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Numerical gradient methods for flux
identification in a system of conservation laivs

Francois JamesMarie Postef

Abstract

The identification of the flux for a system of conservation laws is studied fro
a numerical point of view, on the specific example of chromatograpifferent
strategies to compute the exact gradient of the discretized optimizatioleprabe
developed and compared. Numerical evidence of the convergérice method
is also given in the scalar and binary case. Finally a ternary mixture with rea
experimental data is studied and the identified isotherm is compared withagiem
engineers results.

Keywords: hyperbolic systems of conservation laws — flux identifiaatiodiscrete
gradient method — chromatography — measure-valued sofutio

1 Introduction

The accuracy of any kind of mathematical model relies on tleeipe knowledge of
all the involved parameters, in the widest sense. Amongetbes must think of the
initial data, which are only partially known in several apptions (meteorology, for
instance), and state laws, appearing as nonlinearitieartiapdifferential equations.
The inverse problem consists in recovering such data onpeteas from experimental
observations, in order to improve the current model. Spepifiblems arise when the
governing equations are systems of nonlinear hyperbolisewation laws, which are
involved in numerous examples in physics and chemistry. &ead in this paper on
the problem of identifying the flux in a system of conservatiavs, motivated by the
specific example of chromatography.

The chromatography process is a powerful tool to separadémalyze mixtures. It is
widely used in chemical industry (pharmaceutical, perfame oil industry, ...) to pro-
duce relatively high quantities of very pure componentghise conditions, dusive
effects can be neglected, and the behavior can be reasonabdjeddny the system of
mass balance law (see [15, 14] for more elements concernimigls). The process is
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therefore mainly governed by a nonlinear function of thetom& concentrations, the
so-called isotherm function, which appears as the flux oéylséem. Thermodynamical
properties of the isotherm ensure that the resulting sysdiyperbolic.

The precise knowledge of the isotherm is crucial, from thepthtical viewpoint of
physico-chemical modeling, as well as the more practiceb@eupation of accurately
governing the experiment to improve separation. Chronrafdyy can be used to iden-
tify isotherms, but its application is limited because fuies a rather heavy exper-
imental apparatus. We describe here another approachhwbitsists in using nu-
merical simulations of the process in order to compare thaisos to experimental
outputs.

The problem consists in finding the parameters such thatdhgien of the model
is “as close as possible” to some experimental observatiangaven position, which
means that a suitable cost function is chosen, typicallyaatlsquare estimate of the
difference between the solution and the observation. We arectimisonted with an
optimization problem, for which descent type methods ataral so that computing
the gradient of the cost function is now the problem we foausTwo strategies can
be followed. The first one consists in directly computing directional derivative of
the cost function. It leads to a formula involving the sadutio the linearized version
of the original system of conservation laws. The other one ieformulation of the
problem in the spirit of control theory, which introducesadjoint state, solution to a
backward system of linear transport equations. A majorlpraldor both formulations
is that the cofficients in the linear equations are discontinuous as soomcaks arise
in the nonlinear solution. Thus, a correct formulation tog gradient is presently out
of reach.

Therefore we turn to some discrete formulation of the pnobland we follow the
strategy which consists in computing the exact gradienthefdiscretized problem
rather than some arbitrary discretization of the contirsuimumulation. For the above
reasons, we do not try to prove any convergence results,dgiwe numerical evidence
that the schemes we obtain behave nicely when refining thetization. We give also
a few elements of comparison between the two strategies.

The paper is organized as follows. In Section 2 we recall thesigal context, sketch
the main properties of the model, and precisely state thdifition problem. Section
3 is devoted to the computation of the gradient, from bothfthmal and numerical
point of view. Next we give numerical results for scalar eépres and 2 2 systems (in
Section 4) and show an application on a real set of experahdata for a X 3 system
(in Section 5). Finally, some technical computations ateegy@d in the Annex.

2 Description of the physical problem and model

We recall here the physics and chemistry principles undeglyhe chromatography
process. The separation results from the interaction legtviwo phases in relative
movement. The experimental - or industrial - apparatusistsis a column filled with
a porous medium in which a neutral solvent circulates at afiedocity. A given con-
centration of the mixture is introduced at the head of themol during a limited time.
As the mixture makes its way down the column, part of it is adsd at the grain sur-



face and forms what is called the stationary phase. The sgpabetween the ffierent
components of the mixture results from the competition leetwtwo phenomena: on
the one hand the mobile phase propagates obeying the fluadygs laws, on the other
hand the balance between the two phases relies on thermuibaidaws from which
the notion of diphasic equilibrium is defined.

2.1 Equations for the direct problem

It turns out that the actual experimental or industrial eahtallows to simplify the
hydrodynamical model to an extreme. Indeed, since the heafgthe column is large
compared to its diameter, we can safely neglect all radiatts, thus obtaining a one
dimensional model. Next, since the involved concentratame high, precisely because
we wish to observe nonlineaftects, all ditusive phenomena can also be removed. We
do not need the energy conservation equation, because pleeiraent usually takes
place at constant temperature (more generally heat traeéets can be neglected).
Finally, the velocity of the mobile phase is assumed to betzon and equal to the vec-
tor solvent. This last hypothesis is quite reasonable icése of liquid incompressible
mixtures, and once again this is relevant for lots of chragetphy manipulations
(HPLC, High Performance Liquid Chromatography). All thésg@otheses amount to
simplify the physics and leave only the mass conservatidretaritten.

The thermodynamical model sets to work complicated meshasin order to simulate
adsorption of the chemical components. Without going irgtails (see [15, 14]),
we merely recall the essential point which consists in sapmpthe existence and
unigueness of a stable equilibrium state for the thermoayee system of the two
phases. _

More precisely, for a mixture o components, we denote lof, > € RP with ciJ >0
for1<i < pandj = 1,2, the concentrations in phases 1 and 2, with respect to thle to
volume in the column, of thg chemical components. The equilibrium is modeled by
a smooth functiom : RP — RP, such that? = h(c'). Furthermoréh has the following
properties

h(0) =0, 1)
h’(c') is diagonalizable with eigenvalueg;(ct) > 0. (2)

The functionh is called arisotherm which comes from the fact that the local equilib-
rium is reached at constant temperature. Chemistry litezain isotherms is plentiful
(see [15, 14] and bibliography herein). A very classicahegke of such an isotherm is
the Langmuir isothernjl9, 20]

Kici

hi(c) = N ————.
(© ].+Zip:1 Kici

3
The model here is completely determined by 1 parameters, the so-callécng-
muir cogficients K, which are homogeneous to the inverse of a concentratiahthan
saturation cogicient N, which corresponds to some limit concentration when the sta
tionary phase is saturated. We shall mainly use this functo variants of it, for our
numerical simulations throughout the paper.



