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Abstract

The identification of the flux for a system of conservation laws is studied from
a numerical point of view, on the specific example of chromatography.Different
strategies to compute the exact gradient of the discretized optimization problem are
developed and compared. Numerical evidence of the convergence of the method
is also given in the scalar and binary case. Finally a ternary mixture with real
experimental data is studied and the identified isotherm is compared with chemical
engineers results.
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1 Introduction

The accuracy of any kind of mathematical model relies on the precise knowledge of
all the involved parameters, in the widest sense. Among these one must think of the
initial data, which are only partially known in several applications (meteorology, for
instance), and state laws, appearing as nonlinearities in partial differential equations.
The inverse problem consists in recovering such data or parameters from experimental
observations, in order to improve the current model. Specific problems arise when the
governing equations are systems of nonlinear hyperbolic conservation laws, which are
involved in numerous examples in physics and chemistry. We focus in this paper on
the problem of identifying the flux in a system of conservation laws, motivated by the
specific example of chromatography.
The chromatography process is a powerful tool to separate oranalyze mixtures. It is
widely used in chemical industry (pharmaceutical, perfumeand oil industry, ...) to pro-
duce relatively high quantities of very pure components. Inthese conditions, diffusive
effects can be neglected, and the behavior can be reasonably modeled by the system of
mass balance law (see [15, 14] for more elements concerning models). The process is
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therefore mainly governed by a nonlinear function of the mixture concentrations, the
so-called isotherm function, which appears as the flux of thesystem. Thermodynamical
properties of the isotherm ensure that the resulting systemis hyperbolic.
The precise knowledge of the isotherm is crucial, from the theoretical viewpoint of
physico-chemical modeling, as well as the more practical preoccupation of accurately
governing the experiment to improve separation. Chromatography can be used to iden-
tify isotherms, but its application is limited because it requires a rather heavy exper-
imental apparatus. We describe here another approach, which consists in using nu-
merical simulations of the process in order to compare the solutions to experimental
outputs.
The problem consists in finding the parameters such that the solution of the model
is “as close as possible” to some experimental observation at a given position, which
means that a suitable cost function is chosen, typically a least square estimate of the
difference between the solution and the observation. We are thusconfronted with an
optimization problem, for which descent type methods are natural, so that computing
the gradient of the cost function is now the problem we focus on. Two strategies can
be followed. The first one consists in directly computing thedirectional derivative of
the cost function. It leads to a formula involving the solution to the linearized version
of the original system of conservation laws. The other one isa reformulation of the
problem in the spirit of control theory, which introduces anadjoint state, solution to a
backward system of linear transport equations. A major problem for both formulations
is that the coefficients in the linear equations are discontinuous as soon as shocks arise
in the nonlinear solution. Thus, a correct formulation for the gradient is presently out
of reach.
Therefore we turn to some discrete formulation of the problem, and we follow the
strategy which consists in computing the exact gradient of the discretized problem
rather than some arbitrary discretization of the continuous formulation. For the above
reasons, we do not try to prove any convergence results, but we give numerical evidence
that the schemes we obtain behave nicely when refining the discretization. We give also
a few elements of comparison between the two strategies.
The paper is organized as follows. In Section 2 we recall the physical context, sketch
the main properties of the model, and precisely state the identification problem. Section
3 is devoted to the computation of the gradient, from both theformal and numerical
point of view. Next we give numerical results for scalar equations and 2×2 systems (in
Section 4) and show an application on a real set of experimental data for a 3×3 system
(in Section 5). Finally, some technical computations are gathered in the Annex.

2 Description of the physical problem and model

We recall here the physics and chemistry principles underlying the chromatography
process. The separation results from the interaction between two phases in relative
movement. The experimental - or industrial - apparatus consists in a column filled with
a porous medium in which a neutral solvent circulates at a fixed velocity. A given con-
centration of the mixture is introduced at the head of the column during a limited time.
As the mixture makes its way down the column, part of it is adsorbed at the grain sur-
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face and forms what is called the stationary phase. The separation between the different
components of the mixture results from the competition between two phenomena: on
the one hand the mobile phase propagates obeying the fluid dynamics laws, on the other
hand the balance between the two phases relies on thermodynamical laws from which
the notion of diphasic equilibrium is defined.

2.1 Equations for the direct problem

It turns out that the actual experimental or industrial context allows to simplify the
hydrodynamical model to an extreme. Indeed, since the length of the column is large
compared to its diameter, we can safely neglect all radial effects, thus obtaining a one
dimensional model. Next, since the involved concentrations are high, precisely because
we wish to observe nonlinear effects, all diffusive phenomena can also be removed. We
do not need the energy conservation equation, because the experiment usually takes
place at constant temperature (more generally heat transfer effects can be neglected).
Finally, the velocity of the mobile phase is assumed to be constant and equal to the vec-
tor solvent. This last hypothesis is quite reasonable in thecase of liquid incompressible
mixtures, and once again this is relevant for lots of chromatography manipulations
(HPLC, High Performance Liquid Chromatography). All thesehypotheses amount to
simplify the physics and leave only the mass conservation tobe written.
The thermodynamical model sets to work complicated mechanisms in order to simulate
adsorption of the chemical components. Without going into details (see [15, 14]),
we merely recall the essential point which consists in supposing the existence and
uniqueness of a stable equilibrium state for the thermodynamical system of the two
phases.
More precisely, for a mixture ofp components, we denote byc1, c2 ∈ Rp with c j

i ≥ 0
for 1 ≤ i ≤ p and j = 1,2, the concentrations in phases 1 and 2, with respect to the total
volume in the column, of thep chemical components. The equilibrium is modeled by
a smooth functionh : Rp→ Rp, such thatc2 = h(c1). Furthermoreh has the following
properties

h(0) = 0, (1)

h′(c1) is diagonalizable with eigenvaluesµi(c1) > 0. (2)

The functionh is called anisotherm, which comes from the fact that the local equilib-
rium is reached at constant temperature. Chemistry literature on isotherms is plentiful
(see [15, 14] and bibliography herein). A very classical example of such an isotherm is
theLangmuir isotherm[19, 20]

hi(c) = N∗
Kici

1+
∑p

i=1 Kici
. (3)

The model here is completely determined byp + 1 parameters, the so-calledLang-
muir coefficients Ki , which are homogeneous to the inverse of a concentration, and the
saturation coefficient N∗, which corresponds to some limit concentration when the sta-
tionary phase is saturated. We shall mainly use this function, or variants of it, for our
numerical simulations throughout the paper.
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In order to write the mass conservation equation we considerthe two phases: the mobile
one - phase 1 - moves downward with a speedu > 0; the adsorbed phase - phase 2 -
has null speedv = 0. Therefore we have

∂t(c1 + c2) + ∂x(uc1) = 0. (4)

In this experimental setting, we can assume that the equilibrium between the two phases
is instantaneous (quasi-static process). At all times and everywhere in the column we
can write the closing relation between the concentrations in the two phases, using the
isotherm. Equation (4) can then be rewritten using only the mobile phase concentra-
tionsc ≡ c1



















∂xc+ ∂tF(c) = 0, t ∈ [0,T], x ∈ [0, L],
c(0, t) = cin jected(t),
c(x,0) = 0,

(5)

where the functionF is given by

F(c) =
1
u

(

c+
1− ε
ε

h(c)

)

