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Numerical gradient methods for flux
identification in a system of conservation laws

Francois JamesMarie Postel

Abstract

The identification of the flux for a system of conservationdasistudied from
a numerical point of view, on the specific example of chrometphy. Diferent
strategies to compute the exact gradient of the discretigénhization problem are
developed and compared. Numerical evidence of the conveegef the method
is also given in the scalar and binary case. Finally a termaisture with real
experimental data is studied and the identified isotherranspared with chemical
engineers results.

Keywords: hyperbolic systems of conservation laws — flux identifiaatiodiscrete
gradient method — chromatography — measure-valued sofutio

1 Introduction

The accuracy of any kind of mathematical model relies on teeipe knowledge of
all the involved parameters, in a wide acceptation. Amomgétone must think of the
initial data, which are only partially known in several aipptions (meteorology, for
instance), and state laws, appearing as nonlinearitiearitiepdifferential equations.
The inverse problem consists in recovering such data onpeteas from experimental
observations, in order to improve the current model. Spepitbblems arise when the
governing equations are systems of nonlinear hyperbolisewation laws, which are
involved in numerous examples in physics and chemistry. &ead in this paper on
the problem of identifying the flux in a system of conservatiimws, motivated by the
specific example of chromatography.

The chromatography process is a powerful tool to separasémalyze mixtures. It is
widely used in chemical industry (pharmaceutical, perfame oil industry, ...) to pro-
duce relatively high quantities of very pure componentghése conditions, fiusive
effects can be neglected, and can be reasonably modeled bystBmyf mass balance
law. The process is therefore mainly governed by a nonlifieartion of the mixture
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concentrations, the so-called isotherm function, whicpeaps as the flux of the sys-
tem. Thermodynamical properties of the isotherm ensuretiigaresulting system is
hyperbolic.

The precise knowledge of the isotherm is crucial, from theptktical viewpoint of
physico-chemical modeling, as well as the more practicabpcupation of accurately
governing the experiment to improve separation. Chromafgy can be used to iden-
tify isotherms, but its application is limited because ijuees a rather heavy exper-
imental apparatus. Another approach consists in using ricatsimulations of the
process in order to compare the solutions to experimentplds!

The problem consists in finding the parameters such thatdhgian of the model
is “as close as possible” to some experimental observatiargaven position, which
means that a suitable cost function is chosen, typicallyaatlsequare estimate of the
difference between the solution and the observation. We aretmnisonted with an
optimization problem, for which descent type methods atanay so that computing
the gradient of the cost function is now the problem we foausTwo strategies can
be followed. The first one consists in directly computing directional derivative of
the cost function. It leads to a formula involving the saduatto the linearized version
of the original system of conservation laws. The other one iisformulation of the
problem in the spirit of control theory, which introducesajoint state, solution to a
backward system of linear transport equations. A majorleralfor both formulations
is that the cofficients in the linear equations are discontinuous as sodmoass arise
in the nonlinear solution. Thus, a correct formulation tog gradient is presently out
of reach.

Therefore we turn to some discrete formulation of the pnwhland we follow the
strategy which consists in computing the exact gradienhefdiscretized problem
rather than some arbitrary discretization of the contirmufmumulation. For the above
reasons, we do not try to prove any convergence results,dogiwe numerical evidence
that the schemes we obtain behave nicely when refining theatization. We give also
a few elements of comparison between the two strategies.

The paper is organized as follows. In Section 2 we recall thesigal context, sketch
the main properties of the model, and precisely state thifttation problem. Section
3 is devoted to the computation of the gradient, from bothftlmal and numerical
point of view. Next we give numerical results for scalar gipres and Z 2 systems (in
Section 4) and show an application on a real set of experahdata for a X 3 system
(in Section 5). Finally, some technical computations atbezd in the Annex.

2 Description of the physical problem and model

We recall here the physics and chemistry principles undeglyhe chromatography
process. The separation results from the interaction l@tvie@o phases in relative
movement. The experimental - or industrial - apparatusistsis a column filled with
a porous medium in which a neutral solvent circulates at afiedocity. A given con-
centration of the mixture is introduced at the head of thamwi during a limited time.
As the mixture makes its way down the column, part of it is absd at the grain sur-
face and forms what is called the stationary phase. The agmabetween the ferent



components of the mixture results from the competition leetwtwo phenomena: on
the one hand the mobile phase propagates obeying the fluidsdy laws, on the other
hand the balance between the two phases relies on thernmotaldaws from which
the notion of diphasic equilibrium is defined.

2.1 Equations for the direct problem

It turns out that the actual experimental or industrial eahfllows to simplify the
hydrodynamical model to an extreme. Indeed, since the teoigthe column is large
compared to its diameter, we can safely neglect all radiatts, thus obtaining a one
dimensional model. Next, since the involved concentratane high, precisely because
we wish to observe nonlineaftects, all dfftusive phenomena can also be removed. We
do not need the energy conservation equation, because peeirent usually takes
place at constant temperature (more generally heat tragéets can be neglected).
Finally, the velocity of the mobile phase is assumed to betzon and equal to the vec-
tor solvent. This last hypothesis is quite reasonable icétse of liquid incompressible
mixtures, and once again this is relevant for lots of chragetphy manipulations
(HPLC, High Performance Liquid Chromatography). All thésgotheses amount to
simplify the physics and leave only the mass conservatitretaritten.

The thermodynamical model sets to work complicated mesihasin order to simulate
adsorption of the chemical components. Without going irgtaills [1], we merely
recall the essential point which consists in supposing titence and uniqueness of
a stable equilibrium state for the thermodynamical systéthetwo phases.

