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Abstract

In this paper, we establish that the Lagrangian-type material differentiation formulas, that allow
to express the first-order derivative of a (regular) surface integral with respect to a geometrical
domain perturbation, still hold true for the strongly singular and hypersingular syrface integrals
usually encountered in boundary integral formulations. As a consequence, this work supports
previous investigations where shape sensitivities are computed using the so-called direct differ-
entiation approach in connection with singular boundary integral equation formulations.



1 Introduction

In e.g. shape design analysis, inverse problems or fracture mechanics, one is often faced with
the need of computing sensitivities of integral functional or physical variables with respect to
perturbations of the shape of the geometrical domain Ω under study. This goal is achievable by
resorting to either finite-difference methods, considering small but finite domain perturbations,
or analytical differentiation followed by discretization.

The analytical approach is a priori clearly superior in terms of both accuracy and efficiency.
It relies on either the adjoint variable approach or a direct differentiation of the field equations
formulated in weak or BIE fashion. A substantial research effort has been devoted in the last
decade or so to various formulations and applications of sensitivity analyses based on analyt-
ical differentiation with respect to shape parameters, or on the related mathematical concept
of domain derivative. As a result, these concepts are successfully applied to more and more
engineering problems. Among a fairly abundant literature, the reader is referred to (Haug et al.,
1986), (Simon, 1989), (Sokolowski and Zolesio, 1992), (Dems and Mróz, 1986).

Further, since problems with variable or unknown domains put a great emphasis on the shape
of the boundary ∂Ω of Ω, it is often found convenient, or even essential, to resort to the boundary
element method (BEM). Some of these investigations concern the adjoint approach (see e.g.
(Burczyński et al., 1995)), which is not discussed further in this paper. Others formulate the
direct differentiation approach, which consists of taking the material derivative of the relevant
governing boundary integral equation (BIE), so that a governing BIE for the sensitivities of
field variables on the boundary is available. The sensitivity of any objective function of interest
is then evaluated using (boundary) field variable sensitivities. Both approaches are the main
subject of a recent journal special issue, (Bui and Bonnet, 1995).

The material differentiation formula applies a priori to nonsingular or at most weakly singular
integrals on moving surfaces. On the other hand, usual BIE formulations are either strongly
singular or hypersingular. When regularized BIE formulations are considered, the boundary
integrals are at most weakly singular and the material differentiation formula can be applied in
a straightforward way. Such formulations are studied, up to second-order material derivatives,
in (Bonnet, 1995) for three-dimensional problems and in (Zhang and Mukherjee, 1991) for
two-dimensional problems; see also (Matsumoto et al., 1993) and (Nishimura and Kobayashi,
1991). Other authors, e.g. (Barone and Yang, 1989), (Erman and Fenner, 1994), (Mellings
and Aliabadi, 1995), apply the material differentiation formula in an equally straightforward
way but to strongly singular or hypersingular BIE formulations, without prior regularization.
The mathematical validity of this operation, although unquestioned, is not obvious at first.
Indeed, the singular BIE formulations are defined as limiting cases of representation formulas
when a vanishing neighbourhood of the collocation (singular) point is removed from the domain
under consideration. Then, the vanishing neighbourhood is generally affected by the domain
perturbations considered for sensitivity analysis, with a priori possible consequences on the
result of the limiting process. There lies the source of possible mathematical difficulties when,
as in the above references, the effect of domain perturbation on the vanishing neighbourhood is
ignored. In the past, failure to take into account a similar effect led to an erroneous value of the
free-term associated with the singular representation of strain in the presence of initial strain or
stress, until corrected by (Bui, 1978).