, (6)

and 0< ε < 1 is the void fraction of the column.
Because of the properties of the isotherm (2), the system (5)is hyperbolic. Notice that
in (5), the time and space variables exchange their usual role: the evolution variable
is x here. This trick avoids the inversion of the functionF during simulations, and
is made possible because the eigenvaluesλi of F′ turn to be positive (this is a direct
computation using the positivity of theµi-s in (2)). This ensures that characteristics
always enter the quadrant{t > 0, x > 0}. To be a little bit more specific, notice that one
can check that 0< λi < u for all i, so that the “concentration waves” propagate with a
smaller velocity than the inert tracer: we actually model a retention phenomenon.
The injection of the mixture takes place at the head of the column during a limited time:
this boundary condition is given along with experimental data and has more or less the
shape of a notch. As an example Figure 1 shows the concentrations measured at the
output of the column as a function of time: these curves are called chromatograms. The
mixture under consideration has three different components (BA, PE, MBA) injected
in proportions 1 : 3 : 1 with the time injection profile denotedby ‘inj (BA)’ in the
figure.
For each component the experimental concentrations are displayed with symbols and
the concentrations computed with the model (5) and a specialisotherm function pro-
vided by the chemical engineers are displayed with lines (see (23), Table 5 and [24]).
In this experiment the component BA (�) has been clearly separated from the other two
(△ and�) with a peak in concentration reaching the bottom of the column half a minute
ahead of the other two. Another remarkable feature is the strong hyperbolic behavior
of the chromatograms with clearly identifiable shocks. Thisis due to the high level of
concentrations which makes this dataset a very interestingbenchmark, which will be
further studied in Section 5.
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Figure 1: Concentrations in BA, PE and MBA components at the column output.

2.2 Identification

A problem of major practical interest for chemical engineers consists in identifying
the physical parameters of the isotherm. Chromatography can be used as a tool to
obtain experimental values of pairs (c,h(c)). Several methods can be used for this, for a
synthetic review, see [18], and for a more complete discussion [15, 14]. For competitive
isotherms, that isc ∈ Rp with p > 1, the so-calledFrontal Analysis(FA) methods are
the only available. However, they are very slow and require significant amounts of
usually expensive pure chemicals. Furthermore, to obtain relevant information for a
function fromRp to Rp, one needs a significant number of such pairs (c,h(c)), and
each of them results from a heavy experiment. For instance, the isotherm in Section
5 below has been identified by a FA method from a set of 30 experimental points.
The PDE model is not used here, the parameters are obtained bydirect fitting on the
experimental measurements of isotherms.
The alternative approach we use here consists in using as observation the concentra-
tion profiles with respect to time at the output of the column (chromatograms). The
underlying principle is quite simple: one measures the concentrations in the mixture at
the exit of the column. The fit between these experimental data and the model is mea-
sured through a cost functionJ(F), which we choose here as the classical least squares
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observation:

J(F) =
1
2

∫ T

0
||cF(L, t) − cobs(t)||2 dt (7)

wherecF denotes the solution to (5), and||.|| is some norm onRp. This formulation
presumes that we have a complete knowledge of each componentof the mixture, as in
Figure 1. If the experimental apparatus does not provide such a measure, the obser-
vation is then the total concentration of the mixture, sayµobs(t), that is the sum of the
different components. In that case, the functionJ can be chosen as

J(F) =
1
2

∫ T

0
|

p
∑

i=1

cF i(L, t) − µobs(t)|2 dt.

For instance, had the dataset in Figure 1 be recorded as the sum of all three compo-
nents concentrations, the separation of the last two components would have been hardly
recognizable.
However, thanks to a higher experimental price, one can obtain such experimental
datasets where the concentrations could be measured separately, which of course en-
hances a lot the sensitivity of the cost function (7) with respect to the isotherm pa-
rameters. We will always use this type of datasets, artificially generated by numerical
simulation in Section 4, or experimentally obtained, in Section 5.
At this point, we emphasize the fact that, for practical applications, one cannot expect
to identify the isotherm directly as a function fromRp to Rp. Indeed, the problem is
severely ill-posed as soon as shocks are present in the observation, and no uniqueness
is ensured. Instead we prefer to identify the parameters of some given analytical model,
which enjoy a convenient physical interpretation, and sometimes can be roughly pre-
dicted from experimental data. For instance, consider the Langmuir isotherm (3). It
is completely determined by the knowledge of the coefficientsKi andN∗. On the one
hand,N∗ is a concentration at saturation for the porous medium, on the other hand, the
productsN∗Ki can be more or less accurately estimated from the data by picking on
the chromatograms the second crossing of each component of the concentration with
the time axis. These times correspond to the end of the rarefaction wave and are related
with the gradient of the flux function as

Ti =
L
u

(

1+
1− ε
ε

∂h
∂ci

(0)

)

.

If we denote byα = (α1, . . . , αq) the parameters of the isotherm to be identified, the
functional J(F) becomes a functioñJ(α) from Rq to R+, which has to be minimized
over some subset ofRq. For the Langmuir isotherm, we haveq = p+ 1, but for more
realistic (and complex) modelsq can be quite larger thanp.
Notice finally that the minimization problem as it is stated definitely does not fall into
classical settings. The functionJ has no reason to be convex, actually numerical results
show that there are local minima. Differentiability is an open problem (see below
Section 3). Thus one can think to use nonlocal optimization methods to address this
problem. There were indeed some attempts for chromatography, using evolutionary

6



algorithms (see [11, 9]). These methods present the advantage of requiring few a priori
knowledge onF (in particular they do not use any kind of derivative), but their main
drawback is that they require a large number of direct simulations of the numerical
model.

2.3 Discrete formulation

We now turn to the discrete version of the optimization problem, since the experimental
data will be provided at a discrete sampling rate. Furthermore the direct model cannot
be solved in its continuous version (5). We choose to obtain an approximate solution
by discretizing and solving it numerically using a standardfinite volume method, well
adapted to this type of hyperbolic system.
We define a uniform grid in time and space

x0 = 0 < x1 = ∆x < . . . < xk = k∆x < . . . < xK = K∆x = L,

t0 = 0 < t1 = ∆t < . . . < tn = n∆t < . . . < tN = N∆t = T,

where we will compute the solution using a Godunov scheme:

cn
k+1 = cn

k − λ
(

F(cn
k) − F(cn−1

k )
)

. (8)

Herecn
k is an approximation of the mean value of the solutionc at pointsxk = k∆x

and timestn = n∆t. In particularcn
0 is an approximation of the injection condition in

x0 = 0. Similarly, the initial conditionc(x, t = 0) = 0 is discretized asc0
k = cinitial (xk)

for k = 0, ...K.
There is no difficulty with this scheme which is known to be of order one in timeand
space (see [12]) given the nice monotonicity properties of the flux functionF: since
all eigenvalues ofF′ are positive, we are left with a simple upwind scheme. Remark
however that contrarily to standard use, it is here the spacevariable, that is the abscissa
along the column, which plays the role of evolution variablein the numerical scheme.
The cost function to be minimized can be obtained by discretizing (7) on this spatial
grid:

J̃(F) =
1
2
∆t

N
∑

n=1

||cn
K − cexp(tn)||2. (9)

One should note however that the definition of the discrete cost function is not as
straightforward as it seems: first of all, the optimization relies on the assumption that
the system (5) correctly models the experiment, hence thereexists a functionF, com-
pletely determined by a set of parametersα, for which the experimental data is solution
of it – up to measurements precision. Therefore, in the idealcase where the measure-
ments can be obtained with a sampling rate as small as possible and where the exact
solutionc(x, t;α) of (5) can be computed for any set of parametersα, the cost function
is