In order to write the mass conservation equation we contiiégwo phases: the mobile
one - phase 1 - moves downward with a spaed 0; the adsorbed phase - phase 2 -
has null speed = 0. Therefore we have

A (ct + &) + dy(uch) = 0. (4)

In this experimental setting, we can assume that the equititbetween the two phases
is instantaneous (quasi-static process). At all times ardyehere in the column we

can write the closing relation between the concentrationthe two phases, using the
isotherm. Equation (4) can then be rewritten using only tlobite phase concentra-
tionsc = ¢t

¢(0,t) = Cinjected(t), (5)

0xc+0F(c)=0, te[0,T], xe][O,L],
c(x,0) =0,

where the functiorr is given by

F(©) = (c 1o 8h(c)) , (6)

u £
and O< ¢ < 1 is the void fraction of the column.
Because of the properties of the isotherm (2), the systeris {(g)perbolic. Notice that
in (5), the time and space variables exchange their usual tbe evolution variable
is x here. This trick avoids the inversion of the functiBnduring simulations, and
is made possible because the eigenvaliesf F’ turn to be positive (this is a direct
computation using the positivity of thg-s in (2)). This ensures that characteristics
always enter the quadrafit> 0, x > 0}. To be a little bit more specific, notice that one
can check that & 4; < ufor all i, so that the “concentration waves” propagate with a
smaller velocity than the inert tracer: we actually modettemtion phenomenon.
The injection of the mixture takes place at the head of thernalduring a limited time:
this boundary condition is given along with experimentabdand has more or less the
shape of a notch. As an example Figure 1 shows the concemnsatieasured at the
output of the column as a function of time: these curves dtedcahromatograms. The
mixture under consideration has thre&elient components (BA, PE, MBA) injected
in proportions 1 : 3 : 1 with the time injection profile denotey ‘inj (BA)' in the
figure.
For each component the experimental concentrations gotaged with symbols and
the concentrations computed with the model (5) and a spiscigderm function pro-
vided by the chemical engineers are displayed with lines (88), Table 5 and [24]).
In this experiment the component BA) has been clearly separated from the other two
(2 ando) with a peak in concentration reaching the bottom of themoltalf a minute
ahead of the other two. Another remarkable feature is ttumgthyperbolic behavior
of the chromatograms with clearly identifiable shocks. Téidue to the high level of
concentrations which makes this dataset a very interebgmghmark, which will be
further studied in Section 5.
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Figure 1: Concentrations in BA, PE and MBA components at tieran output.

2.2 ldentification

A problem of major practical interest for chemical engirseeonsists in identifying
the physical parameters of the isotherm. Chromatographybeaused as a tool to
obtain experimental values of paircs [i(c)). Several methods can be used for this, for a
synthetic review, see [18], and for a more complete disond4i5, 14]. For competitive
isotherms, that is € RP with p > 1, the so-calledrrontal Analysis(FA) methods are
the only available. However, they are very slow and requigeicant amounts of
usually expensive pure chemicals. Furthermore, to ob&levant information for a
function fromRP to RP, one needs a significant number of such pair#(c)), and
each of them results from a heavy experiment. For instaheeisbtherm in Section

5 below has been identified by a FA method from a set of 30 exyarial points.
The PDE model is not used here, the parameters are obtaindidely fitting on the
experimental measurements of isotherms.

The alternative approach we use here consists in using asvalisn the concentra-
tion profiles with respect to time at the output of the coluranrématograms). The
underlying principle is quite simple: one measures the entrations in the mixture at
the exit of the column. The fit between these experimental datl the model is mea-
sured through a cost functial{F), which we choose here as the classical least squares



observation:

.
W) = 5 [ et - e e )

wherecr denotes the solution to (5), arfid| is some norm orRP. This formulation
presumes that we have a complete knowledge of each compairtbet mixture, as in
Figure 1. If the experimental apparatus does not providé sumeasure, the obser-
vation is then the total concentration of the mixture, gay4t), that is the sum of the
different components. In that case, the functiaman be chosen as

T P
WO = 5 [ 1oL - P
i=1

For instance, had the dataset in Figure 1 be recorded as thefsall three compo-
nents concentrations, the separation of the last two coemgenvould have been hardly
recognizable.

However, thanks to a higher experimental price, one canirolsiach experimental
datasets where the concentrations could be measured tedyardnich of course en-
hances a lot the sensitivity of the cost function (7) withpexs to the isotherm pa-
rameters. We will always use this type of datasets, artifjcgenerated by numerical
simulation in Section 4, or experimentally obtained, int#ec5.

At this point, we emphasize the fact that, for practical agtions, one cannot expect
to identify the isotherm directly as a function frarR? to RP. Indeed, the problem is
severely ill-posed as soon as shocks are present in thevalisaer and no uniqueness
is ensured. Instead we prefer to identify the parametersroégiven analytical model,
which enjoy a convenient physical interpretation, and gones can be roughly pre-
dicted from experimental data. For instance, consider tnggmuir isotherm (3). It
is completely determined by the knowledge of thefiorentsK; andN*. On the one
hand,N* is a concentration at saturation for the porous medium, emther hand, the
productsN*K; can be more or less accurately estimated from the data byngidn
the chromatograms the second crossing of each compondmt ebhcentration with
the time axis. These times correspond to the end of the di@favave and are related
with the gradient of the flux function as

Ti:E(_’]_+
u

1-&6h
a—q(o’)'

If we denote bya = (a1,...,aq) the parameters of the isotherm to be identified, the
functional J(F) becomes a functiod(a) from RY to R., which has to be minimized
over some subset @Y. For the Langmuir isotherm, we hage= p + 1, but for more
realistic (and complex) modetscan be quite larger tham

Notice finally that the minimization problem as it is statefiditely does not fall into
classical settings. The functiagrhas no reason to be convex, actually numerical results
show that there are local minima. fRirentiability is an open problem (see below
Section 3). Thus one can think to use nonlocal optimizati@thads to address this
problem. There were indeed some attempts for chromatograging evolutionary



algorithms (see [11, 9]). These methods present the ady@aofaequiring few a priori
knowledge orf (in particular they do not use any kind of derivative), bugithmain

drawback is that they require a large number of direct sitiaria of the numerical
model.

2.3 Discrete formulation

We now turn to the discrete version of the optimization peotl since the experimental
data will be provided at a discrete sampling rate. Furtheentize direct model cannot
be solved in its continuous version (5). We choose to obtaiagproximate solution
by discretizing and solving it numerically using a standiimde volume method, well
adapted to this type of hyperbolic system.

We define a uniform grid in time and space

Xo=0<X=AX<...<X=kAx<...<xx = KAx=L,
lh=0<ti=At<...<th=nAt<... <ty =NAt=T,

where we will compute the solution using a Godunov scheme:

Gr = &~ A(F(S) - F(&). (8)

Herecy is an approximation of the mean value of the solutioat pointsxc = KAX
and timest, = nAt. In particularc] is an approximation of the injection condition in
Xo = 0. Similarly, the initial conditiorc(x,t = 0) = 0 is discretized asck’ = Cinitial (%)
fork=0,..K.

There is no diiculty with this scheme which is known to be of order one in tiamel
space (see [12]) given the nice monotonicity propertiehefflux functionF: since
all eigenvalues of’ are positive, we are left with a simple upwind scheme. Remark
however that contrarily to standard use, itis here the spagable, that is the abscissa
along the column, which plays the role of evolution variahléhe numerical scheme.
The cost function to be minimized can be obtained by distiregi(7) on this spatial
grid:

N
J(F) = %Atz Ik — Cexplto)lI>. 9)
n=1

One should note however that the definition of the discrest function is not as
straightforward as it seems: first of all, the optimizatietigs on the assumption that
the system (5) correctly models the experiment, hence #hésts a functiort-, com-
pletely determined by a set of parametey$or which the experimental data is solution
of it — up to measurements precision. Therefore, in the idas¢ where the measure-
ments can be obtained with a sampling rate as small as pessibl where the exact
solutionc(x, t; @) of (5) can be computed for any set of parametgrthe cost function
is

N
) = 300" ek, i) ~ Congl” (10
n=1



One should therefore question the convergence of the niation algorithm when the
sampling rateAt goes to zero. Do the parametersninimizing (10) tend, to the limit
and in a sense to be defined, towards the parametetgch minimize (9)?

