensitivity analysis, yet we are only considering the effect of the perturbation of the singular point

y and of the attached neighbourhood vε. Formulas for the derivative of an integral over a changing

surface were given in (12) and (13). The derivative of (16) can be conveniently evaluated applying

formula (12) to the integral on sε and formula (13) to the integral on Γε (all derivatives are understood

at p = 0)

dI

dp
= lim

ε→0

{∫
sε

[(Kv)∗ + Kv Dmθm] dS +
∫

Γε

(Kv)
q
dS +

∮
∂Γε

(θmνm)Kv ds

}
. (20)

In this way, full advantage is taken from the orthogonality condition (18).

Although quite obvious, we may also observe that

(Kv)∗ =
∗
Kv + K

∗
v = K,m [θm(x)− am]v + K

∗
v, (21)

and

(Kv)
q
= K̇v + Kv̇ =

∂K

∂ym
amv + Kv̇ = −K,m amv + Kv̇. (22)
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In this paper we consider the tangential derivative of singular integrals with respect to the source

point y for three-dimensional potential and elastic problems. It is worth recalling that the analysis

is not restricted to smooth boundaries, but also covers the case of y on an edge. In Appendix A it

is shown that the final results are not affected by the shape of vε. Therefore, it is always assumed to

employ a symmetric neighbourhood vε(y) of uniform radius ε.

5 Weakly singular kernels

The formulation of cartesian derivatives of single-layer scalar or elastic potentials has been studied

in classical potential theory. The results of this section are in effect nothing more than extensions

to p-dependent density functions of classical results on cartesian derivatives of single-layer scalar or

elastic potentials, see e.g. [11] for scalar potentials and [12] for elasticity. However, it is interesting to

see the present sensitivity approach at work in this context before dealing with the more difficult case

of double-layer potentials.

5.1 Potential problems

Let us consider the following boundary integral with weakly singular kernel

I(p) = lim
ε→0

∫
Γε(yp)+sε(yp)

G(x− yp) q(p,x) dSx, (23)

where the kernel K = G = 1/(4πr), with r = |x − y|, is the fundamental solution for 3D potential

problems, and the density function q is a sufficiently regular function (usually an approximation to

the normal derivative of the potential).

A first expression for dI/dp is given by (20), where (Gq)
q
can be expanded according to (22)

dI

dp
= lim

ε→0

{∫
sε

[(Gq)∗ + Gq Dmθm] dS +
∫

Γε

[
Gq̇ + am

∂G

∂ym
q

]
dS +

∮
∂Γε

(θmνm)Gq ds

}
. (24)

For 3D problems we have on sε that G = O(ε−1), G,m = O(ε−2), and θm(x) − am = O(εα), with

α > 0, because of the regularity assumption on the geometrical transformation Φ. If we also assume

that |∗q(x)− ∗
q(y)| ≤ Crα−1 (which is quite reasonable), we can conclude that

lim
ε→0

∫
sε

[(Gq)∗ + Gq Dmθm] dS = 0. (25)

Moreover, when y is on an edge of tangent a, the limit of the line integral on ∂Γε is zero

lim
ε→0

[∮
∂Γε

(θm − am)νmGq ds + am

∮
∂Γε

νmGq ds

]
= 0 (26)
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since it is zero on each side (provided q is piecewise C0,α at y). Essentially, owing to the scalar product

amνm, the line integral on each side amounts in the limit to the integral from 0 to π of cos ϕ dϕ.

Therefore, we have that

dI

dp

∣∣∣∣
p=0

= lim
ε→0

{∫
Γε

[
Gq̇ + am

∂G

∂ym
q

]
dS

}

=
∫

∂Ω
Gq̇ dS + am−

∫
∂Ω

Wmq dS

=
∫

∂Ω
Gq̇ dS +−

∫
∂Ω

Ġq dS (27)

where Wm = ∂G/∂ym are the kernel functions of the hypersingular boundary integral equations

[10] and Ġ = amWm. The weak singularity of G allows the first integral in (25) to be defined as an

ordinary integral on ∂Ω. On the other hand, the second integral with strongly singular kernel Ġ is

equivalent (owing to the assumed circular shape of ∂Γε) to a Cauchy principal value [5].