J̃(α) =
1
2
∆t

N
∑

n=1

||c(xK , tn;α) − cexp(tn)||2. (10)
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One should therefore question the convergence of the minimization algorithm when the
sampling rate∆t goes to zero. Do the parametersα minimizing (10) tend, to the limit
and in a sense to be defined, towards the parametersα which minimize (9)?
This is a very difficult problem, and in any case hardly useful from the practical point
of view since experimental data are far from perfect. Furthermore they are sampled on
a time grid most often very coarse with respect to the sampling rate necessary in order
to get a good numerical approximation of (5) using (8).
Therefore a good way of measuring the fit of the experiment andthe model is to fix
the discretization of the cost functionJ equal to the sampling rate of the experimen-
tal data, but to compute the model approximations ofc(xK , tn;α) with the numerical
scheme, with a discretization fine enough to ensure good convergence. This implies a
resampling on a coarser grid of numerical solution and of their gradient which is not yet
implemented in practice. The state of the art consists in interpolating the experimental
data on the fine numerical grid using linear interpolation.
Given the high theoretical difficulty of the convergence of the optimization process, we
will address in this study two intermediate problems which are interesting to understand
the minimization convergence and that we pose directly at the discretized level. Both
will be illustrated by numerical simulations.
First we define a discrete cost function

Ĵ(α) =
1
2
∆t

N
∑

n=1

||cn
K − ĉn

K ||2, (11)

whereĉn
K is the discrete solution computed with scheme (8) withα set equal to the

target value which we denote by ˆα. This functional has a global minimum in ˆα and we
will numerically illustrate that our minimization method correctly handles this simple
case, and is numerically stable when we let∆t go to 0.
In a second problem, we define the cost function as

J̃δ(α) =
1
2
∆t

N
∑

n=1

||cn
K − cδ(tn)||2, (12)

where the “experimental data”cδ is the numerical solution computed with the scheme
(8) withα set equal to the target values ˆα and a very fine discretization in time and space
δ, so that it correctly mimics the exact continuous solution of (5). The valuescδ(tn) are
obtained by resampling this solution on the coarser grid of sampling∆t. This time,
the global minimum ofJ̃δ is not trivially obtained in ˆα, except for the limit case where
∆t = δ, where we are back to the previous cost function (11) whereJ̃δ(α̂) = 0. Here
again we will numerically illustrate the convergence of theminimization algorithm as
∆t goes toδ.

3 Gradient computation

As soon as there is more than one parameter to identify, it is necessary to be able to
estimate the gradient of the cost function with respect to these parameters to ensure
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a good behavior of the descent methods. Finite difference estimation of the partial
derivatives can be used but they introduce additional sampling rates - in the parameters
directions - which have to be calibrated.
The gradient of the functionalJ with respect toF (or with respects to parametersα)
is hard to study directly starting from the continuous formulation (7)-(5). However,
in order to understand the kind of objects we have to deal with, we first perform some
formal computations at the continuous level, and present two possible strategies to get a
formulation of the gradient. As we shall see, the equivalence of the two formulations is
an open problem, and this suggests that the functional is notdifferentiable in general.
Notice by the way that, in the scalar case, it is in some sense Lipschitz continuous.
Indeed, several authors, see for instance Lucier [21], Bouchut and Perthame [7] for
conservation laws, Evje & al. [10] for degenerate parabolicequations, provideL1

dependance results of the entropy solution with respect to the flux. Application of
Hölder’s inequality gives then the result forJ.

3.1 Continuous equations

First, we compute some kind of directional derivative ofJ(F): let δF be some admissi-
ble direction, at this level one can think of any smooth function. Forλ > 0, we denote
by c (resp.cλ) the solution to (5) corresponding to the fluxF (resp.F + λδF), so that

J(F + λδF) − J(F)
λ

=

∫ T

0

〈

cλ(L, t) − c(L, t)
λ

,
cλ(L, t) + c(L, t)

2
− cobs(t)

〉

dt. (13)

Passing to the limitλ→ 0 in this relation is an open problem in general. Indeed on the
one hand, we can expect that

cλ(L, .) + c(L, .)
2

− cobs→ c(L, .) − cobs in L1
loc(R),

and this actually holds for scalar conservation laws, see [21, 7]. On the other hand, if
(cλ(L, t) − c(L, t))/λ has a limit, sayδc, it turns out thatδc has to solve the linearized
equation

{

∂xδc+ ∂t

(

∂cFδc
)

+ ∂tδF(c) = 0, t ∈]0,T[, x ∈]0, L[,
δc(0, t) = 0, δc(x,0) = 0,

(14)

where∂cF is the matrix of the partial derivatives ofF with respect to the concentrations
c

(∂cF)i, j =

(

∂Fi

∂c j

)

. (15)

The trouble here is that the solutions to (14) take values in the space of measures in
t, so that the only convergence one can hope is too weak to deal with the product in
(13). Several notions of solutions have been developed in this context, in the scalar
case. See, in the context of multidimensional transport equations, DiPerna-Lions [8],
Ambrosio [1] and Bouchut-James-Mancini [6]. For conservation equations, which are

9



involved here, see Bouchut-James [4] in the one-dimensional case, Poupaud-Rascle
[23] for multidimensional results. Notice that DiPerna-Lions and Ambrosio work with
renormalized solutions, and assume (roughly speaking) thedivergence of the velocity
field to be integrable. This is not the case here, because the velocity involves the
derivative ofc, which can be a nonpositive measure if shocks are present. One can
find a justification of weak convergence property in the scalar case, in the setting of
differentiation with respect to initial data, see [5]: it makes use of the duality solutions
developed in [4].
However, one can say that, at least formally, derivation in the directionδF leads to

J′(F) δF =
∫ T

0
〈c(L, t) − cobs(t), δc(L,dt)〉 ,

whereδc is some solution to the system (14). The first strategy to compute the gra-
dient of J consists therefore in finding some numerical evaluation of (16) and (14).
Discretizing (14) is not straightforward, we refer to [13] for some results in the scalar
case.
Notice that, if the functionF depends explicitly on a numberqof parameters (α1, . . . , αq),
then, instead of computing the derivative ofJ in some directionδF which is not clearly
defined, we have to compute the gradient ofJ with respect to theα j-s. Therefore we
considerp× q admissible directions, given by

δF = ∂αF (in matrix form),

(δF)i, j =

(

∂Fi

∂α j

)

, i = 1, . . . , p, j = 1, . . . ,q, (16)

and the system (14) has to be interpreted now as a matrix-valued equation, where the
components of the unknownδc are

(δc)i j = (∂αc)i j =
∂ci

∂α j
, i = 1, . . . , p, j = 1, . . . ,q.

Explicit expressions forδF and∂cF are given in Annex III below, for different isotherms.
Another possible expression forJ′(F) is obtained by reinterpreting the minimization
problem

min
F

1
2

∫ T

0
||cF(L, t) − cobs(t)||2 dt

as a constrained minimization problem:

min

{

J̃(v) =
1
2

∫ T

0
||v(t) − cobs(t)||2 dt, v(t) = cF(L, t) solution to (5)

}

. (17)

This formulation is rather classical in control theory and parameter identification, and
previous results on chromatography are based on it (see [25,16, 18]). For the sake of
completeness, we propose a detailed computation in Annex I below, and merely recall
the results here.
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The Lagrange multiplier corresponding to the constraint turns out to be a function
p(x, t), solution to the backward linear transport equation



















∂xp + ∂cF(c)T∂tp = 0, t ∈]0,T[, x ∈]0, L[,
p(L, t) = c(L, t) − cobs(t),
p(x,T) = 0.