This is a very dificult problem, and in any case hardly useful from the prakgoat

of view since experimental data are far from perfect. Furtiuge they are sampled on
a time grid most often very coarse with respect to the samphte necessary in order
to get a good numerical approximation of (5) using (8).

Therefore a good way of measuring the fit of the experimenttaadnodel is to fix
the discretization of the cost functicghequal to the sampling rate of the experimen-
tal data, but to compute the model approximationg(ak, t,; @) with the numerical
scheme, with a discretization fine enough to ensure goodecgexce. This implies a
resampling on a coarser grid of numerical solution and af tradient which is not yet
implemented in practice. The state of the art consists erjiatiating the experimental
data on the fine numerical grid using linear interpolation.

Given the high theoretical fliculty of the convergence of the optimization process, we
will address in this study two intermediate problems whihiateresting to understand
the minimization convergence and that we pose directlyatthcretized level. Both
will be illustrated by numerical simulations.

First we define a discrete cost function

N

~ 1 .

Ja) = éAtZ llch — &1, (12)
n=1

whereCy is the discrete solution computed with scheme (8) witbet equal to the
target value which we denote ly This functional has a global minimum ingnd we
will numerically illustrate that our minimization methodmrectly handles this simple
case, and is numerically stable when weAego to 0.

In a second problem, we define the cost function as

- 1 O
Jia) = SAt ) liek ~ cs(t)IP. (12)
n=1

where the “experimental dataj is the numerical solution computed with the scheme
(8) with a set equal to the target valuesfd a very fine discretization in time and space
6, so that it correctly mimics the exact continuous solutib(bd. The valuesxs(t,) are
obtained by resampling this solution on the coarser gridaofiiding At. This time,
the global minimum ofJ; is not trivially obtained inx; except for the limit case where
At = &, where we are back to the previous cost function (11) whigf&) = 0. Here
again we will numerically illustrate the convergence of thimimization algorithm as
At goes tos.

3 Gradient computation

As soon as there is more than one parameter to identify, kdessary to be able to
estimate the gradient of the cost function with respect és¢hparameters to ensure



a good behavior of the descent methods. Finiféetgnce estimation of the partial
derivatives can be used but they introduce additional sagphtes - in the parameters
directions - which have to be calibrated.

The gradient of the functional with respect td~ (or with respects to parametar3

is hard to study directly starting from the continuous folation (7)-(5). However,
in order to understand the kind of objects we have to deal, withfirst perform some
formal computations at the continuous level, and presempgsible strategies to get a
formulation of the gradient. As we shall see, the equivadesfche two formulations is
an open problem, and this suggests that the functional idifferentiable in general.
Notice by the way that, in the scalar case, it is in some seipschitz continuous.
Indeed, several authors, see for instance Lucier [21], Bauand Perthame [7] for
conservation laws, Evje & al. [10] for degenerate parabeliciations, provide.*
dependance results of the entropy solution with respedbeditux. Application of
Holder’s inequality gives then the result for

3.1 Continuous equations

First, we compute some kind of directional derivativel(f): let 5SF be some admissi-
ble direction, at this level one can think of any smooth fiorct Fori > 0, we denote
by c (resp.c,) the solution to (5) corresponding to the flexresp.F + A6F), so that

JFE+6F) - J(F) [T /ca(L,t) —c(L,) ci(L,t)+c(L,1)
A _fo < A ’ 2

- cobs(t)> . (13)

Passing to the limif — 0 in this relation is an open problem in general. Indeed on the
one hand, we can expect that

c(L,.) +c(L,.)

2 — Cobs — C(L» ) — Cobs in L&)C(R),

and this actually holds for scalar conservation laws, séeqR On the other hand, if
(ca(L,t) = c(L,t))/4 has a limit, sayc, it turns out thatic has to solve the linearized
equation

0x3C + 0(0cFoC) + 610F(c) =0, t€l0, T[, xe€o, L, (14)
6c(0,t) = 0, oc(x,0) = 0,

whered.F is the matrix of the partial derivatives Bfwith respect to the concentrations
c

OF;
0 = (5 (15)
The trouble here is that the solutions to (14) take valuetiénspace of measures in
t, so that the only convergence one can hope is too weak to démthe product in

(13). Several notions of solutions have been developedisnctintext, in the scalar
case. See, in the context of multidimensional transporagous, DiPerna-Lions [8],

Ambrosio [1] and Bouchut-James-Mancini [6]. For consdoraequations, which are



involved here, see Bouchut-James [4] in the one-dimenbkitase, Poupaud-Rascle
[23] for multidimensional results. Notice that DiPernashs and Ambrosio work with
renormalized solutions, and assume (roughly speakinglitieggence of the velocity
field to be integrable. This is not the case here, becausedioeity involves the
derivative ofc, which can be a nonpositive measure if shocks are preserg. c@m
find a justification of weak convergence property in the scadese, in the setting of
differentiation with respect to initial data, see [5]: it makss of the duality solutions
developed in [4].

However, one can say that, at least formally, derivatioméndirectionsF leads to

T
J’(F)éFzﬁ (c(L, t) — Cons(t), oc(L, dt)),

whereéc is some solution to the system (14). The first strategy to caenthe gra-
dient of J consists therefore in finding some numerical evaluationlé) @nd (14).
Discretizing (14) is not straightforward, we refer to [18} some results in the scalar
case.

Notice that, if the functiofr depends explicitly on a numbgof parameters«, . . ., ag),
then, instead of computing the derivativeoh some directiodF which is not clearly
defined, we have to compute the gradientafith respect to ther;-s. Therefore we
considerp x g admissible directions, given by

oF = 0,F (in matrix form),
OF; . .
OF); = (a—') i=1...,p, j=1,....q, (16)
aj

and the system (14) has to be interpreted now as a matrixedaquation, where the
components of the unknowdit are

0C; . .
(5C)ij=(aa,c)ij=alel, i=1...,p, j=1,....q
J

Explicit expressions fasF andd.F are given in Annex Il below, for dierentisotherms.

Another possible expression fdf(F) is obtained by reinterpreting the minimization
problem

1 (7
min [ lee(L.) - cood)l
F 2 0
as a constrained minimization problem:
[« 1T » :
min<{ J(v) = > [IV(t) — Cops()l|°dt,  v(t) = ce(L,t) solutionto (5%.  (17)
0

This formulation is rather classical in control theory arsdigmeter identification, and
previous results on chromatography are based on it (sed §23,8]). For the sake of
completeness, we propose a detailed computation in AnnefoWpand merely recall
the results here.

10



The Lagrange multiplier corresponding to the constraimbguwout to be a function
p(x, t), solution to the backward linear transport equation

Oxp + 0cF(©)"op =0, t€]0, T[, x¢€]0,L],

P(L, 1) = c(L, 1) — Cong(t), (18)

p(x, T) =0.
Using the facti(ce(L,t)) = J(F), and the Lagrangian corresponding to the constraint,
we get another formula for the gradientd{F):

J(F)6F = ﬁL SF(Cini () p(X, O)dx+j:_ LT SoF(c)op dtdx (29)

for anyp solution to the adjoint equation (18).

The equivalence between (19) and (16) is justified only fopatim solutions, or under
specific assumptions in the scalar case, see [17]. See atdoBand Pironneau [2]
in the case of dferentiation with respect to the initial condition. A specifiroblem
when discontinuities occur in the solutiorto (5) is that uniqueness is not ensured for
the backward problem (18). Therefore stability problems aase when discretizing
the equations. Also, as mentioned in [2], a crucial pointrtavp equivalence is a con-
venient definition of the nonconservative prodagt x 5c, whenésc is measure-valued.
This may indicate that the functiondlis not diferentiable in general. The nonunique-
ness of the adjoint equation might be related to the notiosubldiferential. For a
partial result in this direction, see [17], where the cogesice of a viscous regularized
problem is studied. This remains a very interesting affiitdit open question.

