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A MORSE-THEORETICAL PROOF
OF THE HARTOGS EXTENSION THEOREM

JOEL MERKER AND EGMONT PORTEN

ABSTRACT. 100 years ago exactly, in 1906, Hartogs published a ceksbra
extension phenomenon (birth 8everal Complex Variablgswhose global
counterpart was understood latealomorphic functions in a connected neigh-
borhoodV(092) of a connected bounda®f) € C™ (n > 2) do extend holo-
morphically and uniquely to the domaih Martinelli in the early 1940’s and
Ehrenpreis in 1961 obtained a rigorous proof, using a newidiamensional
integral kernel or a shod@ argument, but it remained unclear how to derive
a proof using only analytic discs, as did Hurwitz (1897), tdgs (1906) and
E.E. Levi (1911) in some special, model cases. In fact, knattempts €.g.
Osgood 1929, Brown 1936) struggled for monodromy again#tivaluations,
but failed to get the general global theorem.

Moreover, quite unexpectedly, Forneess in 1998 exhibitezpaldgically
strange (nonpseudoconvex) dom&in ¢ C? that cannot be filled in by holo-
morphic discs, when one makes the additional requiremantiscs must all
lie entirely insideQ2". However, one should point out that the standard, unre-
stricted disc method usually allows discs to go outsise thraain (just think
of Levi pseudoconcavity).

Using the method of analytic discs for local extensiongbstand Morse-
theoretical tools for the global topological control of noainomy, we show
that the Hartogs extension theorem can be established nasweay.
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§1. THE HARTOGS EXTENSION THEOREM
AND THE METHOD OF ANALYTIC DISCS

100 years ago exactly, in 1906, the publication of Hartogssis ([14] un-
der the direction of Hurwitz) revealed what is now considet@ be the most
striking fact of multidimensional complex analysis: thaa@uatic, compulsory
holomorphic extension of functions of several complex alales to larger do-
mains, especially for a class of “pot-looking” domains, aolays calledHar-
togs figures that may be filled in up to their top. Soon after, E.E. Levi][25
applied the Hurwitz-Hartogs argument of Cauchy integratio complex affine
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2 JCEL MERKER AND EGMONT PORTEN

circles moving in the domain (firstly discovered in [21]),drder to perform lo-
cal holomorphic extension across strictly (Levi) pseudmavye boundaries. The
so-calledmethod of analytic disce/as born, historically.

Hartogs extension theorem.Let(2? € C" be a bounded domain havirgpn-
nectedooundary. Ifn > 2, every function holomorphic in some connected open

neighborhood’(052) of 02 extend holomorphically and uniquely insifei.e::
VfeOM(09), INFeO(QUV(O9Q) st F|,,, = f.

Classically, one also presents an alternative formulatdmch is checked to
be equivalent — think thak” = Q\V(992).

Hartogs theoren?s. If Q@ € C" (n > 2) is a domain and itk C Q is any
compact such thd\ K connectegthenO(Q\K) = (’)(Q)]Q\K.

Already in [14] (p. 231), Hartogs stated such a global theone the typ-
ical language of those days, without claiming single-vdhess however —
something that he consistently mentions in other placeterlia [32], Osgood
(who gives the reference to Hartogs) “proves” unique holghiz extension
with discs, but what is written there is seriously errone@y&n when applied
to a ball. In 1936, well before Milnor ([31]) had popularizbtbrse theory, us-
ing topological concepts and a language which are nowadéfyutl to grasp,
Brown ([5]) fixed somehow single-valuedness of the extemsialiscretizing
2\ K to tame the topology, he exhau§ts by spheres of decreasing radius (as we
will do in this paper), but we believe that his proof still ¢aims imprecisions,
because the subtracting process that we encounter unbiyoighen applying
Morse theory with the same spheres does not appear in [5].

Since the 1940’s, few complex analysts have seriously thibalgout testing
the limit of the disc method probably because the motivatvas gone, and in
fact, the possible existence of an elementagprous proof of the global Har-
togs extension theorem using only a finite number of Hartagsdis remained
a folklore belief; for instance, in [35], p. 133, it is justfies an “exercise”.
But to the authors’ knowledge, no reliable mathematicalipabon shows fully
how to perform a rigorous proof of the global theorem, usinfy ahe original
Hurwitz-Hartogs-Levi analytic discs as a tool.

On the other hand, thanks to the contributions of Fuetef)[bf Martinelli
([27, 28]), of Bochner ([4]) and of Fichera ([9]), powerfulutidimensional in-
tegral kernels were discovered that provided a completefpfcom the side
of Analysis. Soon after, Ehrenpreis ([8]) found what is kmotw be the most
concise proof, based on the vanishingdefohomology with compact support.
This proof was learnt by generations of complex analysgs)kbk to Hormander’s
book [20]. Range’'€orrection of the Historical RecorfB4] provides an excel-
lent account of the very birth of integral formulas@¥. Since the 1960’s)
techniques,L?> methods and integral kernels developed into a vast field -of re
search in Several Complex Variabled, [20, 2, 16, 15, 33, 6, 7, 22, 23, 26, 18].

1 We thank an anonymous referee for pointing historical irections in the preliminary
version of this paper and for providing us with exact infotioias.
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A decade ago, Fornaess [10] produced a topologically strdogmin{" that
cannot be filled in by means of analytic discs, when one makesdditional
requirement that discs must all lentirely inside the domain. Possibly, one
could interpret this example as a “defeat” of geometricahods.

But in absence of pseudoconvexity, it is much more naturalltw discs to
go outsidethe domain, because the local E.E. Levi extension theoresady
needs that. In fact, as remarked by Bedford in his review {310], Hartogs’
phenomenon for Fornaess’ dom&h may be shown to hold straightforwardly
by means of the usual, unrestricted disk method.

Furthermore, the study of envelopes of holomorpbge(the monograph of
Jarnicki and Pflug [22] for an introduction to Riemann domsaspread ove€”
and [29] for applications in a CR context) shows well how naitit is to deal
with sucessively enlarged (Riemann) domains. Bishop’sttantive approach,
especially his famous idea of gluing discs to real submésforeveals to be
adequate in such a widely open field of research. We hence omgythat, after
the very grounding historical theorem of Hartogs has emjayeenewed proof,
geometrical methods will undergo further developmentseeslly to devise fine
holomorphic extension theorems that are unreachable bpsreg@ontemporary
0 techniques.

In this paper, we establish rigorously that the Hartogsrestts theorem can
be proved by means of fnite numberof parameterized families of analytic
discs (Theorems 2.7 and 5.4). The discs we use are all (tiagep of complex
lines inC™. The main difficulty is topological and we use the Morse maehy
to tame multisheetedness.

At first, we shall replace the boundaf) by aC*> connected oriented hy-
persurfaceM € C" (n > 2) for which the restriction taQ\/ of the Euclidean
norm functionz — |z| is a good Morse function (Lemma 3.3), namely there
exist only finitely many pointg, € M, 1 < A < &, with |p1| < --- < |p.| at
which z — | z| restricted taV/ has vanishing differential. We also replaces?)
by a very thin tubular neighborhoodd; (1), 0 < 6 < 1, and{) by a domain
Q) € C™ bounded byl/. Next, we will introduce a modification of the Hartogs
figure, called d_evi-Hartogs figurewhich is more appropriate to produce holo-
morphic extension from the cut out domaifis:| > r} N Q,,, where the radius
r will decrease, inductively. Local Levi pseudoconcavityttué exterior of a ball
then enables us to prolong the holomorphic function§ftd > » — n} N Qy,
for some uniformy with 0 < n < 1, which depends on the dimensian> 2,
ond, and on the diameter ¢1. We hence descend stepwise to lower radii until
the domain is fully filled in.



4 JCEL MERKER AND EGMONT PORTEN

However, this naive conclusion fails because of multividures and a crucial
three-piece topological device is required. We begin bynglithe top of the
domain, which is simply diffeomorphic to a cut out piece ofi b@eometrically
speaking, Morse pointg,, 1 < A < k, are the only points ofi/ at which the
family of sphereg({||z| = r}),_,__ are tangent td/. We denote[p,| =: 7
with 7 < --- < 7. In Figure 1, we have: = 6. For an arbitrary fixed radius
r with 7y < r < r\y1, and some fixed with 1 < A < x — 1, we consider all
connected components<,, 1 < ¢ < c,, of the cut out hypersurface N {|z| >
r}. Their numberc, is the same for alt € (7),7\+1). In Figure 1, when
r3 < r < T, we see three such components.

By descending discrete induction— r—n, we show that each such connected
hypersurfacel’¢, < {|z| > r} bounds a certain domai, c {|2| > r}
which is relatively compact it and that holomorphic functions (/) do
extend holomorphically and uniquelyﬁgr. While approaching a lower Morse
point three different topological processes will oc?curreatinga new compo-

nentQ‘;r , to be filled in further;mergingtwo component:Q>T , and chr 0

which meet; anduppressingne superfluous componemir,,7

The unavoidable multivaluation phenomenon will be tamedh®y idea of
separating ab initiothe components/< , 1 < ¢ < c,. Indeed, an advantageous
topological property will be shown to be inherited througle inductionr —

r — n, hence always true, namely that two different doméﬂ@ﬂs and QC;T are
either disjoint or one is contained in the other. Conseduehie multivaluation
aspect will only happen in the sense that the tmajuely defined and univalent
holomorphlc extensiong:* to Q - and f to Q‘;Qr can be different orﬂi;, i
caseQ‘;lr - Q>r, or vice versa In this way, weavoid completelyto deal with
Riemann domains spread ovér.

Some of the elements of our approach should be viewed in aéraantext.
In their celebrated paper [1$€ealso [17]), Andreotti and Grauert observed that
convenient exhaustion functions can be used to prove vamgrgkextension
and finiteness results agpaconcave complex varieties. Their arguments implic-
itly contained a geometrical proof of the Hartogs extensgi@orem in the case

2A certain number of other simpler cases will also happen,reviiee componen@‘;,. do
grow regularly with respect to holomorphic extension, ldghanging topology.
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where the domaif ¢ C" is pseudoconvex (whence Fornaess’ counter-example
must be nonpseudoconvex). However, in contrast to our finer nigtie exis-
tence of an internal strongly pseudoconvex exhaustiortimmg on a complex
manifold X excludesab initio multisheetedness: indeed, in such a circumstance,
extension holds stepwise from shells of the fofme X : a < p(z) < b} just

to deeper shell$a’ < p < b} with ' < a (details are provided in [30]), namely
the topology is controlled in advance byand multiple domains aégr above
cannot at all appear.