More precisely, for a mixture o components, we denote laf, > € RP with ci' >0
forl<i < pandj = 1,2, the concentrations in phases 1 and 2, with respect to thle to
volume in the column, of the chemical components. The equilibrium is modeled by
a smooth functiom : RP — RP, such that? = h(c'). Furthermoréi has the following
properties

h(0) =0, 1)
h’(c') is diagonalizable with eigenvalueg(ct) > 0. (2)

The functionh is called arisotherm which comes from the fact that the local equilib-
rium is reached at constant temperature. Chemistry litegain isotherms is plentiful
(see [1] and bibliography herein). A very classical exanglsuch an isotherm is the
Langmuir isothernj2, 3]

Kici
1+ Z,pzl Kici '
The model here is completely determinediby 1, the so-calledlangmuir cogicients
Ki, which are homogeneous to the inverse of a concentratiahthesaturation coef-
ficient N¥, which corresponds to some limit concentration when thigostary phase
is saturated. We shall mainly use this function, or variaitd, for our numerical
simulations throughout the paper.
In order to write the mass conservation equation we conliédwo phases: the mobile
one - phase 1 - moves downward with a spaed 0. The adsorbed phase - phase 2 -

hi(c) = N* ©)



has null speeg = 0. We therefore have
A(ct + c?) + dy(uch) = 0. (4)

In the experimental setting we consider, we can assumehbaduilibrium between
the two phases is instantaneous (quasi-static process)! #khes and everywhere in
the column we can write the closing relation between the eotrations in the two
phases, using the isotherm. Equation (4) can then be rewniting only the mobile
phase concentratioss ¢t

{ 0xc+0iF(c) =0, te[0,T], xe]l0,L],

C(O, t) = Cinjectec(t), (5)
c(x,0)=0,

where the functior is given by

FQ = = (c L1 8h(c)) , 6)

u £
and 0< ¢ < 1 is the void fraction of the column.
Because of the properties of the isotherm (2), system (5ypeibolic. Notice that in
(5), the time and space variables exchange their usualtfaesvolution variable i
here. This trick avoids the inversion of the functiémuring simulations, and is made
possible because the eigenvalugesf F’ turn to be positive (this is a direct computation
using the positivity of the;-s in (2). This ensures that characteristics always enger th
orthant{t > 0,x > 0}. To be a little bit more specific, notice that one can check tha
0 < 4 < uforalli, so that the “concentration waves” propagate with a smedikrcity
than the inert tracer: we actually model a retention phemume
The injection of the mixture takes place at the head of thernalduring a limited time:
this boundary condition is given along with experimentabdand has more or less the
shape of a notch. As an example figure 1 shows the concemisatieasured at the
output of the column as a function of time: these curves dledcehromatograms. The
mixture under consideration has thre&elient components (BA, PE, MBA) injected
in proportions 1 : 3 : 1 with the time injection profile denotey ‘inj (BA)' in the
figure.
For each component the experimental concentrations goéaged with symbols and
the concentrations computed with the model (5) and a spiscitderm function pro-
vided by the chemical engineers are displayed with lines (88), table 5 and [4]). In
this experiment the component BA) has been clearly separated from the other two
(a ando) with a pick in concentration reaching the bottom of the cofuhalf a minute
ahead of the other two. Another remarkable feature is tlegthyperbolic behavior
of the chromatograms with clearly identifiable shocks. Thidue to the high level of
concentrations which makes this dataset a very intereb@gmghmark, which will be
further studied in Section 5.

2.2 ldentification

A problem of major practical interest for chemical engirseeonsists in identifying
the physical parameters of the isotherm. Chromatographybeaused as a tool to
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Figure 1: Concentrations in BA, PE and MBA components at teran output.

obtain experimental values of pairs i(c)). Several methods can be used for this, for
a synthetic review, see [5], and for a more complete disonddi]. For competitive
isotherms, that i€ € RP with p > 1, the so-calledrrontal Analysis(FA) methods
are the only available. However, they are very slow and reggignificant amounts
of usually expensive pure chemicals. Furthermore, to nbevant information for

a function fromRP to RP, one needs a significant number of such pair&(c)), and
each of them results from a heavy experiment. For instaheeisbtherm in Section

5 below has been identified by a FA method from a set of 30 exymsrial points.
The PDE model is not used here, the parameters are obtaingidelny fitting on the
experimental measurements of isotherms.

The alternative approach we use here consists in using aswvaltien the concentra-
tion profiles with respect to time at the output of the columhrématograms). The
underlying principle is quite simple: one measures the entrations in the mixture at
the exit of the column. The fit between these experimental datl the model is mea-
sured through a cost functial{F), which we choose here as the classical least squares
observation:

i
® = 3 fo Ik (L. ) — CopdD)2 dit ()

wherecg denotes the solution to (5), anglis some norm oRP. This formulation
presumes that we have a complete knowledge of each compafrtéetmixture, as in



Figure 1. If the experimental apparatus does not provida sumeasure, the obser-
vation is then the total concentration of the mixture, gay(t), that is the sum of the
different components. In that case, the functiaran be chosen as

T P
WO = 5 [ 1Y on(L) - a0t
i=1

For instance, had the dataset in figure 1 be recorded as thefalhthree components
concentrations, the separation of the last two componemtsdihave been hardly rec-
ognizable.

However, thanks to a higher experimental price, one canimlstach experimental
datasets where the concentrations could be measured tdypardiich of course en-
hances a lot the sensitivity of the cost function (7) withpexs to the isotherm pa-
rameters. We will always use this type of datasets, artificgenerated by numerical
simulation in Section 4, or experimentally obtained, inttec5.

At this point, we emphasize the fact that, for practical a#tions, one cannot expect
to identify the isotherm directly as a function fraR® to RP. Indeed, the problem is
severely ill-posed as soon as shocks are present in thevaliser and no uniqueness
is ensured. Instead we prefer to identify the parametemsoégyiven analytical model,
which enjoy a convenient physical interpretation, and gomes can be roughly pre-
dicted from experimental data. For instance, consider taggimuir isotherm (3). It
is completely determined by the knowledge of theffioentsK; andN*. On the one
hand,N* is a concentration at saturation for the porous medium, ether hand, the
productsN*K; can be more or less accurately estimated from the data byngicn
the chromatograms the second crossing of each componemt gbhcentration with
the time axis. These times correspond to the end of the @i@favave and are related
with the gradient of the flux function as

Ti = E(1+
u

1-&g6h
a—q(‘”)"

If we denote bya = (as,...,aq) the parameters of the isotherm to be identified, the
functional J(F) becomes a functiod(e) from RY to R,, which has to be minimized
over some subset @Y. For the Langmuir isotherm, we hage= p + 1, but for more
realistic (and complex) modetgcsan be quite larger thgn

Notice finally that the minimization problem as it is statefiditely does not fall into
classical settings. The functiahhas no reason to be convex, actually numerical re-
sults show that there are local minimafierentiability is an open problem (see below
Section 3. Thus one can think to use nonlocal optimizatiothods to address this
problem. There were indeed some attempts for chromatograping genetic algo-
rithms (see [6, 7]). These methods present the advantagegafring few a priori
knowledge orf (in particular they do not use any kind of derivative), bugithmain
drawback is that they require a large number of direct sitrafla of the numerical
model.