3.2 Discrete version

We propose now a strategy to obtain a numerical approximésioboth formulations
of the gradient, and we also give some elements of compakistmeen them. The
key strategy here is to compute the exact gradient of theatized problem, instead
of applying arbitrary schemes to the above systems of PD&ciially, we start from
a given scheme for the direct problem (5), and then mimic #évation of the con-
tinuous formulee for the gradient. This actually providesnercal schemes both for
(14) and (18), and it turns out that the humerical behavigoisd. A reason for this
could be that such discretizations implicitly define a narsayvative product which is
in some sense consistent with the equations. The detailéerstanding of this phe-
nomenon, as well as the convergence of the discrete obgstigim open problems up
to now. Concerning the adjoint formulation, a few steps in tirection can be found
in [17]: we have convergence of the sequence of discretaagag in the scalar case,
and provided the discontinuities af,s are exactly observed. The situation is worse for
the direct formulation, since we only have some consistemt/convergence results
for numerical schemes for (14), once again in the scalar, sesd13].

We proceed now to the derivation of the schemes, followirggghme strategy as in
the continuous case. Therefore we compute some exact gtawfiche discretized
problem. We have the following lemma, which is proved in Axie

11



Lemma 1 The gradient of] is given by

N
o JE+adF) - JF) _ S (6 - cex p(tn))T S, (20)

n=0

J6F =

(I/HO 04
wherescy is computed with the scheme
8¢, = 0 — A((9cF(c)) ocq — (AeF(cp M) ocp™) = A (SF(c) - oF (i M), (21)

with 6¢§ = 0 and60° 0 as initial and boundary conditions.

By construction, the values obtained for the gradient ufilgymethod are rigorously
equal to the values obtained using the constrained forioalased until now for this
problem (see [25, 16, 18]).

Z
H

K-1 K-1 K-1
JEWOF = =23 > 0F(E) (ay - dd) + 4 ) SF(Eag, — 4 ) SFE)ap,
k=0 k=0

k=0

=]
I
=

wherea = (a})xn is given by the so-called adjoint scheme of (8) (see Annex I)

= A~ /l(acF(CLHl))T (akn+1 - ak”ﬁ), 0<k<K0<n<<N,
) = At(c! - Cexftns)). 0<n<N, (22)
al=0, 0O<ks<K

Although it is dificult to justify theoretically the computation of the gradi@sing the
measure equation (14) when the discretization goes to @uiterical behavior is very
stable and can be interpreted in term of approximation didehction as it will be
seen in the numerical simulations in following section.

Since they are equivalent in term of accuracy it is intengsto compare the two
schemes in term of numerical complexity. In the “direct datibn” method, the un-
known éc in the problem (21) is @ x q matrix which can be computed along with
the direct problem unknowawhich is ap vector. On the other hand the unknoan
in the adjoint method is only @ vector - instead of @ x g matrix - but its compu-
tation requires to store the direct problem solutgfor the N times andK abscissa,
since the scheme (22) has final boundary conditions in tindespace and its cé@
cientsocF(cy) depend on the direct scheme solution. The memory requireisi¢hen
N x p x q for the direct derivatiormethod andN x K x p for the adjointone. For one
evaluation of the gradient, both methods reqii€(p + g) calls to isotherm dependent
functionssF anddcF. In terms of elementary operations they also require of tdero
of Nx K x px (g+ p) multiplications in theadjointcase againgti x K x qx p?+Nxgx p

in the direct derivatiorcase. The leading order term is in both case®gmx N x K)
with a factorq + p in the adjointcase and a factag x p in the direct derivatiorcase.
We estimate that for reasonably small values of the numbpameters), the huge
memory requirement ofdjoint method makes it prohibitive compared to ttieect
derivation Another argument in favor of the direct computation is tlsgibility of
computing both the solutionand its derivativegc on the same adaptive grid, while in

12



N* 100. || U 3

K’ 5 Inj 25
FlowRate| 1 Porosity 0.59
CFL 0.8 || #time steps| 4000
Diameter | 0.39 | Length 15.

Table 1: Parameters of simulation in the scalar case
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Figure 2: Chromatogram simulated with Table 1

the adjoint method the solutions of the direct and adjoinbfgms can have disconti-
nuities in diferent places. The time varying adaptive grid devised to edetne direct
problem cannot be easily used to compute the adjoint solutio

On the other hand if the goal of the identification problem wn&sinjection profile, in-
stead of the isotherm parameters, the number of unknownkllweaome large enough
to make the adjoint method morffieient than the direct derivation one (see [2, 22, 3]).

4 Numerical verification of the convergence

4.1 Scalar case

For this set of experiments we have simulated a chromatogising a Langmuir

isotherm with the parameters in Table 1.

The chromatogram is displayed on Figure 2. Using this asrerpetal data, we per-
form several identification of the isotherm parametersgisiifferent space and time
discretizations, from 200 to 4000 time steps. When we use dhee discretization

as the one used to generate the dataset, we should andyadma#cover the exact

13
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Figure 4: Convergence paths fidt = 400 4000 and the two initial guesses.
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Figure 5: First component of the measure solutiof(L, t) for Nt = 20Q 100Q 2000
and 4000 times steps, convergence isotherm used in each case

parameters of the isotherm. For coarser discretizatiogthéient identification con-
verges to a target slightly away from the true parametersvhith converges towards

it with the discretization. This behavior is displayed ogufe 3 which represents in
logarithmic scale the distance between the result of thetifieation and the true target
in the parameters spadé’(andN*) as a function of the time step.

The two curves correspond to identifications starting fraffedent initial guessesa(

for K = 1.1, N* = 90) and ¢ for K* = 0.9, N* = 150). This figure shows that
the descent algorithm converges towards a minimum indegperad the starting point,
and which gets closer to the theoretical target as the digation is refined. Figure

4 displays the evolution of the objective function with tierations for two dierent
discretizations and the two initial guesses. When startiogn (K’ = 1.1, N* = 90),0
indicate the behavior of the minimization done using 40@tsteps and correspond

to the 4000 time steps computation. The minimization stgrfrom the other initial
guessK’ = 0.9, N* = 150) is displayed wittv for the 400 time steps computation and
A for the 4000 one. The two coarse grid computatiamsifd v) converge to roughly
the same level of 003 for the objective function, while the fine grid computas ©
and a) reach very small values below 0 For both discretizations the first initial
guessK’ = 1.1, N* = 90 indicated byx ando) leads more rapidly to the convergence
state than the other initial guess indicated by the triamgle

Using the results of this convergence study, we can als@peré closer analysis of
the numerical behavior of the measure equation (21). Far ddterent discretiza-
tions (Nt = 200, 100Q 2000 and 4000) we compute the solution to (21) using the best
isotherms parameters for the corresponding discretizatio recorded in Table 4.1. It
is a vector of two components corresponding to the derigatnf the concentration
with respect to the two parameters of the isothekthandN*. We display on Figure

5 the first coordinate at the output of the coludny-(L,t), on Figure 6 the second
onedck (L, t) and on Figure 7 the fference between the simulated and experimental
chromatograms(L, t) — cops(t). The left hand side graphs display a zoom in the time
range of interest. When the convergence isotherm is usedettieatives converges
theoretically towards a delta function located at the shmadition ¢ = 2.41) and this