5.2 Elastic problems

In this case we have to consider the tangential derivative of the weakly singular integral

I(p) = lim
ε→0

∫
Γε(yp)+sε(yp)

Uij(x− yp)tj(p,x) dSx, (28)

where the kernels Uij , are the fundamental solutions for 3D elastic problems, and the density functions

tj are just sufficiently regular functions. Again, a possible expression for dI/dp is given by (20).

Using the same arguments as above, we can show that

lim
ε→0

∫
sε

[(Uijtj)∗ + Uijtj Dmθm] dS = 0. (29)

Similarly, when y is on an edge of tangent a the line integral on ∂Γε is zero since it is zero on each

side (provided, on each element, tj ∈ C0,α at y).

Therefore, we have that

dI

dp

∣∣∣∣
p=0

= lim
ε→0

{∫
Γε

[
Uij ṫj + am

∂Uij

∂ym
tj

]
dS

}

=
∫

∂Ω
Uij ṫj dS + am−

∫
∂Ω

Wijmtj dS

=
∫

∂Ω
Uij ṫj dS +−

∫
∂Ω

U̇ijtj dS (30)

where Wijm = ∂Uij/∂ym and U̇ij = amWijm.
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Formulas (27) and (30) have the same structure. They show that the derivative dI/dp is given

by a term that accounts for the dependence on p of the density function and another term that takes

into account the effect of the changing singular point on the kernel function. This last term is the one

predicted by classical potential theory.

6 Strongly singular kernels

6.1 Potential problems

Let us consider the following boundary integral with strongly singular kernel T = G,j nj

I(p) = lim
ε→0

∫
Γε(yp)+sε(yp)

T (yp,x)u(p,x) dSx =
∫

Γε(yp)+sε(yp)
G,j (x− yp)nj(x)u(p,x) dSx, (31)

where, in general, the density function u is only an approximation to a potential.

First we consider the derivative of the integral on sε, for fixed ε > 0. According to (20), we apply

formula (12) and obtain

d

dp

(∫
sε(yp)

Tu dS

)∣∣∣∣
p=0

=
∫

sε(y)
[(Tu)∗ + TuDiθi]dS, (32)

This expression can be given a more explicit form using (11) and (14)

(Tu)∗ + TuDiθi = (G,j nju)∗ + G,j njuDiθi (33)

= G,j nj
∗
u +

∗
G,j nju + G,j

∗
nju + G,j njuDiθi (34)

= G,j nj
∗
u + [G,ij nj(θi − ai) + G,j (njDiθi − niDjθi)]u (35)

= G,j nj
∗
u + [(DjiG,j )(θi − ai) + G,j Djiθi]u (36)

= G,j nj
∗
u + Dji(G,j [θi − ai])u (37)

where ai = θi(y). Expression (36) comes from (4) once with f = θi, and once with f = G,j with the

additional fact that G,ii = 0. The final step is possible since Djiai = 0 (ai do not depend on x).

We can now add and subtract the same terms to obtain

(Tu)∗ + TuDiθi = G,j nj [
∗
u(x)− ∗

u(y)] + Dji(G,j [θi − ai])[u(x)− u(y)]

+
∗
u(y)G,j nj + u(y)Dji(G,j [θi − ai]). (38)

At this stage we have to make some assumptions on the regularity of the density function u(x) at

y. We assume u ∈ C0,α(y) and
∗
u ∈ C0,α(y), along with θ ∈ C0,1(y) which comes from the geometrical
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transformation Φ being a diffeomorphism. It is worth noting that we do not require u ∈ C1,α(y) (i.e.,

∇u ∈ C0,α(y)), but only the total derivative

∗
u(y) = u̇(y) + ∇u · a (39)

to be Hölder continuous at y. This is a condition that is satisfied by standard continuous boundary

elements provided a is tangent to the interelement border between two elements.

Under these assumptions, the integrals on sε of the first two terms on the r.h.s. of eq. (38) vanish

in the limit, as ε → 0.

Therefore, we have that∫
sε(y)

[(Tu)∗ + TuDiθi]dS =
∗
u(y)

∫
sε(y)

G,j nj dS + u(y)
∫

sε(y)
Dji(G,j [θi − ai]) dS + o(1). (40)

The limit of the first integral in the above expression is readily obtained

lim
ε→0

∗
u(y)

∫
sε(y)

G,j nj dS =
∗
u(y) lim

ε→0

∫
sε(y)

T dS =
∗
u(y)c(y) =

[
u̇(y) +

∂u

∂a

]
c(y), (41)

where, by definition, c(y) is the free-term coefficient of the usual boundary integral equation.