There is a nice alternative approach to the (singular) larextension theo-
rem via a global continuity principle, realized in [23] byritke and the second
author, with the purpose of understanding removable sargids by means of
(geometric) envelopes of holomorphy. The idea is to perfoaciomorphic ex-
tensions along one-parameter families of holomorphicesi(mwot suppose to be
discs). A basic extension theorem on some appropriate LatvBfinanifolds,
calledHartogs manifoldsin [23], is shown via stepwise extension in the direc-
tion of an increasing real parameter. The geometrical setadrhis construction
has a common topological element with our method: the sanelbus holomor-
phic extension to collections of domains that are pairwiteee disjoint or one
is contained in the other.

On the other hand, our technique only rely upon the existen@ppropri-
ate exhaustion functions, without requiring neither thestexice of Levi-flat
3-manifolds nor the existence of global holomorphic fuoies in the ambient
complex manifold. In addition, inspired by a definition farkated by Fornaess
in [10], we establish that only fnite number of Levi-Hartogs figures is needed
in the filling process. Finally, we would like to mention traastraightforward
adaptation of the proof developed here would yield a geaoattproof of the
Hartogs-type extension theorem of Andreotti and Hill ([{hich is valid for ar-
bitrary domains ir{n — 1)-complete manifolds (in the sense of Andreotti-Grauert
[13]).

Twenty-two colored illustrations appear, each one beisgrted at the appro-
priate place in the text. Abstract geometrical thought gp@ntrinsically pictural,
we hope to address to a broad audience of complex analystgeanaeters.

§2. PREPARATION OF THE BOUNDARY AND UNIQUE EXTENSION

2.1. Preparation of a goodC> boundary. Denote by|z| := (|zl|2 + 4
\znP)l/Q the Euclidean norm of = (z,...,2,) € C" and byB"(p,d) =
{|z — p| < &} the open ball of radius > 0 centered at a point If £ C C"is
any set,
Vs(E) := Upcr B"(p, 6)

is a concrete open neighborhoodiof

As in the Hartogs theorem, assume that the dorflaie C™ has connected
boundaryof2 and letV(052) be an open neighborhood 6f2, also connected.

Clearly, there exists; with 0 < §; << 1 such thaQ2 C V;, (052) C V(952);
of course, Vs, (0192) is then also connected. Choose a pgipte C™ with
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dist (po, 2) = 3, center the coordinatgs, ..., z,) atp, and consider the dis-
tance function
(2.2) r(2) = |z = pol = |2].

It is crucial to prepare as follows the boundary, replagiigo$?) by (2, M),
thanks to some transversality arguments that are standdddrse theory ([31]
and [19], Ch. 6).

Lemma 2.3. There exists a&°° connected closed and oriented hypersurface
M C Vs, /2(09) such that
(i) M bounds a unigue bounded doméip, with Q C Q,, U V(09);

(i) the restrictionry,(z) := r(z)]M of the distance function(z) = |z| to
M has only a finite numbex of critical pointsp, € M, 1 < A < &,
located on different sphere levels, namely

2 <r(pr) < -~ < () < 5+ diam(@Q);

(iii) all the (2n — 1) x (2n — 1) Hessian matricesl[ry|(p1), . . ., H[ra](Dx)
have a nonzero determinant.

Sometimesy,, satisfying(ii) and(iii) is called agood Morse functiomn M.
We will shortly say thatV/ is agood boundary

If k£, is the number of positive eigenvalues of the (symmetric)sigsma-
trix H[ry/](py), the extrinsic Morse lemma ([31, 19]) shows that there eXist

real coordinateév, Tlyeooy Ty Yiy - - ,yzn_,ﬂ_l) in a neighborhood gfy in C"
such that

o the sets{v(z) = cst} simply correspontito the spheregr(z) = cst}

nearpy;

° (xl, s Ty, YL - ,y%_kk_l) provide(2n — 1) local coordinates on the
hypersurfacé//, whose graphed equation is normalized to be the simple
hyperquadric

DD DI
1<k 1< <2n—ky—1

3In fact, one can just take the translated radi(ts — (7, ) as the coordinate = v(z).
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Classically, the numbégRn — k) — 1) of negativesis called theMorse index
of r(z)|,, atpx; we will call k, its Morse coindex

For rather general differential-geometric objects, Mdhs®ry enables to con-
trol a significant part of homotopy groups and of (co)hom@ege.g.via Morse
inequalities. In our case, we shall be able to control somehe global topol-
ogy of the cut-out domain®,,; N {|z| > r} that re external to closed balls
of radiusr, filling them progressively by means of analytic discs corgd in
small (Levi-)Hartogs figures (Section 3). We start by chegkiigorously that
the Hartogs theorem can be reduced to some good boundary.

2.4. Unique holomorphic extension.If &/ C C™is open,O(U/) denotes the ring
of holomorphic functions id/.

Definition 2.5. Given two connected open séis ¢ C" andl, C C™ with
U, N U, nonempty, we will saythatO(U,) extends holomorphically @, U U,
if :

e the intersectiod/; N U, IS connected:;

e there exists an open nonempty $etC U/, N U, such that for every; €
O(U,), there existfy € O(Us) with fo]y, = fi]y.

It then follows from the principle of analytic continuatighat fi|y,qw, =
falu,rus» SO that the joint functiort”, equal tof; onf; for j = 1,2, is well
defined, is holomorphic it¥; U U, and extendg;, namelyF|,, = fi.

In concrete extensional situations, the coincidencg afith f5 is controlled
only in some smalV C U; NU,, so the connectednessiaf N U, appears to be
useful to insure monodromy. Sometimes also, we shall briefite O(U4,) =

O(Uy Ulhs)|,, , instead of spelling rigorously:

VieOU) IFeOU Ul,) suchthat F|, = fi.

Lemma 2.6. Suppose that for somé with 0 < § < §;/2 so small that
Vs(M) ~ M x(—4,0) is athin tubular neighborhood of the good boundaryc
Vs, 2(0Q) C V(092), the Hartogs theorem holds for the pain,,, Vs(M)):

O(Vs(M)) = O(Qr UVs(M)) ]WM).

Then the general Hartogs extension property holds

O(V(09)) = 0(QUV(09Q)) ‘V(OQ)'

Proof. Let f € O(V(9(2)). By assumption, its restriction t95()) C V(99)
enjoys an extensioR; € (’)(QM U V(;(M)). To ascertain that and Fs coincide
in Q N V(09), connectedness 6f,; N V(0N) is welcome.

“4Because in the sequel, the unibp U U, would sometimes be a rather long, complicated
expressiongeee.g. (3.9)), hence uneasy to read, we will also say@@at; ) extends holomor-
phically and uniquely to i>.
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Letting p, ¢ € Qu N V(01N), there exists &> curve~ : [0,1] — V(9N)
connecting to ¢. If ¥ meetsM, let p’ be the first point ony N M and letq’ be
the last one. We then modify, joining p’ to ¢’ by means of a curve entirely
contained in the connected hypersurfddce It suffices to pushu slightly inside
(2, to get an appropriate curve running frgnto ¢ inside2,, N V(012). Thus,
Qu N V(0Q) is connected. It follows, moreover, that the open set

[Qu UVS(M)] NV(09) = [ N V(O] | Vs(M

is also connected, so the coincidente= Fj, valid in Vs(M), propagates to
[Qar NV(09)] U Vs(M). Finally, the function
}:k in £2A4'LJ 1)5(]Lf),
| f in VOQ\Qu,

is well defined(sinceFs = fin Vs(M)\Qy ~ M x (0,6)), is holomorphic in
Qar UV(0Q) = QU V(Q)
and coincides withyf in V(99). O

Thus, we are reduced to establish global holomorphic ekiengith some
good, geometrically controlled data.

Theorem 2.7.Let M € C" (n > 2) be aconnected’* hypersurface bounding
a domain(),; € C". Suppose to fix ideas that < dist (0 QM) < 5 and
assume that the restriction,, := r|;, of the distance function(z) = |z| to
M is a Morse function having only a finite numbeobf critical pointsp, € M,
1 < X\ < &, located on different sphere levels

2 < ?1 = T(]/?\1> < < ?,i = T'(]/?\n> <5+ d|am(§]\/])

Then there exist§; > 0 such that for every with 0 < ¢ < 4;, the (tubular)

neighborhood/s (M) enjoys the global Hartogs extension property iftg:
C)()}g(]V{)) C)(S)AJ UVs(M ’l’(ﬂl

by “pushing” analytic discs inside a finite number of Levi4ttags figureg53.3),

without using neither the Martinelli kernel, nor solutiookan auxiliaryd prob-
lem.



A MORSE-THEORETICAL PROOF OF THE HARTOGS EXTENSION THEOREM 9

§3. QUANTITATIVE HARTOGS-LEVI EXTENSION
BY PUSHING ANALYTIC DISCS

3.1. The classical Hartogs figure.Local Hartogs phenomena can now enter the
scene. They involve translating (“pushing”) analytic dised they will provide
small, elementary extensional steps to filflp;,.

Givene € Rwith0 < ¢ << 1 anda € Nwith1 < a < n — 1, we split the
coordinates: € C™ as(zy, ..., z,) together with(z,.1, ..., z,), and we define
the (n — a)-concave Hartogs figutey

HI = { max |z <1, max |z < 8}
1<i<a a+1<j<n

U{l —e < max |z| <1, max |z < 1}.
i<i<a a+1<j<n

< f
F K21 5

L
0 1—¢ =
Fig. 4: Two views of the standard Hartogs figure2~! ¢ C?

