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Abstract

A goal of low-level neural processes is to build an efficiesde extracting the
relevant information from the sensory input. It is belietedt this is implemented
in cortical areas by elementaipferential computations dynamically extracting
the most likely parameters corresponding to the sensonakigVe explore here
a neuro-mimetic feed-forward model of the primary visu@aa(V1) solving this
problem in the case where the signal may be described by &tréibear gen-
erative model. This model uses an over-complete dictioo&gyrimitives which
provides a distributed probabilistic representation plirfeatures. Relying on an
efficiency criterion, we derive an algorithm as an approxerslution which uses
incrementalgreedy inference processes. This algorithm is similar to 'Matghin
Pursuit’ and mimics the parallel architecture of neural patations. We propose
here a simple implementation using a network of spikinggrage-and-fire neu-
rons which communicate using lateral interactions. Nuoasimulations show
that thisSparse Spike Coding strategy provides an efficient model for representing
visual data from a set of natural images. Even though it ipbstic, this trans-
formation of spatial data into a spatio-temporal patterbiofry events provides
an accurate description of some complex neural patternsnedas in the spiking
activity of biological neural networks.

Keywords: Neuronal representation, inverse linear model, over-complete dictionar-
ies, distributed probabilistic representation, spike-event computation, Matching Pur-
suit, Sparse Spike Coding.

1 Toward a functional model of the neural code

A major problem in neuroscience is to understand the comtktite activity that is
observed in biological neurons. These complex activitygoas that are the basis of
our cognitive abilities remain a mystery and there is yet novin unifying model
explaining the "language” that could be used by neuronseaw#rious scales of the
central nervous system. In particular, descriptive modgthe neural activity tend to
be incomplete or to reflect a distorted description of naoaditions [13]. We will try
here to overcome these problems by precisely defining theehaoal the hypotheses
that we want to validate. We will assume here that there®aifiinctionaheural code



and that we may decipher the neural activity by exploringpatgms —based on the
nature and architecture of the neural system— that solaezitly the function that is
provided by the system. We will illustrate this method fag firimary visual area (V1)
in the human by trying to define precisely its function anchtbg proposing a model
for the neuronal representation and for the mechanismsrtagimplement it.

1.1 Solving inverse problems using neural networks

V1 is a cortical area specialized in low-level visual prateg from which the majority
of the visual information diverges to higher visual areas.Will describe it here as im-
plementing an inverse problem lapalyzing images thanks to an internal model. The
hypothesized function over the long term (in the order ofreda years) will thus be to
process natural scenes (thatis images that occur freglisaths to progressively build
a "model” of their structure. The goal is that for any of th@sages, this model must
rapidly (in the order of a fraction of a second) represent afkeatures relevant to that
imagé and corresponding to this model (see Elg. 1). This reprasient including for
instance the location and orientation of the edges thainauthe shape of an object, is
then relayed to higher level areas to allow, for instancebaist recognition of useful
patterns. Actually, this is similar to numerous tasks inieagring and applied math-
ematics, where a reverse-engineering process allows t@fintust representation of
the data (such as an estimation of the internal state of arsyist control theory) by
identifying the so-calledhidden parameters of the system. The success of this algo-
rithm over the long term (in the order of days to generatiaiigvs then to validate
the model that was learned through the pressure of evoluliothis framework, it is
thus easier to describe cortical activity as the result efitiversion (or analysis) of an
internal model of the world.

Moreover, such a model of the world should also take into astsome basic knowl-
edge of actual physical interactions. This idea is basetdl®assumption that the obser-
vations are the effect of the interplay between differentses corresponding to stable
physical interactions and that they should be recovereddoribe the observed data by
representing the underlying actual physical structur@alticular, some knowledge of
the usual transforms of the signal (such as translation ealthg in images) which are
related to regularly occurring changes in the physical vfidteral and frontal trans-
lations of objects in space) allows then for a robust repragion and further analysis
by higher level cortical areas. This may finally allow for iled properties such as an
invariant representation of objects to these frequenttyming transformations.