We already found that DjiG,j = G,ij nj . Hence from the final term in (40) we get

−u(y)ai

∫
sε(y)

DjiG,j dS = −u(y)ai

∫
sε(y)

G,ij njdS

= u(y)ai

∫
sε(y)

Vi dS

= u(y)ai

[
bi

ε
+ di + O(ε)

]
, (42)

that is the same free-term coefficients of the hypersingular boundary integral equations as obtained

in [7]. In fact the hypersingular kernel is Vi = −G,ij nj .

Stokes’ theorem in the form (5) can be applied to the function Dji(G,j θi) in (40)

u(y)
∫

sε(y)
Dji(G,j θi)dS = u(y)ejip

∮
∂sε

G,j θiτ̃pds = −u(y)
∮

∂Γε

Tθiνids, (43)

where we used the fact that ∂sε and ∂Γε are identical curves with opposite tangents τ̃ = −τ . The

last step in (43) comes from the following general result

ejipwiτ̃p = −(w × τ )j = −(w · ν)nj + (w · n)νj ,

where w is a general vector, τ̃ = −τ , and (n,ν, τ ) is a Cartesian orthonormal basis defined in (7). If

the vector w is replaced by θ we have that

ejipθiτ̃p = −(θ × τ )j = −(θ · ν)nj ,

11



because of the assumed orthogonality between θ and n (eq. (18)).

Collecting the results of (41), (42), and (43), we can write the derivative of the integral on sε as

d

dp

(∫
sε(yp)

Tu dS

)∣∣∣∣
p=0

=
∫

sε(y)
[(Tu)∗ + TuDiθi]dS,

=
[
u̇(y) +

∂u

∂a

]
c(y) + u(y)ai

[
bi

ε
+ di + O(ε)

]
− u(y)

∮
∂Γε

Tθiνids. (44)

We can now turn our attention to the integral on Γε in (31). To compute the derivative with

respect to p, for fixed ε, we can employ the general relation (13) with the obvious simplification due

to θ · n = 0 on Γε

d

dp

(∫
Γε

TudS

) ∣∣∣∣
p=0

=
∫

Γε

T u̇dS +
∫

Γε

Ṫ udS +
∮

∂Γε

Tuθiνids

=
∫

Γε

T u̇dS − ai

∫
Γε

(G,ji nj)udS + u(y)
∮

∂Γε

Tθiνids +
∮

∂Γε

T [u− u(y)]θiνids

=
∫

Γε

T u̇dS + ai

∫
Γε

ViudS + u(y)
∮

∂Γε

Tθiνids + o(1), (45)

where Ṫ = aiVi.

When contributions from sε and Γε are taken together, we observe that the line integrals in (44)

and (45) cancel each other. Therefore, we are left with the following final expression

dI

dp

∣∣∣∣
p=0

= lim
ε→0

d

dp

[∫
Γε(yp)+sε(yp)

TudS

]∣∣∣∣
p=0

= lim
ε→0

[
∗
u(y)

∫
sε

TdS +
∫

Γε

T u̇dS + u(y)
∫

sε

Ṫ dS +
∫

Γε

Ṫ udS + ai

∮
∂Γε

T [u− u(y)]νids

]
= lim

ε→0

[(
u̇(y) +

∂u

∂a

)∫
sε

TdS +
∫

Γε

T u̇dS + u(y)ai

∫
sε

VidS + ai

∫
Γε

ViudS

]
= u̇(y)c(y) +

∂u

∂a
c(y) +−

∫
∂Ω

T u̇ dS + lim
ε→0

[
ai

∫
Γε

Viu dS + u(y) ai

(
bi

ε
+ di

)]
. (46)

We recall that the above expression has been obtained by assuming u and only its directional

derivative ∂u/∂a to be C0,α at the point y lying on an edge of tangent a. This is typically satisfied

between two standard continuous boundary elements.
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6.2 Elastic problems

Let us consider the following boundary integral with strongly singular kernel Tij = Σijknk, where Σijk

is the stress tensor associated to the displacement field Uij (fixed index i)

I(p) = lim
ε→0

∫
Γε(yp)+sε(yp)

Tij(yp,x)uj(p,x) dSx

= lim
ε→0

∫
Γε(yp)+sε(yp)

Σijk(x− yp)nk(x)uj(p,x) dSx, (47)

where, in general, the density functions uj are only an approximation to displacement field components.

