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A MORSE-THEORETICAL PROOF
OF THE HARTOGS EXTENSION THEOREM

JOËL MERKER AND EGMONT PORTEN

ABSTRACT. 100 years ago exactly, in 1906, Hartogs published a celebrated
extension phenomenon (birth ofSeveral Complex Variables), whose global
counterpart was understood later:holomorphic functions in a connected neigh-
borhoodV(∂Ω) of a connected boundary∂Ω ⋐ Cn (n > 2) do extend holo-
morphically and uniquely to the domainΩ. Martinelli in the early 1940’s and
Ehrenpreis in 1961 obtained a rigorous proof, using a new multidimensional
integral kernel or a short∂ argument, but it remained unclear how to derive
a proof using only analytic discs, as did Hurwitz (1897), Hartogs (1906) and
E.E. Levi (1911) in some special, model cases. In fact, knownattempts (e.g.
Osgood 1929, Brown 1936) struggled for monodromy against multivaluations,
but failed to get the general global theorem.

Moreover, quite unexpectedly, Fornæss in 1998 exhibited a topologically
strange (nonpseudoconvex) domainΩF ⊂ C2 that cannot be filled in by holo-
morphic discs, when one makes the additional requirement that discs must all
lie entirely insideΩF. However, one should point out that the standard, unre-
stricted disc method usually allows discs to go outsise the domain (just think
of Levi pseudoconcavity).

Using the method of analytic discs for local extensional steps and Morse-
theoretical tools for the global topological control of monodromy, we show
that the Hartogs extension theorem can be established in such a way.
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§1. THE HARTOGS EXTENSION THEOREM

AND THE METHOD OF ANALYTIC DISCS

100 years ago exactly, in 1906, the publication of Hartogs’sthesis ([14] un-
der the direction of Hurwitz) revealed what is now considered to be the most
striking fact of multidimensional complex analysis: the automatic, compulsory
holomorphic extension of functions of several complex variables to larger do-
mains, especially for a class of “pot-looking” domains, nowadays calledHar-
togs figures, that may be filled in up to their top. Soon after, E.E. Levi [25]
applied the Hurwitz-Hartogs argument of Cauchy integration on complex affine

Date: 2007-4-26.
1



2 JOËL MERKER AND EGMONT PORTEN

circles moving in the domain (firstly discovered in [21]), inorder to perform lo-
cal holomorphic extension across strictly (Levi) pseudoconcave boundaries. The
so-calledmethod of analytic discswas born, historically.

Hartogs extension theorem.Let Ω ⋐ Cn be a bounded domain havingcon-
nectedboundary. Ifn > 2, every function holomorphic in some connected open
neighborhoodV(∂Ω) of ∂Ω extend holomorphically and uniquely insideΩ, i.e.:

∀ f ∈ O
(
V(∂Ω)

)
, ∃ ! F ∈ O

(
Ω ∪ V(∂Ω)

)
s.t. F

∣∣
V(∂Ω)

= f.

Classically, one also presents an alternative formulation, which is checked to
be equivalent — think thatK = Ω

∖
V(∂Ω).

Hartogs theorembis. If Ω ⋐ Cn (n > 2) is a domain and ifK ⊂ Ω is any
compact such thatΩ\K connected, thenO(Ω\K) = O(Ω)

∣∣
Ω\K

.

Already in [14] (p. 231), Hartogs stated such a global theorem in the typ-
ical language of those days, without claiming single-valuedness however —
something that he consistently mentions in other places. Later in [32], Osgood
(who gives the reference to Hartogs) “proves” unique holomorphic extension
with discs, but what is written there is seriously erroneous, even when applied
to a ball. In 1936, well before Milnor ([31]) had popularizedMorse theory, us-
ing topological concepts and a language which are nowadays difficult to grasp,
Brown ([5]) fixed somehow single-valuedness of the extension1: discretizing
Ω\K to tame the topology, he exhaustsCn by spheres of decreasing radius (as we
will do in this paper), but we believe that his proof still contains imprecisions,
because the subtracting process that we encounter unavoidably when applying
Morse theory with the same spheres does not appear in [5].

Since the 1940’s, few complex analysts have seriously thought about testing
the limit of the disc method probably because the motivationwas gone, and in
fact, the possible existence of an elementaryrigorous proof of the global Har-
togs extension theorem using only a finite number of Hartogs figures remained
a folklore belief; for instance, in [35], p. 133, it is just left as an “exercise”.
But to the authors’ knowledge, no reliable mathematical publication shows fully
how to perform a rigorous proof of the global theorem, using only the original
Hurwitz-Hartogs-Levi analytic discs as a tool.

On the other hand, thanks to the contributions of Fueter ([11]), of Martinelli
([27, 28]), of Bochner ([4]) and of Fichera ([9]), powerful multidimensional in-
tegral kernels were discovered that provided a complete proof, from the side
of Analysis. Soon after, Ehrenpreis ([8]) found what is known to be the most
concise proof, based on the vanishing of∂-cohomology with compact support.
This proof was learnt by generations of complex analysts, thanks to Hörmander’s
book [20]. Range’sCorrection of the Historical Record[34] provides an excel-
lent account of the very birth of integral formulas inCn. Since the 1960’s,∂
techniques,L2 methods and integral kernels developed into a vast field of re-
search in Several Complex Variables,c.f. [20, 2, 16, 15, 33, 6, 7, 22, 23, 26, 18].

1 We thank an anonymous referee for pointing historical incorrections in the preliminary
version of this paper and for providing us with exact informations.
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A decade ago, Fornæss [10] produced a topologically strangedomainΩF that
cannot be filled in by means of analytic discs, when one makes the additional
requirement that discs must all lieentirely inside the domain. Possibly, one
could interpret this example as a “defeat” of geometrical methods.

But in absence of pseudoconvexity, it is much more natural toallow discs to
go outsidethe domain, because the local E.E. Levi extension theorem already
needs that. In fact, as remarked by Bedford in his review [3] of [10], Hartogs’
phenomenon for Fornæss’ domainΩF may be shown to hold straightforwardly
by means of the usual, unrestricted disk method.

Furthermore, the study of envelopes of holomorphy (see the monograph of
Jarnicki and Pflug [22] for an introduction to Riemann domains spread overCn

and [29] for applications in a CR context) shows well how natural it is to deal
with sucessively enlarged (Riemann) domains. Bishop’s constructive approach,
especially his famous idea of gluing discs to real submanifolds, reveals to be
adequate in such a widely open field of research. We hence may hope that, after
the very grounding historical theorem of Hartogs has enjoyed a renewed proof,
geometrical methods will undergo further developments, especially to devise fine
holomorphic extension theorems that are unreachable by means of contemporary
∂ techniques.

In this paper, we establish rigorously that the Hartogs extension theorem can
be proved by means of afinite numberof parameterized families of analytic
discs (Theorems 2.7 and 5.4). The discs we use are all (tiny) pieces of complex
lines inCn. The main difficulty is topological and we use the Morse machinery
to tame multisheetedness.