We will restrict here this artificial neural network to a fefward model of V1 which
processes flashed static imagjed/e will assume that the model of natural images is
fixed and accurate and we will define the goal of our model asvering the sources
(corresponding to some hidden state variables, seélFigorh)din observed static im-
age. Moreover, in the framework of natural living systeme,will assume that a main
constrain from evolution is the ability to process the imfiation as quickly as possible.
This model will consist in these restrictive conditions tore-layered neural network
as illustrated in FidJ2 and the output of the neural layeusthdescribe at best and as

Iwe will consider here that each neuron may be characteriyed fireferred pattern to represent. It
should though be emphasized that this view differs from terid-mother neuron” paradigm since the
representation emerges from the interaction of differetive neurons.

2|n particular, we will study the transient response of thisvoek and neglect the information fed back by
higher areas. This latter information will be necessary orercomplex algorithms which take into account
the context of a local feature.
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Figure 1:Inverse-mapping as a a goal for sensory neural codindr he visible world

is modeled as the interaction of a large set of hypothetibgkjgal sources (world
model) according to a known model of their interactions (tesis”). We will con-
sider that for sensory cortical areas, the goal of the neemksentation (and its im-
plementation by th@eural code) is to analyze the signal so as to recover at best and
as quickly as possible the sources that generated the ¢fgnalysis”) . The analysis
may thus be considered as an inverse mapping of the synthegioposed solution

for this problem is tanfer at best the most probable hidden state.

quickly as possible the visual content. Considering théesysas an information chan-
nel (according to the definition of Shannon and Weaver [2Hctv processes samples
from the set of natural images, we may therefore define theafd4l as to transmit
the information about the sources fits) at the highest rate as possible.

1.2 Inverse models for sensory processing

To build an algorithm of the inverse model to efficiently catde input, we will first
define the forward synthesis model akiaear Generative Model (LGM) as is often
assumed for natural images[17]. For visual data, imagesisimdeed of the set of
observed luminance values from different spatial pos#tiand a fairly good approxi-
mation —especially for small images of non-occluding otsee considers the image
as the linear combination of "primitive images”, similattythe superposition of trans-
parent layers. This approximation is based on the assungptiwat the energy of the
photonic flow from a spatial position (the luminosity) catsiof the multiplicative
interaction of different "shapes” that contribute eachddraction of the global lumi-
nosity. Thanks to the non-linegamma transform of luminosities into luminances[22]
which approaches a logarithmic function, these "shaped”wllinearly in the lumi-
nance space. Although this is justified in practice for tpament shapes, it is not for
occlusions. The LGM framework provides however a geneeahBwork for describ-
ing natural images.

The forward model defines images as the superposition ofeshafdifferent intensi-



ties which correspond in our framework to scalar "hiddemesta Formally, we will
describe this set of scalars by a veéter= {s;}1<j<~ WhereN is the dimension

of the dictionary. Similarly, one image will be describedaapoint in a multidimen-
sional state space of dimensid where every pixel corresponds to one dimension
(and therefore the pixel value will be its scalar value altigdimension). This obser-
vation signal will be writterx = {z; }1<;<ar Over the set of spatial positions denoted
by their address (that is the pixels over a rectangular grid in an image prsiogs
framework). To define the LGM, we will use a "dictionary” of ages as the matrix
A ={A;;1 < j < N}oftheN images of the "primitive shapesX; = {A;; }1<i<nm.
The image corresponding to the internal staveill finally be defined as:

X = ZlgjgN Sj.Aj (1)

This model of natural images is defined by the statistics efsthurcesS and by the
dictionary A of primitive images. The latter corresponds to the set ofsfasictions
which describe the space of all observed natural im@ges{x} that we wish to char-
acterize.

In this paper, we will use the same fixed dictionary of filters( isA) and assume sim-
ilar hypotheses on the statistics®to rate the efficiency of different coding strategies.
Using this formalization, the function of the neural netiwopnsists in recovering the
sources by inverting the synthesis process. The resultiofriversion (in the space
of the neural representation) will thus share the same diinarfthat we notedV) as
the space of the sources, that is the cardinal of the diatyora a first approximation
(and as is observed in simple cells from V1), the dictiondrprimitive shapes will
correspond to localized orientation selective edges reifit positions and scales re-
sembling Gabor functions [111,123] at different spatial esalThis may be particularly
adapted in an information theoretic based framework agtbleapes correspond to in-
dependent features in natural scenes [4]. We choose heariéhBorward model will
be described by a wavelet transfoimi[14] and we will use thgékitecture to compare
different coding strategies.