As for the potential case, we consider first the derivative of the integral on sε, for fixed ε > 0.

According to (20), we apply formula (12) and obtain

d

dp

(∫
sε(yp)

Tijuj dS

)∣∣∣∣
p=0

=
∫

sε(y)
[(Tijuj)∗ + TijujD`θ`]dS, (48)

This expression can be given a more explicit form using (11) and (14)

(Tijuj)∗ + TijujD`θ` = (Σijknkuj)∗ + ΣijknkujD`θ` (49)

= Σijknk
∗
uj +

∗
Σijknkuj + Σijk

∗
nkuj + ΣijknkujD`θ` (50)

= Σijknk
∗
uj + [Σijk,`nk(θ` − a`) + Σijk(nkD`θ` − n`Dkθ`)]uj (51)

= Σijknk
∗
uj + [(Dk`Σijk)(θ` − a`) + ΣijkDk`θ`]uj (52)

= Σijknk
∗
uj(x) + Dk`(Σijk[θ` − a`])uj(x) (53)

Expression (52) comes from (4) once with f = θ`, and once with f = Σijk with the additional fact

that Σijk,k = 0.

Following the development of (38) in the potential case, we can now add and subtract the same

terms in (53) which, along with the assumptions uj ∈ C0,α(y) and
∗
uj ∈ C0,α(y), allows us to write

(cfr. eq. (40))∫
sε(y)

[(Tijuj)∗+TijujD`θ`]dS =
∗
uj(y)

∫
sε(y)

Σijknk dS+uj(y)
∫

sε(y)
Dk`(Σijk[θ`−a`]) dS+o(1). (54)

The limit of the first integral on the r.h.s. of the above expression is readily obtained

lim
ε→0

∗
uj(y)

∫
sε(y)

Σijknk dS =
∗
uj(y) lim

ε→0

∫
sε(y)

Tij dS =
∗
uj(y)cij(y) =

[
u̇j(y) +

∂uj

∂a

]
cij(y), (55)

where, by definition, cij(y) are the free-term coefficients of the usual boundary integral equation.
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The last term in (54) can be converted in a more convenient form if we observe that Dk`Σijk =

Σijk,`nk

−uj(y)a`

∫
sε(y)

Dk`ΣijkdS = −uj(y)a`

∫
sε(y)

Σijk,`nkdS

= uj(y)a`

∫
sε(y)

Vij` dS

= uj(y)a`

[
bij`

ε
+ dij` + O(ε)

]
, (56)

that is the same free-term coefficients of the hypersingular boundary integral equations as obtained

in [7]. In fact the hypersingular kernel is Vij` = −Σijk,`nk.

Finally, Stokes’ theorem in the form (5) can be applied to the function Dk`(Σijkθ`) in (54)

uj(y)
∫

sε(y)
Dk`(Σijkθ`)dS = uj(y)ek`p

∮
∂sε

Σijkθ`τ̃ ds = −uj(y)
∮

∂Γε

Tijθ`ν`ds, (57)

where we took exactly the same steps as in (43).

Summing up, the derivative of the integral on sε can be written as

d

dp

(∫
sε(yp)

Tijuj dS

)∣∣∣∣
p=0

=
∫

sε(y)
[(Tijuj)∗ + TijujD`θ`]dS

=
[
u̇j(y) +

∂uj

∂a

]
cij(y) + uj(y)a`

[
bij`

ε
+ dij` + O(ε)

]
− uj(y)

∮
∂Γε

Tijθ`ν`ds. (58)

We can now turn our attention to the integral on Γε in (47). To compute the derivative with

respect to p, for fixed ε, we can employ again the general relation (13), simplified by the fact that

θ · n = 0 on Γε

d

dp

(∫
Γε

TijujdS

) ∣∣∣∣
p=0

=
∫

Γε

Tij u̇jdS +
∫

Γε

ṪijujdS +
∮

∂Γε

Tijujθ`ν`ds

=
∫

Γε

Tij u̇jdS − ai

∫
Γε

(Σijk,`nk)ujdS

+ uj(y)
∮

∂Γε

Tijθ`ν`ds +
∮

∂Γε

Tij [uj − uj(y)]θ`ν`ds

=
∫

Γε

Tij u̇jdS + a`

∫
Γε

Vij`ujdS

+ uj(y)
∮

∂Γε

Tijθ`ν`ds + a`

∮
∂Γε

Tij [uj − uj(y)]ν`ds + o(1), (59)

where Ṫij = a`Vij`.