At first, we shall replace the boundary∂Ω by a C∞ connected oriented hy-
persurfaceM ⋐ Cn (n > 2) for which the restriction toM of the Euclidean
norm functionz 7→ ||z|| is a good Morse function (Lemma 3.3), namely there
exist only finitely many pointŝpλ ∈ M , 1 6 λ 6 κ, with ||p̂1|| < · · · < ||p̂κ|| at
whichz 7→ ||z|| restricted toM has vanishing differential. We also replaceV(∂Ω)
by a very thin tubular neighborhoodVδ(M), 0 < δ << 1, andΩ by a domain
ΩM ⋐ Cn bounded byM . Next, we will introduce a modification of the Hartogs
figure, called aLevi-Hartogs figure, which is more appropriate to produce holo-
morphic extension from the cut out domains

{
||z|| > r

}
∩ ΩM , where the radius

r will decrease, inductively. Local Levi pseudoconcavity ofthe exterior of a ball
then enables us to prolong the holomorphic functions to

{
||z|| > r − η

}
∩ ΩM ,

for some uniformη with 0 < η << 1, which depends on the dimensionn > 2,
on δ, and on the diameter ofΩ. We hence descend stepwise to lower radii until
the domain is fully filled in.
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Fig. 1: Filling the domain, creating, merging and suppressing components

r̂2
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However, this naive conclusion fails because of multivaluations and a crucial
three-piece topological device is required. We begin by filling the top of the
domain, which is simply diffeomorphic to a cut out piece of ball. Geometrically
speaking, Morse pointŝpλ, 1 6 λ 6 κ, are the only points ofM at which the
family of spheres

({
||z|| = r

})
0<r<∞

are tangent toM . We denote||p̂λ|| =: r̂λ

with r̂1 < · · · < r̂κ. In Figure 1, we haveκ = 6. For an arbitrary fixed radius
r with r̂λ < r < r̂λ+1, and some fixedλ with 1 6 λ 6 κ − 1, we consider all
connected componentsM c

>r, 1 6 c 6 cλ, of the cut out hypersurfaceM∩
{
||z|| >

r
}

. Their numbercλ is the same for allr ∈
(
r̂λ, r̂λ+1

)
. In Figure 1, when

r̂3 < r < r̂4, we see three such components.

By descending discrete inductionr 7→ r−η, we show that each such connected
hypersurfaceM c

>r ⊂
{
||z|| > r

}
bounds a certain domaiñΩc

>r ⊂
{
||z|| > r

}

which is relatively compact inCn and that holomorphic functions inVδ(M) do
extend holomorphically and uniquely tõΩc

>r. While approaching a lower Morse
point, three different topological processes will occur2: creatinga new compo-
nentΩ̃c′

>r−η to be filled in further;mergingtwo components̃Ωc′1
>r−η andΩ̃

c′2
>r−η

which meet; andsuppressingone superfluous componentΩ̃
c′
1

>r−η.

The unavoidable multivaluation phenomenon will be tamed bythe idea of
separating ab initiothe componentsM c

>r, 1 6 c 6 cλ. Indeed, an advantageous
topological property will be shown to be inherited through the inductionr 7→
r − η, hence always true, namely that two different domainsΩ̃c1

>r andΩ̃c1
>r are

either disjoint or one is contained in the other. Consequently, the multivaluation
aspect will only happen in the sense that the twouniquely defined and univalent
holomorphic extensionsf c1

r to Ω̃c1
>r andf c2

r to Ω̃c2
>r can be different oñΩc1

>r, in
caseΩ̃c1

>r ⊂ Ω̃c2
>r, or vice versa. In this way, weavoid completelyto deal with

Riemann domains spread overCn.

Some of the elements of our approach should be viewed in a broader context.
In their celebrated paper [1] (seealso [17]), Andreotti and Grauert observed that
convenient exhaustion functions can be used to prove very general extension
and finiteness results onq-concave complex varieties. Their arguments implic-
itly contained a geometrical proof of the Hartogs extensiontheorem in the case

2A certain number of other simpler cases will also happen, where the components̃Ωc
>r do

grow regularly with respect to holomorphic extension, possibly changing topology.
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where the domainΩ ⊂ Cn is pseudoconvex (whence Fornæss’ counter-example
must be nonpseudoconvex). However, in contrast to our finer method, the exis-
tence of an internal strongly pseudoconvex exhaustion function ρ on a complex
manifoldX excludesab initio multisheetedness: indeed, in such a circumstance,
extension holds stepwise from shells of the form

{
z ∈ X : a < ρ(z) < b

}
just

to deeper shells{a′ < ρ < b} with a′ < a (details are provided in [30]), namely
the topology is controlled in advance byρ and multiple domains as̃Ωc

>r above
cannot at all appear.

There is a nice alternative approach to the (singular) Hartogs extension theo-
rem via a global continuity principle, realized in [23] by J¨oricke and the second
author, with the purpose of understanding removable singularities by means of
(geometric) envelopes of holomorphy. The idea is to performholomorphic ex-
tensions along one-parameter families of holomorphic curves (not suppose to be
discs). A basic extension theorem on some appropriate Levi flat 3-manifolds,
calledHartogs manifoldsin [23], is shown via stepwise extension in the direc-
tion of an increasing real parameter. The geometrical scheme of this construction
has a common topological element with our method: the simultaneous holomor-
phic extension to collections of domains that are pairwise either disjoint or one
is contained in the other.

On the other hand, our technique only rely upon the existenceof appropri-
ate exhaustion functions, without requiring neither the existence of Levi-flat
3-manifolds nor the existence of global holomorphic functions in the ambient
complex manifold. In addition, inspired by a definition formulated by Fornæss
in [10], we establish that only afinite number of Levi-Hartogs figures is needed
in the filling process. Finally, we would like to mention thata straightforward
adaptation of the proof developed here would yield a geometrical proof of the
Hartogs-type extension theorem of Andreotti and Hill ([2]), which is valid for ar-
bitrary domains in(n−1)-complete manifolds (in the sense of Andreotti-Grauert
[13]).

Twenty-two colored illustrations appear, each one being inserted at the appro-
priate place in the text. Abstract geometrical thought being intrinsically pictural,
we hope to address to a broad audience of complex analysts andgeometers.

§2. PREPARATION OF THE BOUNDARY AND UNIQUE EXTENSION

2.1. Preparation of a goodC∞ boundary. Denote by||z|| :=
(
|z1|

2 + · · · +

|zn|
2
)1/2

the Euclidean norm ofz = (z1, . . . , zn) ∈ Cn and byBn(p, δ) :={
||z − p|| < δ

}
the open ball of radiusδ > 0 centered at a pointp. If E ⊂ Cn is

any set,
Vδ(E) := ∪p∈E B

n(p, δ)

is a concrete open neighborhood ofE.
As in the Hartogs theorem, assume that the domainΩ ⋐ Cn has connected

boundary∂Ω and letV(∂Ω) be an open neighborhood of∂Ω, also connected.
Clearly, there existsδ1 with 0 < δ1 << 1 such that∂Ω ⊂ Vδ1(∂Ω) ⊂ V(∂Ω);
of course,Vδ1(∂Ω) is then also connected. Choose a pointp0 ∈ Cn with
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dist (p0, Ω) = 3, center the coordinates(z1, . . . , zn) at p0 and consider the dis-
tance function

(2.2) r(z) := ||z − p0|| = ||z||.

It is crucial to prepare as follows the boundary, replacing(Ω, ∂Ω) by (ΩM , M),
thanks to some transversality arguments that are standard in Morse theory ([31]
and [19], Ch. 6).

Lemma 2.3. There exists aC∞ connected closed and oriented hypersurface
M ⊂ Vδ1/2(∂Ω) such that:

(i) M bounds a unique bounded domainΩM with Ω ⊂ ΩM ∪ V(∂Ω);

(ii) the restrictionrM(z) := r(z)
∣∣
M

of the distance functionr(z) = ||z|| to
M has only a finite numberκ of critical points p̂λ ∈ M , 1 6 λ 6 κ,
located on different sphere levels, namely

2 6 r(p̂1) < · · · < r(p̂κ) 6 5 + diam(Ω);

(iii) all the (2n − 1) × (2n − 1) Hessian matricesH[rM ](p̂1), . . . , H[rM ](p̂κ)
have a nonzero determinant.

∂Ω

M

p0

V(∂Ω) Fig. 2: Preparing the boundary

Sometimes,rM satisfying(ii) and(iii) is called agood Morse functiononM .
We will shortly say thatM is agood boundary.