(18)

Using the factJ̃(cF(L, t)) = J(F), and the Lagrangian corresponding to the constraint,
we get another formula for the gradient ofJ(F):

J′(F)δF =
∫ L

0
δF(cini(x))p(x,0)dx+

∫ L

0

∫ T

0
δF(c)∂tp dt dx (19)

for anyp solution to the adjoint equation (18).
The equivalence between (19) and (16) is justified only for smooth solutions, or under
specific assumptions in the scalar case, see [17]. See also Bardos and Pironneau [2]
in the case of differentiation with respect to the initial condition. A specific problem
when discontinuities occur in the solutionc to (5) is that uniqueness is not ensured for
the backward problem (18). Therefore stability problems can arise when discretizing
the equations. Also, as mentioned in [2], a crucial point to prove equivalence is a con-
venient definition of the nonconservative product∂cF× δc, whenδc is measure-valued.
This may indicate that the functionalJ is not differentiable in general. The nonunique-
ness of the adjoint equation might be related to the notion ofsubdifferential. For a
partial result in this direction, see [17], where the convergence of a viscous regularized
problem is studied. This remains a very interesting and difficult open question.

3.2 Discrete version

We propose now a strategy to obtain a numerical approximation for both formulations
of the gradient, and we also give some elements of comparisonbetween them. The
key strategy here is to compute the exact gradient of the discretized problem, instead
of applying arbitrary schemes to the above systems of PDE-s.Actually, we start from
a given scheme for the direct problem (5), and then mimic the derivation of the con-
tinuous formulæ for the gradient. This actually provides numerical schemes both for
(14) and (18), and it turns out that the numerical behavior isgood. A reason for this
could be that such discretizations implicitly define a nonconservative product which is
in some sense consistent with the equations. The detailed understanding of this phe-
nomenon, as well as the convergence of the discrete objects remain open problems up
to now. Concerning the adjoint formulation, a few steps in this direction can be found
in [17]: we have convergence of the sequence of discrete gradients, in the scalar case,
and provided the discontinuities ofcobsare exactly observed. The situation is worse for
the direct formulation, since we only have some consistencyand convergence results
for numerical schemes for (14), once again in the scalar case, see [13].
We proceed now to the derivation of the schemes, following the same strategy as in
the continuous case. Therefore we compute some exact gradient of the discretized
problem. We have the following lemma, which is proved in Annex II.
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Lemma 1 The gradient ofJ̃ is given by

J̃′δF ≡ lim
α→0

J̃(F + αδF) − J̃(F)
α

= ∆t
N

∑

n=0

(

cn
K − cexp(tn)

)T
δcn

K , (20)

whereδcn
k is computed with the scheme

δcn
k+1 = δc

n
k − λ

((

∂cF(cn
k)
)

δcn
k −

(

∂cF(cn−1
k )

)

δcn−1
k

)

− λ
(

δF(cn
k) − δF(cn−1

k )
)

, (21)

with δcn
0 = 0 andδc0

k = 0 as initial and boundary conditions.

By construction, the values obtained for the gradient usingthis method are rigorously
equal to the values obtained using the constrained formulation used until now for this
problem (see [25, 16, 18]).

J̃′(F)δF = −λ
N−1
∑

n=1

K−1
∑

k=0

δF(cn
k)

(

an
k+1 − an+1

k+1

)

+ λ

K−1
∑

k=0

δF(c0
k)a0

k+1 − λ
K−1
∑

k=0

δF(cN
k )aN−1

k+1 ,

wherea = (an
k)k,n is given by the so-called adjoint scheme of (8) (see Annex I)



























an
k = an

k+1 − λ
(

∂cF(cn+1
k )

)T (

an
k+1 − an+1

k+1

)

, 0 ≤ k < K,0 ≤ n ≤< N,

an
K = ∆t

(

cn+1
K − cexp(tn+1)

)

, 0 < n < N,
aN

k = 0, 0 ≤ k ≤ K.

(22)

Although it is difficult to justify theoretically the computation of the gradient using the
measure equation (14) when the discretization goes to 0, itsnumerical behavior is very
stable and can be interpreted in term of approximation of delta function as it will be
seen in the numerical simulations in following section.
Since they are equivalent in term of accuracy it is interesting to compare the two
schemes in term of numerical complexity. In the “direct derivation” method, the un-
known δc in the problem (21) is ap × q matrix which can be computed along with
the direct problem unknownc which is ap vector. On the other hand the unknowna
in the adjoint method is only ap vector - instead of ap × q matrix - but its compu-
tation requires to store the direct problem solutionc for the N times andK abscissa,
since the scheme (22) has final boundary conditions in time and space and its coeffi-
cients∂cF(cn

k) depend on the direct scheme solution. The memory requirement is then
N × p× q for thedirect derivationmethod andN × K × p for theadjointone. For one
evaluation of the gradient, both methods requireNK(p+q) calls to isotherm dependent
functionsδF and∂cF. In terms of elementary operations they also require of the order
of N×K×p×(q+p) multiplications in theadjointcase againstN×K×q×p2+N×q×p
in thedirect derivationcase. The leading order term is in both cases anO(p× N × K)
with a factorq + p in theadjointcase and a factorq × p in thedirect derivationcase.
We estimate that for reasonably small values of the number ofparametersq, the huge
memory requirement ofadjoint method makes it prohibitive compared to thedirect
derivation. Another argument in favor of the direct computation is the possibility of
computing both the solutionc and its derivativesδc on the same adaptive grid, while in
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N∗ 100. U 3
K′ 5 Inj 25
FlowRate 1 Porosity 0.59
CFL 0.8 # time steps 4000
Diameter 0.39 Length 15.

Table 1: Parameters of simulation in the scalar case
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Figure 2: Chromatogram simulated with Table 1

the adjoint method the solutions of the direct and adjoint problems can have disconti-
nuities in different places. The time varying adaptive grid devised to compute the direct
problem cannot be easily used to compute the adjoint solution.
On the other hand if the goal of the identification problem wasthe injection profile, in-
stead of the isotherm parameters, the number of unknowns would become large enough
to make the adjoint method more efficient than the direct derivation one (see [2, 22, 3]).