It is worth noting that when i 6= j, and contrary to the potential case (cfr. (45)), the final line

integral in the above expression may not be zero in the limit. In Appendix B it is shown that, when
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y is between two boundary elements with border of tangent a, we obtain the following result (i 6= j)

lim
ε→0

∮
∂Γε

Tij [uj − uj(y)](a`ν`)ds =
(1− 2ν)

12π(1− ν)

[
(
∂u
∂b1

× b1)i − (
∂u
∂b2

× b2)i

]
, (60)

where, on each side 1 and 2, b` = n`×a is a unit vector normal to the edge and tangent to the surface.

It is clear that the result in (60) is zero when at y the boundary is smooth and the gradient ∇u is

continuous. Smoothness of the boundary is, in general, not sufficient since only ∂u/∂a is continuous

across the two elements.

When contributions from sε and Γε are taken together, we observe that in (58) and (59) there

are two line integrals that cancel each other. Therefore, we obtain the following final expression, if

u ∈ C1,α(y)

dI

dp

∣∣∣∣
p=0

= lim
ε→0

d

dp

[∫
Γε(yp)+sε(yp)

TijujdS

]∣∣∣∣
p=0

= lim
ε→0

[
∗
uj(y)

∫
sε

TijdS +
∫

Γε

Tij u̇jdS + uj(y)
∫

sε

ṪijdS +
∫

Γε

ṪijujdS

]
= lim

ε→0

[(
u̇j(y) +

∂uj

∂a

)∫
sε

TijdS +
∫

Γε

Tij u̇jdS + uj(y)a`

∫
sε

Vij`dS + a`

∫
Γε

Vij`ujdS

]
= u̇j(y)cij(y) +

∂uj

∂a
cij(y) +−

∫
∂Ω

Tij u̇jdS + lim
ε→0

[
a`

∫
Γε

Vij`ujdS + uj(y) a`

(
bij`

ε
+ dij`

)]
. (61)

If u 6∈ C1,α(y), the term in (60) must be added on the r.h.s.

6.3 Some general remarks

In the analysis presented in this paper the density functions q, u, tj and uj are just sufficiently regular

functions that do not necessarily solve a boundary value problem as in the case, e.g., of approximate

or numerical solutions. In particular, Green’s or Betti’s reciprocity identities have never been used.

Moreover, the resulting formulae for the tangential derivatives of the integral I(p) allow for a change

of density (q̇, u̇, etc.) induced by the change of the singular point.

Among other things, these results support the approach presented in [8] to BEM error estimation

through sensitivity analysis as shown in Section 8.

Quite remarkable is the fairly weak requirement posed on the smoothness of u and uj at the

singular point y. The presented analysis only needs the density u and its total derivative
∗
u (eq.

(39)) be C0,α at the singular points. In other words, we do not require u ∈ C1,α(y), but only u̇

and its directional derivative ∂u/∂a to be Hölder continuous at y. As already stated, directional

derivatives are continuous between two standard boundary elemements provided a is taken tangent to
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the interelement border. Therefore, the analysis is applicable when the point y is located on an edge

and simply continuous elements are used.

7 Numerical examples

Some numerical computations are carried out to test the theoretical findings presented in this paper.

In particular, we consider formula (61) for the tangential derivative of a double-layer elastic potential,

which is probably the most severe test.

Formula (61) covers the general case. However, if we make some simplifying assumptions, the same

computation can also be performed by alternative classical means that can be used for comparison.

In particular, if we consider a piece-wise flat surface Γ, the kernel function Tij becomes

Tij(y,x) = − (1− 2ν)
8π(1− ν)

(nir,j −njr,i )
r2

=
(1− 2ν)
8π(1− ν)

Dij

(
1
r

)
,

and hence, according to (5), the following Cauchy principal value integral can be converted into a line

integral

−
∫

Γ
Tij dS = lim

ε→0

∫
Γε(yp)

Tij(yp,x) dSx =
(1− 2ν)
8π(1− ν)

lim
ε→0

∮
∂Γε

eijkτk(x)
ds

r
,

where ∂Γε = ∂Γ∪ ∂eε (Figure 1). If the singular point lies on the edge between two panels Γ1 and Γ2

we obtain that

I(y) = −
∫

Γ
Tij dS =

1− 2ν

8π(1− ν)

∮
∂Γ

eijkτk(x)
ds

r
+ 2eijk(b1 − b2) · ek,

where, on each panel Γ`, b` = n` × a like in (60). If the source point y lies within one panel, the last

term vanishes.