15
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Figure 6: Second component of the measure soldtigfi, t) for Nt = 200, 100Q 2000
and 4000 times steps, convergence isotherm used in each case
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Figure 7: Diference between the simulated and experimental chromatedaNt =
200,100Q 2000 and 4000 times steps, convergence isotherm used irtaseh
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C-Cobs

C-Cobs

Nt K’ N*

200 | 4.91223| 97.5226
1000 | 4.9804 | 99.5889
2000 | 4.99402| 99.8801
4000 | 5. 100.00

Table 2: Best parameters forfiirent discretization in the scalar case

C-Cobs Nt=1000 8cy» Nt=1000 8¢, Nt=1000

30 ) 50 4

20 b) —— 0 0

10 c) -50 R

0 z o [

8 -100 a) — 3 }
-10 b) —— -8 a) -
-150
-20 c) b) ——
2 -200 -12 c)
01 2 3 4 5 6 7 01 2 3 4 5 6 7 01 2 3 4 5 6 7

Figure 8:¢(L,t) — Copgt) andsc(L,t) for Nt = 1000 time steps, and three parameter
sets I, K’) a) (90 4) b) (10Q5) and c) (1106).

behavior is well reproduced numerically on Figures 5 andiGéF@ure 7 one can verify
that the dfference between the experimental and simulated chromatsgtacreases
in amplitude as the discretization is refined.

We also display the solution of the measure equation cordpwtth parameters of
the isotherm slightly away from the best fit, for two disczationsNt = 1000 on
Figures 8 and 4000 on Figures 9. This last case corresportls thscretization used
to generate the “experimental” chromatogram, and the measa delta function when
the target parameters are used (middle graphs biNfoe 100 andK’ = 5). In fact
derivatives computed for isotherms parameters away framtdiget value all look
like delta functions but positioned at the wrong time. Thgufé 10 displays a zoom
of the derivatives obtained using the target parameterthfotwo discretizations. It
corroborates clearly the convergence towards a deltaibtmct

C-Cobs Nt=4000 &cy« Nt=4000 8¢, Nt=4000
30 ;
\ Q) .
20 b)) - 0 | a) —— 0 i Q) e
10 c) -250 | bg - i b)
| b | c ¥ o
0 g 500 } 8 25 0 c)
-10 | i
20 ’ 780 50
-30 -1000
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Figure 9:¢(L,t) — Cops(t) andéc(L, t) for Nt = 4000 time steps, and three parameter
sets \*,K’) a) (90 4) b) (10Q5) and c) (1106).
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Figure 10: Zoom obc(L, t) for Nt = 1000 and 4000 time steps, and target parameters
(100 5).
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Figure 11: Chromatograms simulated with Table (3)

4.2 Binary mixture

We simulate in this case the two chromatograms displayediguré-11 using a Bi-
Langmuir isotherm for a two components mixture, namely
K-lCi

i(c) = + .
' "+ Ko +Kle, 21+ K2 + Kie

This model takes into account the fact that there are twoilplesisinds of adsorption
sites, and is determined by 6 ¢heients, whose values are listed in Table 3. We used a
very refined discretization of 4000 time steps for each érpent, the second one until

T = 17, with a flow rate of 2 ml/minutes the first and third one uniil = 31, with a
flow rate of 06 ml/minutes. The CFL condition is conservatively ensured byasing

A
2X supmax|;(c)| < 0.8,
At ¢

whereJ; denote the eigenvalues Bf (see (6).
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component 1| component 2
Ki | 0.203564 0.283886 N; | 1430
Kz | 0.0325631 | 0.0407128 N; | 12055

experiment 1 2 3
component| 1 2 1 2 1 2
injection 30.72| 30.72| 1.49| 4.74| 3.72| 3.72

Table 3: Isotherm and injection parameters for the binaxtumé simulation.

250 ——
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) 2000 =
. 3000 ---»---
- |
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8 | g
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S e -
0.01} N
te
.
0.001 ‘ ! : ‘ ‘
0 10 20 30 40 50 60

iteration

Figure 12: Convergence history forfidirent discretizations, starting froM* =
(10, 130).

We then perform identifications of the deientsN; andN;, the codficientsK; and
K, being kept equal to their theoretical values, which wer@ tisgenerated the exper-
imental data. Oferent discretizations and initial guesses are used. Alidbelts tend
to verify the robustness of the identification algorithm.eTehavior of the objective
function with the iterations of the minimization algorithisidisplayed on Figure 12
for different discretizations. As expected the value of the oljedtinction reached
at convergence diminishes for finer discretization. Lesgligtably, this simulation
shows that convergence is reached faster for coarser titstien. Figure 13 shows
the distance of the parameters found by the minimizatioordlgn with the target
parameters (used to generated the experimental chroraatpgdihere are two curves
on this figure, corresponding to twofldirent initial guessed\¢, N3) = (130, 10) and
(110,20). As expected, in both cases, the distance goes to zeno thbaliscretiza-
tion is refined. The parameters reached by the minimizatigorishm are displayed
for different discretizations and the two initial guesses on FiddreEven for coarse
discretizations the dependence on the initial guess issrmagjl.
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name/ # BA/1 PE/2 MBA /3
Ki 0.01516| 0.02341| 0.02107
K/ =N'K; | 1.97 3.303 3.55

N’ 129.99 | 141.09 | 168.50

Table 4: Isotherm parameters for the ternary mixture [24].

5 Application on real datasets

5.1 Experimental identification of isotherms

We test the identification method on real datasets which wetensively studied by
Quiflones, Ford and Guiochon in [24]. This paper is remarkabtadme it provides a
very important set of isotherms measurements for a 3-coergemmixture: see Figure
15 below, where each symbol corresponds to a (Iam(c)), and a diferent exper-
imental setting. Let us explain briefly how to read this kirfdfigures. There are
three components, 2 BA = benzylalcohol, 2= PE = 2—phenylethanol, 3= MBA =
2—methylbenzylalcohol. For each compondns 1,2, 3, the adsorbed quantity(c);

is displayed as a function of the total amount of mixturec; + ¢3), for five different
compositions of the mixture, namedyfor single-component; for 3 : 1 : 1 mixturé,
xforl:1:1,0forl:3:1andxforl:1:3 mixture.

60

BA (g/l)

MBA (g/l)

c,+C.+C, 60 0 30 (:1+(:2+c3 60
Figure 15: Isotherms experimental values and model vali#tsthe parameters of
Table 4.

In this paper the authors make use of an isotherm functightyji different from the
Langmuir isotherm, with six independent parameters

. Kig
hi(c) =N, 1+ 3P, Ko’ (23)
They identify the cofficientsK; andN; fori = 1,...,3 by fitting the curves obtained
with (23) with the experimental points for single componemtures ¢ in Figure 15),
that is an amount of 30 experiments. The identified parameter given in Table 4,
and all the lines displayed in Figure 15 represent the isottmomputed with these
values. Then simulated chromatograms are computed usingnémodified isotherm

13 parts of BA, 1 part of PE and MBA
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law (23) with the values obtained for the six parameters,\asuhlly compared with

a set of seven experimental chromatograms, correspondidifférent proportions of
the three components andi@rent injection profiles. Two of them are displayed on
Figures 16. The left-hand side corresponds to a mixture of B, and MPA with
proportions 1 : 3 : 1, while the right-hand side correspomda mixture of BA, PE,
and MPA with proportions 3 : 1. Experimental profiles are esgnted with symbols.
The chromatograms computed with (5), and the values of petemin Table 4 are
represented with dashed lines<), while solid lines (—) represent the chromatograms
computed with the values in Table 5 below.