If kλ is the number of positive eigenvalues of the (symmetric) Hessian ma-
trix H[rM ](p̂λ), the extrinsic Morse lemma ([31, 19]) shows that there exist2n
real coordinates

(
v, x1, . . . , xkλ

, y1, . . . , y2n−kλ−1

)
in a neighborhood of̂pλ in Cn

such that

• the sets{v(z) = cst} simply correspond3 to the spheres{r(z) = cst}
nearp̂λ;

•
(
x1, . . . , xkλ

, y1, . . . , y2n−kλ−1

)
provide(2n−1) local coordinates on the

hypersurfaceM , whose graphed equation is normalized to be the simple
hyperquadric

v =
∑

16j6kλ

x2
j −

∑

16j62n−kλ−1

y2
j .

3In fact, one can just take the translated radiusr(z) − r(p̂λ) as the coordinatev = v(z).
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Classically, the number(2n − kλ − 1) of negativesis called theMorse index
of r(z)

∣∣
M

at p̂λ; we will call kλ its Morse coindex.
For rather general differential-geometric objects, Morsetheory enables to con-

trol a significant part of homotopy groups and of (co)homologies,e.g.via Morse
inequalities. In our case, we shall be able to control somehow the global topol-
ogy of the cut-out domainsΩM ∩ {||z|| > r} that re external to closed balls
of radiusr, filling them progressively by means of analytic discs contained in
small (Levi-)Hartogs figures (Section 3). We start by checking rigorously that
the Hartogs theorem can be reduced to some good boundary.

2.4. Unique holomorphic extension.If U ⊂ Cn is open,O(U) denotes the ring
of holomorphic functions inU .

Definition 2.5. Given two connected open setsU1 ⊂ Cn andU2 ⊂ Cn with
U1 ∩ U2 nonempty, we will say4 thatO(U1) extends holomorphically toU1 ∪ U2

if :

• the intersectionU1 ∩ U2 is connected;

• there exists an open nonempty setV ⊂ U1 ∩ U2 such that for everyf1 ∈
O(U1), there existf2 ∈ O(U2) with f2|V = f1|V .

It then follows from the principle of analytic continuationthat f1|U1∩U2
=

f2|U1∩U2
, so that the joint functionF , equal tofj on Uj for j = 1, 2, is well

defined, is holomorphic inU1 ∪ U2 and extendsf1, namelyF |U1
= f1.

In concrete extensional situations, the coincidence off1 with f2 is controlled
only in some smallV ⊂ U1 ∩ U2, so the connectedness ofU1 ∩ U2 appears to be
useful to insure monodromy. Sometimes also, we shall brieflywrite O(U1) =
O(U1 ∪ U2)

∣∣
U1

, instead of spelling rigorously:

∀ f1 ∈ O
(
U1

)
∃ F ∈ O

(
U1 ∪ U2

)
such that F

∣∣
U1

= f1.

Lemma 2.6. Suppose that for someδ with 0 < δ 6 δ1/2 so small that
Vδ(M) ≃ M×(−δ, δ) is a thin tubular neighborhood of the good boundaryM ⊂
Vδ1/2(∂Ω) ⊂ V(∂Ω), the Hartogs theorem holds for the pair(ΩM ,Vδ(M)):

O
(
Vδ(M)

)
= O

(
ΩM ∪ Vδ(M)

)∣∣
Vδ(M)

.

Then the general Hartogs extension property holds:

O
(
V(∂Ω)

)
= O

(
Ω ∪ V(∂Ω)

)∣∣
V(∂Ω)

.

Proof. Let f ∈ O
(
V(∂Ω)

)
. By assumption, its restriction toVδ(M) ⊂ V(∂Ω)

enjoys an extensionFδ ∈ O
(
ΩM ∪ Vδ(M)

)
. To ascertain thatf andFδ coincide

in ΩM ∩ V(∂Ω), connectedness ofΩM ∩ V(∂Ω) is welcome.

4Because in the sequel, the unionU1 ∪ U2 would sometimes be a rather long, complicated
expression (seee.g. (3.9)), hence uneasy to read, we will also say thatO(U1) extends holomor-
phicallyand uniquely to U2.
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V(∂Ω)

∂Ω

M

∂Ω

M

ΩM

Vδ(M)

γ

γ
p

q

Fig. 3: Checking connectedness ofΩM ∩ V(∂Ω)

Letting p, q ∈ ΩM ∩ V(∂Ω), there exists aC∞ curveγ : [0, 1] → V(∂Ω)
connectingp to q. If γ meetsM , let p′ be the first point onγ ∩ M and letq′ be
the last one. We then modifyγ, joining p′ to q′ by means of a curveµ entirely
contained in the connected hypersurfaceM . It suffices to pushµ slightly inside
ΩM to get an appropriate curve running fromp to q insideΩM ∩ V(∂Ω). Thus,
ΩM ∩ V(∂Ω) is connected. It follows, moreover, that the open set

[
ΩM ∪ Vδ(M)

]
∩ V(∂Ω) =

[
ΩM ∩ V(∂Ω)

] ⋃
Vδ(M)

is also connected, so the coincidencef = Fδ, valid in Vδ(M), propagates to[
ΩM ∩ V(∂Ω)

]
∪ Vδ(M). Finally, the function

F :=

{
Fδ in ΩM ∪ Vδ(M),

f in V(∂Ω)\ΩM ,

is well defined
(
sinceFδ = f in Vδ(M)\ΩM ≃ M × (0, δ)

)
, is holomorphic in

ΩM ∪ V(∂Ω) = Ω ∪ V(∂Ω)

and coincides withf in V(∂Ω). �

Thus, we are reduced to establish global holomorphic extension with some
good, geometrically controlled data.

Theorem 2.7. LetM ⋐ Cn (n > 2) be aconnectedC∞ hypersurface bounding
a domainΩM ⋐ Cn. Suppose to fix ideas that2 6 dist

(
0, ΩM

)
6 5 and

assume that the restrictionrM := r|M of the distance functionr(z) = ||z|| to
M is a Morse function having only a finite numberκ of critical pointsp̂λ ∈ M ,
1 6 λ 6 κ, located on different sphere levels:

2 6 r̂1 := r(p̂1) < · · · < r̂κ := r(p̂κ) 6 5 + diam
(
ΩM

)
.

Then there existsδ1 > 0 such that for everyδ with 0 < δ 6 δ1, the (tubular)
neighborhoodVδ(M) enjoys the global Hartogs extension property intoΩM :

O
(
Vδ(M)

)
= O

(
ΩM ∪ Vδ(M)

)∣∣
Vδ(M)

,

by “pushing” analytic discs inside a finite number of Levi-Hartogs figures(§3.3),
without using neither the Martinelli kernel, nor solutionsof an auxiliary∂ prob-
lem.
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§3. QUANTITATIVE HARTOGS-LEVI EXTENSION

BY PUSHING ANALYTIC DISCS

3.1. The classical Hartogs figure.Local Hartogs phenomena can now enter the
scene. They involve translating (“pushing”) analytic discs and they will provide
small, elementary extensional steps to fill inΩM .

Givenε ∈ R with 0 < ε << 1 anda ∈ N with 1 6 a 6 n − 1, we split the
coordinatesz ∈ Cn as(z1, . . . , za) together with(za+1, . . . , zn), and we define
the(n − a)-concave Hartogs figureby

Hn−a
ε :=

{
max
16i6a

|zi| < 1, max
a+16j6n

|zj| < ε
}

⋃{
1 − ε < max

16i6a
|zi| < 1, max

a+16j6n
|zj| < 1

}
.

1 − ε0

1

ε

|z2|

|z1|1

H2−1
ε

z1

y2C
2

∆2
Aε′

z2
(∆)

Aε′

z2
(∂∆)

Fig. 4: Two views of the standard Hartogs figureH2−1
ε ⊂ C

2

0

x2

Lemma 3.2.O
(
Hn−a

ε

)
extends holomorphically to the unit polydisc

Ĥn−a
ε :=

{
z ∈ C

n : max
16i6n

|zi| < 1
}

= ∆n.