The goal of this paper is to put material differentiation of usual singular BIE formulation
on safe ground. More precisely, we prove that the usual material differentiation formula for
nonsingular surface integrals still yields the correct result when applied to BIE-type strongly
singular or hypersingular integrals. In order to do so, the singular integrals are expressed in a
fixed (i.e. independent of the domain perturbation) parameter space. The direct approach of
(Guiggiani and Gigante, 1990) and (Guiggiani et al., 1992), although initially devised in con-
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nexion with the mapping of a boundary element onto its parent element, is in fact applicable
to any regular surface parametrization and provides the key tool for the present analysis. As a
result, the usual, straightforward material derivative technique applies without modification to
singular BIE formulations. The material derivative of a singular integral takes the form of an-
other singular integral, with the same level of singularity as the initial one. The present analysis
encompasses a wide range of singular kernels, including most usual fundamental solutions used
in static or dynamic BIE formulations.

2 Material differentiation

Let us consider, in the three-dimensional Euclidean space R3 equipped with a Cartesian or-
thonormal basis (e1, e2, e3), a body Ωp whose shape depends on a finite number of shape pa-
rameters p = (p1, p2, . . .). The latter are treated as time-like parameters using a continuum
kinematics-type lagrangian description and introducing an “initial” (nonperturbed) configura-
tion Ω = Ω0 conventionally associated with p = 0:

y ∈ Ω → yp = Φ(y;p) ∈ Ωp where (∀y ∈ Ω) Φ(y;0) = y (1)

Similarly to continuum kinematics, it is assumed that any such mapping y → Φ(y;p), also
termed geometrical transformation, is a diffeomorphism between Ω and Ωp. A given domain
perturbation considered as a whole, as is the case e.g. in shape optimization, admits many
different representations (1).

As first-order derivatives with respect to p are considered here, attention is focused without
loss of generality to the effect of infinitesimal variations δp about p = 0 of a generic shape
parameter p while the others are kept fixed and equal to 0. The initial transformation velocity
θ(y) is defined by

θ(y) =
∂

∂p
Φ(y; 0) (2)

In other words, the geometrical transformation (1) has the form

y → yδp = y + θ(y)δp + o(δp)

The material derivative
?

f (y) (also termed total or lagrangian derivative) of a generic field
variable f(yp, p) in the domain transformation, taken at p = 0, is defined as:

?

f (y) = lim
δp→0

1
δp

[f(yδp, δp)− f(y, 0)] =
(

∂f

∂p
+ f,mθm

)
(y, 0) (3)

using the notation f,m ≡ ∂f/∂ym. Also, the material derivative of a two-point function K(yp−
xp) (e.g. the kernel functions that appear in boundary integral equations), assuming both points
x,y follow the geometrical transformation (1), is given by

?

K (x,y) = K,m(y − x)[θm(y)− θm(x)] (4)

The material derivatives of the unit normal n and the differential area dS on any moving generic
smooth surface Sp changing according to (1) are given (Petryk and Mróz, 1986), (Bonnet, 1995)
by:

?

dS= Dmθm dS
?
ni= −nmDiθm (5)

where
Dmf ≡ f,m − nmnpf,p = f,m − nm

∂f

∂n
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denotes the projection of the cartesian partial derivative ∂f/∂ym onto the tangent plane at
y ∈ S. The numbers Diθm define in fact the tangential gradient ∇Sθ while the scalar Dmθm is
the surface divergence of the vector field θ.

The material derivative of a generic regular integral over Sp is then given, from e.g. (Petryk
and Mróz, 1986), by the formula:

d

dp

∫
Sp

f dS =
∫

S

{
?

f +fDmθm

}
dS (6)

Note that in formulas (3), (5), (6) and the sequel, all p-derivatives are understood for p = 0.
The argument p is omitted for brevity when p = 0.

3 Weakly singular integral on a changing surface

Let us consider weakly singular integrals of the form

IW (p) =
∫

Sp

Kw(yp − xp)u(yp, p) dSy (7)

where u is regular and possibly depends on p, explicitly and/or implicitly (e.g. u is the field
variable which solves a boundary-value problem over the changing domain Ωp) and Kw is a
weakly singular fundamental solution. For three-dimensional potential theory or elastostatic,
such kernel functions are usually linear combinations of

Kw(z) =
zizj

|z|3
(8)

where 1 ≤ i, j ≤ 3 are fixed indexes; besides, they are homogeneous of degree −1 and symmetric:

Kw(az) =
1
a
Kw(z) Kw(−z) = Kw(z) (9)

In the BIE context, the surface Sp is any portion of the (changing) boundary ∂Ωp containing
the singular point xp, which is also assumed to follow the domain transformation (1) (this is
emphasized by the chosen notation). It follows that the material derivative of the kernel function
Kw is given by (4).

