
HAL Id: hal-00110801
https://hal.science/hal-00110801v1

Submitted on 1 Nov 2006 (v1), last revised 2 Nov 2006 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Feature detection using spikes: the greedy approach.
Laurent Perrinet

To cite this version:
Laurent Perrinet. Feature detection using spikes: the greedy approach.. Journal of Physiology - Paris,
2005, 98 (4-6), pp.530–9. �10.1016/j.jphysparis.2005.09.012�. �hal-00110801v1�

https://hal.science/hal-00110801v1
https://hal.archives-ouvertes.fr


ha
l-0

01
10

80
1,

 v
er

si
on

 1
 -

 1
 N

ov
 2

00
6

Feature detection using spikes:
the greedy approach.

Laurent Perrinet
Institut de Neurosciences Cognitives de la Méditerranée

(INCM- UMR 6193, CNRS)
31, ch. Joseph Aiguier, 13402 Marseille Cedex 20, France.

Laurent.Perrinet@incm.cnrs-mrs.fr
Tel. : +33-04 91 16 45 23, Fax : +33- 04 91 77 93 04

Abstract

A goal of low-level neural processes is to build an efficient code extracting the
relevant information from the sensory input. It is believedthat this is implemented
in cortical areas by elementaryinferential computations dynamically extracting
the most likely parameters corresponding to the sensory signal. We explore here
a neuro-mimetic feed-forward model of the primary visual area (V1) solving this
problem in the case where the signal may be described by a robust linear gen-
erative model. This model uses an over-complete dictionaryof primitives which
provides a distributed probabilistic representation of input features. Relying on an
efficiency criterion, we derive an algorithm as an approximate solution which uses
incrementalgreedy inference processes. This algorithm is similar to ’Matching
Pursuit’ and mimics the parallel architecture of neural computations. We propose
here a simple implementation using a network of spiking integrate-and-fire neu-
rons which communicate using lateral interactions. Numerical simulations show
that thisSparse Spike Coding strategy provides an efficient model for representing
visual data from a set of natural images. Even though it is simplistic, this trans-
formation of spatial data into a spatio-temporal pattern ofbinary events provides
an accurate description of some complex neural patterns observed in the spiking
activity of biological neural networks.

Keywords: Neuronal representation, inverse linear model, over-complete dictionar-
ies, distributed probabilistic representation, spike-event computation, Matching Pur-
suit, Sparse Spike Coding.

1 Toward a functional model of the neural code

A major problem in neuroscience is to understand the contentof the activity that is
observed in biological neurons. These complex activity patterns that are the basis of
our cognitive abilities remain a mystery and there is yet no known unifying model
explaining the ”language” that could be used by neurons at the various scales of the
central nervous system. In particular, descriptive modelsof the neural activity tend to
be incomplete or to reflect a distorted description of natural conditions [18]. We will try
here to overcome these problems by precisely defining the model and the hypotheses
that we want to validate. We will assume here that there exists a functionalneural code
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and that we may decipher the neural activity by exploring algorithms —based on the
nature and architecture of the neural system— that solve efficiently the function that is
provided by the system. We will illustrate this method for the primary visual area (V1)
in the human by trying to define precisely its function and then by proposing a model
for the neuronal representation and for the mechanisms thatmay implement it.

1.1 Solving inverse problems using neural networks

V1 is a cortical area specialized in low-level visual processing from which the majority
of the visual information diverges to higher visual areas. We will describe it here as im-
plementing an inverse problem byanalyzing images thanks to an internal model. The
hypothesized function over the long term (in the order of hours to years) will thus be to
process natural scenes (that is images that occur frequently) so as to progressively build
a ”model” of their structure. The goal is that for any of theseimages, this model must
rapidly (in the order of a fraction of a second) represent a set of features relevant to that
image1 and corresponding to this model (see Fig. 1). This representation, including for
instance the location and orientation of the edges that outline the shape of an object, is
then relayed to higher level areas to allow, for instance, a robust recognition of useful
patterns. Actually, this is similar to numerous tasks in engineering and applied math-
ematics, where a reverse-engineering process allows to finda robust representation of
the data (such as an estimation of the internal state of a system in control theory) by
identifying the so-calledhidden parameters of the system. The success of this algo-
rithm over the long term (in the order of days to generations)allows then to validate
the model that was learned through the pressure of evolution. In this framework, it is
thus easier to describe cortical activity as the result of the inversion (or analysis) of an
internal model of the world.
Moreover, such a model of the world should also take into account some basic knowl-
edge of actual physical interactions. This idea is based on the assumption that the obser-
vations are the effect of the interplay between different causes corresponding to stable
physical interactions and that they should be recovered to describe the observed data by
representing the underlying actual physical structure. Inparticular, some knowledge of
the usual transforms of the signal (such as translation and scaling in images) which are
related to regularly occurring changes in the physical world (lateral and frontal trans-
lations of objects in space) allows then for a robust representation and further analysis
by higher level cortical areas. This may finally allow for desired properties such as an
invariant representation of objects to these frequently occurring transformations.
We will restrict here this artificial neural network to a feed-forward model of V1 which