Proof. As in the diagram, we consider onlyn = 2, a = 1, the general case being
similar. Pick an arbitraryf ∈ O

(
H2−1

ε

)
. Letting ε′ with 0 < ε′ < ε, letting

z2 ∈ C with |z2| < 1, the analytic disc

ζ 7−→
(
[1 − ε′] ζ, z2

)
=: Aε′

z2
(ζ),

where ζ belongs to the closed unit disc∆ = {|ζ | 6 1}, has its boundary
Aε′

z2
(∂∆) = Aε′

z2

(
{|ζ | = 1}

)
contained inH2−1

ε , the set wheref is defined. Low-
ering dimensions by a unit, we draw discs as (green) segmentsand boundaries
of discs as (green) bold points. Thus, we may compute the Cauchy integral

F (z1, z2) :=
1

2πi

∫

∂∆

f
(
Aε′

z2
(ζ)

)

ζ − z1
dζ.

Differentiating under the sum, the functionF is seen to be holomorphic. In
addition, for|z2| < ε, it coincides withf , because the full closed discAε′

z2

(
∆

)

is contained inH2−1
ε and thanks to Cauchy’s formula. Clearly, theAε′

z2
(∆) all

together fill in the bidisc∆2. One may think that, asz2 varies, discs are “pushed”
gently by a virtual thumb. �
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3.3. Levi extension and the Levi-Hartogs figure.Geometrically, the stan-
dard Hartogs figure is not best suited to perform holomorphicextension from
a strongly (pseudo)concave boundary. For instance, in the proof of Theorem 2.7,
we will encounter complements inCn of some closed balls whose radius de-
creases step by step, and more generally spherical shells whose thickness in-
creases interiorly. Thus, we delineate an appropriate set up.

For r ∈ R with r > 1 and forδ ∈ R with 0 < δ << 1, the sphereS2n−1
r =

{z ∈ Cn : ||z|| = r} of radiusr is the interior (and strongly concave) boundary
component of the spherical shell domain

Sr+δ
r :=

{
r < ||z|| < r + δ

}
=

⋃

p∈S
2n−1
r

B
n(p, δ) ∩ {||z|| > r}.

Cn

xn

yn

z′

ε1

ε1 − (ε1)2 ε1

ε2LHε1,ε2 0
p

Sr+δ
r

S2n−1
r

Bn
r

TpS
2n−1
r

Fig. 5: Relevance of the Levi-Hartogs figure

Near a pointp ∈ S2n−1
r (left figure), all copies ofCn−1 (in green) which are

parallel to the complex tangent planeT c
pS2n−1

r and which lie above the real plane
TpS

2n−1
r are entirely contained inCn

∖
B

n

r . To remain inside the shellSr+δ
r , we

could (for instance) restraint our considerations to some half-cylinder of diameter
≈ δ, but it will be better to shape a convenient half parallelepiped. Accordingly,
for two small εj > 0, j = 1, 2, we introduce a geometrically relevantLevi-
Hartogs figure(right illustration, reverse orientation):

LHε1,ε2
:=

{
max

16i6n−1
|zi| < ε1, |xn| < ε1, −ε2 < yn < 0

}

⋃ {
ε1 − (ε1)

2 < max
16i6n−1

|zi| < ε1, |xn| < ε1 |yn| < ε2

}
.

To fill in this (bed-like) figure, we just compute the Cauchy integral on appro-
priate analytic discs (the (green) horizontal ones) whose boundaries remain in
LHε1,ε2

.

Lemma 3.4.O
(
LHε1,ε2

)
extends holomorphically to the full parallelepiped

L̂Hε1,ε2
:=

{
max

16i6n−1
|zi| < ε1, |xn| < ε1, |yn| < ε2

}
.

Next, we must reorient and scaleLHε1,ε2
in order to put it inside the shell. For

every pointp ∈ S2n−1
r , there exists some complex unitarian affine map

Φp : z 7−→ p + Uz,

with U ∈ SU(n, C), sending the origin0 ∈ LHε1,ε2
to p and T0LHε1,ε2

to
TpS

2n−1
r , which in addition sends the half-parallelepiped (open) part outsideB

n

r .
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But we have to insure thatΦp

(
LHε1,ε2

)
as a whole(including the thin walls) lies

outsideB
n

r .

Lemma 3.5. If ε1 = c δ andε2 = c δ2 with some appropriate5 positive constant
c < 1, thenΦp

(
LHε1,ε2

)
is entirely contained in the shellSr+δ

r . Furthermore,

Φp

(
L̂Hε1,ε2

)
contains a rind of thicknessc δ2

r
around some regionRp ⊂ S2n−1

r

whose(2n − 1)-dimensional area equals≃ c δ2n−1.

p

Φp

(
LHε1,ε2

)
p

z′

yn
xn

Sr+δ
r

Sr+δ
r

cδ

c δ2

r

cδ2n−2

Rp

S
2n−1
r

c δ2

r

c δ2

r

cδ

Fig. 6: Size of the piece of (green lemon) rind

By a (radial)rind of thicknessη > 0 around an open regionR ⊂ S2n−1
r , we

mean
Rind

(
R, η

)
:=

{
(1 + s)z : z ∈ R, |s| < η/r

}
.

We require that|s| < η/r to insure that at everyz ∈ R, the half-line(0z)+

emanating from the origin intersectsRind
(
R, η

)
along a symmetric segment of

length2 η centered atz.
In the diagram above, we draw (in green) only the lower part ofthe small

regionRp got in Lemma 3.5. Its shape, when projected ontoTpS
2n−1
r , can either

be (approximately) a parallelepiped
{
|z′| < c δ, |xn| < c δ

}
, as in the figure, or

say, a ball
{(

||z′||2 + |xn|
2
)1/2

< c δ
}

; only the scaling constantc changes.
The rigorous proof of the lemma (not developed here) involves elementary

reasonings with geometric inequalities and a dry explicit control of the constants
that does not matter for the sequel. The main argument uses the fact thatS2n−1

r

detaches quadratically fromTpS
2n−1
r , similarly as the parabola

{
y = −1

r
x2

}

separates from the line{y = 0} in R2
x,y.

Since the area ofS2n−1
r equals 2 πn

(n−1)!
r2n−1 = C r2n−1, by coveringS2n−1

r with

such adjustedRp ⊂ Φp

(
L̂Hε1,ε2

)
of areac δ2n−1 and by controlling monodromy

(seerigorous arguments below) we deduce:

Corollary 3.6. By means of a finite number6 C
(

r
δ

)2n−1
of Levi-Hartogs fig-

ures,O
(
Sr+δ

r

)
extends holomorphically to the slightly deeper spherical shell

Sr+δ

r−c δ2

r

.

This application could seem superfluous, because large analytic discs with
boundaries contained inSr+δ

r would yield holomorphic extension to the whole
ball Bn

r+δ in one single step. However, in our situation illustrated byFigure 1,

5We let the letterc (resp.C) denote a positive constant< 1 (resp.> 1), absolute or depending
only onn, which is allowed to vary with the context.
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when intersectingS2n−1
r with the neighborhoodVδ(M), we shall only get small

subregions ofS2n−1
r . Hopefully, thanks to our local Levi-Hartogs figures, we may

obtain a suitable semi-global extensional statement, valuable for proper subsets
of the shellSr+δ

r whose shape is arbitrary. The next statement, not availableby
means of large discs, will be used a great number of times in the sequel.

