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The result of a multiobjective evolutionary optimization is an efficient solution set surrounded by other candidate solution points.
To choose a final solution, we can perform a sensitivity study. Applying this methodology, disturbances that occur in real-world design
problems are not neglected. This paper presents an easy way to perform the sensitivity analysis directly from the data generated from
a multiobjective stochastic optimization process. No additional function evaluation is required. As an example, we have solved some

optimization problems concerning electromagnetic devices.

Index Terms—Multiobjective evolutionary optimization, sensitivity analysis.

I. INTRODUCTION

N ENGINEERING design, sensitivity analysis verifies how

stable is the performance of a designed device, since devia-
tions from project specifications are unavoidable in real world.
The sources of disturbances may be inaccurate construction or
changes on operational conditions (due to mechanical deforma-
tion forces, for example).

Electromagnetic optimization problems are often compu-
tationally expensive, nonlinear and composed by conflicting
goals. Multiobjective Genetic Algorithms (MGAs) are robust,
stochastic-based methods which can handle the common
features of electromagnetic problems [1]-[3]. Like any
multi-objective algorithm, the MGA must provide a mean-
ingful set of samples from the group of efficient solutions,
called Pareto-optimal front, which represents the tradeoff
among objective functions. The decision maker then chooses
one final solution from this set. In this work, the decision maker
is supported by sensitivity analysis information, in order to
quantify the solution stability.

Among several possible sensitivity metrics, the Lipschitz
constant has been used. It is defined as the maximum variation
rate in a domain [4]. Another method [5], based on containing
ellipsoids, has been proposed in order to profit from the large
amount of data generated in the stochastic search. In all cases,
the precise evaluation of sensitivity quantities is intrinsically
very time consuming.

In this paper, we present a sensitivity analysis based on a
metric directly evaluated from the data provided by MGA, not
requiring additional computational effort. This methodology
also allows the identification of which solution parameter is
more sensitive to deviations.

In the next section, we will present the efficient MGA used;
then, we apply the proposed sensitivity methodology, first to
minimizing an analytical function (Section III-A), and second to
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Fig. 1. Block diagram of the Multiobjective Genetic Algorithm.

an electromagnetic problem: the design of a Yagi—-Uda Antenna
(Section III-B).

II. MULTIOBJECTIVE GENETIC ALGORITHM

Founded on the concepts of natural selection and genetics,
the MGA optimizer is becoming a well-known stochastic opti-
mization tool in the electromagnetic community [1]-[3]. Fig. 1
shows the procedure used in this work, which benefits from the
main improvements published in literature.

Basically, the algorithm starts with a set of solutions ran-
domly created. These solutions are evaluated and the nondomi-
nance condition is checked: given a set of n objective functions
fi to be minimized (<), one should find the set P of xx solu-
tions defined as

P = {z * / it does not exist z € S such that:
1) there exists ¢ such that f;(x) < f;(z*) and

2)Vi#j fj (x) < fi(ax) } M
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where S is the feasible search space. The set P contains the
efficient solutions () of the problem and it is called the Pareto-
optimal set.

The result of the Pareto’s check (1) is two groups of solutions:
one formed by efficient solutions, called the nondominated pop-
ulation (NDOM); and another by nonefficient solutions, called
the dominated population (DOM). An index (IDOM) indicating
how many times each solution is dominated by others is cre-
ated. It is important to execute the selection process only with
solutions around the Pareto set, which permits a faster conver-
gence. After the Pareto’s check, it is time to apply a Clearing
technique, the purpose of which is to obtain a sparse and regu-
larly distributed Pareto-front. If similarities among individuals
are detected (in parameters or/and objectives spaces [6]), one or
some of them are punished. The penalty consists in moving the
penalized individual to DOM (by changing IDOM from O to 1).

We work with a fixed number of individuals (nbind) in the
crossover and mutation actions. This fixed minimal size group
is called here the real population (REAL), which is recreated at
each generation. REAL is composed by all solutions of NDOM
(after Clearing); plus 1/4xnbind solutions of DOM to maintain
some diversity (chosen among those having the smallest IDOM
indexes). If the number of REAL’s individuals is still less than
nbind, we complete with individuals of DOM (choosing other
ones with the smallest indexes once again). The opposite will
be handled in the selection process.

The number of selected individuals picked up from REAL
is always nbind. The selection is done by a mixed method, in-
cluding Deterministic Sampling and Tournament methods. The
parents are in part selected by Deterministic Sampling (based
on the population fitness average, which gives emphasis to the
Pareto center area) and the remaining by Tournament (based on
each objective individually n objectives times, which gives em-
phasis to the Pareto-edges areas). This approach makes easier
the attainment of a well-established Pareto set. After selection,
we apply the crossover and mutation operators for real coding
schemes [7]. Generation after generation, these operators create
new individuals (children) from existing ones (parents), engen-
dering a good “search space” for exploration. Notice that chil-
dren do not automatically obey all the constraints (e.g., fixed
maximal dimensions). In this case, classical techniques are ap-
plied: for instance, values above a given limit are reduced using
a simple “adjustment by saturation” [1].