In either case, the line integrals on the r.h.s. involve only regular functions since y 6∈ ∂Γ. Thus,

differentiation with respect to y can be expressed by differentiation under the integral sign. If, as

usual in this paper, yp = y(p) = y + a p + o(p), we have that

dI

dp

∣∣∣∣
p=0

=
1− 2ν

8π(1− ν)

∮
∂Γ

eijk τk a`
(x` − y`)

r3
ds. (62)

The regular integral on the r.h.s. can be evaluated by standard quadrature rules.

The last result is precisely what we need to evaluate the derivative in (61) if we assume a constant

density uj = 1 (and hence u ∈ C1,α(y)), with u̇j = 0. Therefore, we can compare these results to

check the general formula (61) which employs the hypersingular integration algorithm described in [9]

and [10]. In particular, we can test the exactness of our results regarding the differentiation along the

edge.
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Figure 2: Flat distorted elements employed in numerical examples.

Two flat panels of distorted shape and general orientation were considered (Figure 2). The co-

ordinates of the four nodes of each element are as follows: (1.03, 0.65, 1.03), (0.3, 0.4, 1), (0, 0, 0),

(1, 0.3,−0.1) for one element, and (0.3, 0.4, 1), (0.24, 1.52, 0.8), (0, 1, 0), (0, 0, 0), for the other el-

ement. The singular point y = (0.189, 0.252, 0.63) was on the common edge of direction a =

(0.268328, 0.357771, 0.894427). A Poisson ratio ν = 0.3 was assumed.

Both methods, i.e., equations (61) and (62), provided the same results up to the seventh significant

digit, thus confirming the correctness of the theoretical results presented even when the singular point

is located on an edge. The numerical results are summarized in Table 1 for all relevant indices of the

kernel function Tij (kernels with equal indices are not singular on flat elements).

For completeness, the same comparison was carried out also for the case of the singular point y

located inside one flat element. Again, for more generality, the element had a distorted shape. The

coordinates of the four nodes are as in the first element of the former example. The singular point
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Table 1: Derivatives of strongly singular integrals: pole along the edge between two elements.

indices (i, j) derivative

(1,2) -0.00277012

(2,3) -0.0719483

(3,1) 0.0590433

Table 2: Directional derivatives of strongly singular integrals: pole within one element.

indices (i, j) derivative

(1,2) 0.113809

(2,3) -0.0711122

(3,1) 0.0107791

y was set to have intrinsic c oordinates (0.3,−0.2), and the derivative was taken along the direction

a = (0.645733, 0.407501, 0.645733). The results obtained with both methods, i.e., equations (61) and

(62), agreed within six significant digits and are reported in Table 2.

8 Sensitivity of approximate boundary element solutions

In the standard boundary element method (BEM), approximate solutions are obtained by collocation

at a suitable number of boundary points. Details can be found in any BEM book.

Let, as in [8], the whole set of collocation points {y(k)} be dependent upon a single scalar parameter

p. Therefore, given the value of p we know the location of each collocation point y(k)(p) on ∂Ω. The

value p = 0 can be associated to the standard nodal collocation. Clearly, the approximate BEM

solution uj({y(k)(p)},x) = uj(p,x) and tj({y(k)(p)},x) = tj(p,x) do depend on p through the full set

{y(k)(p)} of p-dependent collocation points.

After the system of equations has been solved, the approximate solution is known all over the

boundary ∂Ω and we have the following identities

lim
ε→0

∫
∂Ωε(y(k)(p))

[
Tij(y(k)(p),x)uj(p,x)− Uij(y(k)(p),x)tj(p,x)

]
dS = Rk(p) ≡ 0, (63)

where y(k)(p) is any collocation point. Some comments are in order here. First, we must observe that

Rk is not the residual of the boundary integral equation. The residual would be obtained with a fixed

approximate solution and a changing singular point, whereas both depend on p in (63). In fact, Rk(p)

is, by construction, identically zero for any p. Changing p means selecting a new set of collocation
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points and obtaining, by collocation and through the solution of a new system of equations, a different

numerical solution which has again zero residual at each new point y(k)(p).