Lemma 3.2. O(HQ*“) extends holomorphically to the unit polydisc
Ho = {z€C": max |z <1} =A™
1<i<n

Proof. As in the diagram, we consider only= 2, a = 1, the general case being
similar. Pick an arbitraryf € O(H2™!). Lettinge’ with 0 < ¢’ < ¢, letting
zy € C with |25] < 1, the analytic disc

(— ([1=¢€1¢ ) = AZ(Q),

where ¢ belongs to the closed unit disk = {|¢| < 1}, has its boundary
AZ (0A) = AZ, ({|¢| = 1}) contained ir{2~", the set wher¢ is defined. Low-
ering dimensions by a unit, we draw discs as (green) segnaadtboundaries
of discs as (green) bold points. Thus, we may compute thelyantegral
_ [ F(A5©)

PE 5 o cma
Differentiating under the sum, the functidn is seen to be holomorphic. In
addition, for|z| < e, it coincides withf, because the full closed dist, (A)
is contained in2~! and thanks to Cauchy’s formula. Clearly, tHe (A) all
together fill in the bidise\?. One may think that, as, varies, discs are “pushed”
gently by a virtual thumb. O
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3.3. Levi extension and the Levi-Hartogs figure.Geometrically, the stan-
dard Hartogs figure is not best suited to perform holomorgtkiension from
a strongly (pseudo)concave boundary. For instance, inrthef pf Theorem 2.7,
we will encounter complements 6" of some closed balls whose radius de-
creases step by step, and more generally spherical shetlsewthickness in-
creases interiorly. Thus, we delineate an appropriategset u

Forr € Rwithr > 1and foré € Rwith0 < § < 1, the spher&2"! =
{z € C": |z| = r} of radiusr is the interior (and strongly concave) boundary
component of the spherical shell domain

St={r<lzl<r+d}= {J B"(@on{lzl>r}

Near a pointp € S~ (left figure), all copies ofC"~! (in green) which are
parallel to the complex tangent pIaﬁﬁS?”—l and which lie above the real plane
7,52"~1 are entirely contained i@”\E:f. To remain inside the shefi"+°, we
could (for instance) restraint our considerations to soatiedylinder of diameter
~ ¢, but it will be better to shape a convenient half parallglegi Accordingly,
for two smalle; > 0, 7 = 1,2, we introduce a geometrically relevahevi-
Hartogs figurdright illustration, reverse orientation):

LH,, ., = {1£1<a}1>31 |zi] <e1, |zn]l <e1, —e2<y,< 0}

U{e—(f< max Jal<e, feal < ol <)

To fill in this (bed-like) figure, we just compute the Cauchyegral on appro-
priate analytic discs (the (green) horizontal ones) whasentaries remain in
LH., .

Lemma 3.4. O(CH%&Z) extends holomorphically to the full parallelepiped

—_—
LHe, ey = {1<I?<%L}S1 |zi] <e1, |znl <er, |ynl < 52}.

Next, we must reorient and scalé<., ., in order to put it inside the shell. For
every pointp € S?"~1, there exists some complex unitarian affine map

®,: zr—p+Uz,

with U € SU(n,C), sending the origir) € LH.,., to p andToLH., ., tO
7,5, which in addition sends the half-parallelepiped (opem) patsideB ..
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But we have to insure that, (LH., .,) as a wholgincluding the thin walls) lies
outsideB, .

Lemma 3.5.If e; = ¢4 ande, = ¢ 62 with some appropriafepositive constant
¢ < 1, then®,(LH.,.,) is entirely contained in the shefi7 *°. Furthermore,

P, (2@2) contains a rind of thickness® around some regioR, ¢ S~
whose(2n — 1)-dimensional area equals ¢ §*"~1.

Fig. 6: Size of the piece of (gréen lemon) rindc(ST

By a (radial)rind of thickness) > 0 around an open regidR C S*"~!, we

mean
Rind(R,n) :={(1+s)z: z€R, |s| <n/r}.

We require thats| < n/r to insure that at every € R, the half-line(0z)*
emanating from the origin intersed%s?nd(R, n) along a symmetric segment of
length2 n centered at.

In the diagram above, we draw (in green) only the lower parthefsmall
regionR, got in Lemma 3.5. Its shape, when projected ¢hf8?" !, can either
be (approximately) a parallelepipdd:’| < ¢4, |z,| < ¢4}, as in the figure, or

say, a ball{ (] 2'|* + \:cnP)l/z < ¢4}; only the scaling constartchanges.

The rigorous proof of the lemma (not developed here) in®kkementary
reasonings with geometric inequalities and a dry explmittool of the constants
that does not matter for the sequel. The main argument usdadhthats?" !
detaches quadratically from,S?*~!, similarly as the paraboléy = —% :(;2}
separates from the ling = 0} inR2 .

Since the area @?"~! equals(f%f)! r2n=1t = O r?=1 by coverings?"—! with

such adjuste®, C %(ﬁﬂ;z) of areac §**~! and by controlling monodromy
(seerigorous arguments below) we deduce:

Corollary 3.6. By means of a finite numbet C (g)Q”_1 of Levi-Hartogs fig-
ures, (9(8;"”) extends holomorphically to the slightly deeper spherid¢adlis
This application could seem superfluous, because larggtandiscs with

boundaries contained i’ +° would yield holomorphic extension to the whole
ball B, 5 in one single step. However, in our situation illustratedFigure 1,

SWe let the letter: (resp.C) denote a positive constast1 (resp.> 1), absolute or depending
only onn, which is allowed to vary with the context.
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when intersecting?"~! with the neighborhood; (M), we shall only get small
subregions 082" ~. Hopefully, thanks to our local Levi-Hartogs figures, we may
obtain a suitable semi-global extensional statementabddufor proper subsets
of the shellS’+° whose shape is arbitrary. The next statement, not avaitgble
means of large discs, will be used a great number of timesiseiquel.

Proposition 3.7. LetR c S?"~! (withr > 1 andn > 2) be a relatively open set
havingC> boundaryN := 0R and lety > 0 with0 < § << 1. Then holomorphic
functions in the open piece of sh@l one-sided neighborhood BfU N):

Shel[ " (RUN) := (C™\B;) N Vs(RUN)
= U B'®o)n{lzl >}

pERUN

do extend holomorphically to a rind of thicknas%2 aroundR by means of a

finite numberK C 22%"{'? of Levi-Hartogs figures.

Rind (R, c62r~1)

Fig. 7: Semi-global extension from a pseudoconcave piecesifell

Proof. We must control uniqueness of holomorphic extension (mooragl) into
rinds covered by successively attached Levi-Hartogs fiyudeticinge 62 ! <
< ¢, the considered rinds are much thinner than the piece of shel

Lemma 3.8. If R" C R is an arbitrary open subset and &, C &, (2@2)
is a small Levi-Hartogs region centered at an arbitrary piogh € R, then the
intersection

(39)  Rind(Ry, ca*r™") () (Shell** (RUN) [ JRind(R’, ca*r ™))

iS connected.

Admitting the lemma for a while, we pick a finite number < C 3225 of
pointsp, ..., p, € RUN such that the associated local regi®)s contained in

the filled Levi-Hartogs figure®,, (Lﬂ;Q) provided by Lemma 3.5 do cover
RUN, namelyR,, U---UR,, D RUN.

Starting withR" := () andp’ := p;, unique holomorphic extension of
O(Shell**(RUN)) toRind(R,/, c? =) holds by means of Lemma 3.4, mon-
odromy being assured thanks to the connectedness of thrseaotien (3.9).
Reasoning by induction, fixing sonlewith 1 < k£ < m — 1, settingR’ :=
Uigj<k Rp;» 0 := pry1 @nd assuming that unique holomorphic extension is got
from Shel[**(RUN) into

Shelf ™ (RUN) | JRind(R',c6?r~!) = Shell™ (RUN) [ J Rind(R,,,cd*r™1),

1<j<k
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we add the Levi-Hartogs figur@,, , , (571:752) constructed in Lemma 3.5, and
we get unique holomorphic extensioand(RpkH, co? r*l), monodromy be-
ing assured again thanks to the connectedness of the ictiers€3.9). Since
Rind(R,c6”r") € Uycpm Rind(R,,,¢6?r7 1), the proposition is proved. ]

Proof of Lemma 3.8To establish connectedness of the open set (3.9), picking
two arbitrary pointsyy, ¢; in it, we must produce a curve joining to ¢; in-

side (3.9). The two radial segments of lengihy? r—! passing through, andg,

that are centered at two appropriate pointS’6f ! are by definition both entirely
contained inRind(R,/, c6%r~!) as well as inRind (R, ¢6%r~!). Thus, moving
radially, we may join inside (3.9), to a new poinfy, andg; to a new poiniy;,
which both belong to the upper half-rind

{(14+s)z: z€Ry, 0<s<c&r'/r}.

Since this upper half-rind is connected and contained inISﬁéR U N), we
may finally join inside (3.9) the poinf) to ¢;. n

In the sequel, in order to avoids several gaps and traps, Wpwriemphasis
on rigourously checking univalence of holomorphic extensi

84. FILLING DOMAINS OUTSIDE BALLS OF DECREASING RADIUS

4.1. Global Levi-Hartogs filling from the farthest point. We can now launch
the proof of Theorem 2.7. Thg is first chosen so small tha{s(M) is a true
tubular neighborhood ai/ for every with 0 < ¢ < 6;. Shrinking even more
01, in balls of radiu®); centered at its points, the hypersurfadds well approx-
imated by its tangent planes.

The farthest point of2,, from the origin is unique and it coincides with
D Since by assumptiop, is the single critical point o?(z)\M with |p.| =
maxi< < |Pa]- By assumption also, the Hessian matrinQt)\M is nonde-
generate ap,.; this also follows automatically from the inclusiét,, C E;N,
which constrains strong convexity af atp,. Consequently, according to the
Morse lemm4[31], [19], Ch. 6), there exist local coordinatgs, . . ., 0, 1) on
M centered ap,. such that the intersectial’ N S?"~! is given by the equation

2 2 o~
07— =0y, =1 =T,

for all r close tor,. ThusM N S?"~1is empty forr > 7,; it reduces to[p, } for

r = T,; and it is diffeomorphic to &2n — 2)-sphere for < 7, close tor,.
Similarly, the nearest point d,, from the origin is unique and it coincides

with py; notice that hence > 2. Also, the second farthest critical point_;

lies at a distancé._; < 7, from 0. If necessary, we shrink to insure

4.2 0 << i Thi] — T L.
(4.2) | 15){2271{7’)&1 By

Next, for every radius with 7, _; < r < 7,,, we introduce the cut out domain
Qup = QN {z] >r}
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together with the cut out hypersurface
M, .= M n{|z] > r}.