1.3 Efficient coding of natural images

In fact, particular care should be put on the parametersiefithvelet architecture. In
particular, it is desirable for the representations of redtumages to be robust to nat-
ural conditions. As is the case for natural images, we wilisider that the observed
signals are generated by sources that share certain feathieh differ by continuous
transformations such as edges at different time, positiaentation or scale. Since
the corresponding spatial transformations (translafiostations and scaling) are very
common, if there exists a corresponding transformatioménsource space (that is if
this transformation of all sources are in the dictionanyg tesulting representation of
the transformed image should simply be derived by a transdtion (in the source
space) of the original representation. Thus, it is necgdsarthe dictionary to be
invariant according to these usual transformations forrémeesentation to be robust.
In particular, this allows for instance for higher level as¢o detect some specific in-
puts with an invariance to usual transformations. Typycdhis robustness constraint
implies in our architecture that the tiling of the waveleteiis is smoother than an or-
thogonal representation |21]. As a consequence, the dantjowill be over-complete,

3in the following, we will denote vectors and matrices by batdracters



i.e. the number of dictionary elements will be of several orddrsnagnitude larger
than the dimension of the image space (thd¥is-> M).

From the definition of the forward model, for any sigxalthere exist at least one set
of parameters which recovers the observed signal. However, in the caseenthe
dictionary is over-complete, the inversion of the LGM witlitryield an unique solution
in S to any given signal ir¥ : the problem is ill-posed. The coding strategies corre-
sponding to possible 'analysis’ algorithms (see Elg. 1)ehdifferent efficiencies and,
in particular, the solution given by the wavelet coefficgewith an over-complete dic-
tionary yields an highly redundant representation. Actaytb Barlow [3], the goal of
sensory processing would be rather to choose the most effielpresentation: follow-
ing the same argument as the Occam razor, whenever theeedbdice between two
representations, the best is the one that is the most pargos In our framework, a
possible goal would be to maximize the mean codeword letigét is get the coding
strategy that describes at best the images. From Shanmamtescoding theorem [27],
this length is bounded by the entropy of the images for a girehitecture and coding
strategy. Under some assumptions that we will develop, ltt&ris equivalent to find
the sparsest representation, that is the representation that uses the smallest number of
sources|[17]. This sparseness constraint thus allows tiactehe different solutions of
the inversion of the forward model so as to find an appropdatelidate for the neural
code.

However, the combinatorial complexity of the inverse pewblgrows very quickly as
the dimension of the dictionary increases (it's NP-comglsee|[14]). There exists
therefore no simple algorithm that optimizes exactly thabpem in reasonable time as
we handle more complex signals such as natural images, bapt&dble sub-optimal
strategies to approach this problem do exist (see a revigib&if). Most popular so-
lutions optimize a compromise between the reconstructioor @and the sparsity and
are based on linear optimization or gradient approachds R8lowing the same ar-
guments as Barlow [[3], we explore an alternate solution whises a probabilistic
representation and Bayesian inference.

2 Sparse spike coding using a greedy inference pursuit

Focusing on the event-based nature of axonal informatérsttuction and in order to
reflect the parallel architecture of the nervous system, Wéere propose a solution
for inverting the forward model that we defined for naturahges. This will build
a Bayesian inference framework based on feature-matct@ngons and on spikes as
events representing primitive "decisions”.

2.1 Greedy inference pursuit using spikes

This approach proposes an alternative to classical paredid neural coding such as
the spike-rate coding approach of theceptron (see Fig[R). Instead of coding infor-
mation in the mean firing frequency of neurons, we will présenoriginal approach
solving the function that we defined above. It uses a digiitbyprobabilistic repre-
sentation and we will assume here that the activity of nesi{ench as the membrane
potential) in the layer will represent dynamically the eande of a correct match and
that the output spiking signal signifies a set of elementagigions made by the neu-
rons. Following this process and focusing on every singikespghe process occurs
repeatedly using two steps: Matching (M) and Pursuit (P).



(M) To each neuron is assigned a vector (or weight patterngspanding to its pre-
ferred stimulus. Neurons compete in parallel to find the nposbablesingle
source component by integrating evidence according to their wepigtiterns.
The first source to be detected should be the one corresgptalihe highest
activity.