processes flashed static images2. We will assume that the model of natural images is
fixed and accurate and we will define the goal of our model as recovering the sources
(corresponding to some hidden state variables, see Fig. 1) from an observed static im-
age. Moreover, in the framework of natural living systems, we will assume that a main
constrain from evolution is the ability to process the information as quickly as possible.
This model will consist in these restrictive conditions to aone-layered neural network
as illustrated in Fig. 2 and the output of the neural layer should describe at best and as

1We will consider here that each neuron may be characterized by a preferred pattern to represent. It
should though be emphasized that this view differs from the ”grand-mother neuron” paradigm since the
representation emerges from the interaction of different active neurons.

2In particular, we will study the transient response of the network and neglect the information fed back by
higher areas. This latter information will be necessary in more complex algorithms which take into account
the context of a local feature.
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Figure 1:Inverse-mapping as a a goal for sensory neural coding. The visible world
is modeled as the interaction of a large set of hypothetical physical sources (world
model) according to a known model of their interactions (”synthesis”). We will con-
sider that for sensory cortical areas, the goal of the neuralrepresentation (and its im-
plementation by theneural code) is to analyze the signal so as to recover at best and
as quickly as possible the sources that generated the signal(”analysis”) . The analysis
may thus be considered as an inverse mapping of the synthesis. A proposed solution
for this problem is toinfer at best the most probable hidden state.

quickly as possible the visual content. Considering the system as an information chan-
nel (according to the definition of Shannon and Weaver [27]) which processes samples
from the set of natural images, we may therefore define the goal of V1 as to transmit
the information about the sources (inbits) at the highest rate as possible.

1.2 Inverse models for sensory processing

To build an algorithm of the inverse model to efficiently codethe input, we will first
define the forward synthesis model as aLinear Generative Model (LGM) as is often
assumed for natural images [17]. For visual data, images consist indeed of the set of
observed luminance values from different spatial positions and a fairly good approxi-
mation —especially for small images of non-occluding objects— considers the image
as the linear combination of ”primitive images”, similarlyto the superposition of trans-
parent layers. This approximation is based on the assumptions that the energy of the
photonic flow from a spatial position (the luminosity) consists of the multiplicative
interaction of different ”shapes” that contribute each fora fraction of the global lumi-
nosity. Thanks to the non-lineargamma transform of luminosities into luminances [22]
which approaches a logarithmic function, these ”shapes” add up linearly in the lumi-
nance space. Although this is justified in practice for transparent shapes, it is not for
occlusions. The LGM framework provides however a general framework for describ-
ing natural images.
The forward model defines images as the superposition of shapes of different intensi-
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ties which correspond in our framework to scalar ”hidden states”. Formally, we will
describe this set of scalars by a vector3

s = {sj}1≤j≤N whereN is the dimension
of the dictionary. Similarly, one image will be described asa point in a multidimen-
sional state space of dimensionM where every pixel corresponds to one dimension
(and therefore the pixel value will be its scalar value alongthis dimension). This obser-
vation signal will be writtenx = {xi}1≤i≤M over the set of spatial positions denoted
by their addressi (that is the pixels over a rectangular grid in an image processing
framework). To define the LGM, we will use a ”dictionary” of images as the matrix
A = {Aj ; 1 ≤ j ≤ N} of theN images of the ”primitive shapes”Aj = {Aij}1≤i≤M .
The image corresponding to the internal states will finally be defined as:

x =
∑

1≤j≤N
sj .Aj (1)

This model of natural images is defined by the statistics of the sourcesS and by the
dictionaryA of primitive images. The latter corresponds to the set of basis functions
which describe the space of all observed natural imagesI = {x} that we wish to char-
acterize.
In this paper, we will use the same fixed dictionary of filters (that isA) and assume sim-
ilar hypotheses on the statistics ofS to rate the efficiency of different coding strategies.
Using this formalization, the function of the neural network consists in recovering the
sources by inverting the synthesis process. The results of this inversion (in the space
of the neural representation) will thus share the same dimension (that we notedN ) as
the space of the sources, that is the cardinal of the dictionary. As a first approximation
(and as is observed in simple cells from V1), the dictionary of primitive shapes will
correspond to localized orientation selective edges at different positions and scales re-
sembling Gabor functions [11, 23] at different spatial scales. This may be particularly
adapted in an information theoretic based framework as these shapes correspond to in-
dependent features in natural scenes [4]. We choose here that the forward model will
be described by a wavelet transform [14] and we will use this architecture to compare
different coding strategies.