Since there are no critical points ﬁ(z)]M in the interval(7,_1,7,.), Morse
theory shows thal/, is a deformed spherical cap diffeomorphicRé*—! for
everyr with7,_; < r < r.. Also, -, is then a piece of deformed ball diffeo-
morphic toR?".

The boundary irC" of Q2.

8Q>T — M>T‘ U RT‘ U NT‘

consists of).., together with the open subregi®h := Q) N {|z| = r} of
S2—! which is diffeomorphic tdR?"~! and has boundary, := M N {|z] =}
diffeomorphic to the unif2n — 2)-sphere. Thus, the global geometry<of, is
understood.

We can also cut ows(M), gettingVs(M)~,.. The central figure shows that
whenr > 7,._; is very close ta’,._;, a parasitic connected componeft., of
Vs(M)~, might appear neap,,_;. After filling -, progressively by means of
Levi-Hartogs figuresqeebelow), becaus€..,. N Vs(M)~, is not connected in
such a situationno unique holomorphic extension can be assured, and in fact,
multivalence might well occur.

A trick to erase such parasitic componeWts,. is to consider instead the open
set

Vs(Msr), = Vs(Mer) 0 {121 > 7).
putting a double £,”. It is drawn in the right figure and it is always diffeomor-
phic to M-, x (—0,9).

From pieces of shells as in Proposition 3.7 which embracergghof vary-
ing radiusr, holomorphic extension holds to (symmetric) rinds whosekiiness
cdr~! also varies. To simplify, we introduce the smallest appeptiickness

o . -1 _ ~—1
(4.3) n = ?121£?H cor - =cor.
and we observe that it follows trivially from Propositior73just by shrinking
and by restricting) that holomorphic extension holds to sasimd aroundR of
arbitrary smaller thicknesg’ > 0 with 0 < n’ < 7. In the sequel, our rinds
shall most often have the uniform thicknegend sometimes also, a smaller one
n’. Shrinking the constantof 7 in (4.3), we insure) << ;.
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Summarizing, we list and we compare the quantities intredwso far:

0<d6<d neighborhood/s (M)
2<r(p) < - <r(pe) <5+ diam(Qyy) Morse radii
o . -
(4.4) §< 6 < | Jnin {Pap1 — 7} smallness oVs(M)
ni=cd*r ! uniform useful rind thickness
n<<o thickness of extensional rinds is tiny

Proposition 4.5. For every cutting radius with7,._; < r < 7, arbitrarily close
to r,_1, holomorphic functions in the open set

V5(M>r)>r = V&(M>r) N {HZ” > T}

do extend holomorphically and uniquely &b, by means of a finite number
< O (Z)™'[2=2] of Levi-Hartogs figures.

Proof. We fix such a radiug with 7, _; < r < 7.. Putting a single Levi-
Hartogs figure ap,. as in Proposition 3.7, we get unique holomorphic extension
to Q5. _,. Sincen << 9, we haver,, —n > r,._;. If the radiusr,, — 7 is already

< r, we just shrink tay’ := 7, — r < n the thickness of our single rind, getting
unique holomorphic extension fo.;, _,, = Q..

Performing induction on an auxiliary integker> 1, we suppose that, by de-
scending fronr, to a lower radius’ := r,, — kn assumed to be stilt r, holo-
morphic functions irﬁ}g(M>r)>T extend holomorphicallgnd uniquelyremind
Definition 2.5) to(2-,...

Lemma 4.6. For every radiug”’ with7,,_; <r <r' <7,,

(4.7) Shell,"* (R, UN,/) is contained inQ.. | J Vs (M..,)

>r’

Proof. Picking an arbitrary point € R,» U N,., we must verify that
B"(p,0) N {]l=] > '}

is contained in the right hand side of (4.7).
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If p € N, C M, whencep € M-,, we get simply what we want:

B"(p,0) N {[lz] > r'} € Vs(M>r) 0 {l2] > 7'}
C Vs(Msr) N {]l2] > r}
= V(S(M>T‘)>T'

If p e Rr/\Nr/, whencep € Q,,, reasoning by contradiction, we assume that
there exists a point € B"(p, d) N {|z| > 7'} in the cut out ball which does not
belong to the right hand side of (4.7). SirRe, = QN {|z| > 7'}, we have
q & Q.

RemindingR,» € S2'~!, the tangent plan®,S?'~* = T, R, dividesC" in two
closed half-spacesT; SZ'~! exterior toB?, and the opposite ong, SZ'~'. We
distinguish two (nonexclusive) cases.

Firstly, suppose that the half-lirfgq)* is contained i@;Sf,"’l, as in the left
figure. Sincep € Q,; andq & Q,,, there exists at least one pojnbf the open
segmentp, ¢) which belongs taV/, hencep € M-.,.. Then

la —pl <lqg—p| <9,

whenceg € B*(p,d) N {|z] > r} and we deduce thatc V;(M-,)_ belongs
to the right hand side of (4.7), contradiction.

Secondly, suppose that the half-lie;)* is contained i@;Sfﬁfl, as in the
right figure. Letg € (p, q) be the middle point. In the plane passing throdgh
andgq, consider a circle passing througlandq and centered at some point close
to 0 in the open segmertd, ¢). It has radius< ' close tor’. The open arc of
circle betweern andq is fully contained in{|z| > r'}.

Sincep € Qy; andq € Q,,, there exists at least one pobf the open arc
of circle betweerp andq which belongs tal/, hencep € M..,. But then(p, q)
is the hypothenuse of the triangbep (reminds’ > 1 and|q¢ — p| < § < 1),
whence|q — p| < |¢ — p| < 6, hence again as in the first case, we deduce that
q € Vs(Ms,)_, contradiction. O

If the slightly smaller radius

=0 —n=7.—(k+1)n

is already< r, we will shrink ton := 7, — r — kn < 7 the thickness of the
final extensional rind. Otherwise, in the generic cage; (k + 1)n is still > r.
The final (exceptional) case being formally similar, we come the proof with
r' =7, — knandr” =’ —n, assuming that” > r.
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Settingr’ := 7, — kn in the auxiliary Lemma 4.6, functions holomorphic in
Qs U V(;(M>,n)>r restrict to She[I”(RT/ UN,~) and then, thanks to Proposi-
tion 3.7, these restricted functions extend holomorpmdaIRind(Rr,, 77).

Lemma 4.8. The following intersection of two open sets is connected

(4.9) Rind (R, 1) [ (QW U vg(M>r)>T).
Furthermore, the union of the same two open sets contains
(410) Q>7‘/*17 U Vs (M>r) S

Thus we get unique holomorphic extension to (4.10) and finkyl induction
on k and taking account of the final step whershould be shrunk appropriately,
we get unique holomorphic extensiong, U V(;(M>T)>T.

The number of utilized Levi-Hartogs figures is majorated hg product of
the number of needed rinds ’%T‘T times the maximal area dg,,, which we

roughly majorate by the are@ (7. )" ! of the biggest sphen‘iﬁffl, everything
being divided by the areaj®"~! covered by a small Levi-Hartogs figure. This
yields the finite number claimed in Proposition 4.5, achiguts proof. O

Proof of Lemma 4.8[May be skipped in a first reading] To establish connected-
ness, we decompose the rind as

Rind" := {(1+s)z: z€ Ry, 0< s <n/r'}
Rind’ := R,
Rind™ :={(1-s)z: z€ Ry, 0< s <n/r'},

so thatRind = Rind~ U Rind” U Rind™, without writing the common argument
(Rr/, 7’/) .

Obviously, the uppeRind™* is diffeomorphic toR,. x (0,7) ~ R~ x (0,7),
hence is connected. We claim that, moreover, theRidd™ is contained in
Qo U V(;(MM)M, whence

(4.11) Rind* = Rind* () (QW U Vg(M>T)>r>.

Indeed, let/ € Rind*, hence of the forng’ = (1+ s)p’ for somep’ € Rind” =
R, and somes with 0 < s < n/r’. If the half-open-closed segmefit, ¢'] is
contained inf2,, hence im2.,» = QN {|z| > '}, we get for free/ € Q..

If on the contrary,(p’, ¢'] is not contained inQ2,,, then there exists a point
q € (p,q)withq € M = 0Q,;, whencej € M.,. C M-, (remindr’—n > r).
The ballB™ (¢, 9) then containg’, becauséq — ¢'| < |¢ — p'| < n << J. This
showsy’ € Vs(M-.,)_ , achieving the claim.

Thus, the (upper) subpart (4.11) of the intersection (4.9)ready connected.

To conclude the proof of connectedness, it suffices to shawnetvery poinp’
of the remaining part

(4.12) (Rind0 U Rind—) N (Q>w UVs (M>r)>r)
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can be joined, by means of some appropriate continuous cumvgng inside the
intersection (4.9), to some poigtof the connected upper subpart (4.11). Thus,
letp’ in (4.12) be arbitrary.

If p € Rind’ N (2, U Vs(M-,)_ ), it suffices to join radiallyy’ to ¢’ =
(1 + s.)p/, for somes. with 0 < s. << 7. Indeed, such g then belongs to
Rind™ N (Q>r/ U V(S(M>r)>r)-

If p’ € Rind™ N (Qsr U V(;(M>,n)>r), then necessarily’ € Vs(M-.,)_ ,
because by definition:

Rind™ (R, ) N Qs = 0.

So there is a point € M-, with p’ € B"(q, d).

rind

We then distinguish two exclusive cases: eith@gh > ' orr(q) < r'.

Firstly, assume(q) > ' (left diagram).

If 0, p’ andq are aligned, we simply joip’ to the pointy’ := (1 + s.) %/)p’
which belongs tRind*. The segmeny’, ¢'] is then entirely contained iRind N
B"(q,d)>,, hence in (4.9).

Otherwise, in the unique plane passing throQgh andq, consider the point
q" = :((I;)) q, satisfyingr(¢”) = r(p’) and belonging tq0, ¢). Sinceq” is the
orthogonal projection of ontoB"(0,r(p’)), we get|q¢ — ¢"| < |¢ — ?'| < 4,
whenceq” € B"(q,6). The circle of radius(p’) centered ab joins p’ to ¢”
by means of a small arc which is entirely containedBiq, ). Denote by
v :[0,1] — B"(q, ) a parametrization of this arc of circle, wit{0) = p’ and
7(1) — q/l.