Obviously, since Rk(p) ≡ 0, also its derivative is identically zero

dRk

dp
≡ 0.

The results obtained in this paper allow for a more explicit expression of the above derivative. It is

just a matter of collecting the results in (30) and (61)

lim
ε→0

d

dp

∫
∂Ωε(y(k)(p))

[
Tij(y(k)(p),x)uj(p,x)− Uij(y(k)(p),x)tj(p,x)

]
dS

= cij(y)u̇j(y) +−
∫

∂Ω
Tij u̇jdS −

∫
∂Ω

Uij ṫj dS

+ cij(y)
∂uj

∂a
+ a` dij` uj(y) + lim

ε→0

[∫
Γε

a`[Vij`uj −Wij`tj ]dS + a`
bij`

ε
uj(y)

]
≡ 0, (64)

where y = y(k)(p). If uj 6∈ C1,α(y(k)), the additional term (60) must be added on the r.h.s.

Expression (64) supports the approach presented in [8] where the sensitivity of two-dimensional

approximate boundary element solutions with respect to the positions of collocation points was ob-

tained. Each row in the system of equations (14) in [8] is identical to eq. (64), provided the BEM

solution is used for the density functions uj and tj . (The notation is different: dotted quantities in

this paper correspond to starred quantities in the other paper).

If we rewrite the identity (64) in this fashion

cij(y)u̇j(y) +−
∫

∂Ω
Tij u̇jdS −

∫
∂Ω

Uij ṫj dS

= −
{

cij(y)
∂uj

∂a
+ a` dij` uj(y) + lim

ε→0

[∫
Γε

a`[Vij`uj −Wij`tj ]dS + a`
bij`

ε
uj(y)

]}
. (65)

we have on the l.h.s. a standard boundary integral equation for the “sensitivities” u̇ and ṫ, and on the

r.h.s. the residual (with minus sign) of the hypersingular boundary integral equation (HBIE) for the

tangential derivatives in the a-direction.

The functions u̇ and ṫ show that the approximate solution is, in fact, sensitive to the selection of

collocation points whenever the same approximate solution fails to satisfy the HBIE for tangential

derivatives. The exact solution would have all dotted functions identically equal to zero since the r.h.s.

would be identically zero as well.

In [8] it was heuristically suggested to employ suitable norms of these sensitivities to steer a self

adaptive mesh refinement process.
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Appendix A: Existence of the limits

The integrals in (24) whose value might be affected by the shape of the exclusion neighbourhood are

those with more singular kernels. For simplicity, the analysis is presented for smooth boundary at y.

However, the same path can be followed when y lies on an edge and q is only piecewise C0,α.

Basically, using (2) and then integrating by parts using eq. (6) we have that∫
Γε

∂G

∂ym
dS +

∮
∂Γε

Gνm ds =
∫

Γε

−
(

DmG− nm
∂G

∂n

)
dS +

∮
∂Γε

Gνm ds

=
∫

Γε

nm

(
2κG +

∂G

∂n

)
dS −

∮
∂Γε

Gνm ds +
∮

∂Γε

Gνm ds, (A1)

where κ is the mean curvature. In the last equation, the original singular integrals have been converted

into a weakly singular integral on Γε. Thus the limit investigated exists and its value does not depend

on the shape of vε(y).

Now, let us consider eq. (46). We recall that the third line in (46) follows from the first or second

line only when a circular shape of uniform radius ε is taken for the vanishing neighbourhood vε. We

have therefore to show that this choice for vε is not relevant.

Integrating by parts as in (5) we have that

−ai

∫
Γε

(G,ij nj)udS = ai

∫
Γε

(DijG,j )udS

= aieijp

∮
∂Γε

τpG,j uds + ai

∫
Γε

G,j (Djiu)dS

=
∮

∂Γε

[(aini)νj − (aiνi)nj ]G,j uds + ai

∫
Γε

G,j (Djiu)dS. (A2)
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Still by integration by parts we already knew that

−
∫

sε

G,ij njdS =
∮

∂Γε

G,j (νinj − νjni)ds.