1.3 Efficient coding of natural images

In fact, particular care should be put on the parameters of this wavelet architecture. In
particular, it is desirable for the representations of natural images to be robust to nat-
ural conditions. As is the case for natural images, we will consider that the observed
signals are generated by sources that share certain features which differ by continuous
transformations such as edges at different time, position,orientation or scale. Since
the corresponding spatial transformations (translations, rotations and scaling) are very
common, if there exists a corresponding transformation in the source space (that is if
this transformation of all sources are in the dictionary), the resulting representation of
the transformed image should simply be derived by a transformation (in the source
space) of the original representation. Thus, it is necessary for the dictionary to be
invariant according to these usual transformations for therepresentation to be robust.
In particular, this allows for instance for higher level areas to detect some specific in-
puts with an invariance to usual transformations. Typically, this robustness constraint
implies in our architecture that the tiling of the wavelet filters is smoother than an or-
thogonal representation [21]. As a consequence, the dictionary will be over-complete,

3in the following, we will denote vectors and matrices by boldcharacters
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i.e. the number of dictionary elements will be of several orders of magnitude larger
than the dimension of the image space (that isN >> M ).
From the definition of the forward model, for any signalx, there exist at least one set
of parameterss which recovers the observed signal. However, in the case where the
dictionary is over-complete, the inversion of the LGM will not yield an unique solution
in S to any given signal inI : the problem is ill-posed. The coding strategies corre-
sponding to possible ’analysis’ algorithms (see Fig. 1) have different efficiencies and,
in particular, the solution given by the wavelet coefficients with an over-complete dic-
tionary yields an highly redundant representation. According to Barlow [3], the goal of
sensory processing would be rather to choose the most efficient representation: follow-
ing the same argument as the Occam razor, whenever there is the choice between two
representations, the best is the one that is the most parsimonious. In our framework, a
possible goal would be to maximize the mean codeword length,that is get the coding
strategy that describes at best the images. From Shannon’s source coding theorem [27],
this length is bounded by the entropy of the images for a givenarchitecture and coding
strategy. Under some assumptions that we will develop later, this is equivalent to find
thesparsest representation, that is the representation that uses the smallest number of
sources [17]. This sparseness constraint thus allows to restrict the different solutions of
the inversion of the forward model so as to find an appropriatecandidate for the neural
code.
However, the combinatorial complexity of the inverse problem grows very quickly as
the dimension of the dictionary increases (it’s NP-complete, see [14]). There exists
therefore no simple algorithm that optimizes exactly the problem in reasonable time as
we handle more complex signals such as natural images, but acceptable sub-optimal
strategies to approach this problem do exist (see a review in[19]). Most popular so-
lutions optimize a compromise between the reconstruction error and the sparsity and
are based on linear optimization or gradient approaches [28]. Following the same ar-
guments as Barlow [3], we explore an alternate solution which uses a probabilistic
representation and Bayesian inference.

2 Sparse spike coding using a greedy inference pursuit

Focusing on the event-based nature of axonal information transduction and in order to
reflect the parallel architecture of the nervous system, we will here propose a solution
for inverting the forward model that we defined for natural images. This will build
a Bayesian inference framework based on feature-matching neurons and on spikes as
events representing primitive ”decisions”.

2.1 Greedy inference pursuit using spikes

This approach proposes an alternative to classical paradigms of neural coding such as
the spike-rate coding approach of theperceptron (see Fig. 2). Instead of coding infor-
mation in the mean firing frequency of neurons, we will present an original approach
solving the function that we defined above. It uses a distributed probabilistic repre-
sentation and we will assume here that the activity of neurons (such as the membrane
potential) in the layer will represent dynamically the evidence of a correct match and
that the output spiking signal signifies a set of elementary decisions made by the neu-
rons. Following this process and focusing on every single spike, the process occurs
repeatedly using two steps: Matching (M) and Pursuit (P).
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(M) To each neuron is assigned a vector (or weight pattern) corresponding to its pre-
ferred stimulus. Neurons compete in parallel to find the mostprobablesingle
source component by integrating evidence according to their weight patterns.
The first source to be detected should be the one corresponding to the highest
activity.