Notice that these computations are performed with an iigeatondition recorded
from experimental data as well, see Figure 17, which is notep function. The
influence of this realistic boundary condition on the shap&he chromatograms is
important, see [24] for a more detailed discussion. Theheftd injection profile cor-
responds to the 1 : 3 : 1 experiment, the right-hand one to 3 : 1.

Remark. From now on, all the numerical simulations we use are perarimsing
the Godunov scheme, with 1000 space points, 1391 time séeplsthe gradient is
computed with the direct strategy described in Section 3.2.

5.2 Numerical identification of the isotherm

Now we bring our method into operation. We emphasize agaittlhiis is a completely
different identification strategy from the previous one, whictkes use of direct mea-
surements of the isotherm. It is of course very reliable, unfortunately such ex-
perimental estimates for isotherms are seldom availabheth® opposite, our method
indeed makes use of indirect measures, such as the two sht®afatograms in Figure

16 above as an observation, which are much easier to obtpérimental data.

In order to recover the céigcients with the same accuracy on each component and
to use the information from both datasets we consider tHeviolg weighted cost

function, wherey; = 1/ mrgx'cexp(tn)j

3 N
j((x) = %At Z Zy] Z 'Cﬂj - Cexp(tn)j

exp-12j=1 n-1

2

(24)

As a first test, we start the descent with the parameters ile Badis an initial guess, the
value of the cost function is thenl5, and we optimize on the whole set of six param-
eters. After convergence of the conjugate gradient opétion, its value is @107, it
has been divided by ten and the parameters of the isotherdlisgpiayed in Table 5.
The fit with the experimental isotherm is displayed on Figlie the fit with experi-
mental chromatograms on Figure 16 with solid lines (—), tbgewith the simulations
of [24] (dashed lines-—). Several comments are in order here.

First, it is clear that the fit on the isotherms is worse fordated parameters. This
emphasize the fact that the kind of data we used to identdycampletely dierent
from [24]. The concentration range of the chromatogramspistine same as in the
isotherm data, and in particular we have no informationlairathe single-component
adsorption ¢ in Figures 15 and 18), for which the simulated parametergaite poor.
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BA:PE=1:3:1, VL=1.0ml
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Figure 16: Experimental chromatograms (symbols) and sitadlchromatograms us-
ing parameters from Table 4 {) and Table 5 (). BA and PE components (top), MBA

component (bottom).

name/ # BA/1 PE/ 2 MBA /3
Ki 0.0137 | 0.0214 | 0.0206

K/ = N'K; | 1.78046| 3.00974| 3.47049
N’ 129.986| 141.07 | 168.495

Table 5: Isotherm parameters after optimization startingifTable 4.
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Injection profile BA:PE:2MBA=1:3:1, Vi=1.0ml Injection profile BA:PE=3:1, Vi=0.5ml

BA —— BA ——
[T — | —
MBA MBA
30 | 7N 1 1
20 | 1 1
2 3 a 2 3 a

Figure 17: Injection profiles used for the two experiments.
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[ MBA (g/l)
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Figure 18: Isotherms experimental values and model valitesine optimized param-
eters of Table 5.
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name/ # BA/1| PE/2 | MBA /3
K/ =N'K; | 1.833 | 3.108 | 3.511

Table 6: Experimental values &, from [24]

starting point Nea/1 Npe/2 Nueas | initial cost | final cost
value value

200. 200. 200. 120.937| 134.14 | 169.401| 0.206 0.00892
100. 100. 100. 123.724| 135.768| 158.81 | 0.411 0.00901
200. 200. 200. 124.059| 135.537| 159.29 | 0.432 0.00902
200. 100. 100. 123.342| 135.968| 157.67 | 0.292 0.00909
200. 100. 200. 123.373| 135.704| 159.637| 0.174 0.00896
100. 200. 100. 120.003| 133.503| 173.244| 0.122 0.00912
200. 200. 100. 124.167| 135.949| 157.592| 0.237 0.00909
100. 100. 200. 118.536| 133.099| 178.772| 0.210 0.00945
100. 150. 200. 116.171| 133.053| 182.999| 0.046 0.00980
200. 150. 100. 124.46 | 136.054| 156.623| 0.071 0.00917
Mean value 122.614| 135.441| 165.685

Relative variance | 0.09 0.030 0.45

Table 7: Isotherm parametelkE identified from several starting points.

On the other hand, the value of the cost function has beedeativby ten, and it is
clear on Figure 16 that shocks are much better identified fitwan the experimental
parameters. This is not very surprising, since all the nigakidentification process is
based upon the hyperbolic model, which is very sensitivegécsshock position.

Next, we tried another series of identification, taking iat@wount some experimental
values for the parametek§ = N/K;, which are given in [24], and recalled in Table 6
below (in the original paper, the displayed valueslgfe< (1 - €)/e, wheree = .59 is
the porosity of the medium). These values, correspondirfgrialytical conditions”,
that is very small injected concentrations, are obtaineét wigood precision, and cor-
respond to the propagation at concentration zero, whiclvendyy F’(0). Therefore,
we performed ten optimizations, keeping the val#gsconstant, and with dierent
starting values for the three remaining paramelérsThe results are gathered in Ta-
ble 7. We notice that the cost function has been divided &t leaa factor 10. The
third codficient seems to be morefiicult to identify (relative variance.85), maybe
because its concentration is rather small in one of the @xpeats. To give an illustra-
tion of this result, we display the chromatograms (Figurg f® the fifth computation
(the values are extracted from the italic line of Table 7, eewhlled in Table 8). Con-
cerning isotherms, the results are comparable to thosegur&il8. The results on
chromatograms are good, in particular we still have theemrposition of shocks,
which was not so good in [24].
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name/# | BA/1 | PE/2 | MBA/3
K; 0.01486] 0.0229 | 0.02199
K= N’K; | 1.833 |3.108 | 3511

N 123.373| 135.704| 159.637

Table 8: Isotherm parameters for the fifth experiment in &atl

BA:PE=1:3:1, VL=1.0ml
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Figure 19: Experimental chromatograms and simulated chAtognams using opti-
mized parameters from Table 8, BA and PE components (top)MBA component

(bottom).
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6 Conclusion

The computation of the gradient required to use a desceimization method in the
flux identification for a system of conservation laws is nowrtughly studied from

a numerical point of view. The direct computation of the geatlfrom the original
problem, formulated with partial fierential equations is still an open problem, even
in the scalar case. However, convergence with respect thisheetization step is indi-
cated by all the numerical tests. Moreover, the applicatitthe identification method
proved to be reliable in the case of &3 system fully documented in the Chemical
engineering literature. We emphasize that additional ex@ntal information on the
parameters can drastically improve the results.

On the other hand, it is clear that the complexity of the dfbjjecfunction makes it
necessary to combine some global optimization method wighgrradient, to avoid
for instance local minima. A first idea is to use the global metto find a good
starting point for the gradient (or any descent method),nhbote intricate couplings
are currently under study, using evolutionary algorithfigally, the strategies for the
formulation of the discrete gradient have to be applied toaxxomplete models, taking
into account for example fiusive dfects, which are also widely used in Chemical
Engineering.

Annex I. Adjoint formulation for the gradient estima-
tion.

We describe in this annex the method to compute the gradigheaost function (7)
with a weak formulation. This method has been described aed in [25] and [16],
but we give here the full computation, including the case aba zero initial state,
which is used in Section 5.