4 Numerical verification of the convergence

4.1 Scalar case

For this set of experiments we have simulated a chromatogramusing a Langmuir
isotherm with the parameters in Table 1.
The chromatogram is displayed on Figure 2. Using this as experimental data, we per-
form several identification of the isotherm parameters using different space and time
discretizations, from 200 to 4000 time steps. When we use the same discretization
as the one used to generate the dataset, we should and actually do recover the exact
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Figure 3: Distance of the optimization result to the target as a function of discretization
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Figure 5: First component of the measure solutionδc1(L, t) for Nt = 200,1000,2000
and 4000 times steps, convergence isotherm used in each case.

parameters of the isotherm. For coarser discretization thegradient identification con-
verges to a target slightly away from the true parameters butwhich converges towards
it with the discretization. This behavior is displayed on Figure 3 which represents in
logarithmic scale the distance between the result of the identification and the true target
in the parameters space (K′ andN∗) as a function of the time step.
The two curves correspond to identifications starting from different initial guesses (�
for K′ = 1.1, N∗ = 90) and (� for K′ = 0.9, N∗ = 150). This figure shows that
the descent algorithm converges towards a minimum independent of the starting point,
and which gets closer to the theoretical target as the discretization is refined. Figure
4 displays the evolution of the objective function with the iterations for two different
discretizations and the two initial guesses. When starting from (K′ = 1.1, N∗ = 90),�
indicate the behavior of the minimization done using 400 time steps and� correspond
to the 4000 time steps computation. The minimization starting from the other initial
guess (K′ = 0.9, N∗ = 150) is displayed with▽ for the 400 time steps computation and
△ for the 4000 one. The two coarse grid computations (� and▽) converge to roughly
the same level of 0.003 for the objective function, while the fine grid computations (�
and△) reach very small values below 10−9. For both discretizations the first initial
guess (K′ = 1.1, N∗ = 90 indicated by� and�) leads more rapidly to the convergence
state than the other initial guess indicated by the triangles.
Using the results of this convergence study, we can also perform a closer analysis of
the numerical behavior of the measure equation (21). For four different discretiza-
tions (Nt = 200,1000,2000 and 4000) we compute the solution to (21) using the best
isotherms parameters for the corresponding discretization, as recorded in Table 4.1. It
is a vector of two components corresponding to the derivatives of the concentration
with respect to the two parameters of the isothermsK′ andN∗. We display on Figure
5 the first coordinate at the output of the columnδcN∗ (L, t), on Figure 6 the second
oneδcK′ (L, t) and on Figure 7 the difference between the simulated and experimental
chromatogramsc(L, t) − cobs(t). The left hand side graphs display a zoom in the time
range of interest. When the convergence isotherm is used the derivatives converges
theoretically towards a delta function located at the shockposition (t = 2.41) and this
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Figure 6: Second component of the measure solutionδc1(L, t) for Nt = 200,1000,2000
and 4000 times steps, convergence isotherm used in each case.
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Nt K′ N∗

200 4.91223 97.5226
1000 4.9804 99.5889
2000 4.99402 99.8801
4000 5. 100.00

Table 2: Best parameters for different discretization in the scalar case
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Figure 8:c(L, t) − Cobs(t) andδc(L, t) for Nt = 1000 time steps, and three parameter
sets (N∗,K′) a) (90,4) b) (100,5) and c) (110,6).

behavior is well reproduced numerically on Figures 5 and 6. On Figure 7 one can verify
that the difference between the experimental and simulated chromatograms decreases
in amplitude as the discretization is refined.
We also display the solution of the measure equation computed with parameters of
the isotherm slightly away from the best fit, for two discretizationsNt = 1000 on
Figures 8 and 4000 on Figures 9. This last case corresponds tothe discretization used
to generate the “experimental” chromatogram, and the measure is a delta function when
the target parameters are used (middle graphs b) forN∗ = 100 andK′ = 5). In fact
derivatives computed for isotherms parameters away from the target value all look
like delta functions but positioned at the wrong time. The Figure 10 displays a zoom
of the derivatives obtained using the target parameters forthe two discretizations. It
corroborates clearly the convergence towards a delta function.
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Figure 9:c(L, t) − Cobs(t) andδc(L, t) for Nt = 4000 time steps, and three parameter
sets (N∗,K′) a) (90,4) b) (100,5) and c) (110,6).
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Figure 11: Chromatograms simulated with Table (3)

4.2 Binary mixture

We simulate in this case the two chromatograms displayed on Figure 11 using a Bi-
Langmuir isotherm for a two components mixture, namely

hi(c) = N∗1
K1

i ci

1+ K1
1c1 + K1

2c2
+ N∗2

K2
i ci

1+ K2
1c1 + K2

2c2
.

This model takes into account the fact that there are two possible kinds of adsorption
sites, and is determined by 6 coefficients, whose values are listed in Table 3. We used a
very refined discretization of 4000 time steps for each experiment, the second one until
T = 17, with a flow rate of 1.2 ml/minutes the first and third one untilT = 31, with a
flow rate of 0.6 ml/minutes. The CFL condition is conservatively ensured by imposing

∆x
∆t

sup
c

max
i
|λi(c)| < 0.8,

whereλi denote the eigenvalues ofF′ (see (6).
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component 1 component 2
K1 0.203564 0.283886 N∗1 14.30
K2 0.0325631 0.0407128 N∗2 120.55

experiment 1 2 3
component 1 2 1 2 1 2
injection 30.72 30.72 1.49 4.74 3.72 3.72

Table 3: Isotherm and injection parameters for the binary mixture simulation.
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Figure 12: Convergence history for different discretizations, starting fromN∗ =
(10,130).

We then perform identifications of the coefficientsN∗1 andN∗2, the coefficientsK1 and
K2 being kept equal to their theoretical values, which were used to generated the exper-
imental data. Different discretizations and initial guesses are used. All theresults tend
to verify the robustness of the identification algorithm. The behavior of the objective
function with the iterations of the minimization algorithmis displayed on Figure 12
for different discretizations. As expected the value of the objective function reached
at convergence diminishes for finer discretization. Less predictably, this simulation
shows that convergence is reached faster for coarser discretization. Figure 13 shows
the distance of the parameters found by the minimization algorithm with the target
parameters (used to generated the experimental chromatogram) There are two curves
on this figure, corresponding to two different initial guesses (N∗1,N

∗
2) = (130,10) and

(110,20). As expected, in both cases, the distance goes to zero when the discretiza-
tion is refined. The parameters reached by the minimization algorithm are displayed
for different discretizations and the two initial guesses on Figure14. Even for coarse
discretizations the dependence on the initial guess is verysmall.
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name/ # BA / 1 PE / 2 MBA / 3
Ki 0.01516 0.02341 0.02107
K′i = N∗i Ki 1.97 3.303 3.55
N∗i 129.99 141.09 168.50

Table 4: Isotherm parameters for the ternary mixture [24].

5 Application on real datasets

5.1 Experimental identification of isotherms

We test the identification method on real datasets which wereextensively studied by
Quiñones, Ford and Guiochon in [24]. This paper is remarkable because it provides a
very important set of isotherms measurements for a 3-components mixture: see Figure
15 below, where each symbol corresponds to a pair

(

c,h(c)
)

, and a different exper-
imental setting. Let us explain briefly how to read this kind of figures. There are
three components, 1= BA = benzylalcohol, 2= PE= 2−phenylethanol, 3= MBA =
2−methylbenzylalcohol. For each component,i = 1,2,3, the adsorbed quantityh(c)i

is displayed as a function of the total amount of mixture (c1+ c2+ c3), for five different
compositions of the mixture, namely⋄ for single-component,+ for 3 : 1 : 1 mixture1,
× for 1 : 1 : 1,◦ for 1 : 3 : 1 and� for 1 : 1 : 3 mixture.
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Figure 15: Isotherms experimental values and model values with the parameters of
Table 4.