The new individuals (children) are evaluated and directly in-
serted in REAL, from which all solutions are submitted to a
nondominance condition evaluation (1). This results in a mod-
ified NDOM, whose size fluctuates (increases and decreases),
while the DOM can only grow. Similar to a mono-objective GA,
new good solutions can appear at any step in the MGA method-
ology. However, these new individuals can be lost or destroyed
at the course of the evolutionary process. The concept of Global
Elitism [7] guarantees that efficient solutions will be kept. In
the multiobjective algorithm proposed here, the global elitism
is implicitly incorporated by the use of all NDOM to compound
REAL. Finally, the evolutionary process is restarted with the
new DOM and NDOM.

To reduce the computational cost in the evaluation of IDOM,
the size of the DOM population is controlled [to keep this
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Fig. 2. Two parabolas—analytical function test. (a) Parameters space.
(a’) Pareto-front—Fitness space. (b) Parameters space zoom. (b’) Fitness space
zoom.

maximum size, some dominated solutions—with a bad IDOM
index—are moved to a separate database (DOMold)].

The end of the evolutionary process can be done by some
criterion (e.g., maximum number of generations [1]).

III. MGA WITH SENSITIVITY ANALYSIS

The main purpose of the MGA is to search for the Pareto-
front among all the data generated by the underlying genetic
algorithm. If the algorithm does not converge prematurely, the
feasible space will be properly represented [6]. As shown in
Fig. 2(a), samples are particularly dense around Pareto’s region,
so that it is reasonable to use this data to implement the sensi-
tivity analysis.

In the first step, we search for the maximum variation in the
value of each objective function related to given deviations
from the optimal parameter values (V*). These deviations
are specified by the designer to face up to real-world possible
perturbations. Afterward, some samples of the Pareto-set are
selected to perform the sensitivity analysis. These samples can
be some solutions belonging to the Pareto-front used to study
the behavior of different regions, or special solutions chosen by
some designer preference.

The proposed metric is evaluated using only the already ac-
quired samples inside a perturbation domain around V'*.

A. Analytical Problem

Fig. 2 shows the data generated by MGA in the simultaneous
minimization of two quadratic objective functions (f; and f5)
with two design variables (1 and z2)

fi=(@1—1)?+23 and fo=(z1+1)>+23. (2

The optimal region is a line connecting the parabolas’ vertexes.
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In this analytical example, we choose the Pareto sample V* =
[—0.003 387, —0.004 788], which is the closest solution to fit-
ness [1, 1] found by MGA. We defined the perturbation domain
D* as a deviation of [—0.2, 0.2]? around V'*, and then took the
sample with the worst fitness inside it. In this example, the worst
cases for both objective functions are in the domain corners. The
designer considers the solution stable if this worst fitness is ac-
ceptable.

To compare how stable is a Pareto sample in relation to others,
it is essential to associate the fitness values with the distance in
the parameter space. We define the behavior associated with an
optimal point V* for each objective function f(-) inside the
perturbation domain D* as

* Vi) = V)
B (V*) =
(V)= e S @

where V; and V; are samples inside D*. Note that D* can be
any domain containing V*. The evaluation of the behavior is
straightforward, since we use only points already sampled. Fur-
thermore, it is a value asymptotically close to the Lipschitz con-
stant as the number of samples grows to infinity, over D*. This
means that it is an approximation to the maximum mean rate
between two points inside D*. The greater By, is, the more un-
stable the function f; at V* will be.

Since distance and objective function variation are positive
values in evaluating B, (3), we may normalize them according
to the optimal solution in analysis V *—normalize each param-
eter by its respective V* component absolute value, and function
variation by | f.(V*)|—in order to connect directly sensitivity to
significant digits. Furthermore, if the variables are too different
in range or meaning, the B, may erroneously point out sensitive
variables due to the distance in variables space. To overcome this
problem, we may normalize each variable by its variability, i.e.,
the reachable tolerance in variable implementation (e.g., con-
struction precision or variation caused by unavoidable environ-
ment conditions). The greater the variability (uncertainty) is, the
more sensitive the variable will be.

B. Yagi—Uda Antenna Design

As areal application for the sensitivity analysis described pre-
viously, we designed a five-element (reflector, driver, and three
directors) Yagi—Uda antenna. The problem is simple to facilitate
comprehension.

The design variables for the implemented MGA are the
lengths [ and the distances d between the elements. Table I
shows the limits of each variable, which defines the optimiza-
tion feasible search space. At a fixed operation frequency,
the design objectives are the maximization of directivity D
and maximization of front-to-back ratio (FBR), with the input
impedance Zin into the [45,55]  interval as a constraint
specification.