Then, application of formula (6) to the weakly singular integral (7) and of (4) leads to:

d

dp
IW =

∫
S

Kw
,m(y − x)[θm(y)− θm(x)]u(y) dSy

+
∫

S
Kw(y − x)[

?
u +uDmθm](y) dSy (10)

It is important to note that, under the smoothness assumption made on the domain transfor-
mation, one has:

|θ(y)− θ(x)| ≤ C |y − x| (11)

for some C > 0. As a consequence, the integrand in eq. (10) is weakly singular, and the
straightforward application of the material derivative formula (6) to IW yields the correct result.
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4 Strongly singular integral on a changing surface

Let us now consider CPV singular integrals of the form

IS(p) = lim
ε→0

{∫
sε(xp)

Ks(yp − xp) dSy +
∫

Sp−eε(xp)
Kh(yp − xp)u(yp, p) dSy

}

≡ −
∫

Sp

Ks(y − x)u(yp, p) dSy (12)

and Ks is a strongly singular fundamental solution. For three-dimensional potential theory or
elastostatics, such kernel functions are usually linear combinations of

Ks(z) =
zizjzk

|z|5
(13)

where 1 ≤ i, j, k ≤ 3 are fixed indexes; besides, they are homogeneous of degree −2 and anti-
symmetric:

Ks(az) =
1
a2

Ks(z) Ks(−z) = −Ks(z) (14)

When a fundamental solution for flux or traction vector is used in the definition of the integral
(12), the unit normal components are included in the nonsingular factor u, in order to be still
able to invoke the homogeneity property (14a).

In the BIE context, the surface Sp is any portion of the (changing) boundary ∂Ωp containing
the singular point xp, which is also assumed to follow the domain transformation (1).

CPV integrals are defined as the result of a limiting process where a spherical exclusion
neighbourhood vε(x) of vanishing radius ε centered at x is removed around x. The difficulty
that arises when a changing domain is considered is that the geometrical transformation (1) is
likely to alter the shape of vε(xp), and this is not allowed by the definition of CPV convergence.
Therefore, it is not a priori obvious that a mere application of (6) to (12) yields the correct
value for the p-derivative of IS .

To investigate this issue on a firm ground, we introduce a parametrization of the initial
surface S on a parameter space ∆:

ξ = (ξ1, ξ2) ∈ ∆ → y(ξ) ∈ S (15)

This allows the changing surface Sp to be mapped onto the fixed parameter space domain ∆:

(ξ ∈ ∆, p ≥ 0) → yp(ξ) = Φ(y(ξ), p) ∈ Sp (16)

so that one can perform the change of variable y → ξ in both IS(0) and IS(δp). Of course,
vε(xp), or rather eε(xp), is also distorted when mapped onto ∆. However, (Guiggiani and
Gigante, 1990) solved this difficulty by giving the correct value of the limiting case ε → 0
expressed in the parameter space ∆; their analysis assumes that ∆ is the parent element but
in fact remains equally true for any smooth mapping ∆ → S. As a consequence, a rigorous
and computable expression of IS using the parametrization (16) is available for any p > 0, and
indeed provides a sound basis for the present discussion.