(P) The best match is assigned a decision which, once it has beentaken, is assumed
to be reliable: we can take into account this information before performing any
further computations (and in particular finding a new match)so as to yield a new
representation where we removedcompletely the detected source.

We call this approach agreedy pursuit which is based on the recursion of two greedy
mechanisms (detection - removal). These are here idealizedbut correspond to known
aspects of neural activity (matching - suppression).
We will see that this method is similar to the approach developed in the method of
Matching Pursuit [15]. However, instead of a heuristic scheme, the algorithm will here
be derived from known hypotheses and thanks to the description of the successive steps
that may lead to the greedy pursuit, it may be considered as anoptimization strategy
of the goal that we defined above (namely maximizing the transfer of information).
We will then propose an implementation using Integrate-and-fire neurons and test the
efficiency of this artificial neural code.

2.1.1 Matching: Detection of the most probable source component

First, given the signalx ∈ I, we are searching for thesingle sources∗.Aj∗ ∈ I
that corresponds to the maximuma posteriori (MAP) realization forx (and knowing
it is a realization of the LGM as it is defined in Eq. 1). We will address in general a
single source by its index and strength by{j, s} so that the corresponding vector inS
corresponds to a vector of zero values except for the values at indexj. The MAP is
defined by:

{j∗, s∗} = ArgMax{j,s}P ({j, s}|x) (2)

To evaluateP ({j, s}|x), the probabilitya posteriori of a single source knowing the
signal, we have from Bayes’ theorem

{j∗, s∗} = ArgMax{j,s}[P (x|{j, s}).P ({j, s})] (3)

whereP (x|{j, s}) is the likelihood probability of a signal knowing a single source and
P ({j, s}) is thea priori probability of the sources.
To compute the likelihood we have to first define the model of the measurement [13,
p.26]. We will first assume that we are in a low-noise limit environment (the global
contrast is optimal and the eye/camera is adapted to the scene) so that we have no or
little measurement noise. Knowing one component{j, s}, the only ”noise” from the
viewpoint of neuronj is the combination of the unknown sources{αk}1≤j≤N . It is
thus the residual of the signal knowing{j, s}. We may thus write the noise as

x = s.Aj + ν with ν =
∑

k
αk.Ak (4)

The residual of the signal (an image) is thus considered as anundetermined perturba-
tion4. Assuming that theαk are independent random variables (since we know only

4It should be stressed that the image model is still deterministic.
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{j, s}), from the central limit theorem it comes that for a sufficiently high number of
sources, the distribution of the random variableν converges to a normal distribution
with known mean and covariance matrix. From the work of Atick[1], we know that
for natural images this normal distribution is fairly homogeneous across natural images.
We may either use another metric (based on the Mahalanobis distance, as exposed in
[21]) or use a decorrelating kernel to yield a spherical probability distribution centered
around the origin (E(ν) = 0) of this ”noise”. Normalizing by the mean energy of im-
ages inI, the residual signal is thus considered as a decorrelated noise of unit variance.
FromP (x|{j, s}) = P (x− s.Aj) = P (ν), it follows

{j∗, s∗} = ArgMax{j,s}[log P (x|{j, s}) + log P ({j, s})]

= ArgMin{j,s}[‖x− s.Aj‖
2/2− log P ({j, s})] (5)

We will further consider that the dictionary was learned so that over a long period the
neurons have similar statistics: the prior is uniform across sources and values. We thus
have no prior knowledge or preference for any source. It thuscomes

{j∗, s∗} = ArgMin{j,s}‖x− s.Aj‖
2

= ArgMin{j,s}[s
2.‖Aj‖

2 − 2.s. < x,Aj >]

To minimize this bi-variate function, we may first minimize for every elementj the
coefficientsj to get the correspondings∗j = ArgMaxsP ({j, s}|x). From the above
equations, this is equivalent to minimizing in the last equation the quadratic function
of s which is minimal for the scalar coefficient

s∗j =
< x,Aj >

‖Aj‖2
(6)

that is for the scalar projection of the input onAj . Then, since for every elementj,
s∗j .Aj is the projection ofx on Aj , so thats∗j .Aj andx − s∗j .Aj are orthogonal, it
follows from Pythagoras’s theorem

j∗ = ArgMinj [‖x− s∗j .Aj‖
2]