If [0, 1] is entirely contained iRind~, we conclude by joining” radially to
the pointg’ := (1 + s.) % q".

If [0, 1] is not contained irRind, lett; € (0, 1) satisfyingy[0,¢;) C Rind™
but~(t;) ¢ Rind™. Then~(¢;) belongs todRind™ and sincer(y(t1)) = r(p')
still satisfiesr’ —n < r(p’) < r’, necessarilyy(t,) belongs “vertical part” of
ORind~, namely to the strip{ (1 — s)z : z € Ny, 0 < s < 5/r'}. Hence

the point¢” := m ~(t1) belongs taN,.. We now modifyy by constructing
a curve which remains entirely insid& (q”,0)-, C V(;(M>T)>T as follows:
choosé, < t; very close td, joinp’ to~(t,) € Rind™ throughy and theny(t,)

radially to the pointy’ := (1 + s.) m v(t2) € Rind™. The resulting curve is
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entirely contained in (4.9). In conclusion, we have joinétb a suitable point
¢', as announced.

Secondly, assume thatq) < 7. Consider the normalized gradient vector

field ng“u, defined and nowhere singular ai N {7._; < |z| < 7.}, hence

on M-, \{p.}. Fort € [0,27], denote byt — ¢, the integral curve 0%
passing througly, satisfyinggy = ¢, ¢ € M andr(q;) = r(q) + t. Together
with its centerg, the ball is translated a8" (¢, ). Accordingly, the poinp’ is
moved, yielding a curvg; such thap), occupies a fixed position with respect to
the moving ball. Explicitly'p; =p' +¢q —q. Thanksto’ > 1 andj < 1, one
may checR that &, pf > 1 — ¢ 5, for some small positive constant s <1.

Thus, ag mcreases the ponpl; moves away fron) at speed almost equal to
1. Sincer’ —n < r(py) < ', we deduce that for = 217, we haver(p,,) > r’,
namelyp;, has escaped froRind . Consequently, there existse (0, 2) with
p; € Rind™ for 0 < ¢ < ¢, suchthap; € dRind™.

The boundary oRind™ has three parts: the tdp., the bottom{ (1 — n/1")z
z € R} and the (closed) strip(1 — s)z : z € N, 0 < s < n/r'}. The limit
pointp; cannot belong to the bottom, sinc@; ) > r(p) > " — .

Since by constructiop; € B"(¢;,0) with ¢, € M-,, we observe that, €
Vs (Ms,)_, for everyt € [0,27]. Consequently:

p; € Rind™ [(Vs(Ms,)_,, Vi€ 0, )

Assuming thap, < ORind™ belongs to the toR,, = Rind’, we may joinp;,
radially toq’ := (1 + s.)p;,. In this way,p’ is joined, by means of a continuous
curve running in the intersection (4.9), to the pajht= (1 + s.)p;, belonging to
the connected upper subpart (4.11).

Finally, assume thap, € ORind~ belongs to the strig (1 — s)z : z €

N,,, 0 <s < n/r’}. The pointg” := r(;f ) ' belongs toN,. C M-,, and we
i

will construct a small curve running entirely insi@#&(q”,0)~, C Vg(M>T)>T

Chooset, € (0,t,) very close tot;, join p' to p;, € Rind™ as above (but do

not go up top;,) and then joinp;, radially to the pointy’ := (1 + s.)—~ o )th,

which belongs toRind™. The small radial segment fropj, to ¢’ is entlrely

contained iMB™(¢”, 9) and in the fullRind. In conclusionyp’ is joined, by means

of a continuous curve running in the intersection (4.9) his pointg’ = (1 +
Se) = e )th which belongs to the connected upper subpart (4.11).

The proof of the connectedness of the intersection (4. Qngatete.

We now show that the union, instead of the intersection i®)(4con-
tains (4.10).

S1fthe sphere§2m~1 for r close tor’ would be hyperplanes — they almost are in comparison
to B" (¢, 9) — we would have exactly(p,) = r(p’) + ¢, whence‘M 1.
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Let p’ € Q.,._,\Q,, whencer’ —n < [p/| < . The radial half line
{tp’ <t < oo} emanating from the origin and passing throygmeets
S2—1 at the pointy = II;;H .

If the closed segmerip’, ¢'] is contained inQ2.,._,, theng’ € Q). Since
|¢| = +" and sinceR,, = QN {|z| = 7'}, we getq € R,,, whencep’ €
Rind(R+, 7).

If on the contrary, the closed segmépit ¢'] is not contained irf2-,._,, then
there existsy € (p/,q¢'] with ¢ € M = 0y, whenceq’ € M.,_, C M-,.
Sincen << ¢, we deduce’ € B"(¢',4) and finallyp’ € Vs(M-.,)_, .

The proofs of Lemma 4.8 and hence also of Proposition 4.5amplete. [

§5. CREATING DOMAINS, MERGING
AND SUPPRESSING CONNECTED COMPONENTS

5.1. Topological stability and global extensional geomeyr between regular
values ofr,;. In the preceding Section 4, ferwith r._; < r < 7., we de-
scribed the simple shape of the cut out dom@in. = Q,, N {|z| > r}, just
diffeomorphic to a piece of ball. Decreasing the radius uide,, the topolog-
ical picture becomes more complex. At least for radii cosguti between two
singular values of*(z)}M, Morse theory assures geometrical control together
with constancy properties.

Lemma 5.2. Fix a radiusr satisfyingr, < r < 7,1 for some\ with1 < \ <
x — 1, hence noncritical for the distance functio(x)|,,;. Then

(@) T.M + T.52"~! = T,C" at every point € M NS*;
(b) the intersection\/ N S2"~! is aC> compact hypersurfach, C S?*!

of codimensior2 in C", without boundary and having finitely many con-
nected components

(c) N, is diffeomorphic td\,., whenever, < r” < r' < Tyi1;

(d) M., = M n{|z| > r} has finitely many connected componehts,,
with 1 < ¢ < ¢, for somer,, < oo which is independent of,

(e) Mc,, is diffeomorphic tal/¢ ,, whenever, < r” < r’ <7y, forall c
with1l < ¢ < ey

() M n{r" < |z| < '} is diffeomorphic toN,. x (", r’), hence also to
N, x (r”,r"), whenever, < " <1 <T\i1;

Proof. We summarize the known arguments of prodif (31] and [19], Ch. 6).
Equivalently,(a) says thatir : .M — T, )R is onto, and this holds true since
by assumption\/ N {7\ < |z| < F\41} contains no critical points of(z)|y.
Then(b) follows from this transversalit{a).

Next, consider the Euclidean metrie, w) := 33", vz w; on C* ~ R",
which induces a Riemannian metfic-),, on M, a nondegenerate positive bi-
linear form on7T'M. The gradientV(r|y,) of r(z2)|a is the vector field onV/
defined by requiring thafV (r|y), X),, = d(r[)(X) for all C> (locally de-
fined) vector fieldsX on M. LetD := 2Re > ;| z % be the radial vector
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field which is obviously orthogonal to spheres and considerarthogonal pro-
jection X, of D[, onT'M, aC* vector field on)M. We want to scale the gradient
asV, = X - V(r|y) so that its radial component is identically equal to one,
namely, so tha(V,n,M, D) = 1, which gives the equation:

1=X(V(rln), D) =X (V(r|m), Xp) = A (V(r|m), Xp),, = Ad(r|n)(Xp).

To simply set)\ = Ty We must establish thaX, cannot belong to

Kerd(r|y) atany point: € M N {7y < |z| < 7a41} of a noncritical shell.
We check this. At such a point D(z) is not orthogonal td", M (otherwise
T. M would coincide witkﬂ;Sﬁ”), whence its orthogonal projectio¥i, (z) is
# 0. By definition, (D — Xp)(z) is orthogonal taI.M > Xp(z), hence it is
orthogonal toXp(z) inside the2-dimensional planél, generated byXp(z) #
0 and byD(z) # 0. If, contrary to what we wantXp(z) would belong to

Kerd(r[x) = T.Sj7;", then it would be orthogonal t9(z), and in the plane

I1., we would have botlD(z) and the hypothenus@® — Xp)(z) orthogonal to
Xp(z), which is impossible.
Thus, in spherical coordinatds, 94, ...,9,, 1) restricted to a noncritical

shell, ther-component of th€> scaled gradient vector fieM, ,; := %
is= 1. We deduce that the flow (wherever defined)= exp(s VT,M)(z) sim-
ply increases the norm 4s,| = [z| + s, whenceexp ((r' — 7")V,.ar)(-) in-
duces a diffeomorphism fromi,.. ontoN,.: this yields(c). Also, (z”,s) +—
exp ((r" + s)Vyur) (2”) gives the diffeomorphism dfl,» x (+/ — ") onto the
strip M N {r” < |z| < '}, whichis(f).

Next, the compact manifold with bounda#y-.,. U N,. surely has finitely many
connected components, whose number is constant foy allr < 7,1, because
whenr increases or decreases, the connected components ofdeeNslido
slide smoothly ir62"~! without encountering each other: thigd. Finally, (e)
follows from (f) and the trivial fact that the two segmeiitg, ) and(r’, %) are
diffeomorphic, whenever, < r” <’ <% <7y,1. O

We can now state the very main technical proposition of thsap.

Proposition 5.3. Fix a radiusr satisfyingr, < r < 7,1 for some\ with 1 <
A< k—1landletMs, c = 1,...,c, denote the collection of connected
components of/ N {|z| > r}. Then

(i) eachM<, boundsin{|z| > r} a uniquedomainfzgr which is relatively
compact inC";

(i) the boundary irC™ of eachfzgr, namely
80, = MS, UNSURS

consists of\/¢, together with some appropriate unidli of finitely many
connected components®f = M N {|z| = r} and with an appropriate

regionR¢ C S2*~! delimited byN¢;
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(iii) two such domain§<,. and Q,, associated to two different connected
component3/<,. and M<2. of M.,,., are either disjoint or one is contained
in the other

(iv) forc; # e, the regionRS andR¢? are either disjoint or one is contained
in the other, while their boundarids$¢* andN¢? are always disjoirt

(v) foreachc = 1,..., ¢\, every functiory’ holomorphic inV(;(M>T) has

>r
a restriction tOVg(MiT)>T which extends holomorphically and uniquely

to @‘;T by means of a finite number of Levi-Hartogs figures.