The latter result, which we now recall, is based upon the introduction of polar coordinates
(ρ, α), centered at the image η of the singular point xp in the parameter space ∆

ξ1 = η1 + ρ cos α ξ2 = η2 + ρ sinα
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so that ξ ∈ ∆ ⇔ 0 ≤ ρ ≤ ρ̄(α) (no loss of generality occurs in assuming that ∆ is star-shaped
around η). Since the mapping (16) is smooth, the position vector rp = yp − xp takes the form:

rp = ρr̂(ρ, α, p)
= ρ[a(α, p) + o(1)] (17)

where
a(α, p) = r̂(0, α, p) = a1(p) cos α + a2(p) sinα (18)

and (a1,a2) is the natural basis, calculated at ξ = η, associated with the mapping (16):

aβ(p) =
∂yp

∂ξβ

∣∣∣∣
ξ=η

An immediate consequence of definition (18) is:

a(α + π, p) = −a(α, p) (19)

The kernel function Ks(rp) then takes the form

Ks(rp) =
1
ρ2

Ks(r̂)

=
1
ρ2
{Ks(a) + O(ρ)} (20)

The CPV integral (12) is then given, following (Guiggiani and Gigante, 1990), by:

IS(p) =
∫ 2π

0

∫ ρ̄(α)

0

[
F (ρ, α, p)− f(α, p)

ρ

]
dρdα +

∫ 2π

0
f(α, p) ln[ρ̄(α)a(α, p)]dα (21)

using the notations a(α, p) = |a(α, p)| and

F (ρ, α, p) =
1
ρ
Ks(r̂)u(yp, p)J(ξ, p)

f(α, p) = Ks(a)u(xp, p)J(η, p)

 (xp = Φ(y(η), p), yp = Φ(y(ξ), p)) (22)

J(ξ, p) being the Jacobian of the parametrization (16); a = a(α, p) and r̂ are defined by eqs.
(17) and (18). Note that the last term in (21) accounts for the preservation of the shape of
vε(x). Besides, the antisymmetry property (14b) of Ks plays a key role in the validity of the
result (21) (IS would otherwise be unbounded when ε → 0) and implies, according to definition
(22), that:

f(α + π, p) = −f(α, p) (23)

5 Material derivative of the strongly singular integral

The formula (21) holds for any fixed p ≥ 0, the parameter space ∆ being independent of p;
moreover the double integral is regular because of the singularity removal achieved through
the introduction of f(α, p). Thus, the derivative of IS(p) at p = 0 is obtained using ordinary
differentiation of (21) under the integral sign:

?

IS=
d

dp
IS =

∫ 2π

0

∫ ρ̄(α)

0

[
?

F (ρ, α)− 1
ρ

?

f (α)
]

dρdα +
∫ 2π

0

?

f (α) ln[ρ̄(α)a(α)]dα

−
∫ 2π

0
f(α)

?
a (α)
a(α)

dα (24)
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with (using formula (4)):

?

F (ρ, α) =
1
ρ
J(ξ)

{
Ks(r̂)[

?
u +uDmθm](y) + Ks

,m(r̂)[θm(y)− θm(x)]u(y)
}

(25)

?

f (α) = J(η)
{

Ks(a)
?
ai u(x) + [

?
u +uDmθm](x)

}
(26)

and where all p-dependent quantities, like r̂,a, are evaluated at p = 0 (note that ∆, i.e the
function ρ̄(α), does not depend on p). Moreover, the derivatives

?
a and

?
a are given by

?
a (α) =

∂

∂p
{a1 cos α + a2 sinα}

=
∂2y

∂ξ1∂p

∣∣∣∣
ξ=η

cos α +
∂2y

∂ξ2∂p

∣∣∣∣
ξ=η

sinα

=
∂

∂ξ1

∂y

∂p

∣∣∣∣
ξ=η

cos α +
∂

∂ξ2

∂y

∂p

∣∣∣∣
ξ=η

sinα

=
∂θ

∂ξ1
|ξ=η cos α +

∂θ

∂ξ2
|ξ=η sin α

= ∇θ(x).a(α) (27)

?
a (α) =

a(α).∇θ(x).a(α)
a(α)

(28)

Using the latter formulas and the expansion

θ(y)− θ(x) = ρ∇θ(x).a + O(ρ2) = ρ
?
a (α) + O(ρ2) (29)

about ρ = 0, it is easy to show that
?

f /ρ is indeed the singular part of
?