= ArgMinj [‖x‖
2 − ‖

< x,Aj >

‖Aj‖2
.Aj‖

2] = ArgMaxj‖
< x,Aj >

‖Aj‖
‖2

j∗ = ArgMaxj | < x,
Aj

‖Aj‖
> | (7)

Finally, as defined in Eq. 2, we found that the source component that maximizes the
probability is the projection of the signal on the normalized elements of the dictionary.
This justifies the computation of the correlation in the perceptron model [25] as it pro-
vides a measure of the log-probability under the assumptions that we used. However,
using a different strategy as these linear systems, we will associate in our greedy ap-
proach this inference with a lateral propagation of this information to the correlated
neurons and only then resume the algorithm.

2.1.2 Pursuit: Lateral interaction and Greedy pursuit of the best components

Before detecting another single source component, we will take into account the infor-
mation that we extracted from the signal by propagating it tothe neighboring neurons
using lateral interaction links. As we found the MAP source knowing the signalx, we
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may pursue the algorithm by accounting for this inference onthe signal knowing the
element that we found. From

P ({j, s}|x, {j∗, s∗}) = P ({j, s}|x− s∗.Aj∗) (8)

and since source are here supposed to have independent activities5, the pursuit algo-
rithm assumes that —knowing the previous detection— we may resume the detection
on this residual signal. We will thus use this new residual signal in which we will then
find a new component corresponding to the most probable single source.
In this recursive approach, we will note asn the rank of the step in the pursuit (which
begins atn = 0 for the initialization). WritingNj = ‖Aj‖, the first scalar pro-
jection that we have to maximize —and which will serve as the initialization of the
algorithm—is given by :

C
(0)
j =< x,

Aj

Nj

> (9)

Let’s also note the address of the successive winning neuronfrom the first stepn = 1
as

j(n) = ArgMaxj |C
(n−1)
j | (10)

Knowing j(n), in order to resume the pursuit at the next step, we saw that weneed to
compute the projection of the signal on the elements of the dictionary. Let’s therefore
set initially x

(0) = x andx
(n) the successive residuals. In this greedy approach, we

consider that the decision corresponding to the MAP criteria at stepn is correct and
that we may therefore update the residual and the corresponding activitiesC(n−1)

j =<

x
(n−1),

Aj

Nj
> by subtracting tox(n−1) its projection on the winning element of index

j(n) (see Eq. 6) :

x
(n) = x

(n−1) − C
(n−1)

j(n) .
Aj(n)

Nj(n)

(11)

Furthermore, we don’t need to feed this information back to the signal and we may
directly compute the activity again for all vectors thanks to the linearity of the scalar
product operator:

C
(n)
j = < x

(n),
Aj

Nj

>

= < x
(n−1) − C

(n−1)

j(n) .
Aj(n)

Nj(n)

,
Aj

Nj

>

C
(n)
j = C

(n−1)
j − C

(n−1)

j(n) . <
Aj

Nj

,
Aj(n)

Nj(n)

> (12)

In this simplified framework, the choice of the best match andthe update rule are
independent of the choice of the normNj of the filters (see Eq. 10 and 12), so that
we may indifferently use in the following normalized filters(that isNj = 1 for all
neurons) so as to simplify the equations. It comes thus:

(Initialization) C
(0)
j =< x,Aj > (13)

5For any realization of the images, individual sources have independent activities, that is that removing
one source, one gets a new image (conform with the LGM model) and one does not change the probability
distribution of the other sources.
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This activities’ update (Eq. 12) corresponds in neuro-physiological terminology to a
lateral interaction. It will be proportional toRj,j(n) whereRj,j(n) =< Aj ,Aj(n) >

is the correlation of any elementj with the winning elementj(n) and relates to the
reproducing kernel in wavelet theory.
Finally, we achieve the recursive greedy pursuit of best components as the iteration of
respectively a ”matching” and a ”pursuit” step. While the residual energy is greater
than a fixed threshold‖x(n)‖ > ε, we compute :

(Matching) j(n) = ArgMaxj |C
(n−1)
j | (14)

(Pursuit) C
(n)
j = C

(n−1)
j − C

(n−1)

j(n) .Rj,j(n) (15)

The greedy pursuit therefore transforms an incoming signalx in a list of ranked sources
{j(n), s(n)} such that finally (from Eq. 11) the signal may be reconstructed as

x =
∑

k=1...n
s(k).Aj(k) + x

(n)

which is an approximation of the goal set in inverting Eq. 1 ifthe norm of the residual
signalx(n) converges to zero.