(P) The best match is assigned a decision which, once it hastaken, is assumed
to be reliable: we can take into account this informatiorobeperforming any
further computations (and in particular finding a new masthas to yield a new
representation where we removapletely the detected source.

We call this approach greedy pursuit which is based on the recursion of two greedy
mechanisms (detection - removal). These are here idedlizecbrrespond to known
aspects of neural activity (matching - suppression).

We will see that this method is similar to the approach dgwedbin the method of
Matching Pursuitl[15]. However, instead of a heuristic sohethe algorithm will here
be derived from known hypotheses and thanks to the desmmipfithe successive steps
that may lead to the greedy pursuit, it may be considered aptimization strategy
of the goal that we defined above (hamely maximizing the fearaf information).
We will then propose an implementation using Integrate-fnecheurons and test the
efficiency of this artificial neural code.

2.1.1 Matching: Detection of the most probable source compeent

First, given the signak € Z, we are searching for thgngle sources*. A« € T
that corresponds to the maximuaposteriori (MAP) realization forx (and knowing
it is a realization of the LGM as it is defined in Hg. 1). We witldress in general a
single source by its index and strength{yy s} so that the corresponding vectorsh
corresponds to a vector of zero values except for the vakteindex;j. The MAP is
defined by:

{77, 5"} = ArgMax; ., P({J, s}[x) (@)

To evaluateP ({7, s}|x), the probabilitya posteriori of a single source knowing the
signal, we have from Bayes’ theorem

{3757} = ArgMax; o [P(x|{j; s}).P({j; s})] ®3)

whereP(x|{j, s}) is the likelihood probability of a signal knowing a singleusce and
P({j,s}) is theapriori probability of the sources.

To compute the likelihood we have to first define the model efrtteasurement [113,
p.26]. We will first assume that we are in a low-noise limit komment (the global
contrast is optimal and the eye/camera is adapted to thepserthat we have no or
little measurement noise. Knowing one componght}, the only "noise” from the
viewpoint of neurory is the combination of the unknown sourcgs; }1<;<n. Itis
thus the residual of the signal knowifg, s}. We may thus write the noise as

x=sA;+vwithy = Zk o Ak (4)

The residual of the signal (an image) is thus considered amdatermined perturba-
tion*. Assuming that they, are independent random variables (since we know only

41t should be stressed that the image model is still detestiini



{4, s}), from the central limit theorem it comes that for a suffitciemigh number of
sources, the distribution of the random variableonverges to a normal distribution
with known mean and covariance matrix. From the work of Afitk we know that
for natural images this normal distribution is fairly honeomgous across natural images.
We may either use another metric (based on the Mahalanatiande, as exposed in
[21]) or use a decorrelating kernel to yield a spherical phility distribution centered
around the originE(v) = 0) of this "noise”. Normalizing by the mean energy of im-
agesirZ, the residual signal is thus considered as a decorrelaise abunit variance.
FromP(x|{j,s}) = P(x — s.A;) = P(v), it follows

{77, 5" = ArgMax; [log P(x[{j,s}) 4 log P({j, s})]
ArgMin; ,[llx — s.A;]|?/2 — log P({], })] (5)
We will further consider that the dictionary was learnedtsat bver a long period the

neurons have similar statistics: the prior is uniform asssurces and values. We thus
have no prior knowledge or preference for any source. It tonses

{7%s*} = ArgMin; 4lx —s. A
= ArgMing; o [s%[|Aj]|* = 2.5. < x, A >

To minimize this bi-variate function, we may first minimizerfevery elemenj the
coefficients; to get the corresponding = ArgMax,P({j, s}|x). From the above
equations, this is equivalent to minimizing in the last a@gurathe quadratic function
of s which is minimal for the scalar coefficient

*_<X,A]‘>

S. =
o Al

(6)
that is for the scalar projection of the input @&q;. Then, since for every elemepit
s7.A; is the projection ok on A, so thats;.A; andx — s7.A; are orthogonal, it
follows from Pythagoras’s theorem

J* = ArgMin,[|x — s5.A )
. <x,A; > <x,A; >
= ArgMin, [1x|2 — | S0 A 2] = ArgMa, || S
’ A2 Al
. A,
Jj* = ArgMax;| < x, > | @
(Al

Finally, as defined in Eq12, we found that the source comptthen maximizes the

probability is the projection of the signal on the normatizéements of the dictionary.
This justifies the computation of the correlation in the pgtcon model[25] as it pro-

vides a measure of the log-probability under the assumgtioat we used. However,
using a different strategy as these linear systems, we ssb@ate in our greedy ap-
proach this inference with a lateral propagation of thi®infation to the correlated
neurons and only then resume the algorithm.