We point out that ini) and(ii), neitherﬁ;ﬁ norﬁﬁ need be contained in our
original domain(2,, (as it was the case in Section 4 fQr ; < r < 7,.): thisis
why we introduced a widetilde notation. We refer to the médiéigure 1 for an
illustration. Similarly, neitheﬁﬁ norﬁﬁ need be contained i\ 2, they both
may intersecf,, and C”\QM. Also, the number of connected components of

N¢ is > that ofﬁﬁ and may be>, as illustrated below.

As a direct application, we may achieve the proof of our ppatresult.

Theorem 5.4.Under the precise assumptions of Theorem 2.7, holomorphe f
tions in V(M) do extend holomorphically and uniquely @, by means of a
finite number of Levi-Hartogs figures

VieOWs(M)) 3IFeO(QyuVs(M)) st F\WM) = f.

Proof. In the main Proposition 5.3, we choose- 7, + ¢ (wheres > 0 satisfies
e << 0) very close to the last, smallest singular radius. Thén. has a single
connected component/.,,. itself, and it simply bound(sQM)M. The remainder

part of M/, namelyM N {|z| < 71 + ¢} is diffeomorphic to a very small closed
(2n — 1)-dimensional spherical cap and is entirely containedkif\/).
Fix an arbitrary functiorf € O(V;(M)) and restrict it td/s (M-.,) _ . Thanks

to the propositionf extend holomorphically and uniquely (@]M)>7" by means
of a finite number of Levi-Hartogs figures. Since

V0D () (% (L), U ().,

is easily seen to be connected, we get a globally defined @adiunction which
is holomorphic in

Vs (W (M), U (1), ) = Vs(M) U Q.
This completes the proof. O
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Proof of Proposition 5.3In (i), let us check the uniqueness of a relatively com-
pactQ<,. SinceM<, inherits an orientation from/, the complemen |z| >

r}\M¢<, has at most 2 connected components JAse C" is bounded, at least
one component contains the points at infinity, hence themeremain at most
one component of |z| > r}\ M¢, that is relatively compact i®".

If r satisfies’,,_; < r < 7., Proposition 4.5 already completes the proof.

Assume therefore thatsatisfiesr, < r < 7,4, for somey € N with 1 <
i < k— 1. Forevery\ with 2 < A < k — 1, it will be convenient to flank each
singular radiug’, by the following two very close nonsingular radii

(5.5) Ty =T\ —1n/2 and T i=Ta+1n/2),

with 7 being the same uniform thickness of extensional rinds asreefVe fix
once for all an arbitrary functiorf holomorphic inv(;(M>r)>r. Letting A be
arbitrary withy < A < k — 1, the logic of the proof shows up two topologically
distinct phenomena that we overview.

A: Filling domains through regular radii intervals. Assume that at the regular

radius7, ;, = 741 — 2, all domainsQ;?, ,c = 1,...,¢c\ as well as the
A+1

corresponding holomorphic extensions, have been consttLi€hen prolong the

domains (without topological change)@&+, =1,...,cn Uptor) =7y + 2

and fill in the conquered territory by means of a flnlte numifdreyi- Hartogs
figures.

B: Jumping across singular radii and changing the domains. Restarting
at7, with the domaing)° Cpprc = 1,..., ¢y, distinguish three cases as follows.

Remind from§2.3 thatM is represented by =", 23— ii<omtn1Y]
in suitable coordinate&:, y, v) centered ap), wherek, is the Morse coindexf

T(Z) ‘JM at]/?\)\.

(I) Firstly, assumé:, = 0, namelyz — r(z)|) has a local maximum at
D, Or inversely, assumke, = 2n — 1, namelyz — r(z)|) has a local
minimum atp,. This is the easiest case, the only one in which new
domains can be born or die, locally.

(I) Secondly, assumk, = 1. This is the most delicate case, because in a
small neighborhood of), the cut out hypersurfach/[ﬁ; has exactly 2

connected components, so that two different enclosed dmﬁé;g and
T

@‘fﬁ can meet here; it may also occur that the two parts pgaelong

to thesamedomain, i.e. that, = ¢;. While descending down to, ,
we must analyze the way how the two (maybe the single) comps)e
merge. Three subcases will be distinguished, one of whicwsty a
crucial trick of subtractingone growing component from a larger one
which also grows (right Figure 1).
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(1) Thirdly, assume that < k), < 2n — 2. In all these cases, locally in a
neighborhood op), the cut out hypersurfacMﬁI has exactly 1 con-
nected component and the way how the corresponding singlessd
domainﬁ;?A+ grows will be topologically constant.

Reasoning by induction ok and applying the filling processésandB, we
then descend progressively inside deeper spherical stieisking all properties
of Proposition 5.3. When approaching the bottom radio Proposition 5.3, it
will suffice to shortcutA or B appropriately in order to complete the proof.

5.6. Filling domains through regular radii intervals. Recall thatr, < r <
Tur1, letAwith o < A < k—1 and consider the regular radius inter@f, 7y, , |-
We suppose first that< 7, so that we may descend inside the whole spherical
shell {7} < |z| < 7y,,}. Afterwards, we explain how we stop in the case where
A=pandrt <r <7,

By descending induction oi throughA andB, we may assume that at the
superlevel set-)_ .- , the doma|n§2C . enclosed by forl<c<c

)\+1 )\+1

have been constructed and that each restrigtion of f € O(V(;(M>T)> ) to
Tyxt1 T

Vs(M¢__ )__ extends holomorphically and uniquely to the domain
>Tyi17 2T
(5.7) Q. Uws( o)

For every radius’ with 7" <’ < 7, the cut out hypersurfacgl..,, =

Uicece, M, has the same number of connected components, &&Gh is
dlffeomorphlc toM<¢__ and the differencel/S \MCA_ is diffeomorphic to
)\+1 )\+1

N¢  x (r',7y,,]. Furthermore, each prolongatié) ., of QCA, is obviously

a+1 "a+1

defined just by adding the tube domain surrounded sy, \Mf_ Then each

A+1
NS = 8R7‘i, has finitely many connected components’, with 1 < j < ji.,
wherej, . is independent of'.

I/)\)\+1
Vs (M;?* )>?* o
” -
s 21|

| \

i 13: ing Vs (M N
Fig. 13: Getting V), (M;+) by adding legs toVs (M<__ ).
A

Since f was defined inv(;(M>r)>r and sincer < 7, we claim that each

restrictionf<. may be extended holomorphically and uniquely to
Ta+1

(5.8) Q. Jvs(M)
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Indeed, to the original domain of definition (5.7) #f  which was contained
A+1

in {||z|| > %}H}, we add in the enlarged domain (5.8) a finite numfer of
tubular domains around the connected componenMQt\M;, . Because

A+1

o was chosen so small thag (M) is a small tubular neighborhood éf/, and
becausef € O(Vs(M-,)_,) is uniquely defined, we get a unique extension,
still denoted byfA_ to (5.8).

We can now apply the same reasoning as in Proposition 4.5hwdunsists
of progressive holomorphic extension by means of thin rirfiRisproducing the
proof of Lemma 4.6 (with changes of notation only), we getdeery radius”’
with 7y <" <7y, that
(5.9)  Shell™(Rs, UNS) is contained inQ<,. ) Vs(M

>r>\

Similarly, reproducing the proof of Lemma 4.8 yields the necntedness of

Rind (R, ) () (0%, UV (M) ),

and furthermore, this yields that the union, instead of thersection, contains

>7« WUV(S A+ A+7

whenever” — 1 is still > 7} (otherwise, shrink conveniently the thickness of
the last extensional rind, as in the proof of Proposition.4.5hus, by piling

up @ rinds and by using a finite number C (%*1)2"71 [@} of Levi-
Hartogs figures, we get unique holomorphic extension to
(5.10) Vs(MC ) UQMA

>ry

Finally, if » satisfies”t < r <7, ,,, descending front-). ST with A = p as

above, we just stop the construction of rindg {a., by shrinking appropriately
the thickness of the last extensional rind.

The propertyiii) that enclosed domainig’, are either disjoint or one is con-
tained in the other remains stableradecreases through the whole nonsingular
interval (?}, ?AH) , because their (moving) boundaries always remain disjsint
that property(iv) is also simultaneously transmitted to lower regular radhiis
completedA.

5.11. Localizing (pseudo)cubes at Morse pointsWe now studyB. Recall that
Ty <1 < Tupr, let A with o < A <k — 1 and suppose that < 7, so that
starting from(-)>@+, we may (and we must) continue the Hartogs-Levi filling
inside the whole thin spherical shélf, < |z| <7 }. Similarly as above, the
way how we should stop the process in the case wherep andr, < r < 7f
IS obvious.

By descending induction oh throughA andB, we may assume that at,
the domainsﬂ;+ enclosed byM;+ for 1 < ¢ < ¢, have been constructed

SN SN
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and that each restrictiofft, of f € (’)(V(;(M;)> ) to V(;(M;+)>A+ extends
TA s 7‘)\ T‘/\
holomorphically to the domain (5.10) of the previous paaadx.
By an elementary analysis of the Morse normalizing quaerecwill see that
in some small (pseudo)cube centere@ atthere passes in most cases only one
componentMcAﬂ while in a single exceptional case, there can pass two (at

most) different connected componelmﬁ o annd . We will consider only

this single (or these two) component(s) because the otimapanents do pass
regularly and without topological change accrpsshence are filled in by Levi-
Hartogs figures exactly as i

Shrinking the);, of Theorem 2.7 if necessary (remifidk § < 6;), we may as-
sume that the Morse normalizing coordina(esxl, e Tl Yy ,yzn_l_,ﬂ)
nearp, are defined in the baB"(p,, J;) and that the map

s (0(2),2(2),9(2)), B d1) — B

is close inC! norm to its differential apy, so that it is almost not distorting. Then
01 shall not be shrunk anymore.