F , and also that
?

K
s

has

the same degree of singularity than Ks(y − x). As a result, {
?

F −
?

f /ρ} is regular. From (25),

(26), it is then readily seen that the material derivative
?

IS as given by (24) has the form

?

IS= −
∫

S
{[Ksu]? + KsuDmθm} dS + R (30)

where the residual term, given by

R = −
∫ 2π

0
f(α)

?
a (α)
a(α)

dα (31)

remains to be examinated. Indeed, from (28), one has

f(α)
?
a (α)
a(α)

= f(α)
a(α).∇θ(x).a(α)

a2(α)

and then, from property (14b) and the definition (18) of A(α):

f(α + π)
?
a (α + π)
a(α + π)

= −f(α)
?
a (α)
a(α)

(32)

As a result, the residual integral R (31) vanishes:

R = −
∫ 2π

0
f(α)

?
a (α)
a(α)

dα = −
{∫ π

0
+

∫ 2π

π

}
f(α)

?
a (α)
a(α)

dα = 0 (33)
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Thus we have proved that the material differentiation formula (6) is generalizable to CPV
singular integrals with the kernel (13):

d

dp

{
−
∫

Sp

Ks(yp − xp)u(yp, p) dSy

}

= −
∫

S
{[Ks(y − x)u(y)]? + Ks(y − x)u(y)Dmθm(y)} dSy (34)

Comments. The result (34) obviously extends for any linear combination of kernels (13); also,
the unit normal n, if present, can be incorporated without difficulty in the regular factor u
and is therefore not excluded from the analysis. All usual potential or isotropic elastostatic
strongly singular BIE formulations are encompassed as a direct consequence of the result (34).
The analysis presented here assume that Sp is smooth at xp.

The kernel (13) can be generalized to any combination of kernels of the form |r|−2 (er⊗ . . .⊗
er) where the unit vector er = r/ |r| appears an odd number of times in the tensor product,
since properties (14) still hold.

The approach of (Barone and Yang, 1989) and others thus receives an a posteriori validation,
at least when the free term present in singular BIE formulations remains constant under the
geometrical transformation (1). This is normally the case when dealing with initially smooth
singular points x. Although the present analysis does not answer this issue, it is conjectured
that the present result remains true for a corner or edge point x, for which the free-term is
likely to vary under the geometrical transformation. The fact that the material derivative of
a regularized displacement BIE formulation is valid and has the same mathematical form for
smooth and corner singular points x ((Bonnet, 1995)) provides in our view an indirect proof of
this conjecture.

Finally, the fundamental solutions for dynamic problems (wave propagation, elastodynamics,
parabolic heat equation) do not in general verify the homogeneity properties (9a), (14a), (37a).
However, their singularity is identical to that of its static counterpart. As a result, upon splitting
a dynamic fundamental into the sum of its (singular) static counterpart and a (nonsingular)
complement, it is apparent that the result (34) validates the material differentiation of dynamic
strongly singular BIE formulations as well.

6 Hypersingular integral on a changing surface

Let us now consider the case of hypersingular kernels. Such kernel functions are usually deriva-
tives with respect to source point coordinates of strongly singular kernels:

Kh
` (y − x) =

∂

∂x`
Ks(y − x) = −Ks

,`(y − x) (35)

In particular, Kh
` (y − x) is assumed to be divergence-free:

∂

∂x`
Kh

` (y − x) = −Kh
`,`(y − x) = 0 (y 6= x)

For three-dimensional potential theory or elastostatics, Kh
` (y − x) usually appears as a linear

combination of
Kh(z) = Ks

,` =
4zizjzkz`

|z|7
− δi`zjzk

|z|5
− δj`zizk

|z|5
− δk`zizj

|z|5
(36)

where 1 ≤ i, j, k, ` ≤ 3 are fixed indexes; besides, they are homogeneous of degree −3 and
symmetric:

Kh
` (az) =

1
a3

Kh
` (z) Kh

` (−z) = Kh
` (z) (37)
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If need be, the unit normal components are included in the nonsingular factor u, in order to be
still able to invoke the homogeneity property (37a).