2.1.2 Pursuit: Lateral interaction and Greedy pursuit of the best components

Before detecting another single source component, weati# tnto account the infor-
mation that we extracted from the signal by propagating theoneighboring neurons
using lateral interaction links. As we found the MAP sourocewing the signak, we



may pursue the algorithm by accounting for this inferenceéhensignal knowing the
element that we found. From

P({7,s}x,{5" s"}) = P({J, s}[x — 5" Aj-) (8)

and since source are here supposed to have independeittesfithe pursuit algo-
rithm assumes that —knowing the previous detection— we raayme the detection
on this residual signal. We will thus use this new residugthal in which we will then
find a new component corresponding to the most probablesssaglrce.

In this recursive approach, we will note aghe rank of the step in the pursuit (which
begins atn = 0 for the initialization). WritingN; = | A4,||, the first scalar pro-
jection that we have to maximize —and which will serve as thigalization of the
algorithm—is given by :

O __ A
Let’s also note the address of the successive winning ndusonthe first stepr = 1

as
7™ = ArgMax,|C" Y| (10)

Knowing j(™, in order to resume the pursuit at the next step, we saw thatesd to
compute the projection of the signal on the elements of tbodiary. Let's therefore
set initially x(°) = x andx(™ the successive residuals. In this greedy approach, we
consider that the decision corresponding to the MAP cadtatistepn is correct and

that we may therefore update the residual and the corres]tg)adtivitiesC](."’l) =<
x(n=1) A > by subtracting toc"~ 1) its projection on the winning element of index
J

() (see EqLB) : A
(n) — x(n=1) _ on=1) 72

X\ =X ‘n)
7 Nj(n)
Furthermore, we don’t need to feed this information backh® signal and we may
directly compute the activity again for all vectors thantadhie linearity of the scalar

product operator:

(11)

() _ ) Aj
Cj = <xM), N, >

Ty Ay A

_ (n—1) (n—1) S5 J

= <x -, s’

3™ Niwm ' Nj

_ _ A A
c = olrh gl 2 12
J J AR < Nj, Nj(n) ( )

In this simplified framework, the choice of the best match #me update rule are
independent of the choice of the nodWy of the filters (see EQ10 aidl12), so that
we may indifferently use in the following normalized filtefthat is NV; = 1 for all
neurons) so as to simplify the equations. It comes thus:

(nitialization) | C1” =< x, A; > (13)

SFor any realization of the images, individual sources hadependent activities, that is that removing
one source, one gets a new image (conform with the LGM model)ome does not change the probability
distribution of the other sources.



This activities’ update (Eq._12) corresponds in neuro-pslggical terminology to a

lateral interaction. It will be proportional t&®; ;., WhereR; ;.. =< A;, Aw) >

is the correlation of any elemerjitwith the winning elemen§(™) and relates to the
reproducing kernel in wavelet theory.

Finally, we achieve the recursive greedy pursuit of bestmpaments as the iteration of
respectively a "matching” and a "pursuit” step. While theidrial energy is greater
than a fixed thresholfix(™)|| > ¢, we compute :

(Matching) | j™ = ArgMax|C\" "] (14)
(Pursuit) C](.") = CJ(.”’” — CJ(,ZZ”.RJ-J(M (15)

The greedy pursuit therefore transforms an incoming sigirak list of ranked sources
{3 s("1 such that finally (from Eq11) the signal may be reconstuiate

X = Zk:l...n S(k).Aj(k) + X(n)

which is an approximation of the goal set in inverting Bqg. thé norm of the residual
signalx(™) converges to zero.