In this paper the authors make use of an isotherm function slightly different from the
Langmuir isotherm, with six independent parameters

hi(c) = N∗i
Kici

1+
∑p

i=1 Kici
. (23)

They identify the coefficientsKi andN∗i for i = 1, . . . ,3 by fitting the curves obtained
with (23) with the experimental points for single componentmixtures (⋄ in Figure 15),
that is an amount of 30 experiments. The identified parameters are given in Table 4,
and all the lines displayed in Figure 15 represent the isotherm computed with these
values. Then simulated chromatograms are computed using (5), the modified isotherm

13 parts of BA, 1 part of PE and MBA
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law (23) with the values obtained for the six parameters, andvisually compared with
a set of seven experimental chromatograms, corresponding to different proportions of
the three components and different injection profiles. Two of them are displayed on
Figures 16. The left-hand side corresponds to a mixture of BA, PE, and MPA with
proportions 1 : 3 : 1, while the right-hand side corresponds to a mixture of BA, PE,
and MPA with proportions 3 : 1. Experimental profiles are represented with symbols.
The chromatograms computed with (5), and the values of parameters in Table 4 are
represented with dashed lines (−−), while solid lines (—) represent the chromatograms
computed with the values in Table 5 below.
Notice that these computations are performed with an injection condition recorded
from experimental data as well, see Figure 17, which is not a step function. The
influence of this realistic boundary condition on the shape of the chromatograms is
important, see [24] for a more detailed discussion. The left-hand injection profile cor-
responds to the 1 : 3 : 1 experiment, the right-hand one to 3 : 1.
Remark. From now on, all the numerical simulations we use are performed using
the Godunov scheme, with 1000 space points, 1391 time steps,and the gradient is
computed with the direct strategy described in Section 3.2.

5.2 Numerical identification of the isotherm

Now we bring our method into operation. We emphasize again that this is a completely
different identification strategy from the previous one, which makes use of direct mea-
surements of the isotherm. It is of course very reliable, butunfortunately such ex-
perimental estimates for isotherms are seldom available. On the contrary, our method
indeed makes use of indirect measurements, such as the two sets of chromatograms in
Figure 16 above as an observation, which are much easier to obtain experimental data.
In order to recover the coefficients with the same accuracy on each component and
to use the information from both datasets we consider the following weighted cost

function, whereγ j = 1/max
n

∣

∣

∣

∣

cexp(tn) j

∣

∣

∣

∣

:

J̃(α) =
1
2
∆t

∑

exp=1,2

3
∑

j=1

γ j

N
∑

n=1

∣

∣

∣

∣

cn
K j − cexp(tn) j

∣

∣

∣

∣

2
. (24)

As a first test, we start the descent with the parameters in Table 4 as an initial guess, the
value of the cost function is then 0.115, and we optimize on the whole set of six param-
eters. After convergence of the conjugate gradient optimization, its value is 0.0107, it
has been divided by ten and the parameters of the isotherm aredisplayed in Table 5.
The fit with the experimental isotherm is displayed on Figure15, the fit with experi-
mental chromatograms on Figure 16 with solid lines (—), together with the simulations
of [24] (dashed lines−−). Several comments are in order here.
First, it is clear that the fit on the isotherms is worse for simulated parameters. This
emphasize the fact that the kind of data we used to identify are completely different
from [24]. The concentration range of the chromatograms is not the same as in the
isotherm data, and in particular we have no information at all on the single-component
adsorption (⋄ in Figures 15 and 18), for which the simulated parameters arequite poor.
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Figure 16: Experimental chromatograms (symbols) and simulated chromatograms us-
ing parameters from Table 4 (−−) and Table 5 (–). BA and PE components (top), MBA
component (bottom).

name/ # BA / 1 PE / 2 MBA / 3
Ki 0.0137 0.0214 0.0206
K′i = N∗i Ki 1.78046 3.00974 3.47049
N∗i 129.986 141.07 168.495

Table 5: Isotherm parameters after optimization starting from Table 4.
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Figure 18: Isotherms experimental values and model values with the optimized param-
eters of Table 5.

24



name/ # BA / 1 PE / 2 MBA / 3
K′i = N∗i Ki 1.833 3.108 3.511

Table 6: Experimental values ofK′i , from [24]

starting point N∗BA/1 N∗PE/2 N∗MBA/3 initial cost final cost
value value

200. 200. 200. 120.937 134.14 169.401 0.206 0.00892
100. 100. 100. 123.724 135.768 158.81 0.411 0.00901
200. 200. 200. 124.059 135.537 159.29 0.432 0.00902
200. 100. 100. 123.342 135.968 157.67 0.292 0.00909
200. 100. 200. 123.373 135.704 159.637 0.174 0.00896
100. 200. 100. 120.003 133.503 173.244 0.122 0.00912
200. 200. 100. 124.167 135.949 157.592 0.237 0.00909
100. 100. 200. 118.536 133.099 178.772 0.210 0.00945
100. 150. 200. 116.171 133.053 182.999 0.046 0.00980
200. 150. 100. 124.46 136.054 156.623 0.071 0.00917
Mean value 122.614 135.441 165.685
Relative variance 0.09 0.030 0.45

Table 7: Isotherm parametersN∗ identified from several starting points.

On the other hand, the value of the cost function has been divided by ten, and it is
clear on Figure 16 that shocks are much better identified thanfrom the experimental
parameters. This is not very surprising, since all the numerical identification process is
based upon the hyperbolic model, which is very sensitive to the shock position.
Next, we tried another series of identification, taking intoaccount some experimental
values for the parametersK′i = N∗i Ki , which are given in [24], and recalled in Table 6
below (in the original paper, the displayed values areK′i × (1− ǫ)/ǫ, whereǫ = .59 is
the porosity of the medium). These values, corresponding to“analytical conditions”,
that is very small injected concentrations, are obtained with a good precision, and cor-
respond to the propagation at concentration zero, which is given byF′(0). Therefore,
we performed ten optimizations, keeping the valuesK′i constant, and with different
starting values for the three remaining parametersN∗i . The results are gathered in Ta-
ble 7. We notice that the cost function has been divided at least by a factor 10. The
third coefficient seems to be more difficult to identify (relative variance 0.45), maybe
because its concentration is rather small in one of the experiments. To give an illustra-
tion of this result, we display the chromatograms (Figure 19), for the fifth computation
(the values are extracted from the italic line of Table 7, andrecalled in Table 8). Con-
cerning isotherms, the results are comparable to those in Figure 18. The results on
chromatograms are good, in particular we still have the correct position of shocks,
which was not so good in [24].
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name/ # BA / 1 PE / 2 MBA / 3
Ki 0.01486 0.0229 0.02199
K′i = N∗i Ki 1.833 3.108 3.511
N∗i 123.373 135.704 159.637

Table 8: Isotherm parameters for the fifth experiment in Table 7.
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Figure 19: Experimental chromatograms and simulated chromatograms using opti-
mized parameters from Table 8, BA and PE components (top) andMBA component
(bottom).
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6 Conclusion

The computation of the gradient required to use a descent optimization method in the
flux identification for a system of conservation laws is now thoroughly studied from
a numerical point of view. The direct computation of the gradient from the original
problem, formulated with partial differential equations is still an open problem, even
in the scalar case. However, convergence with respect to thediscretization step is indi-
cated by all the numerical tests. Moreover, the applicationof the identification method
proved to be reliable in the case of a 3× 3 system fully documented in the Chemical
engineering literature. We emphasize that additional experimental information on the
parameters can drastically improve the results.
On the other hand, it is clear that the complexity of the objective function makes it
necessary to combine some global optimization method with the gradient, to avoid
for instance local minima. A first idea is to use the global method to find a good
starting point for the gradient (or any descent method), butmore intricate couplings
are currently under study, using evolutionary algorithms.Finally, the strategies for the
formulation of the discrete gradient have to be applied to more complete models, taking
into account for example diffusive effects, which are also widely used in Chemical
Engineering.

Annex I. Adjoint formulation for the gradient estima-
tion.