2.1.3 Properties of the greedy pursuit

This algorithm is exactly equivalent to Matching Pursuit [15]. This algorithm is famil-
iar in signal processing and is increasingly used for image and video processing [9, 6].
However, the use of the statistics of natural images statistically optimizes the coding
efficiency by modifying the image space metric [21]. Moreover, the Bayesian inference
framework allows to precisely tune the heuristic approach of the Matching Pursuit. It
allows for instance to set a different prior or to include knowledge of the measurement
noise that is adapted to the goal of the system (and hence a different matching criteria
that may depend on theNj). This algorithm presents similar computational complexity
and properties [14, pp.412–9]. In particular

C
(n)

j(n) = C
(n−1)

j(n) − C
(n−1)

j(n) = 0 (16)

and as a consequence the activity of a winning neuron is totally canceled.
Moreover, although filters in the dictionary are here generally not orthogonal, the resid-
ual image is orthogonal to the winning filter and

‖x(n)‖2 = ‖x(n−1)‖2 − |s(n)|2.‖Aj(n)‖2 (17)

so that we may easily compute the Squared Error (SE) of the residual signal at every
step of the coding.

SE
(n) = ‖x−

∑
k=1...n

s(k).Aj(k)‖2 = ‖x(n)‖2

= SE
(n−1) − |s(n)|2.‖Aj(n)‖2 (18)

SE
(n) = ‖x‖2 −

∑
k=1...n

|s(k)|2.‖Aj(k)‖2

= ‖x‖2 −
∑

k=1...n
|C

(k−1)

j(k) |
2 (19)

It first implies that the stopping criteria may be computed using this computation with-
out computing‖x(n)‖. A further consequence of the monotonous decrease of the SE

9



from Eq. 19 is —under the condition that the dictionary is at least complete— the con-
vergence of the reconstruction [14, p.414]. Under this condition, the algorithm will
therefore stop in finite time.
Though simple, the greedy pursuit is a complex non-linear algorithm. In fact, the study
of its behavior is non trivial and may involve chaotic dynamics [8]. In particular, it
is obvious that the choice that is made at a giving step may influence all future steps.
This implies that a failed match may propagate wrong information to following steps
and therefore that the probability of a failure grows higheras the rank increases. These
properties are discussed in [21] and in particular we illustrated that the speed of con-
vergence increases as the dictionary becomes more over-complete so that it provides
an efficient representation for natural scenes in image processing tasks.

2.2 Implementation using Integrate-and-Fire (IF) neurons

From our knowledge of neural mechanisms in a neuronal layer,the model of greedy
feature pursuit that we derived from an event-based computation in a parallel archi-
tecture is particularly adapted to a model of neural computations. We will derive an
implementation using a network of spiking neurons based on the same feed-forward
architecture of the perceptron (see Fig. 2) but implementing the greedy pursuit using
lateral interactions.
The activity is represented by a driving current that drivesthe potentialVj of Integrate-
and-Fire neurons [12]. For illustration purposes, the dynamics of the neurons will here
be modeled by a simple linear integration of the driving currentCj (other integration
schemes lead to similar formulations):

τ.
d

dt
Vj = pj .Cj (20)

The neurons are duplicated with opposite polaritypj = ±1 so thatCj = pj .|Cj | to
model the ON / OFF symmetry of simple cells [23]. The neuron will generate a spike
when the potential reaches an arbitrary threshold that we set here to1.

To implement the computation of the match of an input with stored patterns, we
define a dictionary which will be implemented by weight vectorsAj . These vectors are
normalized as described above and the input is decorrelated. The linear feed-forward
perceptron integrates synaptically the inputx into an initial activityCj such that

Cj =< x,Aj > (21)

The scalar projection will therefore drive the potential ofthe neuron. We may predict
from the monotonous integration that the first neuron to generate a spike will be the
one that corresponds to the maximal rectified scalar projection of the input signal with
the weight vectors of the network, that is

j∗ = ArgMaxj |Cj | (22)