Following (Guiggiani et al., 1992), hypersingular boundary integral formulations involve
terms defined by a limiting process (‘finite part’) of the form

IH(p) = lim
ε→0

{
u(xp, p)

∫
sε(xp)

Kh(yp − xp) dSy +
∫

Sp−eε(xp)
Kh(yp − xp)u(yp, p) dSy

}

≡ =
∫

S
Kh(y − x)u(y) dSy (38)

(where again a spherical exclusion neighbourhood vε(xp) of vanishing radius ε centered at xp is
removed around xp).

We follow again the line of investigation used in sections 4, 5. From (Guiggiani et al., 1992),
the limit (38) is known to exist and a rigorous and computable expression of IH using the
parametrization (16) is available for any p > 0. We now recall the latter result, using again
the notations introduced in section 4, together with some additional notation related to the
second-order expansion of the position vector r:

rp = ρr̂(ρ, α, p)
= ρ[a(α, p) + ρb(α, p) + o(ρ)] (39)

where
b(α, p) = b11(p) cos2 α + 2b12(p) cos α sinα + b22(p) sin2 α (40)

and

bαβ(p) =
∂2yp

∂ξα∂ξβ
|ξ=η

Note that formula (40) implies that:

b(α + π, p) = b(α, p) (41)

The kernel function Kh
` (rp) then takes the form

Kh
` (rp) =

1
ρ3

Kh
` (r̂)

=
1
ρ3

{
Kh

` (a) + ρKh
`,mbm(α, p) + O(ρ2)

}
(42)

The integral (38) is given by:

IH(p) =
∫ 2π

0

∫ ρ̄(α)

0

[
F`(ρ, α, p)− f`(α, p)

ρ2
− g`(α, p)

ρ

]
dρdα

+
∫ 2π

0

{
g`(α, p) ln[ρ̄(α)a(α, p)] + f`(α, p)

[
(a.b)
a2

− 1
ρ̄

]
(α, p)

}
dα (43)

where

F`(ρ, α, p) =
1
ρ2

Kh
` (r̂)u(yp, p)J(ξ, p) (44)

f`(α, p) = Kh
` (a)u(xp, p)J(η, p) (45)

g`(α, p) = Kh
`,m(a)bm(α, p)u(xp, p)J(η, p) + Kh

` (a)
∂

∂ρ
[uJ ]

∣∣∣∣
ρ=0

(46)
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and a and r̂ are still defined by eqs. (17) and (18). In fact, f`(α, p) and g`(α, p) (denoted F−2

and F−1 in (Guiggiani et al., 1992)) are obtained as the coefficients of ρ0 = 1 and ρ in the Taylor
expansion of Kh

` (r̂)u(yp, p)J(ξ, p) with respect to ρ about ρ = 0.
The symmetry property (37b) of Kh

` , applied to eqs. (45) and (46), imply that:

f`(α + π, p) = f`(α, p) g`(α + π, p) = −g`(α, p) (47)

7 Material derivative of the hypersingular integral

The formula (43) holds for any fixed p ≥ 0, the parameter space ∆ being independent of p;
moreover the double integral is regular because of the singularity removal achieved through the
introduction of f`(α, p) and g`(α, p). Thus eq. (43) can be differentiated under the integral sign
at p = 0:

d

dp
IH =

∫ 2π

0

∫ ρ̄(α)

0

[
?

F ` (ρ, α)− 1
ρ2

?

f ` (α)− 1
ρ

?
g` (α)

]
dρdα

+
∫ 2π

0

{
?
g` (α) ln[ρ̄(α)a(α)]− g`(α)

?
a (α)
a(α)

}
dα

+
∫ 2π

0

{
?

f ` (α)
[
(a.b)
a2

− 1
ρ̄

]
(α) + f`(α)

[
(a.b)
a2

− 1
ρ̄

]?}
(α)dα (48)

with

?

