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Abstract

We solve some decision problems for timed automata which were raised by

Tripakis in [9] and by Asarin in [3]. In particular, we show that one cannot

decide whether a given timed automaton is determinizable or whether the

complement of a timed regular language is timed regular.
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1 Introduction

We assume the reader to be familiar with the basic theory of timed languages and timed

automata (TA) [1].

The set of positive reals will be denoted R. A (finite length) timed word over a finite

alphabet Σ is in the form t1.a1.t2.a2 . . . tn.an, where, for all integers i ∈ [1, n], ti ∈ R and

ai ∈ Σ. It may be seen as a time-event sequence, where the ti ∈ R represent time lapses

between events and the letters ai ∈ Σ represent events. The set of all (finite length) timed

words over a finite alphabet Σ is the set (R×Σ)⋆. A timed language is a subset of (R×Σ)⋆.

The complement ( in (R×Σ)⋆ ) of a timed language L ⊆ (R×Σ)⋆ is (R×Σ)⋆ − L denoted

Lc.

We consider a basic model of timed automaton, as introduced in [1]. A timed automaton

A has a finite set of states and a finite set of transitions. Each transition is labelled with a

letter of a finite input alphabet Σ. We assume that each transition ofA has a set of clocks

to reset to zero and only diagonal-free clock guard [1]. As usual, we denote L(A) the

timed language accepted (by final states) by the timed automaton A. A timed language

L ⊆ (R × Σ)⋆ is said to be timed regular iff there is a timed automaton A such that

L = L(A).
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Many decision problems for timed automata have been studied and partially solved, see

[2] for a survey of these results. Some decision problems were recently raised by Tripakis

in [9] and by Asarin in [3]. We give in this paper the answer to several questions of

[9, 3]. In particular, we show that one cannot decide whether a given timed automaton is

determinizable or whether the complement of a timed regular language is timed regular.

For that purpose we use a method which is very similar to that one used in [4] to prove

undecidability results about infinitary rational relations.

2 Complementability and determinizability

We first state our main result about the undecidability of determinizability or regular com-

plementability for timed regular languages.

Theorem 2.1. It is undecidable to determine, for a given TAA, whether

1. L(A) is accepted by a deterministic TA.

2. L(A)c is accepted by a TA.

Proof. It is well known that the class of timed regular languages is not closed under

complementation. Let Σ be a finite alphabet and let a ∈ Σ. Let A be the set of timed

words in the form t1.a.t2.a . . . tn.a, where, for all integers i ∈ [1, n], ti ∈ R and there is

a pair of integers (i, j) such that i, j ∈ [1, n], i < j, and ti+1 + ti+2 + . . . + t j = 1. The

timed language A is formed by timed words containing only letters a and such that there

is a pair of a’s which are separated by a time distance 1. The timed language A is regular

but its complement can not be accepted by any timed automaton because otherwise this

timed automaton should have an unbounded number of clocks to check that no pair of a’s

is separated by a time distance 1, [1].

We shall use the undecidability of the universality problem for timed regular languages:

one cannot decide, for a given timed automatonA with input alphabet Σ, whether L(A) =

(R × Σ)⋆.

Let c be an additional letter not in Σ. For a given timed regular language L ⊆ (R × Σ)⋆,

we are going to construct another timed language L over the alphabet Γ = Σ∪ {c} defined

as the union of the following three languages.

• L1 = L.(R × {c}).(R × Σ)⋆

• L2 is the set of timed words over Γ having not any letters c or having at least two

letters c.

• L3 = (R × Σ)⋆.(R × {c}).A, where A is the above defined timed regular language

over the alphabet Σ.



The timed language L is regular because L and A are regular timed languages. There are

now two cases.

(1) First case. L = (R×Σ)⋆. ThenL = (R× (Σ∪{c}))⋆. ThereforeL has the minimum

possible complexity. L is of course accepted by a deterministic timed automaton

(without any clock). Moreover its complement Lc is empty thus it is also accepted

by a deterministic timed automaton (without any clock).

(2) Second case. L is strictly included into (R × Σ)⋆. Then there is a timed word

u = t1.a1.t2.a2 . . . tn.an ∈ (R × Σ)⋆ which does not belong to L. Consider now a

timed word x ∈ (R × Σ)⋆. It holds that u.1.c.x ∈ L iff x ∈ A. Then we have also :

u.1.c.x ∈ Lc iff x ∈ Ac.

We are going to show that Lc is not timed regular. Assume on the contrary that

there is a timed automaton A such that Lc = L(A). There are only finitely many

possible global states (including the clock values) of A after the reading of the

initial segment u.1.c. It is clearly not possible that the timed automaton A, from

these global states, accept all timed words in Ac and only these ones, for the same

reasons which imply that Ac is not timed regular. Thus Lc is not timed regular.

This implies that L is not accepted by any deterministic timed automaton because

the class of deterministic regular timed languages is closed under complement.

In the first case L is accepted by a deterministic timed automaton andLc is timed regular.

In the second case L is not accepted by any deterministic timed automaton and Lc is not

timed regular. But one cannot decide which case holds because of the undecidability of

the universality problem for timed regular languages. �

Below T A(n,K) denotes the class of timed automata having at most n clocks and where

constants are at most K. In [9], Tripakis stated the following problems which are similar

to the above ones but with “bounded resources".