Proposition 3.7. LetR ⊂ S2n−1
r (with r > 1 andn > 2) be a relatively open set

havingC∞ boundaryN := ∂R and letδ > 0 with 0 < δ << 1. Then holomorphic
functions in the open piece of shell(a one-sided neighborhood ofR ∪ N):

Shellr+δ
r

(
R ∪ N

)
:=

(
C

n
∖
B

n

r

)
∩ Vδ

(
R ∪ N

)

=
⋃

p∈R∪N

B
n(p, δ) ∩ {||z|| > r}

do extend holomorphically to a rind of thicknessc δ2

r
aroundR by means of a

finite number6 C area(R)
δ2n−1 of Levi-Hartogs figures.

Fig. 7: Semi-global extension from a pseudoconcave piece ofshell

N = ∂R N = ∂R

R R

S
2n−1
r

S
2n−1
r

Shellr+δ
r

(
R ∪ N

)

Rind
(
R, c δ2 r−1

)

Proof. We must control uniqueness of holomorphic extension (monodromy) into
rinds covered by successively attached Levi-Hartogs figures. Noticingc δ2 r−1 <
< δ, the considered rinds are much thinner than the piece of shell.

Lemma 3.8. If R′ ⊂ R is an arbitrary open subset and ifRp′ ⊂ Φp′
(
L̂Hε1,ε2

)

is a small Levi-Hartogs region centered at an arbitrary point p′ ∈ R, then the
intersection

(3.9) Rind
(
Rp′, c δ2 r−1

) ⋂(
Shellr+δ

r

(
R ∪ N

) ⋃
Rind

(
R′, c δ2 r−1

))

is connected.

Admitting the lemma for a while, we pick a finite numberm 6 C area(R)
δ2n−1 of

pointsp1, . . . , pm ∈ R∪N such that the associated local regionsRpk
contained in

the filled Levi-Hartogs figuresΦpk

(
L̂Hε1,ε2

)
provided by Lemma 3.5 do cover

R ∪ N, namelyRp1
∪ · · · ∪ Rpm ⊃ R ∪ N.

Starting with R′ := ∅ and p′ := p1, unique holomorphic extension of
O

(
Shellr+δ

r (R ∪ N)
)

to Rind
(
Rp′, c δ2 r−1

)
holds by means of Lemma 3.4, mon-

odromy being assured thanks to the connectedness of the intersection (3.9).
Reasoning by induction, fixing somek with 1 6 k 6 m − 1, settingR′ :=
∪16j6k Rpj

, p′ := pk+1 and assuming that unique holomorphic extension is got
from Shellr+δ

r

(
R ∪ N

)
into

Shellr+δ
r

(
R ∪ N

) ⋃
Rind

(
R
′, c δ2 r−1

)
= Shellr+δ

r

(
R ∪ N

) ⋃

16j6k

Rind
(
Rpj

, c δ2 r−1
)
,
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we add the Levi-Hartogs figureΦpk+1

(
L̂Hε1,ε2

)
constructed in Lemma 3.5, and

we get unique holomorphic extension toRind
(
Rpk+1

, c δ2 r−1
)
, monodromy be-

ing assured again thanks to the connectedness of the intersection (3.9). Since
Rind

(
R, c δ2 r−1

)
⊂

⋃
16k6m Rind

(
Rpk

, c δ2 r−1
)
, the proposition is proved.�

Proof of Lemma 3.8.To establish connectedness of the open set (3.9), picking
two arbitrary pointsq0, q1 in it, we must produce a curve joiningq0 to q1 in-
side (3.9). The two radial segments of length2 c δ2 r−1 passing throughq0 andq1

that are centered at two appropriate points ofS2n−1
r are by definition both entirely

contained inRind
(
Rp′, c δ2 r−1

)
as well as inRind

(
R′, c δ2 r−1

)
. Thus, moving

radially, we may join inside (3.9)q0 to a new pointq′0 andq1 to a new pointq′1,
which both belong to the upper half-rind

{
(1 + s) z : z ∈ Rp′, 0 < s < c δ2 r−1

/
r
}
.

Since this upper half-rind is connected and contained in Shell r+δ
r

(
R ∪ N

)
, we

may finally join inside (3.9) the pointq′0 to q′1. �

In the sequel, in order to avoids several gaps and traps, we will put emphasis
on rigourously checking univalence of holomorphic extensions.

§4. FILLING DOMAINS OUTSIDE BALLS OF DECREASING RADIUS

4.1. Global Levi-Hartogs filling from the farthest point. We can now launch
the proof of Theorem 2.7. Theδ1 is first chosen so small thatVδ(M) is a true
tubular neighborhood ofM for everyδ with 0 < δ 6 δ1. Shrinking even more
δ1, in balls of radiusδ1 centered at its points, the hypersurfaceM is well approx-
imated by its tangent planes.

The farthest point ofΩM from the origin is unique and it coincides with
p̂κ since by assumption̂pκ is the single critical point ofr(z)

∣∣
M

with ||p̂κ|| =

max16λ6κ ||p̂λ||. By assumption also, the Hessian matrix ofr(z)
∣∣
M

is nonde-
generate at̂pκ; this also follows automatically from the inclusionΩM ⊂ B

n

r̂κ
,

which constrains strong convexity ofM at p̂κ. Consequently, according to the
Morse lemma([31], [19], Ch. 6), there exist local coordinates(θ1, . . . , θ2n−1) on
M centered at̂pκ such that the intersectionM ∩ S2n−1

r is given by the equation

−θ2
1 − · · · − θ2

2n−1 = r − r̂κ,

for all r close tor̂κ. ThusM ∩ S2n−1
r is empty forr > r̂κ; it reduces to{p̂κ} for

r = r̂κ; and it is diffeomorphic to a(2n − 2)-sphere forr < r̂κ close tor̂κ.
Similarly, the nearest point ofΩM from the origin is unique and it coincides

with p̂1; notice that henceκ > 2. Also, the second farthest critical pointp̂κ−1

lies at a distancêrκ−1 < r̂κ from 0. If necessary, we shrinkδ1 to insure

(4.2) δ1 << min
16λ6κ−1

{
r̂λ+1 − r̂λ

}
.

Next, for every radiusr with r̂κ−1 < r < r̂κ, we introduce the cut out domain

Ω>r := ΩM ∩
{
||z|| > r

}
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together with the cut out hypersurface

M>r := M ∩
{
||z|| > r

}
.

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

Fig. 8: Filling the domain from the farthest point

Ω>r

p̂κ−1

C
n

r̂κ−1

p̂κ

r

Vδ(M)

M

r̂κ

Rr
Nr Nr

p̂κ

M

r

p̂κ−1

M

Vδ(M)

Ω>r
Vδ

(
M>r

)
>r

M>r

r

Wr

Since there are no critical points ofr(z)
∣∣
M

in the interval
(
r̂κ−1, r̂κ

)
, Morse

theory shows thatM>r is a deformed spherical cap diffeomorphic toR2n−1 for
everyr with r̂κ−1 < r < r̂κ. Also, Ω>r is then a piece of deformed ball diffeo-
morphic toR2n.

The boundary inCn of Ω>r

∂Ω>r = M>r ∪ Rr ∪ Nr

consists ofM>r together with the open subregionRr := ΩM ∩
{
||z|| = r

}
of

S2n−1
r which is diffeomorphic toR2n−1 and has boundaryNr := M ∩

{
||z|| = r

}

diffeomorphic to the unit(2n − 2)-sphere. Thus, the global geometry ofΩ>r is
understood.

We can also cut outVδ(M), gettingVδ(M)>r. The central figure shows that
whenr > r̂κ−1 is very close tôrκ−1, a parasitic connected componentW>r of
Vδ(M)>r might appear near̂pκ−1. After filling Ω>r progressively by means of
Levi-Hartogs figures (seebelow), becauseΩ>r ∩ Vδ(M)>r is not connected in
such a situation,no unique holomorphic extension can be assured, and in fact,
multivalence might well occur.