2.1.3 Properties of the greedy pursuit

This algorithm is exactly equivalent to Matching PursuBiJ[1This algorithm is famil-
iar in signal processing and is increasingly used for imagkvédeo processin@i[9} 6].
However, the use of the statistics of natural images stzlst optimizes the coding
efficiency by modifying the image space metric/[21]. Moremtee Bayesian inference
framework allows to precisely tune the heuristic approddhe Matching Pursuit. It
allows for instance to set a different prior or to include Whedge of the measurement
noise that is adapted to the goal of the system (and hencéeaedif matching criteria
that may depend on th¥;). This algorithm presents similar computational compiexi
and properties [14, pp.412-9]. In particular

o) =ch —ciiY =0 (16)

o = Yim )

and as a consequence the activity of a winning neuron idyatanceled.
Moreover, although filters in the dictionary are here gelhenamt orthogonal, the resid-
ual image is orthogonal to the winning filter and

™2 = [ = |52 ]| Ay |12 (17)

so that we may easily compute the Squared Error (SE) of théuassignal at every
step of the coding.

SEC) = k=3 s A = X

= SECTY — [sMR A |12 (18)
sE® = xP=Y PR AW

= -3, L 1Gw (19)

It first implies that the stopping criteria may be computeidgishis computation with-
out computing|x(™)||. A further consequence of the monotonous decrease of the SE



from Eq.[I® is —under the condition that the dictionary iseast complete— the con-
vergence of the reconstructian [14, p.414]. Under this dang the algorithm will
therefore stop in finite time.

Though simple, the greedy pursuit is a complex non-linegoréithm. In fact, the study
of its behavior is non trivial and may involve chaotic dynam(8]. In particular, it
is obvious that the choice that is made at a giving step mayedntle all future steps.
This implies that a failed match may propagate wrong infdrometo following steps
and therefore that the probability of a failure grows highethe rank increases. These
properties are discussed In[21] and in particular we itated that the speed of con-
vergence increases as the dictionary becomes more ovegle@nso that it provides
an efficient representation for natural scenes in imagegasiog tasks.

2.2 Implementation using Integrate-and-Fire (IF) neurons

From our knowledge of neural mechanisms in a neuronal laélgermodel of greedy
feature pursuit that we derived from an event-based cortipatan a parallel archi-

tecture is particularly adapted to a model of neural contprta. We will derive an

implementation using a network of spiking neurons basechersame feed-forward
architecture of the perceptron (see . 2) but implemeritie greedy pursuit using
lateral interactions.

The activity is represented by a driving current that drivespotential/; of Integrate-

and-Fire neurons [12]. For illustration purposes, the dyica of the neurons will here
be modeled by a simple linear integration of the driving entC; (other integration

schemes lead to similar formulations):

d

T Vi=p;Cj (20)

The neurons are duplicated with opposite polapity= +1 so thatC; = p;.|C}| to
model the ON / OFF symmetry of simple cells|[23]. The neurolhgénerate a spike
when the potential reaches an arbitrary threshold that weese tol.

To implement the computation of the match of an input withresiopatterns, we
define a dictionary which will be implemented by weight vestd ;. These vectors are
normalized as described above and the input is decorrelatesllinear feed-forward
perceptron integrates synaptically the ingtitto an initial activityC; such that

Cj =<X, Aj > (21)

The scalar projection will therefore drive the potentiatteé neuron. We may predict
from the monotonous integration that the first neuron to gerea spike will be the
one that corresponds to the maximal rectified scalar priojeof the input signal with
the weight vectors of the network, that is

j* = ArgMax;|C;| (22)

the firing time ist* = \CZ*I and the potential is thel; = %.C’j = \CC—J]| This is

therefore a simple and biologically plausible implemeintabf a MAP estimate using
the parallel architecture of the network which is in contish the complexity of this
implementation on a single-processor computer. To impigrie greedy algorithm,
we then need to implement a lateral interaction on the neighf neuron similar to the

observed lateral propagation of information in V1! [0, 2]our scheme the interaction

10
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Figure 2: Model of a neuronal layer as a communication channel To understand
the content of neural activity, we consider here that thearal layer implements the
inverse of a forward model (that is the analysis in Elg. 1)e Binchitecture is similar
to the perceptron: the input (notad) is matched with normalized weight patterns
Aj; (which are fixed in this paper) so as to provide an integratst&/ation value (the
membrane potential) which in turn is non-linearly transfed to achieve a membrane
potential which grows proportionally to the probability mfatching a feature. Spikes
represent decisions that are fed back on the correlatetimgiing neurons using lateral
interactions (that we represented for the first spiking arpbut also on the axonal
output which yield a spiking output;.