the firing time ist∗ = τ
|Cj∗ |

and the potential is thenVj = t∗

τ
.Cj =

Cj

|Cj∗ |
. This is

therefore a simple and biologically plausible implementation of a MAP estimate using
the parallel architecture of the network which is in contrast with the complexity of this
implementation on a single-processor computer. To implement the greedy algorithm,
we then need to implement a lateral interaction on the neighboring neuron similar to the
observed lateral propagation of information in V1 [10, 2]. In our scheme the interaction
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Figure 2: Model of a neuronal layer as a communication channel. To understand
the content of neural activity, we consider here that the neuronal layer implements the
inverse of a forward model (that is the analysis in Fig. 1). The architecture is similar
to the perceptron: the input (notedxi) is matched with normalized weight patterns
Aji (which are fixed in this paper) so as to provide an integrativeactivation value (the
membrane potential) which in turn is non-linearly transformed to achieve a membrane
potential which grows proportionally to the probability ofmatching a feature. Spikes
represent decisions that are fed back on the correlated neighboring neurons using lateral
interactions (that we represented for the first spiking neuron) but also on the axonal
output which yield a spiking outputsj .

should yield the same configuration in the network (activityand potential) as if the
source that was detected was originally absent from the signal. In this model, ifj∗ is
the winning neuron, the activity should be subtracted by|Cj∗ |.R{j,j∗} (see Eq. 15) and
the potential by this value integrated overt∗. The lateral interaction is thus achieved
by updating after each spike the activity of the neighboringneurons proportionally to
their cross-correlationR{j,j∗} with the corresponding winning neuronj∗ :

Cj ← Cj − |Cj∗ |.R{j,j∗} (23)

and removing the potential that would be generated by the activity of the removed
source:

Vj ← Vj −
t∗

τ
.|Cj∗ |.R{j,j∗}

that is simply
Vj ← Vj −R{j,j∗} (24)

This lateral interaction is here immediate and behaves as a refractory period on the
winning neuron (Cj∗ ← 0 andVj∗ ← 0) and a graded inhibition on positively cor-
related neurons. It involves a subtractive hyper-polarizing term on the potential and
on the activity. Biologically, it is improbable that the lateral interaction could be in-
stantaneous, but this lateral interaction could be implemented in a fast manner using
a shunting lateral interaction [5] mediated by fast-spike inter-neurons. Finally, this
simple implementation therefore implements the Matching Pursuit algorithm that we
defined in Eq. 14 and 15 and we will apply it to simple visual tasks.

3 Results: efficiency of Sparse Spike Coding

3.1 Coding natural image patches

We compared the method we described in this paper with similar techniques used to
yield sparse and efficient codes such as the conjugate gradient method used by Ol-
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Figure 3:Efficiency of the matching pursuit compared to conjugate gradient. We
compared here the matching pursuit (’mp’) method with the classical conjugate gradi-
ent function (’cgf’) method as is used in [17]. We present theresults for the coding of
a set of image patches drawn from a database of natural images. These results were
obtained with the same fixed dictionary of edges for both methods. We plot the mean
final residual error for two definitions of sparseness :(Left) the mean absolute sum of
the coefficients and(Right) the number of active (or non-zero) coefficients (the coding
step for MP). For this architecture, the sparse spike codingscheme appears to be more
efficient to code natural image patches.

shausen and Field [16]. We used a similar context and architecture as these experi-
ments and used in particular the database of inputs and the dictionary of filters learned
in the SPARSENETalgorithm. Namely, we used a set of105 10 × 10 patches (so that
M = 100) from whitened images drawn from a database of natural images. The weight
matrix was computed using the SPARSENETalgorithm with a 2-fold over-completeness
(N = 200) that show similar structure as the receptive of simple cells in V1 [23]. From
the relation between the likelihood of having recovered thesignal and the squared error
in the new metric, the mean squared reconstruction error (L2-norm) is an appropriate
measure of the coding efficiency for these whitened images. This measure represents
the mean accuracy (in terms of the logarithm of a probability) between the data and the
representation. We compared here this measure for different definitions and values for
the ”sparseness”.
First, by changing an internal parameter tuning the compromise between reconstruction
error and sparsity (namely the estimated variance of the noise for the conjugate gradi-
ent method and the stopping criteria in the pursuit), one could yield different mean
residual error with different mean absolute value of the coefficients (see Fig. 3, left) or
L1-norm. In a second experiment, we compared the efficiency of the greedy pursuit
while varying the number of active coefficients (the L0-norm), that is the rank of the
pursuit. To compare this method with the conjugate gradient, a first pass of the latter
method was assigning for a fixed number of active coefficientsthe best neurons while a
second pass optimized the coefficients for this set of ”active” vectors (see Fig. 3, right).
Computationally, the complexity of the algorithms and the time required by both meth-
ods was similar. However, the pursuit is by construction more adapted to provide a
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Figure 4:Implementation of the greedy pursuit using Integrate-and-Fire Neurons.
We simulated here the activity of a network of Integrate-and-Fire neurons tuned to form
a simple model of an hyper-column in the primary visual area (V1) to the presentation
of a horizontal edge att = 0. We show in this image the output spiking activity of
16 neurons tuned for different orientations for the feed-forward (black bars) and the
sparse spike coding (white bars) models during the first150 ms. In this latter model,
the correlation linked to the information already detectedis propagated as a hyper-
polarizing and shunting lateral interaction to the neighboring neurons : the response in
both latency and spiking frequency to the oriented edge is clearly more selective.