A trick to erase such parasitic componentsW>r is to consider instead the open
set

Vδ

(
M>r

)
>r

= Vδ

(
M>r

)
∩

{
||z|| > r

}
,

putting a double “>r”. It is drawn in the right figure and it is always diffeomor-
phic toM>r × (−δ, δ).

From pieces of shells as in Proposition 3.7 which embrace spheres of vary-
ing radiusr, holomorphic extension holds to (symmetric) rinds whose thickness
c δ r−1 also varies. To simplify, we introduce the smallest appearing thickness

(4.3) η := min
r̂16r6r̂κ

c δ r−1 = c δ r̂κ
−1,

and we observe that it follows trivially from Proposition 3.7 (just by shrinking
and by restricting) that holomorphic extension holds to some rind aroundR of
arbitrary smaller thicknessη′ > 0 with 0 < η′ 6 η. In the sequel, our rinds
shall most often have the uniform thicknessη, and sometimes also, a smaller one
η′. Shrinking the constantc of η in (4.3), we insureη << δ1.
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Summarizing, we list and we compare the quantities introduced so far:

(4.4)





0 < δ 6 δ1 neighborhoodVδ(M)

2 6 r(p̂1) < · · · < r(p̂κ) 6 5 + diam
(
ΩM

)
Morse radii

δ 6 δ1 << min
16λ6κ−1

{
r̂λ+1 − r̂λ

}
smallness ofVδ(M)

η := c δ2 r̂−1
κ uniform useful rind thickness

η << δ thickness of extensional rinds is tiny

Proposition 4.5. For every cutting radiusr with r̂κ−1 < r < r̂κ arbitrarily close
to r̂κ−1, holomorphic functions in the open set

Vδ

(
M>r

)
>r

= Vδ

(
M>r

)
∩

{
||z|| > r

}

do extend holomorphically and uniquely toΩ>r by means of a finite number
6 C

(
r̂κ

δ

)2n−1[ r̂κ−r
η

]
of Levi-Hartogs figures.

Proof. We fix such a radiusr with r̂κ−1 < r < r̂κ. Putting a single Levi-
Hartogs figure at̂pκ as in Proposition 3.7, we get unique holomorphic extension
to Ω>r̂κ−η. Sinceη << δ, we havêrκ − η > r̂κ−1. If the radiuŝrκ − η is already
< r, we just shrink toη′ := r̂κ − r < η the thickness of our single rind, getting
unique holomorphic extension toΩ>r̂κ−η′ = Ω>r.

Performing induction on an auxiliary integerk > 1, we suppose that, by de-
scending from̂rκ to a lower radiusr′ := r̂κ − kη assumed to be still> r, holo-
morphic functions inVδ

(
M>r

)
>r

extend holomorphicallyand uniquely(remind
Definition 2.5) toΩ>r′.

Lemma 4.6. For every radiusr′ with r̂κ−1 < r < r′ < r̂κ,

(4.7) Shellr
′+δ

r′

(
Rr′ ∪ Nr′

)
is contained inΩ>r′

⋃
Vδ

(
M>r

)
>r

.
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Fig. 9: A shell contained in the cap-shaped domain and the associated rind

Shellr
′
+δ

r′

(
Rr′ ∪ Nr′

)

ΩM

r′

r

r′

r

M M

Ω>r′
−ηp̂κ p̂κ

Ω>r′

Rind−
(
Rr′ , η

)

Proof. Picking an arbitrary pointp ∈ Rr′ ∪ Nr′ , we must verify that

B
n(p, δ) ∩ {||z|| > r′}

is contained in the right hand side of (4.7).
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If p ∈ Nr′ ⊂ M , whencep ∈ M>r, we get simply what we want:

B
n(p, δ) ∩ {||z|| > r′} ⊂ Vδ

(
M>r

)
∩ {||z|| > r′}

⊂ Vδ

(
M>r

)
∩ {||z|| > r}

= Vδ

(
M>r

)
>r

.

If p ∈ Rr′
∖
Nr′ , whencep ∈ ΩM , reasoning by contradiction, we assume that

there exists a pointq ∈ Bn(p, δ) ∩ {||z|| > r′} in the cut out ball which does not
belong to the right hand side of (4.7). SinceΩ>r′ = ΩM ∩ {||z|| > r′}, we have
q 6∈ ΩM .

RemindingRr′ ⊂ S
2n−1
r′ , the tangent planeTpS

2n−1
r′ = TpRr′ dividesCn in two

closedhalf-spaces,T
+

p S2n−1
r′ exterior toBn

r′ and the opposite oneT
−

p S2n−1
r′ . We

distinguish two (nonexclusive) cases.

p

q

p̃

q
q̃

p̃
p

Fig. 10: Checking that the shell is contained in the cut out domain

M>r′

r′
Rr′

r′

Nr′

M>r′

Rr′

Ω>r′

Ω>r′

Firstly, suppose that the half-line(pq)+ is contained inT
+

p S2n−1
r′ , as in the left

figure. Sincep ∈ ΩM andq 6∈ ΩM , there exists at least one pointp̃ of the open
segment(p, q) which belongs toM , hencẽp ∈ M>r. Then

||q − p̃|| < ||q − p|| < δ,

whenceq ∈ Bn(p̃, δ) ∩ {||z|| > r} and we deduce thatq ∈ Vδ

(
M>r

)
>r

belongs
to the right hand side of (4.7), contradiction.

Secondly, suppose that the half-line(pq)+ is contained inT
−

p S
2n−1
r′ , as in the

right figure. Letq̃ ∈ (p, q) be the middle point. In the plane passing through0, p
andq, consider a circle passing throughp andq and centered at some point close
to 0 in the open segment(0, q̃). It has radius< r′ close tor′. The open arc of
circle betweenp andq is fully contained in{||z|| > r′}.

Sincep ∈ ΩM andq 6∈ ΩM , there exists at least one pointp̃ of the open arc
of circle betweenp andq which belongs toM , hencẽp ∈ M>r. But then(p, q)
is the hypothenuse of the trianglepqp̃ (remindr′ > 1 and ||q − p|| < δ << 1),
whence||q − p̃|| < ||q − p|| < δ, hence again as in the first case, we deduce that
q ∈ Vδ

(
M>r

)
>r

, contradiction. �

If the slightly smaller radius

r′′ := r′ − η = r̂κ − (k + 1)η

is already< r, we will shrink toη′ := r̂κ − r − kη < η the thickness of the
final extensional rind. Otherwise, in the generic case,r̂κ − (k + 1)η is still > r.
The final (exceptional) case being formally similar, we continue the proof with
r′ = r̂κ − kη andr′′ = r′ − η, assuming thatr′′ > r.
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Settingr′ := r̂κ − kη in the auxiliary Lemma 4.6, functions holomorphic in
Ω>r′ ∪ Vδ

(
M>r

)
>r

restrict to Shellr
′+δ

r′

(
Rr′ ∪ Nr′

)
and then, thanks to Proposi-

tion 3.7, these restricted functions extend holomorphically to Rind
(
Rr′, η

)
.

Lemma 4.8. The following intersection of two open sets is connected:

(4.9) Rind
(
Rr′, η

)⋂ (
Ω>r′ ∪ Vδ

(
M>r

)
>r

)
.

Furthermore, the union of the same two open sets contains

(4.10) Ω>r′−η ∪ Vδ

(
M>r

)
>r

.