We describe in this annex the method to compute the gradient of the cost function (7)
with a weak formulation. This method has been described and used in [25] and [16],
but we give here the full computation, including the case of anon zero initial state,
which is used in Section 5.
The gradient with respect to the model parameters will be derived through a Lagrangian
formulation. We start with the development in the continuous case which gives a good
feeling for the method. We will next present the discrete Lagrangian model which is
actually used in the numerical simulations.

Gradient computation in the continuous case

The constraint for our optimization problem is that
cα is solution to (5).

In order to write a Lagrangian for this constraint, we first write a weak formulation:
E(c,p, α) = 0, ∀p, where the functionalE is obtained by multiplying the PDE in (5)
by a test functionp, as smooth asc, and integrating by parts on the domain [0, L] ×
[0,T]:

E(c,p, α) =

∫ L

0

∫ T

0
< (∂xc+ ∂tF(c)) ,p > dt dx

=

∫ T

0

(

[

< c,p >
]L
0 −

∫ L

0
< c, ∂xpdx>

)

dt
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+

∫ L

0

(

[

< F(c),p >
]T
0 −

∫ T

0
< F(c), ∂tp > dt

)

dx

=

∫ T

0
< c(L, t),p(L, t) > dt−

∫ T

0
< cin j(t),p(0, t) > dt

+

∫ L

0
< F(c(x,T)),p(x,T) > dx−

∫ L

0
< F(cini(x)),p(x,0) > dx

−
∫ L

0

∫ T

0
(< c, ∂xp > + < F(c), ∂tp >) dt dx.

The Lagrangian for the constrained minimization problem is

L(c,p, α) = J(c) − E(c,p, α). (25)

We notice that

J̃(α) = J(cα) = L(cα,p, α),

so that when we apply formally the chain rule, we obtain

J′(α)δα =
∂L
∂c

(cα,p, α)
∂c
∂F
δα +

∂L
∂α

(cα,p, α) δα.

Since it is hard to compute∂c
∂α
δα (for reasons mentioned in paragraph 3) we will choose

p such that∂L
∂c (cα,p, α) = 0 and will next computeJ̃′(α)δα = ∂L

∂α
(cα,p, α) δα for this

specialp.
When we differentiate the Lagrangian with respect toc, the terms involvingcin j and
cini disappear, because they are fixed data of the problem, the term < F(c), ∂tp > leads
to 〈∂cF(c)δc, ∂tp〉 = 〈δc, (∂cF(c))T ∂tp〉, so that, for the cost function (7), we have

∂L
∂c

=
∂J
∂c
− ∂E
∂c

=

∫ T

0
〈(c(L, t) − cobs(t)), δc〉dt−

∫ T

0
〈δc,p(L, t)〉dt

−
∫ L

0
〈δc, ∂cF(c(x,T))Tp(x,T)〉dx

+

∫ L

0

∫ T

0
〈δc,

(

∂xp + ∂cp(c)T∂tp
)

〉dt dx.

Putting this equal to 0 for all possibleδc can be interpreted as a weak formulation
of a linear transport equation forp, with a boundary condition onx = L, readily
given by the first two terms in this formula, and a final datum ont = T, which reads
∂cF(c(x,T))Tp(x,T) = 0. But since∂cF(c(x,T)) is invertible, we can finally choose
the adjointp solution to (18).
A formula for the gradient ofJ̃(α) is then obtained by picking anyp solution to (18)
and computing

J̃(α)δα =
∂L
∂α
δα = −∂E

∂α
δα
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=

∫ L

0
δF(cini(x))p(x,0)dx−

∫ L

0
δF(c(x,T))p(x,T) dx

+

∫ L

0

∫ T

0
δF(c)∂tp dt dx.

δF is obtained by differentiatingF with respect to the parameters we want to identify
(see (16) and annex III).

Discrete formulation

We first write the discrete analogue of formula (25) for the numerical scheme (8)

Ẽ(c,a, α) =

N
∑

n=1

K−1
∑

k=0

〈cn
k+1 − cn

k + λ
(

F(cn
k) − F(cn−1

k )
)

,an−1
k+1〉

=

N
∑

n=1

K−1
∑

k=0

〈cn
k+1,a

n−1
k+1〉 −

N
∑

n=1

K−1
∑

k=0

〈cn
k,a

n−1
k+1〉

+ λ

N
∑

n=1

K−1
∑

k=0

〈F(cn
k),an−1

k+1〉 − λ
N

∑

n=1

K−1
∑

k=0

〈F(cn−1
k ),an−1

k+1〉. (26)

Since we will not differentiate with respect to the termscn
0 which are fixed by the

injection condition, we set them apart. Furthermore, we move up thek indices in the
first sum and then indices in the fourth sum:

Ẽ(c,a, α) =

N
∑

n=1

K
∑

k=1

〈cn
k,a

n−1
k 〉 −

N
∑

n=1

K−1
∑

k=0

〈cn
k,a

n−1
k+1〉

+λ

N
∑

n=1

K−1
∑

k=0

〈F(cn
k),an−1

k+1〉 − λ
N−1
∑

n=0

K−1
∑

k=0

〈F(cn
k),an

k+1〉

=

N−1
∑

n=1

K−1
∑

k=1

{

〈cn
k,a

n−1
k 〉 − 〈cn

k,a
n−1
k+1〉 + λ

(

〈F(cn
k),an−1

k+1〉 − 〈F(cn
k),an

k+1〉
)}

+

K
∑

k=1

〈cN
k ,a

N−1
k 〉 +

N−1
∑

n=1

〈cn
K ,a

n−1
K 〉 −

K−1
∑

k=0

〈cN
k ,a

N−1
k+1 〉 −

N−1
∑

n=1

〈cn
0,a

n−1
1 〉

+ λ

















K−1
∑

k=0

〈F(cN
k ),aN−1

k+1 〉 +
N−1
∑

n=1

〈F(cn
0),an−1

1 〉 −
K−1
∑

k=0

〈F(c0
k),a0

k+1〉 −
N−1
∑

n=1

〈F(cn
0),an

1〉
















.

As in the continuous case, we write the discrete Lagrangian where the constraint
(

cn
k

)

solution of (8)

is taken into account bỹE(c,a, α) = 0. We are led to differentiateL̃(c,a, α) = J̃(c) −
Ẽ(c,a, α) with respect to all components of

(

cn
k

)

. One the one hand, we get for the cost
function

∂J̃
∂cn

k

=

{

∆t〈
(

cn
K − cexp(tn)

)

, δcn
k〉, 0 ≤ n ≤ N,

0, 0 ≤ k < K, 0 ≤ n ≤ N.
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On the other hand, the derivatives of the weak formulation are given by

∂Ẽ
∂cn

k

= 〈δcn
k,a

n−1
k − an−1

k+1〉 + λ〈∂cF(cn
k)δcn

k,
(

an−1
k+1 − an

k+1

)

〉

= 〈δcn
k,a

n−1
k − an−1

k+1 + λ
(

∂cF(cn
k)
)T (

an−1
k+1 − an

k+1

)

〉

for k = 1, . . . ,K − 1 andn = 1, . . . ,N − 1,

∂Ẽ
∂cn

K

= 〈δcn
K ,a

n−1
K 〉, 1 ≤ n ≤ N − 1,

∂Ẽ

∂cN
k

= 〈δcN
k ,a

N−1
k − aN−1

k+1 + λ
(

∂cF(cN
k )

)T
aN−1

k+1 〉, 1 ≤ k ≤ K − 1.