2.3 Discrete formulation

We now turn to the discrete version of the optimization peof/since the experimental
data will be provided at a discrete sampling rate. Furtheertifte direct model cannot
be solved in its continuous version (5). We choose to obtaiapproximate solution
by discretizing and solving it numerically using a standi@mide volume method, well
adapted to this type of hyperbolic system.

We define a uniform grid in time and space

Xo=0< X1 =AX<...<X=kAXx<...<xx = KAx=L,
to=0<ti=At<...<th=nAt<...<ty=NAt=T,

where we will compute the solution using a Godunov scheme:
n _ AN n n-1
Cor1 = &~ A(F(Ck) - F(o ) (8)

Herecy is an approximation of the mean value of the solutioat pointsxc = KAX
and timest, = nAt. In particularcy is an approximation of the injection condition in
Xo = 0. Similarly, the initial conditiorc(x,t = 0) = 0 is discretized asg = Cinitial (%)
fork=0,...K.

There is no dficulty with this scheme which is known to be of order one in tiamel
space (see [8]) given the nice monotonicity properties efftbx functionF: since
all eigenvalues oF’ are positive, we are left with a simple upwind scheme. Remark
however that contrarily to standard use, it is here the spaiable, that is the abscissa
along the column, which plays the role of evolution varighléhe numerical scheme.
The cost function to be minimized can be obtained by distiregi(7) on this spatial
grid:

J(a) = lAtNZlm” — Cexpftn)I? (9)
= 2 £ K exp\tn/l -

One should note however that the definition of the discret function is not as
straightforward as it seems: first of all, the optimizatietigs on the assumption that
the system (5) correctly models the experience, hence éxéges a set of parameters
for which the experimental data is solution of it - up to measuwents precision. There-
fore, in the ideal case where the measurements can be abtaitiea sampling rate as
small as possible and where the exact solutiont; ) of (5) can be computed for any
set of parameters, the cost function is

. 1 N-1
Ja) = 54 ) Ie(xc. t @) = Coxgltn)l” (10)
n=1

One should therefore question the convergence of the nEation algorithm when the
sampling rateAt goes to zero. Do the parametersninimizing (10) tend, to the limit
and in a sense to be defined towards the parametetsich minimize (9)?

This is a very dificult problem, and in any case hardly useful from the prakcgomt
of view since experimental data are far from perfect. Furtioze they are sampled on



a time grid most often very coarse with respect to the samgpéie necessary in order
to get a good numerical approximation of (5) using (8).

Therefore a good way of measuring the fit of the experiencetlamanodel is to fix
the discretization of the cost functichequal to the sampling rate of the experimen-
tal data, but to compute the model approximations(ak, t,; ) with the numerical
scheme, with a discretization fine enough to ensure goodetgamce. This implies a
resampling on a coarser grid of numerical solution and aof gradient which is not yet
implemented in practice. The state of the art consists grfiiating the experimental
data on the fine numerical grid using linear interpolation.

Given the high theoretical fliculty of the convergence of the optimization process, we
will address in this study two intermediate problems whighiateresting to understand
the minimization convergence and that we pose directlyatthcretized level. Both
will be illustrated by numerical simulations.

First we define a discrete cost function

N-1

N 1 R

Ja) = 50t Ik - EkIP. (11)
n=1

wherec; is the discrete solution computed with scheme (8) witbet equal to the
target value which we denote lay This functional has a global minimum inahd we
will numerically illustrate that our minimization methodrectly handles this simple
case, and is numerically stable when weAggo to 0.

In a second problem, we define the cost function as

N 1 N-1
Jo(a) = 5At Z Ik — cs(t)I?, (12)
n=1

where the “experimental dat&j is the numerical solution computed with the scheme
(8) with a set equal to the target valuesfid a very fine discretization in time and space
¢, so that it correctly mimics the exact continuous solutib(b). The valuess(t,) are
obtained by resampling this solution on the coarser gridaofiding At. This time,
the global minimum off; is not trivially obtained inv; except for the limit case where
At = 6, where we are back to the previous cost function (11) whg{@ = 0. Here
again we will numerically illustrate the convergence of thimimization algorithm as
At goes tos.

3 Gradient computation

As soon as there is more than one parameter to identify, kdessary to be able to
estimate the gradient of the cost function with respect &s¢hparameters to ensure
a good behavior of the descent methods. Finifedénce estimation of the partial
derivatives can be used but they introduce additional sagphtes - in the parameters
directions - which have to be calibrated.

The gradient of the functional with respect ta= (or with respects to parametar}

is hard to study directly starting from the continuous folation (7)-(5). However, in



order to understand the kind of objects we have to deal withfirgt perform some
formal computations at the continuous level, and presenfpmssible strategies to get
a formulation of the gradient.

3.1 Continuous equations

First, we compute some kind of directional derivativel{f): let 5SF be some admissi-
ble direction, at this level one can think of any smooth fiorctFori > 0, we denote
by c (resp.c,) the solution to (5) corresponding to the fleXresp.F + A6F), so that

JF+A6F)—J(F) (T /caL,) —c(L,) cu(L,t) +c(L,1)
1 _j; < 1 ’ 2

_ cobs(t)> dt (13)

Passing to the limif — 0 in this relation is an open problem in general. Indeed on the
one hand, we can expect that

ca(L,.) +c(L,.)

5 —Cobs— C(L,.) = Cops  IN LE(R),

and this actually holds for scalar conservation laws, sezsdr|i9]. On the other hand,
if (cy(L,t) — c(L,t))/1 has a limit, sayc, it turns out thatc has to solve the linearized
equation

0x0C + 0i0cFsc+ 0i0F(c) =0, te€]0, T[, x€]0,L], (14)
6c(0,t) = 0, 6c(x,0) =0,

whered:F is the matrix of the partial derivatives Bfwith respect to the concentrations
c

IF;
@ = (56) (15)
The trouble here is that the solutions to (14) take valuebérmspace of measurestin

so that the only convergence one can hope is too weak to déssihve product in (13).
For a justification of this property, in the case offdientiation with respect to initial
data in the scalar case, see [10].

However, one can say that, at least formally, derivatiomédirectionsF leads to

T
J(F)sF = j; (c(L, t) — Cons(t), 6c(L, dt)),

wheredsc is some solution to the system (14). The first strategy to ecdenthe gra-
dient of J consists therefore in finding some numerical evaluationl6) @nd (14).
Discretizing (14) is not straightforward, we refer to [1b} Some results in the scalar
case.