progressive and dynamical result while the conjugate gradient method had to be re-
computed for every set of parameter. Best results are those giving a lower error for a
given sparsity or a lower sparseness (better compression) for the same error. In both
cases, the Sparse Spike Coding provides a coding paradigm which is of better efficiency
as the conjugate gradient.

3.2 Model of a hyper-column in the primary visual area

To illustrate the properties of the algorithm, I modeled a network of linear Integrate-
and-Fire neurons forming a simple model of an hyper-column in the primary visual
area (V1). This model consist of an isolated network of16 neurons selective to dif-
ferent orientations of contours and which are modeled as Gabor filters (which are here
symmetric with circular envelopes). We compared a pure feed-forward model to a net-
work implementing the lateral interactions that we described above (see Eq. 23 and
24). We show here the resulting spiking activity when one of the preferred stimuli (the
horizontal edge) was continuously presented from timet = 0 (see Fig. 4).
We observe that the neuron corresponding to that preferred stimulus fires with the short-
est latency but also produces the highest spike rate. Moreover, the activity of the neu-
rons corresponding to non-preferred directions shows a lower spiking activity when
implementing the greedy pursuit. This dynamic reflects the lateral interaction (here an
inhibition to the positively correlated neurons) generated at every spike which is ob-
served in V1 [7]. In fact, compared to the linear model, the latency and the frequency
of the neighboring neurons show a sharper response for neighboring edge orientations
(see Fig. 5) which corresponds to the high selectivity observed in simple cells from V1
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Figure 5: Selectivity response of the network to orientation. Output spike firing
rate to the presentation of a horizontal edge at timet = 0. for the linear feed-forward
model (plain line), the sparse spike coding scheme (filled curve) and with divisive nor-
malization (dashed line) for different orientations of theinput stimulus. The narrower
tuning curve for the latter two methods represents a more selective response to the fea-
tures learned in synaptic weights and mimics the behavior ofthe neural response in the
primary visual area.

[24]. The selectivity of this model was compared with the model of divisive normaliza-
tion [26], suggesting that this simple implementation of Integrate-and-Fire neurons —
linked by lateral interactions and removing dynamically the redundancy in the signal—
could provide a model for the complex processing occurring in cortical areas.

Conclusion

We presented here a model for neural processing which provides an alternative to the
feed-forward and spike-rate coding approaches. Focusing on the parallel architecture
of cortical areas, we based our computations on spiking events. Defining the function
of sensory areas as matching the input to a model with unknownparameters, the activ-
ity of the network represented a probabilistic evaluation of the accuracy of the match.
From this representation, we inferred the best match using the Bayes rule and an in-
ference decision criterion. We then derived an algorithm which may be implemented
using lateral interactions : it removes for every spike the corresponding activity to
correlated neurons. Simulations of this model compare to the non-linear behavior of
neurons in biological network such as the primary visual cortex (V1).
This model is based on the Matching Pursuit algorithm and provides a general frame-
work for modeling the complex behavior of networks of spiking neurons. Particularly,
it can be extended to multi-layered networks and provides anefficient code for natu-
ral images as we described elsewhere [21]. Further studies provided a learning scheme
based on an Hebbian learning rule which yields an unsupervised learning of the sources
as independent components of the signal to describe [20]. The model thus provides an
algorithm ofSparse Spike Coding which is particularly efficient for visual tasks.
This simple strategy thus suggest that the inherent complexity of the neural activity
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is perhaps not simply the reflection of the computational details of neurons but may
rather be the consequence of the parallel event-based dynamics of the neural activity.
Although our model is a simplistic caricature compared to the behavior of biological
neurons, it provides a simple algorithm which is compatiblewith some complex char-
acteristic of the response of neuronal populations. It thusproposes a challenge for
discovering the mechanisms underlying the efficiency of nervous systems by focusing
on large-scale networks of spiking neurons.

Reproducible research

Scripts reproducing all figures may be obtained from the author upon request.
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