The gradient with respect to the model parameters will belgthrough a Lagrangian
formulation. We start with the development in the continsioase which gives a good
feeling for the method. We will next present the discreterbagian model which is
actually used in the numerical simulations.

Gradient computation in the continuous case

The constraint for our optimization problem is that

C, is solution to (5).
In order to write a Lagrangian for this constraint, we firsttevia weak formulation:
E(c,p,a) =0, Vp, where the functiondE is obtained by multiplying the PDE in (5)
by a test functiorp, as smooth as, and integrating by parts on the domain [ x
[0, TT:

L T
E(c,p, @) jc; j(; < (0xc + 0¢F(c)) ,p > dt dx

T L
f ([< c.p >]g_f < c,axpdx>)dt
0 0
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+fOL([< F©).p >]5 - fOT < F(c),dip > dt)dx

T T
- [ <etupLy > di- [ <cn.p0.9 >
0 0
L

+ fOL < F(c(x, T)),p(x, T) > dx—j; < F(cini (X)), p(x, 0) > dx

L T
—f f (< c,oxp > + < F(C),0ip >) dt dx
0 0

The Lagrangian for the constrained minimization problem is
L(c.p.a) = J(c) - E(c. p. a). (25)
We notice that
J(@) = 3(c.) = L(ca, P, a),

so that when we apply formally the chain rule, we obtain
, oL ac oL
J(a)da = %(C(,, p, a)ﬁ_F oa + a(ca, p, @) da.

Sinceitishardto compu%éa (for reasons mentioned in paragraph 3) we will choose
p such thatZs(c,, p, @) = 0 and will next computel’ (a)sa = 2(c,, p, @) sa for this
specialp.

When we diferentiate the Lagrangian with respectctahe terms involvingeinj and

cini disappear, because they are fixed data of the problem, the<t&t(c), o;p > leads

to (3:F(c)5c, dip) = (6¢C, (:F(c))" 8yp), so that, for the cost function (7), we have

oL 0J OE

ac ac  ac
T T
- fo (E(L.1) - Copdt)). Ot - fo (5c. p(L. )t

L
- f (66, F(e(x, T)) T p(x, T)) dx
0

L T
+ f f (éc, (axp + acp(c)Tc’)tp)> dtdx
0 0

Putting this equal to O for all possiblie can be interpreted as a weak formulation
of a linear transport equation fqr, with a boundary condition ox = L, readily
given by the first two terms in this formula, and a final datumten T, which reads
AF(e(x, T))Tp(x, T) = 0. But sinced:F(c(x, T)) is invertible, we can finally choose
the adjointp solution to (18).
A formula for the gradient ofi(e) is then obtained by picking any solution to (18)
and computing

oL oE

J(@)ba = %6(1:—%6&
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L L
- [ oFGupx x| oF(elx TP T dx
0 0

L T
+f f 6F(c)op dtdx
0 0

oF is obtained by dterentiatingF with respect to the parameters we want to identify
(see (16) and annex IlI).

Discrete formulation

We first write the discrete analogue of formula (25) for theneuical scheme (8)

N K-1
E(c.aa) = Z (G — G+ A(F(S) - F(q ™) a1
n=1 k=0
N K-1 N K-1
DI RI  E PP CHE e
n=1 k=0 n=1 k=0
N K-1 N K-1
+ A D FE@ED A Y R an. (26)
n=1 k=0 n=1 k=0

Since we will not diferentiate with respect to the terra$ which are fixed by the
injection condition, we set them apart. Furthermore, we enay thek indices in the
first sum and tha indices in the fourth sum:

7
i

5 N K N K-1
Ecan) = Y > @ah-> e
n=1 k=1 n=1 k=0
N K-1 N-1K-1
DIPN G IR ET PP CHI Y
n=1 k=0 n=0 k=0
K-1

{(cat ™ — (e 8 + A (CFe). ad) — (P, a.y))|

ol
N

K-1

N-1
™t + Z<cK, - DA - ) g a™
k=0 n=1

K-1 N-1
+ A [Z<F(CE), A+ Z<F(c8), A - Y (), ay) — Y (). aD |
k=0 n=1 k=0 n=1

+

: I 20

As in the continuous case, we write the discrete Lagrangtreithe constraint

(cf) solution of (8)
is taken into account bi(c, a, @) = 0. We are led to dierentiatel(c, a, @) = J(c) -
E(c, a, @) with respect to all components @) One the one hand, we get for the cost
function

0 _ [ A(ch — coxgltn) . 5C), 0<n<N,
6c“ 0, O<k<K, 0<n<N.
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On the other hand, the derivatives of the weak formulati@engaren by

oE ~ ~ _
ﬁ = <6CE7 aE - akn+%> + /l<aCF(Crk])6CE’ (akn+% - aknJrl)>
k
T
= (o at —at + A(0F(E) (af - aR.,))
fork=1,...,.K-1andn=1,...,N -1,

oE
acy

= (ocg,ayt, 1l<n<N-1,

IE _ _ T N-
N = ©Ocy, aft —al + A(0cF(E)) Ay, 1sksK-1
k
Imposing that all partial derivatives @f = J - E with respect ta must be zero, we
obtain the following formulee foay:

gl=all-A(0F(@) (t-ap,). O0<k<K O0<n<N-1,
al = At (c{}*l - cexp(tml)), 0<n<N, (27)

A=Al o A(0FE) ' lsk<K-1

In order to recover a discretization scheme for the contisumackward equation (18),
compatible with the final condition at= T, we are led to impose = 0 for all

0 < k < K, so that the third relation in (27) rewrites exactly as thetfone, for
0<n< NandO0< k < K. Thus we obtain (22).

The gradient off for this adjoint is next computed by plugging it into (26) aditfer-
entiatingE with respect tax. Only the two terms depending dhplays a role. We
obtain

J(a)ba = —6—E§C¥
oa
N K-1 K-1
= —A) Y SR (it - aly) + 4 ) SR, .
n=1 k=0 k=0

wheredF = 9,Fda, (see (16) and Annex Il below).

Annex Il. Proof of Lemma 1

We study the limit of the Newton ratio

J(F+a6F) NG ZNl<dn —cy df +cn ot )>
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wheredy is the solution of the Godunov scheme (8) associated to titarped flux
F + adF

E+1 = dE -1 ((F + a/(SF)(dE) — (F + (I(SF)(dE_l)) .

We actually prove that uniformly ik =0, ..., K
. . dk—¢
limd¢—cdl=0  and lim|——= —scl| = 0, (28)
a—0 a—0 a

whereécy is given by the scheme (21) and

lell = max |cg] -

We setr} = di — ¢, which verifies

rhy =10+ A((F + adF)(@]) - (F + adF)(d ) - A (F(e) - F(er ) =0,

rt =0,
r§ =0.
After some algebra, and provided thrats smooth enough, we obtain that the quantity

z; = ry/a satisfies

2,1 — (1 - A0F(E)) 20 - dcF(f1zyt + A (sF(df) - 6F(diY)) = O(ev lizd?).

Z§ = 0’ (29)
z,=0.

We prove now thaliz"|| < M. Provided thafl verifies a CFL conditiom < 1/||0:Fl,
we have from (29)

2
1Ziceall < M1zl + allzdll” + b,

with a = CAa whereC is a bound of|d.cF|| andb = 22||6F||. Using||ze|| = 0 we obtain
by summation

K-1

llzll < a )" iz + Kb.

k=0
In order to bound|z|| by M we therefore need to have
aKM?-M+Kb<0 (30)

which can be true if &bK? < 1, in other words if

1
@< BRC|5F K

In that case the smallest root of (30) provides a bound|Zgr

1- V1-4abK2 A
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here again, provided thatis suficiently small. Since} = oz, this proves the first
limit in (28).
Now, for the diferenceA] = z; - 6¢, we obtain in the same way, using the bound on
|z, and if 6F is smooth enough,

A= AR (1= 20F(Q) —  OcF(crHArt = O(e).
We use again < 1/||d.F|| to obtain that, forr small enough,

Akl < A+ O(a).