Notice that, if the functiofr depends explicitly on a numbgof parametersA, . . ., aq),
then, instead of computing the derivativelofh some directiodF which is not clearly



defined, we have to compute the gradienafith respect to ther;-s. Therefore we
considerp x g admissible directions, given by

oF = 0,F (in matrix form)
OF; . .
(OF); = (6—') i=1...,p, j=1,....0 (16)
aj

and the system (14) has to be interpreted now as a matriegi@quation, where the
components of the unknowdt are

oG . .
(60)j = (0a0)j = 5=, 1=1...p. j=L...q
J

Explicit expressions fofF andd:F are given in the Annex below, forflierentisotherms.
Another possible expression fdf(F) is obtained by reinterpreting the minimization
problem

.
min}f Ice(L, t) — Cons(t)* dt
F 2 0

as a constrained minimization problem:

min {5(v) = %fT IV(t) — Cops()I?dt,  v(t) = ce(L,t) solution to (5}. a7)
0

This formulation is rather classical in control theory aradgmeter identification, and
previous results on chromatography are based on it (seel81Z)]). For the sake of
completeness, we propose a detailed computation in Annard merely recall the
results here.

The Lagrange multiplier corresponding to the constrainhgwut to be a function
p(x, t), solution to the backward linear transport equation

p(L,t) = (L, t) — Copg(t). (18)

Using the facti(ce(L,t)) = J(F), and the Lagrangian corresponding to the constraint,
we get another formula for the gradientd{f):

{ Oxp + 0cF(©)Top =0, t€]0, T[, x€]O,L[

J(F)6F = j:- oF(Cini(X))p(x, 0) dx+ fOL fOT 6F(c)ap dtdx (29)

for anyp solution to the adjoint equation (18).

The equivalence between (19) and (16) is justified only fopatim solutions, or under
specific assumptions in the scalar case, see [14]. See atdoBand Pironneau [15]
in the case of dierentiation with respect to the initial condition. A specifiroblem
when discontinuities occur in the solutiono (5) is that uniqueness is not ensured for
the backward problem (18). Therefore stability problems aase when discretizing
the equations. Also, as mentioned in [15], a crucial poinpriave equivalence is a
convenient definition of the nonconservative prod@d x éc, whengc is measure-
valued.

10



3.2 Discrete version

We propose now a strategy to obtain a numerical approxim#étioboth formulation
of the gradient, and we also give some elements of compabistweeen them. The
key strategy here is to compute the exact gradient of theetized problem, instead
of applying arbitrary schemes to the above systems of PD&cially, we start from
a given scheme for the direct problem (5), and then mimic #révdtion of the con-
tinuous formulae for the gradient. This actually provideseucal schemes both for
(14) and (18), and it turns out that the numerical behavigoisd. A reason for this
could be that such discretizations implicitly define a narsmyvative product which is
in some sense consistent with the equations. The detailéerstanding of this phe-
nomenon, as well as the convergence of the discrete obgroimim open problems up
to now. Concerning the adjoint formulation, a few steps in thirection can be found
in [14]: we have convergence of the sequence of discretaagres] in the scalar case,
and provided the discontinuities af,s are exactly observed. The situation is worse for
the direct formulation, since we only have some consistamzy/convergence results
for numerical schemes for (14), once again in the scalar, sasd/11].

We proceed now to the derivation of the schemes. We start finendiscretized forms
of the objective function (9) and of the direct problem (8)ffEBrentiating these quan-
tities with respect withy leads to

N

Yoa =" (ck — Cexsltn) oCk. (20)

n=0

wherescy is computed with the scheme
5¢g,1 = ¢y — A((AcF(c)) ocp — (acF(cy ™)) ocy ™) = A (oF(c) - oF(cp ™). (21)

with 6cg = 0 and50° 0 as initial and boundary conditions.

By Construcuon the values obtained for the gradient uil|ymethod are rigorously
equal to the values obtained using the constrained foriounlased until now for this
problem (see [12, 13, 5], and Annex I).

N-1K-1

K-1 K-1
- SF(CP) (R, — agrd) + 4 ) oF(cR)ag,, — 4 ) oF(ch)al,
k=0 k=0

n=1 k=0

H
X

=~
I

wherea = (&) n is given by the adjoint scheme of (8)

T
o=, + 4 (0cF(E) (3. - 2ri),
al = At(CE — Coxpftnsn))» (22)
all =0,

Although it is dificult to justify theoretically the computation of the graai@sing the

measure equation (14) when the discretization goes to @uiterical behavior is very

stable and can be interpreted in term of approximation aadehction as it will be
seen in the numerical simulations in following section.

11
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Figure 2: Chromatogram simulated with Table 4.1

Since they are equivalent in term of accuracy it is intengsto compare the two
schemes in term of numerical complexity. In the “direct dation” method, the un-
known éc in the problem (21) is @ x g matrix which can be computed along with
the direct problem unknowawhich is ap vector. On the other hand the unknoan
in the adjoint method is only @ vector - instead of @ x q matrix - but its compu-
tation requires to store the direct problem solutioior the N times andK abscissa,
since the scheme (22) has final boundary conditions in tingespace and its céi@
cientsdcF(cy) depend on the direct scheme solution. The memory requireisithen

N x p x qfor the direct derivatiormethod andN x K x p for the adjointone. For one
evaluation of the gradient, both methods reqili€&(p + q) calls to isotherm dependent
functionssF anddcF. In terms of elementary operations they also require of thero
of Nx K x px (g+ p) multiplications in theadjointcase againdl x K x qx p>+ Nxgx p

in the direct derivatiorcase. The leading order term is in both case®@gnx N x K)
with a factorq + p in the adjointcase and a factag x p in the direct derivatiorcase.
We estimate that for reasonably small values of the numbpacfmeters, the huge
memory requirement ofidjointmethod makes it prohibitive compared to ttizect
derivation Another argument in favor of the direct computation is tlesgibility of
computing both the solutionand its derivativesc on the same adaptive grid, while in
the adjoint method the solutions of the direct and adjoinbfgms can have disconti-
nuities in diferent places. The time varying adaptive grid devised to cdethe direct
problem cannot be easily used to compute the adjoint solutio

On the other hand if the goal of the identification problem weesinjection profile,
instead of the isotherm parameters, the number of unknovmsdwbecome large
enough to make the adjoint method mofeagent than the direct derivation one (see
[15, 16, 17]).
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Figure 3: Distance of the optimization result to the targed éunction of discretization
parametent.