should yield the same configuration in the network (actigtd potential) as if the
source that was detected was originally absent from theakign this model, ifj* is
the winning neuron, the activity should be subtracted®y |.Ry; ;-1 (see EQCI5) and
the potential by this value integrated owér The lateral interaction is thus achieved
by updating after each spike the activity of the neighboriegrons proportionally to
their cross-correlatiof; ;-, with the corresponding winning neurgh

Cj « Cj —[Cj<[.Ryj j=y (23)

and removing the potential that would be generated by thgitgcof the removed
source:

t*
Vi = Vi = — G5 [-Ryj oy

that is simply
Vi = Vi = R0y (24)

This lateral interaction is here immediate and behaves &jractory period on the

winning neuron ¢;« < 0 andVj;- « 0) and a graded inhibition on positively cor-
related neurons. It involves a subtractive hyper-polagzerm on the potential and
on the activity. Biologically, it is improbable that the émal interaction could be in-
stantaneous, but this lateral interaction could be impleedin a fast manner using
a shunting lateral interaction! [5] mediated by fast-spikieii-neurons. Finally, this
simple implementation therefore implements the Matchiogs®it algorithm that we

defined in EqCI4 arld15 and we will apply it to simple visuakgas

3 Results: efficiency of Sparse Spike Coding

3.1 Coding natural image patches

We compared the method we described in this paper with sit@tzhniques used to
yield sparse and efficient codes such as the conjugate gtadiethod used by Ol-
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Figure 3:Efficiency of the matching pursuit compared to conjugate gralient. We
compared here the matching pursuit (‘'mp’) method with tlassical conjugate gradi-
ent function ('cgf’) method as is used in_[17]. We presentrémults for the coding of

a set of image patches drawn from a database of natural imadpese results were
obtained with the same fixed dictionary of edges for both w#gh We plot the mean
final residual error for two definitions of sparseneg¢keft) the mean absolute sum of
the coefficients an¢(Right) the number of active (or non-zero) coefficients (the coding
step for MP). For this architecture, the sparse spike cosithgme appears to be more
efficient to code natural image patches.

shausen and Field [16]. We used a similar context and aothite as these experi-
ments and used in particular the database of inputs anddherdiry of filters learned
in the SPARSENETalgorithm. Namely, we used a set #° 10 x 10 patches (so that
M = 100) from whitened images drawn from a database of natural imafjee weight
matrix was computed using the&RseNETalgorithm with a 2-fold over-completeness
(IV = 200) that show similar structure as the receptive of simplesdalV1 [23]. From
the relation between the likelihood of having recoveredsigeal and the squared error
in the new metric, the mean squared reconstruction erroin@r2n) is an appropriate
measure of the coding efficiency for these whitened imagégs Measure represents
the mean accuracy (in terms of the logarithm of a probabttigtween the data and the
representation. We compared here this measure for diffdefimitions and values for
the "sparseness”.

First, by changing an internal parameter tuning the compsetretween reconstruction
error and sparsity (hamely the estimated variance of thgerfor the conjugate gradi-
ent method and the stopping criteria in the pursuit), onddcgield different mean
residual error with different mean absolute value of theftments (see Fidl3, left) or
L1-norm. In a second experiment, we compared the efficiefichengreedy pursuit
while varying the number of active coefficients (the LO-nrthat is the rank of the
pursuit. To compare this method with the conjugate gradeefitst pass of the latter
method was assigning for a fixed number of active coefficigredest neurons while a
second pass optimized the coefficients for this set of "attrectors (see Fil 3, right).
Computationally, the complexity of the algorithms and tihestrequired by both meth-
ods was similar. However, the pursuit is by constructionenadapted to provide a
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Figure 4:Implementation of the greedy pursuit using Integrate-andfire Neurons.
We simulated here the activity of a network of Integrate-&iv@ neurons tuned to form
a simple model of an hyper-column in the primary visual akéB) fo the presentation
of a horizontal edge at = 0. We show in this image the output spiking activity of
16 neurons tuned for different orientations for the feed-famv(black bars) and the
sparse spike coding (white bars) models during the fisétms. In this latter model,
the correlation linked to the information already detedtegropagated as a hyper-
polarizing and shunting lateral interaction to the neiginmpneurons : the response in
both latency and spiking frequency to the oriented edgeeirtyt more selective.

progressive and dynamical result while the conjugate gradnethod had to be re-
computed for every set of parameter. Best results are theswy@ lower error for a
given sparsity or a lower sparseness (better compressiothé same error. In both
cases, the Sparse Spike Coding provides a coding paradigrh istof better efficiency
as the conjugate gradient.