Since||Agl| = 0, this gives in turn

1Al < O(a).

Therefore, for a given discretizatioli\g|| — 0 whena — O. O

Annex Ill. Gradient of isotherms

We have put together in this annex the explicit formulae to wot@ thesF involved in
(28) or (20-21), for several isotherms functidnésee (16) and (6)).

In the case of Langmuir isotherm (3), one can optimize witipeet to the parameters
N* and q<i)ip=1. In that case the partial derivatives are

(ah(C)) Kici (5’h(0)) _ N i N KiGi

IN* | P ’ K, P - P :
1+ZK]C] 1+ZKJCi (1+ZK]C])2 (31)
=1 j=1 =1

One can also write this isotherm as a functiomNsfand K/ = N*K;), .

K/ci
=
N°+ > Kig
=1

This last option is often more interesting because expeariahehromatograms provide
us with a reliable and direct estimation of tigvalues. Partial derivatives with respect
to N* andK/ are

p
K{ci Kic;
(ah(c)) _ ,Z; o (ah(c)) e diS noKea o

ON* P 2’ Ky p B P ,
(N* + Z Kjc;) N* + Z Kic (N* + Z Kjc;)
=1 =1 =1

hi(c) = N*
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The Bi-Langmuir isotherm (23) used to validate the binarytmie identification has
the following partial derivatives

(ah(c)) . Kg (ah(c)) N OiG KMcic

ON* | P »o\okm) ™ P m P '

T 1) Kl T 1Y KM (14 Y K2 (33)
=1 j=1 =1

In the case of the isotherm (23) used to model the experirheata there are |2

,,,,,,,,,,

- N 0li Gi N Kicic

i P - P :
1+ZKjCi (1+ZK]'C])2 (34)
=1 =1

I p B
! 1+ZK]'C]'
=1

As done in the Langmuir case, this isotherm can be rewrigenfanction of themi*)ip: 1
and K/ = N'Kj)P,

(28] (2

Partial derivatives with respect ig" andK; are

(6h(c)) B K/K/cic oh(c)\ _ 8iCi ~ K/cic
ON' )i P oK) \ K[ ) % Kic P oK\ (35)
N*2(1+ ','] 1+ ; N*[1+ ’*']
! = N =N ! ;‘ N;
References

[1] L. Ambrosio. Transport equation and Cauchy problem fafr\Bctor fields. In-
vent. Math, 158(2):227—-260, 2004.

[2] C. Bardos and O. Pironneau. A formalism for th&elientiation of conservation
laws. C. R. Math. Acad. Sci. Pari835(10):839-845, 2002.

[3] Ch. Bernardi and O. Pironneau. Derivative with respedliscontinuities in the
porosity. C. R. Math. Acad. Sci. Pari835(7):661-666, 2002.

[4] F. Bouchut and F. James. One-dimensional transporttiemsawith discontinu-
ous codicients.Nonlinear Analysis, TMA32(7):891-933, 1998.

[5] F. Bouchut and F. James. fi@rentiability with respect to the initial data for a
scalar conservation law. Hyperbolic problems: theory, numerics, applications,
Vol. I (Zurich, 1998) volume 129 ofinternat. Ser. Numer. Mathpages 113-118.
Birkhauser, Basel, 1999.

33



[6] F. Bouchut, F. James, and S. Mancini. Uniqueness and stadiity for multidi-
mensional transport equations with one-sided Lipschiéffiadents. Ann. Scuola
Norm. Sup. Pisa Cl. Sci. (5)V:1-25, 2005.

[7] F. Bouchut and B. Perthame. Kikov's estimates for scalar conservation laws
revisited. Trans. Amer. Math. Soc350(7):2847-2870, 1998.

[8] R.J. DiPerna and P.-L. Lions. Ordinaryfidirential equations, transport theory
and Sobolev spacefvent. Math, 98:511-547, 1989.

[9] A.E. Eibenand M. Schoenauer, editoBpecial issue on evolutionary computing
Elsevier Science Publishers B.V., Amsterdam, 2002. InfdPnocess. Lett82
(2002), no. 1.

[10] S. Evje, K. H. Karlsen, and N. H. Risebro. A continuougpeledence result for
nonlinear degenerate parabolic equations with spatigfeddent flux function.
In In H. Freistihler and G. Warnecke, editors, "Hyperbolicoptems: theory,
numerics, applications’volume 140 ofinternat. Ser. Numer. Mathpages 337—
346. Birkhauser, 2001.

[11] A. Fadda and M. Schoenauer. Evolutionary chromatdgcalaw identification
by recurrent neural nets. In EP95editors, edittlR95 pages 219-235. MIT
Press, March 1995.

[12] E. Godlewski and P.A. RaviartNumerical approximation of hyperbolic systems
of conservation lawsvolume 118 ofApplied Mathematical Sciences$pringer
Verlag, New-York, USA, 1996.

[13] L. Gosse and F. James. Numerical approximations ofdimensional linear
conservation equations with discontinuous fieents. Math. Comp. 69:987—
1015, 2000.

[14] G. Guiochon, A. Feilinger, S. Golshan Shirazi, and AttKaFundamentals of
preparative and nonlinear chromatographyAcademic Press, Boston, second
edition, 2006.

[15] G. Guiochon, S. Golshan Shirazi, and A. KaEundamentals of preparative and
nonlinear chromatographyAcademic Press, Boston, 1994.

[16] F. James and M. Séjveda. Parameter identification for a model of chromato-
graphic columnlnverse Problemsl0(6):1299-1314, 1994.

[17] F. James and M. Séfveda. Convergence results for the flux identification in a
scalar conservation lav6lAM J. Controlé Opt., 37(3):869-891, 1999.

[18] F. James, M. Sdpveda, I. Quiiones, F. Charton, and G. Guiochon. Determina-
tion of binary competitive equilibrium isotherms from thedividual chromato-
graphic band profilesChem. Eng. Sci54(11):1677-1696, 1999.

[19] I. Langmuir. The constitution and fundamental progsriof solids and liquids.
part I. Solids.J. Amer. Chem. Sqc38:2221-2295, 1916.

34



[20] I. Langmuir. The adsorption of gases on plane surfa¢egass, mica and plat-
inum. J. Amer. Chem. Sqc10(9):1361-1403, 1918.

[21] B. Lucier. A moving mesh numerical method for hyperbalbnservation laws.
Math. of Comp.173:59-69, 1986.

[22] O. Pironneau and E. Polak. Consistent approximatiorsapproximate func-
tions and gradients in optimal contro§IAM J. Control Optim.41(2):487-510
(electronic), 2002.

[23] F. Poupaud and M. Rascle. Measure solutions to the finmadtidimensional
transport equation with discontinuous @igents. Comm. Partial Dif. Equ,
22:337-358, 1997.

[24] 1. Quifiones, J. C. Ford, and G. Guiochon. High concentration besfilgs and
system peaks for a ternary solute systémal. Chem.72:1495-1502, 2000.

[25] M. Sepilveda. ldentification de paratres pour un sy8me hyperbolique. ap-
plication a I'estimation des isothermes en chromatographie2séhde doctorat,
Ecole Polytechnique, France, 1993.

35