Thus we get unique holomorphic extension to (4.10) and finally, by induction
onk and taking account of the final step whereη should be shrunk appropriately,
we get unique holomorphic extension toΩ>r ∪ Vδ

(
M>r

)
>r

.
The number of utilized Levi-Hartogs figures is majorated by the product of

the number of needed rinds∼ r̂κ−r
η

times the maximal area ofRr′, which we

roughly majorate by the areaC (r̂κ)
2n−1 of the biggest sphereS2n−1

r̂κ
, everything

being divided by the areac δ2n−1 covered by a small Levi-Hartogs figure. This
yields the finite number claimed in Proposition 4.5, achieving its proof. �

Proof of Lemma 4.8.[May be skipped in a first reading] To establish connected-
ness, we decompose the rind as

Rind
+ :=

{
(1 + s)z : z ∈ Rr′, 0 < s < η/r′

}

Rind
0 := Rr′,

Rind
− :=

{
(1 − s)z : z ∈ Rr′, 0 < s < η/r′

}
,

so thatRind = Rind
− ∪ Rind

0 ∪ Rind
+, without writing the common argument(

Rr′, η
)
.

Obviously, the upperRind
+ is diffeomorphic toRr′ × (0, η) ≃ R2n−1 × (0, η),

hence is connected. We claim that, moreover, the fullRind
+ is contained in

Ω>r′ ∪ Vδ

(
M>r

)
>r

, whence

(4.11) Rind
+ = Rind

+
⋂(

Ω>r′ ∪ Vδ

(
M>r

)
>r

)
.

Indeed, letq′ ∈ Rind
+, hence of the formq′ = (1+s)p′ for somep′ ∈ Rind

0 =
Rr′ and somes with 0 < s < η/r′. If the half-open-closed segment(p′, q′] is
contained inΩM , hence inΩ>r′ = ΩM ∩

{
||z|| > r′

}
, we get for freeq′ ∈ Ω>r′ .

If on the contrary,(p′, q′] is not contained inΩM , then there exists a point
q̃′ ∈ (p′, q′] with q̃′ ∈ M = ∂ΩM , whencẽq′ ∈ M>r′ ⊂ M>r (remindr′−η > r).
The ballBn(q̃′, δ) then containsq′, because||q′ − q̃′|| < ||q′ − p′|| 6 η << δ. This
showsq′ ∈ Vδ

(
M>r

)
>r

, achieving the claim.

Thus, the (upper) subpart (4.11) of the intersection (4.9) is already connected.

To conclude the proof of connectedness, it suffices to show that every pointp′

of the remaining part

(4.12)
(
Rind

0 ∪ Rind
−
)⋂(

Ω>r′ ∪ Vδ

(
M>r

)
>r

)
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can be joined, by means of some appropriate continuous curverunning inside the
intersection (4.9), to some pointq′ of the connected upper subpart (4.11). Thus,
let p′ in (4.12) be arbitrary.

If p′ ∈ Rind
0 ∩

(
Ω>r′ ∪ Vδ

(
M>r

)
>r

)
, it suffices to join radiallyp′ to q′ =

(1 + sε)p
′, for somesε with 0 < sε << η. Indeed, such aq′ then belongs to

Rind
+ ∩

(
Ω>r′ ∪ Vδ

(
M>r

)
>r

)
.

If p′ ∈ Rind
− ∩

(
Ω>r′ ∪ Vδ

(
M>r

)
>r

)
, then necessarilyp′ ∈ Vδ

(
M>r

)
>r

,
because by definition:

Rind
−
(
Rr′, η

)
∩ Ω>r′ = ∅.

So there is a pointq ∈ M>r with p′ ∈ Bn(q, δ).

Fig. 11: Joining a point p′ of the lower rind to the connected upper rind

r′

Rind
(
Rr′ , η

)

q

Vδ

(
M>r

)
>r

M>r

p′

r′

p′

Rind
(
Rr′ , η

)
M>r

Vδ

(
M>r

)
>r

B
n(q, δ)

B
n(q, δ)

q
q′t

p′

tq′

q′′

q′

We then distinguish two exclusive cases: eitherr(q) > r′ or r(q) < r′.
Firstly, assumer(q) > r′ (left diagram).
If 0, p′ andq are aligned, we simply joinp′ to the pointq′ := (1 + sε)

r′

r(p′)
p′

which belongs toRind
+. The segment[p′, q′] is then entirely contained inRind∩

Bn(q, δ)>r, hence in (4.9).
Otherwise, in the unique plane passing through0, p′ andq, consider the point

q′′ := r(p′)
r(q)

q, satisfyingr(q′′) = r(p′) and belonging to(0, q). Sinceq′′ is the

orthogonal projection ofq onto Bn(0, r(p′)), we get||q − q′′|| < ||q − p′|| < δ,
whenceq′′ ∈ Bn(q, δ). The circle of radiusr(p′) centered at0 joins p′ to q′′

by means of a small arc which is entirely contained inBn(q, δ). Denote by
γ : [0, 1] → Bn(q, δ) a parametrization of this arc of circle, withγ(0) = p′ and
γ(1) = q′′.

If γ[0, 1] is entirely contained inRind
−, we conclude by joiningq′′ radially to

the pointq′ := (1 + sε)
r′

r(q′′)
q′′.

If γ[0, 1] is not contained inRind, let t1 ∈ (0, 1) satisfyingγ[0, t1) ⊂ Rind
−

but γ(t1) 6∈ Rind
−. Thenγ(t1) belongs to∂Rind

− and sincer(γ(t1)) = r(p′)
still satisfiesr′ − η < r(p′) < r′, necessarilyγ(t1) belongs “vertical part” of
∂Rind

−, namely to the strip
{
(1 − s)z : z ∈ Nr′ , 0 6 s 6 η/r′

}
. Hence

the pointq′′′ := r′

r(γ(t1))
γ(t1) belongs toNr′ . We now modifyγ by constructing

a curve which remains entirely insideBn(q′′′, δ)>r ⊂ Vδ

(
M>r

)
>r

as follows:
chooset2 < t1 very close tot1, join p′ to γ(t2) ∈ Rind

− throughγ and thenγ(t2)
radially to the pointq′ := (1 + sε)

r′

r(γ(t2))
γ(t2) ∈ Rind

+. The resulting curve is
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entirely contained in (4.9). In conclusion, we have joinedp′ to a suitable point
q′, as announced.

Secondly, assume thatr(q) < r′. Consider the normalized gradient vector
field ∇rM

||∇rM ||
, defined and nowhere singular onM ∩

{
r̂κ−1 < ||z|| < r̂κ

}
, hence

on M>r

∖
{p̂κ}. For t ∈ [0, 2 η], denote byt 7→ qt the integral curve of∇rM

||∇rM ||

passing throughq, satisfyingq0 = q, qt ∈ M andr(qt) = r(q) + t. Together
with its centerq, the ball is translated asBn(qt, δ). Accordingly, the pointp′ is
moved, yielding a curvep′t such thatp′t occupies a fixed position with respect to
the moving ball. Explicitly:p′t = p′ + q′t − q. Thanks tor′ > 1 andδ << 1, one
may check6 that dr(p′t)

dt
> 1 − cr′,δ, for some small positive constantcr′,δ <1.

Thus, ast increases, the pointp′t moves away from0 at speed almost equal to
1. Sincer′ − η < r(p′0) < r′, we deduce that fort = 2 η, we haver(p′2η) > r′,
namelyp′2η has escaped fromRind

−. Consequently, there existst1 ∈ (0, 2η) with
p′t ∈ Rind

− for 0 6 t < t1 such thatp′t1 ∈ ∂Rind
−.

The boundary ofRind
− has three parts: the topRr′, the bottom

{
(1 − η/r′)z :

z ∈ Rr′
}

and the (closed) strip
{
(1 − s)z : z ∈ Nr′ , 0 6 s 6 η/r′

}
. The limit

pointp′t1 cannot belong to the bottom, sincer(p′t1) > r(p′0) > r′ − η.
Since by constructionp′t ∈ Bn(qt, δ) with qt ∈ M>r, we observe thatp′t ∈

Vδ

(
M>r

)
>r

for everyt ∈ [0, 2 η]. Consequently:

p′t ∈ Rind
−

⋂
Vδ

(
M>r

)
>r

, ∀ t ∈ [0, t1).