Imposing that all partial derivatives of̃L = J̃ − Ẽ with respect tocn
k must be zero, we

obtain the following formulæ foran
k:



























an−1
k = an−1

k+1 − λ
(

∂cF(cn
k)
)T (

an−1
k+1 − an

k+1

)

, 0 ≤ k < K, 0 < n ≤ N − 1,

an
K = ∆t

(

cn+1
K − cexp(tn+1)

)

, 0 < n < N,

aN−1
k = aN−1

k+1 − λ
(

∂cF(cN
k )

)T
aN−1

k+1 , 1 ≤ k ≤ K − 1.

(27)

In order to recover a discretization scheme for the continuous backward equation (18),
compatible with the final condition att = T, we are led to imposeaN

k = 0 for all
0 < k ≤ K, so that the third relation in (27) rewrites exactly as the first one, for
0 < n ≤ N and 0≤ k < K. Thus we obtain (22).
The gradient ofJ̃ for this adjoint is next computed by plugging it into (26) anddiffer-
entiatingẼ with respect toα. Only the two terms depending onF plays a role. We
obtain

J̃′(α)δα = −∂E
∂α
δα

= −λ
N

∑

n=1

K−1
∑

k=0

δF(cn
k)

(

an−1
k+1 − an

k+1

)

+ λ

K−1
∑

k=0

δF(c0
k)a0

k+1,

whereδF = ∂αFδα, (see (16) and Annex III below).

Annex II. Proof of Lemma 1

We study the limit of the Newton ratio

J̃(F + αδF) − J̃(F)
α

= ∆t
N

∑

n=0

〈

dn
K − cn

K

α
,
dn

K + cn
K

2
− cexp(tn)

〉

.
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wheredn
k is the solution of the Godunov scheme (8) associated to the perturbed flux

F + αδF

dn
k+1 = dn

k − λ
(

(F + αδF)(dn
k) − (F + αδF)(dn−1

k )
)

.

We actually prove that uniformly ink = 0, . . . ,K

lim
α→0
||dk − ck|| = 0 and lim

α→0
||dk − ck

α
− δcn

k|| = 0, (28)

whereδcn
k is given by the scheme (21) and

||ck|| = max
n=0,...,N

∣

∣

∣cn
k

∣

∣

∣ .

We setrn
k = dn

k − cn
k, which verifies























rn
k+1 − rn

k + λ
(

(F + αδF)(dn
k) − (F + αδF)(dn−1

k )
)

− λ
(

F(cn
k) − F(cn−1

k )
)

= 0,
rn

0 = 0,
r0

k = 0.

After some algebra, and provided thatF is smooth enough, we obtain that the quantity
zn

k = rn
k/α satisfies























zn
k+1 −

(

1− λ∂cF(cn
k)
)

zn
k − ∂cF(cn−1

k )zn−1
k + λ

(

δF(dn
k) − δF(dn−1

k )
)

= O(α, ||zk||2),
zn

0 = 0,
z0

k = 0.
(29)

We prove now that||zn|| ≤ M. Provided thatλ verifies a CFL conditionλ < 1/||∂cF||,
we have from (29)

||zk+1|| ≤ ||zk|| + a||zk||2 + b,

with a = Cλα whereC is a bound of||∂ccF|| andb = 2λ||δF||. Using||z0|| = 0 we obtain
by summation

||zK || ≤ a
K−1
∑

k=0

||zk||2 + Kb.

In order to bound||zk|| by M we therefore need to have

aKM2 − M + Kb ≤ 0 (30)

which can be true if 4abK2 < 1, in other words if

α <
1

8λ2C||δF||K2
.

In that case the smallest root of (30) provides a bound for||zk||

M =
1−
√

1− 4abK2

2aK
= λ||δF||K + O(α) <

λ

2
||δF||K,
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here again, provided thatα is sufficiently small. Sincern
k = αz

n
k, this proves the first

limit in (28).
Now, for the difference∆n

k = zn
k − δc

n
k, we obtain in the same way, using the bound on

||zk||, and ifδF is smooth enough,

∆n
k+1 − ∆n

k

(

1− λ∂cF(cn
k)
)

− ∂cF(cn−1
k )∆n−1

k = O(α).

We use againλ < 1/||∂cF|| to obtain that, forα small enough,

||∆k+1|| ≤ ||∆k|| + O(α).

Since||∆0|| = 0, this gives in turn

||∆k|| ≤ O(α).

Therefore, for a given discretization,||∆k|| → 0 whenα→ 0. �

Annex III. Gradient of isotherms

We have put together in this annex the explicit formulæ to compute theδF involved in
(28) or (20–21), for several isotherms functionsh (see (16) and (6)).
In the case of Langmuir isotherm (3), one can optimize with respect to the parameters
N∗ and (Ki)

p
i=1. In that case the partial derivatives are

(

∂h(c)
∂N∗

)

i

=
Kici

1+
p

∑

j=1

K jc j

,

(

∂h(c)
∂Kl

)

i

= N∗
δli ci

1+
p

∑

j=1

K jci

− N∗
Kicicl

(1+
p

∑

j=1

K jc j)
2

.
(31)

One can also write this isotherm as a function ofN∗ and (K′i = N∗Ki)
p
i=1.

hi(c) = N∗
K′i ci

N∗ +
p

∑

j=1

K′jc j

.

This last option is often more interesting because experimental chromatograms provide
us with a reliable and direct estimation of theK′i values. Partial derivatives with respect
to N∗ andK′i are

(

∂h(c)
∂N∗

)

i

=

K′i ci

p
∑

j=1

K′jc j

(N∗ +
p

∑

j=1

K′jc j)
2

,

(

∂h(c)
∂K′l

)

i

= N∗
δli ci

N∗ +
p

∑

j=1

K′jci

− N∗
K′i cicl

(N∗ +
p

∑

j=1

K′jc j)
2

. (32)
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The Bi-Langmuir isotherm (23) used to validate the binary mixture identification has
the following partial derivatives
(

∂h(c)
∂N∗l

)

i

=
K l

i ci

1+
p

∑

j=1

K l
jc j

,

(

∂h(c)
∂Km

l

)

i

= N∗m
δli ci

1+
p

∑

j=1

Km
j ci

− N∗m
Km

i cicl

(1+
p

∑

j=1

Km
j c j)

2

.
(33)

In the case of the isotherm (23) used to model the experimental data there are 2p
parameters (N∗i )i=1,...,p and (Ki)i=1,...,p versus which the derivatives are the following

(

∂h(c)
∂N∗l

)

i

= δli
Kici

1+
p

∑

j=1

K jc j

,

(

∂h(c)
∂Kl

)

i

= N∗i
δli ci

1+
p

∑

j=1

K jci

− N∗i
Kicicl

(1+
p

∑

j=1

K jc j)
2

.
(34)

As done in the Langmuir case, this isotherm can be rewritten as a function of the (N∗i )p
i=1

and (K′i = N∗i Ki)
p
i=1

hi(c) =
K′i ci

1+
p

∑

j=1

K′jc j

N∗j

.

Partial derivatives with respect toN∗i andK′i are
(

∂h(c)
∂N∗l

)

i

=
K′i K

′
l cicl

N∗l
2

















1+
p

∑

j=1

K′jc j

N∗j

















2
,

(

∂h(c)
∂K′l

)

i

=
δli ci

1+
p

∑

j=1

K′jc j

N∗j

−
K′i cicl

N∗l

















1+
p

∑

j=1

K′jc j

N∗j

















2
.
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