N* 100.|| U 3

K’ 5 Inj 25
FlowRate| 1 Porosity 0.59
CFL 0.8 || #time steps 4000
Diameter | 0.39 || Length 15.

Table 1: Parameters of simulation in the scalar case

4 Numerical verification of the convergence

4.1 Scalar case.

For this set of experiments we have simulated a chromatogiging a Langmuir
isotherm with the parameters in Table 4.1

The chromatogram is displayed on figure 2. Using this as éxjgertal data, we per-
form several identification of the isotherm parametersgisiifferent space and time
discretizations, from 200 to 4000 time steps. When we ussedh@ discretization as
the one used to generate the dataset, we should and actoadigaler the exact param-
eters of the isotherm. For coarser discretization the graddentification converges
to a target slightly away from the true parameters but wharverges towards it with
the discretization. This behavior is displayed on figure 3ciwhepresents in logarith-
mic scale the distance between the result of the identifinatnd the true target in the
parameters spac&{andN*) as a function of the time step.

The two curves correspond to identifications starting fraffedent initial guessesa(
for K = 1.1, N* = 90) and { for K’ = 0.9, N* = 150). This figure shows that

13



1 57 ]
“;QMQ;V\AAAVA\,A\AA
0001t o ]
®A ““
.'g \" A
A
1e-06 | \ Lo 1
a )
o
o9 ;
le-09r o ,
20 40 60 80 100
iter

Figure 4: Convergence paths fidt = 400 4000 and the two initial guesses.

the descent algorithm converges towards a minimum indegrerud the starting point,
and which gets closer to the theoretical target as the digation is refined. Figure

4 displays the evolution of the objective function with therations for two dierent
discretizations and the two initial guesses. When staftomg (K’ = 1.1, N* = 90),O
indicate the behavior of the minimization done using 40@tsteps and correspond

to the 4000 time steps computation. The minimization stgrirom the other initial
guessK’ = 0.9, N* = 150) is displayed wittv for the 400 time steps computation and
A for the 4000 one. The two coarse grid computatiamaiidv) converge to roughly
the same level of 003 for the objective function, while the fine grid computat ©

and a) reach very small values below 0 For both discretizations the first initial
guessK’ = 1.1, N* = 90 indicated byn ando) leads more rapidly to the convergence
state than the other initial guess indicated by the triasgle

Using the results of this convergence study, we can als@mparé closer analysis of
the numerical behavior of the measure equation (21). Far difterent discretiza-
tions (Nt = 200, 100Q 2000 and 4000) we compute the solution to (21) using the best
isotherms parameters for the corresponding discretizagi® recorded in the table 4.1.
It is a vector of two components corresponding to the dervigatof the concentration
with respect to the two parameters of the isothekhandN*. We display on figure

5 the first coordinate at the output of the coludoy-(L,t), on figure 6 the second
onedck (L, t) and on figure 7 the elierence between the simulated and experimental
chromatograms(L, t) — cops(t). The left hand side graphs display a zoom in the time
range of interest. When the convergence isotherm is useddtieatives converges
theoretically towards a delta function located at the shmmition ¢ = 2.41) and this
behavior is well reproduced numerically on figures 5 and 6fi@Qure 7 one can verify
that the diference between the experimental and simulated chromatsgtacreases

14
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Figure 5: First component of the measure solutiof(L, t) for Nt = 200, 100Q 2000
and 4000 times steps, convergence isotherm used in each case
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Figure 6: Second component of the measure soldtigfi, t) for Nt = 200, 100Q 2000
and 4000 times steps, convergence isotherm used in each case
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Figure 7: Diference between the simulated and experimental chromatsdoaNt =
200,100Q 2000 and 4000 times steps, convergence isotherm used ircaseh
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-20
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Nt

K/

N*

200

1000
2000
4000

4.91223
4.9804
4.99402

5.

97.5226
99.5889
99.8801
100.00

Table 2: Best parameters forfiirent discretization in the scalar case
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Figure 8:c¢(L,t) — Copg(t) andsc(L, t) for Nt = 1000 time steps, and three parameter
sets *, K’) a) (9Q4) b) (10Q5) and c) (1106).

in amplitude as the discretization is refined.

We also display the solution of the measure equation cordputith parameters of
the isotherm slightly away from the best fit, for two disczationsNt = 1000 on

figures 8 and 4000 on figures 9. This last case corresponds thdtretization used to
generate the “experimental” chromatogram, and the measardelta function when
the target parameters are used (middle graphs biNfox 100 andK’ = 5). In fact

derivatives computed for isotherms parameters away framtdlget value all look
like delta functions but positioned at the wrong time. Theifegg10 displays a zoom
of the derivatives obtained using the target parameterthitwo discretizations. It

corroborates clearly the convergence towards a deltaimct
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Figure 9:¢(L,t) — Copgt) andsc(L, t) for Nt = 4000 time steps, and three parameter
sets \*, K”) a) (90 4) b) (10Q5) and c) (1106).
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Figure 11: Chromatograms simulated with table (3)
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component 1| component 2
Kz | 0.203564 0.283886 N; | 1430
K2 | 00325631 | 0.0407128 | N; | 12055
experiment 1 2 3
component| 1 2 1 2 1 2
injection 30.72| 30.72| 1.49| 4.74| 3.72| 3.72

Table 3: Isotherm and injection parameters for the binaxtumé simulation.

4.2 Binary mixture.

We simulate in this case the two chromatograms displayedgamefill using a Bi-
Langmuir isotherm for a two components mixture, namely

N* i Gi . KPci
1 1 1 2 2 20, "
1+ chl + K2C2 1+ chl + K202

hi(c) =

This model takes into account the fact that there are twoilplessinds of adsorption
sites, and is determined by 6 ¢beients, whose values are listed in table 3. We used a
very refined discretization of 4000 time steps for each @rpant, the second one until

T = 17, with a flow rate of 2 ml/minutes the first and third one uniil = 31, with a
flow rate of 06 ml/minutes. The CFL condition is conservatively ensured byasipg