Problem 10 of [9]. Given a TA A and non-negative integers n,K, does there exist a TA

B ∈ T A(n,K) such that L(B)c = L(A) ? If so, construct such a B.

Problem 11 of [9]. Given a TA A and non-negative integers n,K, does there exist a

deterministic TA B ∈ T A(n,K) such that L(B) = L(A) ? If so, construct such a B.

Tripakis showed that these problems are not algorithmically solvable. He asked also

whether these bounded-resource versions of previous problems remain undecidable if we

do not require the construction of the witness B, i.e. if we omit the sentence “If so con-

struct such a B" in the statement of Problems 10 and 11.

It is easy to see, from the proof of preceding Theorem, that this is actually the case be-

cause we have seen that, in the first case, L and Lc are accepted by deterministic timed

automata without any clock.



3 Minimization of the number of clocks

The following problem was shown to be undecidable by Tripakis in [9].

Problem 5 of [9]. Given a TAA with n clocks, does there exists a TA B with n−1 clocks,

such that L(B) = L(A) ? If so, construct such a B.

The corresponding decision problem, where we require only a Yes / No answer but no

witness in the case of a positive answer, was left open in [9].

Using a very similar reasoning as in the preceding section, we can prove that this problem

is also undecidable.

Theorem 3.1. Let n ≥ 2 be a positive integer. It is undecidable to determine, for a given

TAA with n clocks, whether there exists a TA B with n− 1 clocks, such that L(B) = L(A)

Proof. Let Σ be a finite alphabet and let a ∈ Σ. Let n ≥ 2 be a positive integer, and An be

the set of timed words in the form t1.a.t2.a . . . tk.a, where, for all integers i ∈ [1, k], ti ∈ R

and there are n pairs of integers (i, j) such that i, j ∈ [1, k], i < j, and ti+1+ti+2+. . .+t j = 1.

The timed language An is formed by timed words containing only letters a and such that

there are n pairs of a’s which are separated by a time distance 1. An is a timed regular

language but it can not be accepted by any timed automaton with less than n clocks.

Let c be an additional letter not in Σ. For a given timed regular language L ⊆ (R×Σ)⋆, we

construct another timed language Vn over the alphabet Γ = Σ ∪ {c} defined as the union

of the following three languages.

• Vn,1 = L.(R × {c}).(R × Σ)⋆

• Vn,2 is the set of timed words over Γ having not any letters c or having at least two

letters c.

• Vn,3 = (R × Σ)⋆.(R × {c}).An.

The timed language Vn is regular because L and An are regular timed languages. There

are now two cases.

(1) First case. L = (R × Σ)⋆. Then Vn = (R × (Σ ∪ {c}))⋆, thus Vn is accepted by a

(deterministic) timed automaton without any clock.

(2) Second case. L is strictly included into (R × Σ)⋆. Then there is a timed word

u = t1.a1.t2.a2 . . . tk.ak ∈ (R × Σ)⋆ which does not belong to L. Consider now a

timed word x ∈ (R × Σ)⋆. It holds that u.1.c.x ∈ Vn iff x ∈ An.

Towards a contradiction, assume thatVn is accepted by a timed automaton B with

at most n− 1 clocks. There are only finitely many possible global states (including

the clock values) of B after the reading of the initial segment u.1.c. It is clearly

not possible that the timed automaton B, from these global states, accept all timed

words in An and only these ones, because it has less than n clocks.



But one cannot decide which case holds because of the undecidability of the universality

problem for timed regular languages accepted by timed automata with n clocks, where

n ≥ 2. �

Remark 3.2. For timed automata with only one clock, the inclusion problem, hence also

the universality problem, have recently been shown to be decidable by Ouaknine and

Worrell [8]. Then the above method can not be applied. It is easy to see that it is decidable

whether a timed regular language accepted by a timed automaton with only one clock is

also accepted by a timed automaton without any clock.

4 Concluding remarks

We have restricted here the study to the case of finite timed words as in [9, 3]. However

the above results can be easily extended to the case of timed regularω-languages accepted

by Büchi timed automata.

The simple idea behind the proofs was already used in [4] and relies heavily on the unde-

cidability of the universality problem.

It could be easily used in other contexts, for instance to study the notion of ambiguity for

context-free languages. Ginsburg and Ullian proved in [5] that one cannot decide whether

a given context-free language is non-ambiguous or inherently ambiguous. We know that

the class of inherently ambiguous context-free languages can be partitioned in an infinite

hierarchy by considering the degree of ambiguity of a context-free language [6]. More-

over in recent works of Wich and Naji the context-free languages which are inherently

ambiguous of infinite degrees can also be distinguished by considering the growth-rate

of their ambiguity with respect to the length of the words [7, 10]. We are not aware of

published results about the decidability of membership to subclasses of context-free lan-

guages defined with these notions of degrees of ambiguity.

Using the undecidability of the universality problem for context-free languages and a sim-

ilar method as in this paper, we can easily prove results like: one cannot decide whether

a given context-free language has a degree of ambiguity which is smaller than k, where

k ≥ 2 is a positive integer, or which is smaller than “exponentially ambiguous" (in the

sense of Naji and Wich).
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