Because in the estimates of the (finite) number of Levi-Hggfiguresy only
appears as a denominator in a fac?é%f’—” (cf. Proposition 4.5), it is allowed to
work with extensional rinds of smaller universal positickness, at the cost
of spending a number of pushed analytic discs that is grezfteourse, but still
finite. If necessary, we shrink > 0 to insure thag'/? < §. Thens, will not be
shrunk anymore.

Thanks to these preliminaries, we may define a convenieatfmcube cen-
tered ap), by
(5.12)

Cy = {2 € B0 ()| <n, Je(2)] <20, Jy(2)] <202},

It then follows thatC,, is properly contained in/;()) and is relatively small.
Reminding that(z) = r(z) — r(p,), the radial thickness o, is equal to2n,
twice the difference’) — 7, = n. We draw a diagram assumiig = 2n — 1
(see only the left one).

5.13. Topology of horizontal super-level sets in the compheent of quadrics.
Simultaneously to the proof, we provide an auxiliary eletagnstudy. Letn
Nwithn > 2,letk € Nwith0 < k < 2n —1, letz = (21,...,2;) € R¥,



A MORSE-THEORETICAL PROOF OF THE HARTOGS EXTENSION THEOREM 27

lety = (y1,...,Ym-1-1) € R 17 letv € R, and inR>" equipped with the
coordinategz, y, v), consider the quadric of equation

(5.14) v = Z :1:? - Z yf-,

1<k 1<j<2n—1-k

which we will denote byQ,. The coordinate playing the rble of-(z) — r(p)
near a singular radius, having Morse coindex,, we want to understand how
the topology of the super-level sets

fv> el (B™\Q)

(which relate to the possible domaiﬁ@r for r close tor,) do change when the
parametee descends from a small positive value to a small negativeevalu

B ——— — =
. A :

. = [\ AN
i ' :

: Fig. 15: Growing of superlevel domains near a local maximum ominimum

In the case: = 0 (left figure) the quadric looks like a spherical cap, its com-
pIemenﬂRQ"\Qo having exactly two connected components. For positiveaglu
of ¢, there is only one (green) super-level compongnt> ¢} N (RQ"\QO).

As ¢ becomes negative, this component grows regularly, allgwimewly cre-
ated hole to widen inside the slicés = ¢}. The (blue) holes then pile up to
constitute a newly created, local compoanL,.

The (reverse) cage= 2n—1 exhibits the local end of some compoth_.

In a while, we will see that there is a salient topologicafeténce between the
two remaining (less obvious) cases< £ < 2n — 2 andk = 1, the exceptional
one. Before pursuing, we conclude the prooBadh casep, is a local maximum
or minimum.

We assumé:, = 2n — 1, the casek, = 0 being already considered (es-
sentially completely) in Section 4. Observe tIMgﬁ N C, is diffeomorphic

to S*~2 x (¢/2,c), hence connected. Thus, IMCA+ denote the single com-
ponent entering,. By descending induction throu94n andB, MCA+ bounds

a relatively compact domain of holomorphic extens(@iL+, with 8(2‘;A+ =

[5Y [5Y
M¢ St U N¢ ~t U RA+, as in propertyii) of Proposition 5.3, all the other properties
also holdlng true ont-).+ . Denote byRA+, < k < k., the connected com-

ponents oﬁ;+ and byNiﬁ, 1 <7< e W|th Jre = kae the components of
A
NS, .
LY
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i

 w— 4w/
st —

1 I/ =31
]
heee=anll

— Y x
Rind P — ey Rind”

T‘)\.

. Fig. 16: Two distinct Hartogs-Levi fillings at a point of Morse coindex2n — 1

We do the numbering so thét, encloses the first (smaINA+, which is diffeo-

morphic to a smal(2n — 2)-dimensional sphere. Also, we number so that the
boundary ofRf+ in 52” ! contalnsN;j, whenceR;1 meetsC,. We do not draw
C,. ' '

Observe that, by means of extensional rinds that are synuatund the
other componentEAﬂ o Rc e we may achieve the Hartogs-Levi filling ex-

actly as inA, because( BY: |s regular |nV5(Nf£) for everyj such thaﬂ\liﬁ is
contained in the boundary of each of these other componketsce it remains
only to discuss what is happening in a neighborhood of thglsioomponent
R%!, and especially neat.
T‘A _ _
For the disposition 011‘20> - NGC,, orequivalently oR“' N C,, two cases occur.
LSY LY

Let (v, T1,. .. ,xzn,l) be the Morse coordinates centeregat

(a) As illustrated by the left figure abov@f> -+ N C, consists of the spate
lying above{v = 1/2} and above/v = SL’%A—}—' --+a3,_, }, acap-shaped
space which is clearly connected; the regﬁ@j is then diffeomorphic
to a small(2n — 1)-dimensional ball. '

(b) As illustrated by the right figure above’ .- N C, consists of the space

lying above{v = n/2} but below{v = :1:1—1— ~+a3,_,} ; the dimension
of SEZ ! being> 3, the reglonR N C, is connected, a fact that a one-

dlmenS|onaI diagram cannot show adequately; tﬁgm N C, is also
LY
connected.

In case(a), nearp,, a piece of)° Set ends up while descending to the lower

super-level set:) . i We do not use any extensional rind there, we just observe
that unique holomorphic extension is got for free in

[V5 (Mi?;)ﬁ;} NG,
since this domain is fully contained w (M>T)>T

’Sets written {-}” here are understood to be subset€pf
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In case(b), we apply Hartogs Levi extension i@ind(ﬁ?j,n) and we get
unigue holomorphic extension from (5.10) to ’

[V5 (Mi?; ) >?;] U Rind (F{;;rl> 77) :

The union of this open set together with (5.10) contains gumiwell defined
domaanC - with the property that the passage frdiiﬁ to Rc L fills a hole,

as |IIustrated by the right diagram above, Whehk‘:‘e has one Iess connected

component, because tfn — 2)- spherd\lii e drops where < 0.

The properties that two different domalﬂéh+ and ﬁcu are either disjoint

or one is contained in the other is easily seen to be mhelwesmlcl _ andQC{,:
LY

it suffices to distinguish two cases; # c andc; # ¢, Orcy # ¢ andc1 = to
look at(a) or (b) and then to conclude.

The proof ofB in casek, = 2n — 1 is complete. The caske, = 0 is simi-
lar: two subcase@’) — reversga) — and(b’) — reversgb) — then appear;
subcasda’) exhibits the birth of a new component (blue left Figure 1%5)ak
ready fully studied in Section 4 while subcg®é (green left Figure 15) shows
that an external component descends regularly as do cleadsda hill.

5.15. The regular case® < k), < 2n — 2. Letkwith2 < k£ < 2n — 2 and
consider the quadriQ;, of (5.14). We claim thaQ, N {v > ¢} has exactly one
connected component for every> 0. IndeedQ; N {v > 5} can be represented
as
U U@+ +a=+vi+ -+ )
YlseYon—k—1 €'>€

Sincee’ is always positive, we hence have a smoothly parametere@dyf of
(k — 1)-dimensional spheres that are all connected. Consequérglyinion is
also connected, as claimed.

To view the topology more adequately, in the case- 2, we draw a short
movie consisting of the 3-dimensional slicks = ¢’} N (R?"\Q;), wheres’ =
21, 31, 0, —3 7. To conceptualize (in case= 2) the super-level sets

fo>epn@N\Q) = U {o=¢}n ®N\Q).

it suffices to pile up intuitively the images of the corresgioig movie.

5‘ Fig. 17: Sliced view of the growing of the two possible domain case2 < kx < 2n — 2

So letM¢ ., be the single connected componentédn{|z| > 7 } thatenters
A

C,. The corresponding domafér;+ can be located from one or the other side.
(BN
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Its prolongation up to the deeper sublevel(s);t@_ (viewed only insideC,)) con-
sists of piling up the (blue) small symmetric regions or theeén) surrounding
regions drawn above.
We do the numbering so thhif! entersC,, being a (connected) hyperboloid
T‘/\ .
as drawn in the first picture of Figure 17 and so ﬂﬁ?}[ entersC, as one (con-

nected, blue or green) side of this hyperboloid. AsApre\J'yo'usthe two cases
ky = 0 andk, = 2n — 1, the Hartogs-Levi filling goes through exactly as in

the regular casé for all otherR®?, ..., R“™°. Next, by putting finitely many
LY T

Levi-Hartogs figures irRind(~;f,n) we get holomorphic extension from the
domain (5.10) to ’

c . Dol
V(e | URind(RE ),
The intersection of (5.10) with this open set is connectadabeeﬁiﬂ is con-
LY

nected, and the union of both contains a well defined dorﬁg;n obtained by
adding the (blue or green) slices of Figure 17.

6. THE EXCEPTIONAL CASEky = 1

6.1. lllustration. To begin with the most delicate case, we draw a 3-dimensional
diagram showing a saddle-like localized in a (pseudo)culdg, centered ap,.

For everye satisfying0d < ¢ < 7, there are two connected componehts,
and M7, of M.; .. N C,, namely the two upper tips of the saddle, defined in
equations by

M>i8 = {v:xQ—yf—~-~—y§n_2}ﬂ{j:x>O}ﬂ{v>€}.
With e = 11, we are simply looking aM>?A+ N C,. By descending induction
throughA andB, we are given two domains of holomorphic extensf|~li>i*1+ and
Q‘fﬁ whose boundary containg_ /o andM;7 Jar respectively.

Ffrstly, we assume that, # ¢;. Since each one of the two pieces of hy-

persurfacesM_ ,, and M7 . has two sides, there atex 2 = 4 subcases
n/2 >n/2
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to be considered for the relative dispositionfef ., := S~20>1A+ N C, and of
Q;rn/Q = QCQA+ N Cn, with Co 7é C1.

(@ Q2 02 (resp f /2) consists of the space lying above the hyperplane

{v = n/2} and below the left (resp. right) tip of the saddle, namely in
equations:

>n/2 {v>n/2}ﬂ{ix>0}ﬂ{v<x—yl ---—ygn_Q}.