Therefore, an alternative expression for (46) is

lim
ε→0

d

dp

[∫
Γε(yp)+sε(yp)

TudS

] ∣∣∣∣
p=0

= lim
ε→0

[
∗
u(y)

∫
sε

G,j njdS +
∫

Γε

(G,j nj)u̇dS + u(y)ai

∮
∂Γε

G,j (νinj − νjni)ds

+
∮

∂Γε

[(aini)νj − (aiνi)nj ]G,j uds + ai

∫
Γε

G,j (Djiu)dS + ai

∮
∂Γε

G,j nj [u− u(y)]νids

]
= lim

ε→0

[
∗
u(y)

∫
sε

G,j njdS +
∫

Γε

(G,j nj)u̇dS + ai

∫
Γε

G,j (Djiu)dS

+
∮

∂Γε

G,j νj(aini)[u− u(y)]ds

]
, (A3)

where the final line integral clearly tends to zero if θ · n = 0 and u ∈ C0,α(y).

Further manipulations are possible since∫
sε

G,j njdS = −
∫

Γε

G,j njdS

and

ai

∫
Γε

G,j (Djiu)dS =
∫

Γε

[(aiu,i )G,j nj − (aini)G,j u,j ]dS,

where aini = O(εα). Moreover, we can set

aiu,i = ai[u,i−u,i (y)] + aiu,i (y)

= ai[u,i−u,i (y)] + u̇(y) + aiu,i (y)− u̇(y)

= ai[u,i−u,i (y)] +
∗
u(y)− u̇(y).

Summing up, the following regularized expression for (A3) or (46) is obtained

lim
ε→0

d

dp

{∫
Γε+sε

TudS

} ∣∣∣∣
p=0

= lim
ε→0

∫
Γε

{(
[u̇− u̇(y)] + ai[u,i−u,i (y)]

)
G,j nj − (aini)G,j u,j

}
dS

=
∫

∂Ω

{(
[u̇− u̇(y)] + ai[u,i−u,i (y)]

)
G,j nj − (aini)G,j u,j

}
dS.(A4)

Since all integrals are weakly singular the limit exists and it does not depend on the selected shape

of vε.

Similar proofs can be provided for the elastic case.
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Appendix B: Proof of eq. (60)

Let the singular point y be on an edge of tangent a. On each side we define a unit vector b`, ` = 1, 2

b` = n` × a

normal to the edge and tangent to the surface. Clearly, (a,b`,n`), ` = 1, 2, are two Cartesian

orthonormal bases.

Let (a,b,n) = (a,b1,n1) be the basis with b pointing out of the edge. We have on the half part

∂̂Γε of ∂Γε lying on the corresponding element

r = ε

r,1 = cos θ + O(ε)

r,2 = sin θ + O(ε)

r,3 = O(ε)

n`(y) = δ`3

ds = ε(1 + O(ε))dθ

ν` = −r,` +O(ε)

a = (1, 0, 0)

ν`a` = − cos θ + O(ε),

where polar coordinated centered at y have been introduced.

Assume that on each side of the edge (i.e., for 0 ≤ θ ≤ π here), u has a C0,α gradient. Then

uj − uj(y) = εuj,m(y)r,m (y) + O(ε1+α).

Then, one has∮
∂̂Γε

Tij [uj − uj(y)](a`ν`)ds =
∫ π

0

−(1− 2ν)
8π(1− ν)ε2

[r,j ni − r,i nj ]εuj,m(y)r,m (− cos θ)εdθ + o(1),

where n` = n`(y) and ν is the Poisson ratio. Now using∫ π

0
(cos3 θ, cos2 θ sin θ, cos θ sin2 θ)dθ = (0, 2/3, 0),

we have ∫ π

0
r,i r,m cos θdθ = (2/3)(δi1δm2 + δi2δm1),
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so that

lim
ε→0

∮
∂̂Γε

Tij [uj − uj(y)](a`ν`)ds = A[(δj1δm2 + δj2δm1)δi3 − (δi1δm2 + δi2δm1)δj3]uj,m(y)

= A[(δi3δj1 − δi1δj3)δm2 + (δi3δj2 − δi2δj3)δm1]uj,m(y)

= A[ekijek31uj,2(y) + ekijek32uj,1(y)]

= A[(u,2×b)i − (u,1×a)i], (B1)

where A = (1− 2ν)/(12π(1− ν)) and the derivatives of u are intended in the local frame (a,b,n).

Since u,1 is continuous across the edge, the contribution for the two half-circles add up to zero.

On the other hand, the contributions of terms involving (u,2×b)i will give rise to nonzero free terms

in eq. (60) which depend on the two derivatives of u along the directions b`.

24