AX ,
AL mée\le () <0.8

We then perform identifications of the deientsN; andN, the codficientsk; and
K> being kept equal to their theoretical values, which werelisgenerated the exper-
imental data. Offerent discretizations, and initial guess are used. All gsailts tend
to verify the robustness of the identification algorithm.eTsehavior of the objective
function with the iterations of the minimization algorithis displayed on figure 12
for different discretizations. As expected the value of the oljedtinction reached
at convergence diminishes for finer discretization. Lessligtably, this simulation
shows that convergence is reached faster for coarser tizstien. Figure 13 shows
the distance of the parameters found by the minimizatioorélgm with the target
parameters (used to generated the experimental chroraatdpdihere are two curves
on this figure, corresponding to twofliirent initial guessed\, N;) = (130 10) and
(110 20). As expected, in both cases, the distance goes to zeno thbaliscretiza-
tion is refined. The parameters reached by the minimizatigorihm are displayed
for different discretizations and the two initial guesses on figdreElven for coarse
discretizations the dependence on the initial guess issragyl.
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Figure 12: Convergence history forfiirent discretizations,
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name/ # BA/1 PE/ 2 MBA /3
Ki 0.01516| 0.02341| 0.02107
K/ =N'K; | 1.97 3.303 3.55

N/ 129.99 | 141.09 | 168.50

Table 4: Isotherm parameters for the ternary mixture [4].

5 Application on real datasets

5.1 Experimental identification of isotherms

We test the identification method on real datasets which wetensively studied by
Quinones, Ford and Guiochon in [4]. This paper is remaskégicause it provides a
very important set of isotherms measurements for a 3-commemixture: see figure
15 below, where each symbol corresponds to a (lam(c)), and a diferent exper-
imental setting. Let us explain briefly how to read this kirfdfigures. There are
three components, 2 BA = benzylalcohol, 2= PE = 2—phenylethanol, 3= MBA =
2—-methylbenzylalcohol. For each componéng; 1, 2, 3, the adsorbed quantityc);

is displayed as a function of the total amount of mixturex ¢, + ¢3), for five different
compositions of the mixture, namedyfor single-component; for 3 : 1 : 1 mixturé,
xforl:1:1,0forl1:3:1andaforl:1:3 mixture.

60

BA (g/l)

MBA (g/l)

60 0 30 ¢ 4c4c, 60 0 30 c+ctc, 60

Figure 15: Isotherms experimental values and model valugsthe parameters of
table 4.

In this paper the authors make use of an isotherm functightyji different from the
Langmuir isotherm, with six independent parameters

hi(c) = N{‘*. (23)
1+ Zi:l chl

They identify the cofficientsK; andN; fori = 1,...,3 by fitting the curves obtained

with (23) with the experimental points for single componeixtures ¢ in Figure 15),

that is an amount of 30 experiments. The identified parameter given in Table 4,

and all the lines displayed in Figure 15 represent the isotr@mputed with these

values. Then simulated chromatograms are computed usintpéomodified isotherm

13 parts of BA, 1 part of PE and MBA
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law (23) with the values obtained for the six parameters,\asuhlly compared with

a set of seven experimental chromatograms, corresponaidifférent proportions of
the three components andi@rent injection profiles. Two of them are displayed on
figures 16. The left-hand side corresponds to a mixture of BB, and MPA with
proportions 1 : 3 : 1, while the right-hand side correspomda mixture of BA, PE,
and MPA with proportions 3 : 1. Experimental profiles are esgnted with symbols.
The chromatograms computed with (5), and the values of petamin table 4 are
represented with dashed linesH), while solid lines (—) represent the chromatograms
computed with the values in Table 5 below.

Notice that these computations are performed with an iigeatondition recorded
from experimental data as well, see Figure 17, which is nt¢@fsinction. The influ-
ence of this realistic boundary condition on the shape ottirematograms is impor-
tant, see [4] for a more detailed discussion. The left-hajettion profile corresponds
tothe 1 : 3 : 1 experiment, the right-hand one to 3 : 1.

Remark. From now on, all the numerical simulations we use are peréorusing
the Godunov scheme, with 1000 space points, 1391 time sémgisthe gradient is
computed with the direct strategy described in Section 3.2.

5.2 Numerical identification of the isotherm

Now we bring our method into operation, using the two setshobmatograms above

as observation. This is a completelyfdirent identification strategy from the previous
one, which is of course very reliable but unfortunately igotns experimental esti-
mates are seldom available, while on the opposite chromattgare more standard
chromatography measurements.

In order to recover the céigcients with the same accuracy on each component and
to use the information from both datasets we consider thewiilg weighted cost

function, wherey; = 1/ mnax'cexp(tn)j

. 1 3 N-1
J@) =38 3 3 75 3|k - cexlt),

exp=12j=1 n=1

2

(24)

As a first test, we start the descent with the parameters e #adis an initial guess, the
value of the cost function is thenld 5, and we optimize on the whole set of six param-
eters. After convergence of the conjugate gradient opétiun, its value is @107, it
has been divided by ten and the parameters of the isothemiisatayed in table 5. The
fit with the experimental isotherm is displayed on figure I, fit with experimental
chromatograms on Figure 16 with solid lines (—), togethehwhe simulations of [4]
(dashed lines-—). Several comments are in order here.

First, it is clear that the fit on the isotherms is worse forudeted parameters. This
emphasize the fact that the kind of data we used to identdycampletely dierent
from [4]. The concentration range of the chromatograms isthe same as in the
isotherm data, and in particular we have no informationlairathe single-component
adsorption ¢ in Figures 15 and 18), for which the simulated parameterguaite poor.
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Figure 16:

30

BA:PE=3:1, VL=0.5ml
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Experimental chromatograms (symbols) and sitadlchromatograms us-
ing parameters from Table 4{) and Table 5 (). BA and PE components (top), MBA

component (bottom).
name/ # BA/1 | PE/2 MBA /3
Ki 0.0137 | 0.0214 | 0.0206
K{ = N'K; | 1.78046| 3.00974| 3.47049
N/ 129.986| 141.07 | 168.495

Table 5: Isotherm parameters after optimization startinghftable 4.
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Injection profile BA:PE:2MBA=1:3:1, Vi=1.0ml Injection profile BA:PE=3:1, Vi=0.5ml

BA —— BA
[ — | —
MBA MBA
30 |7 1 1
20 | 1 1

Figure 17: Injection profiles used for the two experiences.
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Figure 18: Isotherms experimental values and model valitbsie optimized param-
eters of table 5.
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name/ # BA/1| PE/2 | MBA/3
K/ =N'K; | 1.833 | 3.108 | 3.511

Table 6: Experimental values &f, from [4]

starting point Nea/1 Npg/2 Nugass | initial cost | final cost
value value

200. 200. 200. 120.937| 134.14 | 169.401| 0.206 0.00892
100. 100. 100. 123.724| 135.768| 158.81 | 0.411 0.00901
200. 200. 200. 124.059| 135.537| 159.29 | 0.432 0.00902
200. 100. 100. 123.342| 135.968| 157.67 | 0.292 0.00909
200. 100. 200. 123.373| 135.704| 159.637| 0.174 0.00896
100. 200. 100. 120.003| 133.503| 173.244| 0.122 0.00912
200. 200. 100. 124.167| 135.949| 157.592| 0.237 0.00909
100. 100. 200. 118.536| 133.099| 178.772| 0.210 0.00945
100. 150. 200. 116.171| 133.053| 182.999| 0.046 0.00980
200. 150. 100. 124.46 | 136.054| 156.623| 0.071 0.00917
Mean value 122.614| 135.441| 165.685

Relative variance | 0.09 0.030 | 0.45

Table 7: Isotherm parametexs identified from several starting points.