F (ρ, α) =
1
ρ2

J(ξ)
{

Kh
`,m(r̂)[θm(y)− θm(x)]u(y) + Kh

` (r̂)[
?
u +uDmθm](y)

}
(49)

?

f ` (α) = J(η)
{

Kh
`,m(a)

?
am u(x) + Kh

` (a)[
?
u +uDmθm](x)

}
(50)

?
g` (α) = Kh

`,mn(a)
?
an (α)bm(α)u(x)J(η)

+ Kh
`,m(a)

(
?

bm (α)u(x) + bm(α)[
?
u +uDmθm](x)

)
J(η)

+ Kh
`,m(a)

?
am (α)

∂

∂ρ
[uJ ]

∣∣∣∣
ρ=0

+ Kh
` (a)

∂

∂ρ

(
[

?
u +uDmθm]J

) ∣∣∣∣
ρ=0

(51)

where a and r̂ are still defined by eqs. (17) and (18). We note that
?
a is given by (27) and that,

similarly

?

b (α) =
∂

∂p

{
b11 cos2 α + 2b12 cos α sin α + b22 sinα

}
=

∂2θ

∂ξ1∂ξ1
|ξ=η cos2 α + 2

∂2θ

∂ξ1∂ξ2
|ξ=η cos α sinα +

∂2θ

∂ξ2∂ξ2
|ξ=η sin2 α (52)

Moreover, differentiation of eq. (40) with respect to p gives, accounting for the fact that the
variables p and ξβ are independent, the following expansion:

θ(y)− θ(x) = ρ[
?
a (α) + ρ

?

b (α) + o(ρ)] (53)

Using the previous formulas, it is then easy to show that

?

F (ρ, α)− 1
ρ2

?

f ` (α)− 1
ρ

?
g` (α) = O(1)
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is indeed nonsingular. Moreover, using the same argument as in section 5, the antisymmetry
property (47b) implies that ∫ 2π

0
g`(α, p)

?
a (α)
a(α)

dα = 0

Further, since ρ̄(α) does not depend on p, one has[
a.b

a2
− 1

ρ̄

]?

=
[
a.b

a2

]?

=
?
a .b + a.

?

b

a2
− 2(a.b)(a.

?
a)

a4

Then, using eqs. (19), (41), which in turn imply that

?
a (α + π) = − ?

a (α)
?

b (α + π) =
?

b (α)

it is easy to conclude that [
a.b

a2
− 1

ρ̄

]?

(α + π) =
[
a.b

a2
− 1

ρ̄

]?

(α)

and consequently, using (47a), that∫ 2π

0
f`(α, p)

[
(a.b)(α, p)
a2(α, p)

− 1
ρ̄(α)

]?

dα = 0

Taking into account all these partial results, eq. (48) reduces to:

d

dp
IH =

∫ 2π

0

∫ ρ̄(α)

0

[
?

F ` (ρ, α)− 1
ρ2

?

f ` (α)− 1
ρ

?
g` (α)

]
dρdα

+
∫ 2π

0

{
?
g` (α) ln[ρ̄(α)a(α)]+

?

f ` (α)
[
(a.b)
a2

− 1
ρ̄

]
(α)

}
(α)dα

In other words, we have proved that the material differentiation formula (6) is generalizable to
hypersingular boundary integrals with kernels (36):

d

dp

{
=
∫

Sp

Kh(yp − xp)u(yp, p) dSy

}

= =
∫

S

{
[Kh(y − x)u(y)]? + Kh(y − x)u(y)divSθ(y)

}
dSy (54)

Comments. The result (54) obviously extends for any linear combination of kernels (36); also,
the unit normal n, if present, can be incorporated without difficulty in the regular factor u
and is therefore not excluded from the analysis. All usual potential or isotropic elastostatic
hypersingular BIE formulations are encompassed as a direct consequence of the result (34). All
other comments made at the end of section 5 still apply when transposed in the obvious way to
the result (34) for hypersingular boundary integrals.
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