(b) Q2 /2 is the small nose as ita) but O /2 consists of the other side,

i.e. of the (rather bigger) space lying inside > 7/2} left to M.
namely in equations:

>77/2 {v>n/2}\<{x>0}ﬂ{v :1c—y1 y2n 2})

(c) Symetrically to(b), Q7

>17/2’

is the small nose as if@&) but

>n/2
Q2 o= {v > n/Q}\({x < 0} ﬂ {v <P —yi—- - ygnd}).
(d) Finally, 02 is as in(c) andQ> 02 is as in(b).

The last subcas@l) cannot occur, because it is ruled out by propéiily
of Proposition 5.3, which holds on the super-level (setﬁ by the inductive

assumption.

Secondly, we assume that = ¢;. Then there can occur a subcd4ag very
similar to(a), in which¢; = ¢4, so that2_ andQ;L 02 belong to thesameen-
closed relatively compact domain. But With_ ¢1, o subcase similar i) —
or to (c) — can occur, becaus#/_ , C 0Qf, , —or M}, C 09, , —
would then bound thsamerelatively compact domain from its both sides, but
we already know from the beginning of the proof, that one sileeast must
always contain the points at infinity.

Finally, with ¢, = ¢; = ¢, there remains the following last subcase (unseen

previously).

() Quyypo = Q;ﬁ N C, consists of the space lying aboye = 1/2} and
above the saddle, namely

oz = {v>n/2} (o> o —yi = =y 0}

As M = 0y, lies inC™ with n > 2, whencen — 2 > 2, there is at least one
dimension ofy € R**~2 which is missing in the left figure above. To view the
topology more adequately, coming back to the abstract qu&drand assuming
n = 2, we plan to draw a short movie consisting of the 3-dimendishees
{v=¢}n(R™\Q,), wheres’ = 5 2y, 0, 0, —1n.

Recall that we are interested in the connected componenke duper-level

sets
{v>e}n (R*\Qi) U {v=2¢}n(R*™\Qi).

e'>e
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As suggested by this sliced union, to conceptualize thedienénsional (in case
n = 2) super-level sets, it suffices to pile up intuitively the gea of the corre-
sponding movie.

. : : _ ‘\‘ 4‘“ :
e dv=2n 1 RS
: =3 : : : % QA
> d z PR
: : : : ‘A“‘\’““‘.“‘ :
: : : Ky KL
: : : Xy NG
Fig. 19: Sliced view of the merging of the two domains in subc®(a) of £y = 1 ’

Here, the second picture sh0\7}§§+ N C, (in blue, to the left) together with
(BN

ﬁ;; N C, (in black, to the right). Then the third picture shows how tive

components do touch and the fourth one shows how they sheuhddoged as
g = —% n becomes negative. The complete discussion follows in aewhil

We next offer the movie ofb), the movie of(c) being obtained from it just by
a reflection across the hyperplafie= 0}.

Here again, the second picture shd§g$ N C, (in blue, to the left) together

with ﬁfi N C, (the large (black) region, containing the small (blue) ori)en

(5N
the third picture, namely the slieé = 0, shows a not allowed situation: the left
cone does bountivo regions from it¢wo sides, contrary to tha priori unique
relatively compact domaify, C {|z] > 7.} we are seeking to construct,

when starting fronﬁ;. The trick is then tsuppressthe (blue) small slice, or

equivalently to subtract it from the (black) large slice ahhcontains it. Then the
black winning slice continues to grow up {@; = —n/2} (fourth picture). The
complete discussion follows in a while.

Finally, here is the (simpler) movie ¢&).

6.2. Jumping across the singular radius: merging processAssumingk, = 1,
we can now complet8 in subcasga), postponing subcas@’). We look at
Figures 17 and 18.
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LetMCi+ﬂC annd’i+ﬂC be the two “nose” components 0f 7t entering
C,. Here 02 # c1. By descendlng induction throughandB, Mc ot andMC

bound some two relatively compact domains of hoIomorphiemz;«ochh+ and

O rr with anlA+ = MC£+ UNZL U Ril+ and 89%+ = MC{+ UNZ U R?+ as
in property(u) of Proposmon 5 3 all the other propertles also holdlrtgeton

(ot

We remind that the other domaiﬁsﬁj forc £ c¢;andc # cowith 1 < ¢ < ¢y,
do pass regularly through, up to( )= Sr thanks toA.

Fori = 1,2, denote b)RA+ , 1 <k < k), the connected componentst?Et
and byN;iﬂ, 1 <7< Jre W|th Jre = ke, the components d‘ﬂ;ﬁt. We do the
numberinAg SO thafltifi’1 (resp. ﬁii’l) entersC, to the left (resp. riAght), together
with fo (resp. Nfil) as illustrated by Figure 17.

As in the cas@A =2n—1,fori=1,2, by means of extensional rinds that are
symmetric around the other componeﬁgs e R CoRe; , we may achieve the
Hartogs-Levi filling exactly as i, becau;e(Z)lwf is regular |nV5(N;;;J), for
everyj such thatNC’ 7 is contained in the boundary of each of these other com-

ponents. Hence |t rerrlains only to discuss what is happeniagieighborhood
of the two componentR®;', i = 1,2, and especially near the saddle pgint
(BN

While descending frort to 7}, the two reglon3?21+1 C 7! and Rfil C
SQ" ! do merge as a single connected region contaméﬂﬁn that we WI|| de-

note byR*_ seethe right Figure 17. In Morse theory ([31 19]), one speaks of

attachlng a one-cekince in the merging process, the two regions are esdgntial

joined by means of a (thickened) segment directed alonges. It follows

that the two hypersun‘aceﬂii+ and M§{+ do merge as a connected hypersur-
[BY [5Y

face M containing them, and furthermore, that the two domévltjs+ and

_ [5Y [BY

Qi{t do prolong uniquely up to the slightly deeper super-leve(Se?;, merg-
[5Y

ing as a uniquely defined domaﬁtt - which is relatively compact ii©" and

>\

which contalnsR*+ in its boundar)@Q* -

As ¢y # ¢4, the new number of domalns in the interval_,, 7)) is lowered
by a unit,i.e.cy_1 = ¢, — 1 (if ¢c; = ¢; as in(@’), the number would not change,
i.e. Cr—1 = C)\).

Fori = 1,2, let f denote the restriction of ¢ (’)(V(;(M>T)>T) to

A

V(;(MjA+)>A+. By descending induction throughandB, f extends holomor-
(SN Tx

phically and uniquely ttﬁ:ﬁ. Then both functions do extend holomorphically
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and uniquely to
Vs(M?

>?;)>?;’
since they coincide witlf nearp,. We then introduce the two extensional rinds
Rind(RZ.,7), drawn in the right Figure 17. Two applications of PropasitB.7

[5Y

together with a geometrically clear connectedness prppeetd unique holo-
morphic extension to

Rind ( Rit, ) | Rind( Rii, ) Vs( (M) Qo oz,
In sum, we have got unique hoIomorphlc extension to
Vs(MZ),- U9

To establish(iv) of Proposmon 5.3 af-).;-, it suffices to show(iii), which
is checked to be equivalent. We observe that for logicadalesa only, a given
reglonR?+ for ¢ # ¢; andc # ¢, can:

A

e be disjoint fromR?+ and also disjoint fronIRii;
A
e be contained ifRZ. or (exclusive “or”) |nRA+;
A
e containR?, or (inclusive “or") R%..
N 3

But we claim that in the latter casfé;A+ necessarily contains both regidﬁ%
and R% Indeed, otherwise the boundattd;,ﬁzA+ of R;j should separatE;i+ NG,
fromR% NC, inthe level sefv = 2} NC,, which is impossible sinchiz, NC,
is exactly equal tc(Nii1 nc,)U (N"’Q’1 nC,), not more.

It follows in all cases thaNC+ = 8R‘3+ is disjoint fromC,,, hence it lies in
{7y <2l <FING,. Consequently, the regular flow Q€L on

Ml
(M {7y < I <G

pushes down regularlp&Lt, as a uniquely defined compact 2-codimensional
NE, C S%Q ! disjointly from the newly created merged boundm‘;/;
69* - Sf”‘l. This information suffices now to check th@if) and (iv) of
Proposmon 5 3 are transmitted (t()>Af just for logical reasons.

The proof ofB in casek), = 1, subcaséa) is complete. Subcage’) involves
only minor differences.

6.3. Subtracting process.We now summarize the discussion of subq&gefo-
cusing only on topological aspects and dropping the forrmasierations about
holomorphic extensions. For an adequate three-dimensiustration, think of
a smoothly cut cylindrical piece of modelling clay in whiclen finger drills a
hole.
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As in §5.6, in C,, there enter exactly two domair§~$‘>t+, i = 1,2, with
QC;A+ C QC{+ by the induction assumption. Also, there enter two conmkecte
reglonsRc“ C SQ" ' i=1,2, with Rfi C R”’ Their boundaries contain two

connected hypersurfacelﬁ“ of 52” v yi=1, 2, which enteiC, as the two caps
of the third pic of Figure 19. "

By descending the intervdly, 7)) up to (-)-7,, we get two regionﬁ%’l,

i = 1,2, that touch ap,, namely the left cone and the exterior of the right cone
in the second pic of Figure 19.

While descending further t¢).7, ., with ¢ > 0 very small, the left cone
does merge with the right (white) cone. Observe that thetpahthis (white)
cone may be joined continuously to points of the (white) ricap of the first pic,
which by hypothesis lies outside? ot hence in the same connected component

as the points at infinity. Consequently we cannot prolomrgeilft domaanch+

so that its prolongation contains the left cone in the s{ice= 0} (third plc)
because no admissible prolongation would enjoy the relatbmpactness§) of
Proposition 5.3. Hence we have no other choice except toret;q;ﬂp‘;l?A when

attaining (- )>U We then get a new domaﬁ)’& defined asﬁc2 -, Minus the

closure oncl . (subtraction process), which is checked to be relativeiymact

in C". This domaln then descends as a uniquely defined doﬁi;am at (- )>r;.
[BY

We also get a corresponding connected re@nnapproximately equal té;i’l

minus the closure oI’R?A’1 whose boundary contains a connectédd (bottom
A

right Figure 21), obtained by mergingf' with N2>,

The last subcasge) above is topologically similar to what happens;h 15,
hence the proof of Proposition 5.3 is complete. O
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