On the other hand, the value of the cost function has beedeativby ten, and it is
clear on Figure 16 that shocks are much better identified fifvem the experimental
parameters. This is not very surprising, since all the nicakidentification process is
based upon the hyperbolic model, which is very sensitivaéshock position.

Next, we tried another series of identification, taking iat@wount some experimental
values for the parametel§ = N/K;, which are given in [4], and recalled in Table 6
below (in the original paper, the displayed valueslgfe< (1 - €)/e, wheree = .59 is
the porosity of the medium). These values, correspondirtgrialytical conditions”,
that is very small injected concentrations, are obtaingd &igood precision, and cor-
respond to the propagation at concentration zero, whicivengyy F'(0). Therefore,
we performed ten optimizations, withftirent starting values for the three parameters
N’. The results are gathered in Table 7. We notice that the costibn has been
divided at least by a factor 10. The third ¢eient seems to be morefficult to iden-
tify (relative variance 015), maybe because its concentration is rather small in bne o
the experiments. To give an illustration of this result, vigpthy both the isotherm
curves (Figure 19) and the chromatograms (Figure 20), ®fifth computation (the
values are extracted from the italic line of Table 7, and lkedan Table 8). Concern-
ing isotherms, the results are improved with respect toreid8, and this emphasize
the fact that the experimental values of Table 6 include aifsigint information on
isotherms in the computations. The results on chromatogiegood, in particular
we still have the correct position of shocks, which was najeod in [4].
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Figure 19: Isotherms experimental values and model valitbsfne optimized param-
eters of table 8.

BA:PE=1:3:1, VL=1.0ml BA:PE=3:1, VL=0.5ml
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Figure 20: Experimental chromatograms and simulated chtognams using opti-
mized parameters from table 8, BA and PE components (top)MBw@ component
(bottom).
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name/ # BA/1 PE/ 2 MBA /3
Ki 0.01486| 0.0229 | 0.02199
K/ =N'K; | 1.833 3.108 3.511

N/ 123.373| 135.704| 159.637

Table 8: Isotherm parameters for the fifth experiment in @&l

6 Conclusion

The computation of the gradient required to use a desceimhization method in the
flux identification for a system of conservation laws is nowrtiughly studied from

a numerical point of view. The direct computation of the geatlfrom the original
problem, formulated with partial ffierential equations is still an open problem, even
in the scalar case. However, convergence with respect thisheetization step is indi-
cated by all the numerical tests. Moreover, the applicatifthe identification method
proved to be reliable in the case of &3 system fully documented in the Chemical
engineering literature. We emphasize that additional exyetal information on the
parameters can drastically improve the results.

On the other hand, it is clear that the complexity of the dfbjecfunction makes it
necessary to combine some global optimization method vighgradient, to avoid
for instance local minima. A first idea is to use the global metto find a good
starting point for the gradient (or any descent method),rbote intricate couplings
are currently under study, using evolutionary algorithfigally, the strategies for the
formulation of the discrete gradient have to be applied toawwomplete models, taking
into account for example flusive dfects, which are also widely used in Chemical
Engineering.

Annex |. Weak formulation for the gradient estimation.

We describe in this annex the method to compute the gradigheaost function (7)
with a weak formulation. This method has been described aerd in [12] and [13],
but we give here the full computation, including the case aba zero initial state,
which is used in Section 5.

The gradient with respect to the model parameters will beéthrough a Lagrangian
formulation. We start with the development in the continsioase which gives a good
feeling for the method. We will next present the discreteraagian model which is
actually used in the numerical simulations.

Gradient computation in the continuous case

The constraint for our optimization problem is that

C. is solution to (5)
In order to write a Lagrangian for this constraint, we firsiteva weak formulation:
E(c,p,a) =0, Vp, where the functiondt is obtained by multiplying the PDE in (5)
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by a test functiom, as smooth as, and integrate by parts on the domainl[Px [0, T]:

L T
E(c,p, @) j; j; < (0xC + 8tF(c)), p > dt dx

T L
f ([< c,p >]B - f < C, Oxpdx >) dt
0 0

L . T
+j; ([< F(c),p >]o — L‘ < F(c),0ip > dt)dx

T T
f < c(L,t),p(L,t) > dt - f < Cinj(t), p(0, t) > dt
0 0

L

+ j:- <F(c(X,T),p(x,T) > dx—j; < F(cini(X), p(x, 0) > dx

L T
—f f (< c,dxp > + < F(c), dp >)dt dx
0 0
The Lagrangian for the constrained minimization problem is
L(c,p, @) = J(c) — E(c, p, a). (25)
We notice that
J(@) = I(C,) = L(Ca, p, @)

so that when we apply formally the chain rule, we obtain
, oL ac oL
J (a)da = %(Ca, P, a/)a—F oa + 6_(1(%’ p, @) da.

Since itis hard to compul%o‘a (for reasons mentioned in paragraph 3) we will choose
p such thatl: (c,, p,@) = 0 and will next computel’(a)se = 2 (c,., p, @) da for this
specialp.