3.2 Model of a hyper-column in the primary visual area

To illustrate the properties of the algorithm, | modeled swoek of linear Integrate-
and-Fire neurons forming a simple model of an hyper-columthée primary visual
area (V1). This model consist of an isolated network @fneurons selective to dif-
ferent orientations of contours and which are modeled a®&éters (which are here
symmetric with circular envelopes). We compared a pure-feeslard model to a net-
work implementing the lateral interactions that we desilabove (see EG.P3 and
24). We show here the resulting spiking activity when onénefgreferred stimuli (the
horizontal edge) was continuously presented from time0 (see Fig[h).

We observe that the neuron corresponding to that prefetiradlsis fires with the short-
est latency but also produces the highest spike rate. Mergthe activity of the neu-
rons corresponding to non-preferred directions shows @id@piking activity when
implementing the greedy pursuit. This dynamic reflects dterhl interaction (here an
inhibition to the positively correlated neurons) genedaaé every spike which is ob-
served in V1|[7]. In fact, compared to the linear model, therlay and the frequency
of the neighboring neurons show a sharper response for ln@igly edge orientations
(see Figlb) which corresponds to the high selectivity olesttin simple cells from V1
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Figure 5: Selectivity response of the network to orientation Output spike firing
rate to the presentation of a horizontal edge at time0. for the linear feed-forward
model (plain line), the sparse spike coding scheme (fillagdeyuand with divisive nor-
malization (dashed line) for different orientations of thput stimulus. The narrower
tuning curve for the latter two methods represents a moeeteé response to the fea-
tures learned in synaptic weights and mimics the behavitreheural response in the
primary visual area.

[24]. The selectivity of this model was compared with the mlaf divisive normaliza-
tion [2€], suggesting that this simple implementation of Ins#grand-Fire neurons —
linked by lateral interactions and removing dynamically tedundancy in the signal—
could provide a model for the complex processing occuringpirtical areas.

Conclusion

We presented here a model for neural processing which pgewdd alternative to the
feed-forward and spike-rate coding approaches. Focusirteparallel architecture
of cortical areas, we based our computations on spikingtev@refining the function

of sensory areas as matching the input to a model with unkparaimeters, the activ-
ity of the network represented a probabilistic evaluatibthe accuracy of the match.
From this representation, we inferred the best match usiadayes rule and an in-
ference decision criterion. We then derived an algorithnictvimay be implemented
using lateral interactions : it removes for every spike tberesponding activity to

correlated neurons. Simulations of this model compare eémntim-linear behavior of
neurons in biological network such as the primary visuateoV1).

This model is based on the Matching Pursuit algorithm andigdes a general frame-
work for modeling the complex behavior of networks of spiimeurons. Particularly,
it can be extended to multi-layered networks and providesffitient code for natu-

ral images as we described elsewheére [21]. Further studieided a learning scheme
based on an Hebbian learning rule which yields an unsupahésirning of the sources
as independent components of the signal to describe [2@ nTddel thus provides an
algorithm of Sparse Spike Coding which is particularly efficient for visual tasks.

This simple strategy thus suggest that the inherent coritplekthe neural activity
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is perhaps not simply the reflection of the computationahitkebf neurons but may
rather be the consequence of the parallel event-based dysafthe neural activity.

Although our model is a simplistic caricature compared ® lilehavior of biological

neurons, it provides a simple algorithm which is compatibid some complex char-
acteristic of the response of neuronal populations. It ffneposes a challenge for
discovering the mechanisms underlying the efficiency ofoes systems by focusing
on large-scale networks of spiking neurons.

Reproducible research

Scripts reproducing all figures may be obtained from the@uipon request.
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