The induced emf method [8] is applied to analyze the
Yagi—Uda antenna. This method provides a closed-form solu-
tion and considers all elements as half-wavelength thin dipoles,
so that a sinusoidal current distribution becomes a good ap-
proximation. This is fast and reasonably precise if the elements’
lengths are close to half-wavelength and the elements’ radii
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TABLE 1
OPTIMIZATION SEARCH SPACE

Limits Reflector  Feeder Director 1 Director 2 Director 3
min 0.45 0.40 0.30 0.30 0.30
LA
max 0.60 0.55 0.50 0.50 0.50
min 0.1 0.1 0.1 0.1
d®)
max 0.25 0.5 0.5 0.5
@ : + non-efficient solutions
‘ o efficient solutions
o ® solutions into the domain
e (O worst solutions
o <> §- selected solutions
2 :
S
2
Ke)
(o]

12.053 .
(@) ®)

Fig. 3. Two parabolas—analytical function test. (a) S1 domain zoom. (b) S2
domain zoom.

are much smaller than both the wavelength A and the distance
between elements.

The Pareto-front samples (in gray) and the other ones (in
black) are shown in Fig. 3. As an example, we have chosen two
solutions (S1 and S2) to perform the sensitivity analysis. The
perturbation domain is defined by a +0.0025\ deviation on all
design variables.

The samples’ studies are presented in Tables II and III. We
have solution S1 with a relatively stable D and an unstable FBR,
and S2, with D and FBR equally stable. Note that in this specific
case, the worst objective function value corresponds to the more
unstable solution.

The behavior function (3) is upper bounded by the Lipschitz
constant (whose numerical evaluation is given in Table III),
which would be, in theory, the B value if we had infinite
samples in the domain [4]. Despite some discrepancies, the
values provided by the MGA are meaningful as a sensitivity
measure.

To point out which solution parameter is more relevant to
maintain good device performance, it is enough to perform the
behavior analysis on each variable separately. In this case, to
create the domain D*, we cause a large perturbation on the pa-
rameter in analysis and small deviations on the other ones.
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TABLE 1I
SENSITIVITY ANALYSIS—OPTIMAL PARAMETERS

Parameter ~ Reflector Feeder Director I  Director2  Director 3
s I(\) 0.48132 0.59724  0.43109 042024  0.42337
d(A) 0.24293 0.28425 0.33277 0.32856
© I(\) 0.48123 0.60380  0.42992 0.41973 0.42333
d(\) 0.25216  0.29835 0.34257 0.33225
TABLE III
SENSITIVITY ANALYSIS—OBJECTIVE BEHAVIOR
By
Objective  Solution Worst
MGA Lipschitz
D (dBi) 11.92 11.88 44 79.5
1 pBr (dB) 44.90 33.40 158925 23.5x10°
s D (dBi) 12.05 11.99 73 74.8
2 FBR (dB) 19.99 18.46 1485 9650
TABLE IV
SENSITIVITY ANALYSIS—S2 PARAMETERS BEHAVIOR
B (uu) Reflector Feeder Director 1  Director 2 Director 3
/ 81 77 73 73 73
D
d 97 170 73 112
! 1544 1499 1485 1485 1485
FBR
d 1519 2640 1485 1740

Keeping S2 as an example (with +0.005X deviation for each
variable in analysis and +0.0025\ for the others), the worst
situation occurs for the distance between the feeder and the
first director parameter (170-2640), followed by the distance
between the second and the last director one (112-1740). In
other words, these two are the variables that degrade the antenna
performance most. The other parameters have almost the same
importance concerning the solution stability. Table IV displays
the values.

The proposed methodology gives us a satisfactory notion of
sensitivity; without any additional computational effort (new
evaluations of the problem), it is possible to determine which
solution maintains its characteristics in spite of real-world per-
turbations.

Furthermore, like in all stochastic optimization procedures
[1], it is often required to repeat the optimization process
to guarantee the correct result (here, the accuracy of the
Pareto-front). These repetitions only improve the sensitivity
study proposed here; we can use for it all the samples computed
during the successive runs.
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The analysis method described here uses direct variables.
In the case of indirect optimization parameters, such as series
coefficients, the proposed analysis could not have real meaning.
In that case, it may be necessary to create a parameterization
for the perturbation, related to that used in the optimization
process, in order to continue using the samples. It would also
be possible to work in a reverse approach (without using such
parameterization), accepting a percentage deviation for each
objective as tolerable; a finite domain of solutions would be de-
fined around the selected ones. We search into this domain for
the solution that has the maximal distance to the set extremes;
this is the most stable solution.

IV. CONCLUSION

This paper presents an easy way to perform the multiobjec-
tive optimization with sensitivity analysis. This is important in
order to consider the real-world design problems that cannot
be well controlled by the designer. The procedure is not exact,
but it gives us a satisfactory notion of sensitivity. Moreover, no
additional computation effort is necessary if the optimization
stochastic method works well (allowing a good exploration of
feasible search space).
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