When we diferentiate the Lagrangian with respectctahe terms involvinginj and

cini disappear, because they are fixed data of the problem, the<t&t(c), o;p > leads

to (9:F(c)sc, dp) = (¢, (:F(c))" ayp), so that, for the cost function (7), we have

oL 9) OE

ac ~ dc  doc

T T
f((C(L,t)—cobs(t)),50>dt—f (¢, p(L, t))dt
0 0

- fL<5C, acF(c(x T))"p(x T)) dx
0

L T
+ f f (6C, (9xp + Acp(c) T orp)) dt dx
0 0

Putting this equal to O for all possiblée can be interpreted as a weak formulation
of a linear transport equation fqr, with a boundary condition o = L, readily

27



given by the first two terms in this formula, and a final datumt en T, which reads
AF(c(x, T))Tp(x, T) = 0. But sinced:F(c(x, T)) is invertible, we can finally choose
the adjointp solution to

p(L, 1) = c(L,t) — Con(t) (26)
p(x,T)=0

A formula for the gradient ofi(e) is then obtained by picking any solution to (26)
and computing

{ AP +0cF(©Top =0, te€]0, T[, x€]O,L]

J(a)sa

I
|
=9
R
I
|
|
=9

L L
= [ oF(e(9Ip(x 0)dx- [ dF(clx TP T)dx
0 0

L T
+f f SF(c)op dt dx
0 0

JF is obtained by dferentiating- with respect to the parameters we want to identify
(see (16) and annex II).

Discrete formulation

We write the discrete version of the constrai(t, a, &) on the numerical scheme (8)

N K-1
ECaa) = ) > <o+ a(FE)-FE) 8>
n=1 k=0
N K-1 N K-1
ECcaa) = Z <c2+1,a211>—ZZ<c2,a2;%>
n=1 k n=1 k=0
N K-1 N K-1
AN <F(E)at > /IZZ <FEY.akts.  (27)
n=1 k=0 n=1 k=0

Since we will not diferentiate with respect to the terng$ which are fixed by the
injection condition, we set them apart. Furthermore, we eng thek indices in the
first sum and tha indices in the fourth sum.

N K N K-1
Ecaa) = ) ) <qat>-) ) <qai>

n=1 k=1 n=1 k=0
N K-1 N-1K-1

+1) ) <F(@.at > -4 < F(c}). ;>
n=1 k=0 n=0 k=0

N-1K-1

= {(Ck’ak Y>o<ca+ /1(<F(Ck) a1 > - < F(CE)’aknJrl))}
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K N-1 K-1 N-1
e A A - D al A - Y e A
k=1 n=1 k=0 n=1
K-1 N-1 K-1 N-1
+ A DR, A + YR - Y (F(E), &) — Y (F(e)). ab |
k=0 n=1 k=0 n=1

As in the continuous case, we write the discrete Lagranglasreithe constraint

(cE solution of (8)
is taken into account big(c, a, @) = 0. We are led to dierentiatel(c, a, @) = J(c) —
E(c, a, @) with respect to all components (:n{g) We denote by.F the Jacobian matrix

of F, that is @cF)ij = % where j indicates this time the component among the
i

mixture components. We get

aJ
o = At < (c?( - Cexp(tn)),5CE > OkKs
for the cost function, and
OE oF
o5 = <ot —at >+ < o ()oek (ad - afly) >
K
T
= <od (- o+ A(9FED) (it - aa)) >
fork=1,....,K-landn=1,...,N-1,
oE
@ = <(5CP<,a.K_1>, lﬁnSN—l
9B L s s a1 (aE(E) 1<k<K-1
ol = < Cp» Qg+ (c (Ck)) 1 > =R= '
k

Imposing that all partial derivatives af = J — E with respect tagy must be zero, we
obtain a scheme to compup?. By settinga{:‘ = 0 forall 0 < k < K, we can replace
the third condition by the first one written this time foxOn < N and 0< k < K. We
end up with the following algorithm

gt =+ A(0F() (t-af,). forallo<k<K and 0<n<N,
al = At (c’,}+l - cexp(tml)), forall 0<n<N, (28)
ay =0, forall 0<k<K

It is straightforward to notice that the discrete adjointresponds to the numerical
solution obtained by discretization of the continuous adjproblem (26) with a back-
ward scheme.

The gradient off for this adjoint is next computed by plugging it into (27) atifferen-
tiating E with respect tax. Only the two terms depending éhplays a role. We again
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introduced, F, the matrix of partial derivatives d¥ with respect to the parametears
(see Annex II)

oF; .
(6F)ij = (@aF);j = o Loi=1...p j=1...9
Qi
- OE
J6a = —a—aéa/
K-1

1=

K-1
OF(C) (@it — after) + 4 ) SF(C)aR, 1.
k=0

Annex Il. Gradient of isotherms

We have put together in this annex the formula for partiaivd¢ives of the isotherms
6F which come into play to compute the gradient of the cost fioncin (29) or (20)
through (21).

In the case of Langmuir isotherm (3), one can optimize wipeet to the parameters
N* and i l”: 1+ In that case the partial derivatives are

(6;,\(](:))I _ Kici (6;2:)1 _ N i Ci

Kicic

N ——
p p

29

1+ ) KiG  (1+ ) Kic)? (29)
=1 =1

- p
1+ Z KjCj
ji=1

One can also write this isotherm as a functiomofand K/ = N*K;)" .

K/ci
hi(c) = N*—— 1

p
N*+ > Kig
=1

This last option is often more interesting because experiatehromatograms provide
us with a reliable and direct estimation of tigvalues. Partial derivatives with respect
to N* andK; are

P
Kic > Kig
oh(c)\ _ =1 oh(c)\ _ N* 8iiCi N K/cic
oN® B > ’ 2 aKI/ i B . ’ ¢ ’ 2
(N“+ Y Kigy) N+ > Kig (N* + > Kjc)
=1 =1 =1

The Bi-Langmuir isotherm (23) used to validate the binarytmie identification has
the following partial derivatives

(30)

(ah(c)) K (6h(c)) N OGN KMcic

ON* ). P I P m P

14 ) Kl T 1) KM (14 ) KM’ 5D
=1 j=1 j=1
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In the case of the isotherm (23) used to model the experirhdata there are 2

oh(c) _ KiGi oh(c) N 05 Gi N Kicic
* O N; -N,
N’ J; . 9K ), $ : 2 | (32)
1+ZKjCj 1+ZKjCi (1+ZK]C]‘)
= = =1

As done in the Langmuir case, this isotherm can be rewrigenfanction of thel’@i")i”:l
and K/ = N'K;)P,

Partial derivatives with respect ig" andK/ are

(ah(c)) _ K'KcC, @) _ oG K7cio

aN[k . P K’c: 2 6K|’ . p K{Cj P K’c: 2 33

i N|*2[1+ ]*1] I 1+Z l\]l* Nl*[1+ J*l] (33)
=1 N; = =1 N;
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