Assuming thatp′t1 ∈ ∂Rind
− belongs to the topRr′ = Rind

0, we may joinp′t1
radially toq′ := (1 + sε)p

′
t1

. In this way,p′ is joined, by means of a continuous
curve running in the intersection (4.9), to the pointq′ = (1 + sε)p

′
t1

belonging to
the connected upper subpart (4.11).

Finally, assume thatp′t1 ∈ ∂Rind
− belongs to the strip

{
(1 − s)z : z ∈

Nr′ , 0 6 s 6 η/r′
}

. The pointq′′ := r′

r(p′t1
)
p′t1 belongs toNr′ ⊂ M>r, and we

will construct a small curve running entirely insideBn(q′′, δ)>r ⊂ Vδ

(
M>r

)
>r

.
Chooset2 ∈ (0, t1) very close tot1, join p′ to p′t2 ∈ Rind

− as above (but do
not go up top′t1) and then joinp′t2 radially to the pointq′ := (1 + sε)

r′

r(p′t2
)
p′t2 ,

which belongs toRind
+. The small radial segment fromp′t2 to q′ is entirely

contained inBn(q′′, δ) and in the fullRind. In conclusion,p′ is joined, by means
of a continuous curve running in the intersection (4.9), to this pointq′ = (1 +
sε)

r′

r(p′t2
)
p′t2 which belongs to the connected upper subpart (4.11).

The proof of the connectedness of the intersection (4.9) is complete.

We now show that the union, instead of the intersection in (4.9), con-
tains (4.10).

6If the spheresS2n−1
r for r close tor′ would be hyperplanes — they almost are in comparison

to Bn(qt, δ) — we would have exactlyr(p′t) = r(p′) + t, whencedr(p′

t)
dt

= 1.
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Let p′ ∈ Ω>r′−η\Ω>r′, whencer′ − η < ||p′|| 6 r′. The radial half line{
t p′ : 0 < t < ∞

}
emanating from the origin and passing throughp′ meets

S2n−1
r′ at the pointq′ = r′

||p′||
p′.

If the closed segment[p′, q′] is contained inΩ>r′−η, thenq′ ∈ ΩM . Since
||q′|| = r′ and sinceRr′ = ΩM ∩

{
||z|| = r′

}
, we getq′ ∈ Rr′, whencep′ ∈

Rind
(
Rr′, η

)
.

If on the contrary, the closed segment[p′, q′] is not contained inΩ>r′−η, then
there exists̃q′ ∈ (p′, q′] with q̃′ ∈ M = ∂ΩM , whenceq̃′ ∈ M>r′−η ⊂ M>r.
Sinceη << δ, we deducep′ ∈ Bn(q̃′, δ) and finallyp′ ∈ Vδ

(
M>r

)
>r

.
The proofs of Lemma 4.8 and hence also of Proposition 4.5 are complete. �

§5. CREATING DOMAINS, MERGING

AND SUPPRESSING CONNECTED COMPONENTS

5.1. Topological stability and global extensional geometry between regular
values ofrM . In the preceding Section 4, forr with r̂κ−1 < r < r̂κ, we de-
scribed the simple shape of the cut out domainΩ>r = ΩM ∩ {||z|| > r}, just
diffeomorphic to a piece of ball. Decreasing the radius under r̂κ−1, the topolog-
ical picture becomes more complex. At least for radii comprised between two
singular values ofr(z)

∣∣
M

, Morse theory assures geometrical control together
with constancy properties.

Lemma 5.2. Fix a radiusr satisfyingr̂λ < r < r̂λ+1 for someλ with 1 6 λ 6

κ − 1, hence noncritical for the distance functionr(z)|M . Then:

(a) TzM + TzS
2n−1
r = TzC

n at every pointz ∈ M ∩ S2n−1
r ;

(b) the intersectionM ∩ S2n−1
r is a C∞ compact hypersurfaceNr ⊂ S2n−1

r

of codimension2 in Cn, without boundary and having finitely many con-
nected components;

(c) Nr′′ is diffeomorphic toNr′ , whenever̂rλ < r′′ < r′ < r̂λ+1;
(d) M>r = M ∩ {||z|| > r} has finitely many connected componentsM c

>r,
with 1 6 c 6 cλ, for somecλ < ∞ which is independent ofr;

(e) M c
>r′′ is diffeomorphic toM c

>r′ , whenever̂rλ < r′′ < r′ < r̂λ+1, for all c
with 1 6 c 6 cλ;

(f) M ∩ {r′′ < ||z|| < r′} is diffeomorphic toNr′ × (r′′, r′), hence also to
Nr′′ × (r′′, r′), whenever̂rλ < r′′ < r′ < r̂λ+1;

Proof. We summarize the known arguments of proof (cf. [31] and [19], Ch. 6).
Equivalently,(a) says thatdr : TzM → Tr(z)R is onto, and this holds true since
by assumptionM ∩

{
r̂λ < ||z|| < r̂λ+1

}
contains no critical points ofr(z)|M .

Then(b) follows from this transversality(a).
Next, consider the Euclidean metric(v, w) :=

∑2n
k=1 vk wk on Cn ≃ R2n,

which induces a Riemannian metric(·, ·)M on M , a nondegenerate positive bi-
linear form onTM . The gradient∇(r|M) of r(z)|M is the vector field onM
defined by requiring that

(
∇(r|M), X

)
M

= d
(
r|M

)
(X) for all C∞ (locally de-

fined) vector fieldsX on M . Let D := 2 Re
∑n

k=1 zk
∂

∂zk
be the radial vector
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field which is obviously orthogonal to spheres and consider the orthogonal pro-
jectionXD of D|M onTM , aC∞ vector field onM . We want to scale the gradient
asVr,M := λ · ∇(r|M) so that its radial component is identically equal to one,
namely, so that

(
Vr,M , D

)
≡ 1, which gives the equation:

1 = λ
(
∇(r|M), D

)
= λ

(
∇(r|M), XD

)
= λ

(
∇(r|M), XD

)
M

= λ d
(
r|M

)
(XD).

To simply setλ := 1
d(r|M )(XD)

, we must establish thatXD cannot belong to

Ker d
(
r|M

)
at any pointz ∈ M ∩

{
r̂λ < ||z|| < r̂λ+1

}
of a noncritical shell.

We check this. At such a pointz, D(z) is not orthogonal toTzM (otherwise
TzM would coincide withTzS

2n−1
||z|| ), whence its orthogonal projectionXD(z) is

6= 0. By definition, (D − XD)(z) is orthogonal toTzM ∋ XD(z), hence it is
orthogonal toXD(z) inside the2-dimensional planeΠz generated byXD(z) 6=
0 and byD(z) 6= 0. If, contrary to what we want,XD(z) would belong to
Ker d

(
r|M

)
= TzS

2n−1
||z|| , then it would be orthogonal toD(z), and in the plane

Πz, we would have bothD(z) and the hypothenuse
(
D − XD

)
(z) orthogonal to

XD(z), which is impossible.
Thus, in spherical coordinates(r, ϑ1, . . . , ϑ2n−1) restricted to a noncritical

shell, ther-component of theC∞ scaled gradient vector fieldVr,M := ∇(r|M )
(∇(r|M ), D)

is ≡ 1. We deduce that the flow (wherever defined)zs := exp(s Vr,M

)
(z) sim-

ply increases the norm as||zs|| = ||z|| + s, whenceexp
(
(r′ − r′′)Vr,M

)
(·) in-

duces a diffeomorphism fromNr′′ onto Nr′ : this yields(c). Also, (z′′, s) 7−→
exp

(
(r′′ + s)Vr,M

)
(z′′) gives the diffeomorphism ofNr′′ × (r′ − r′′) onto the

stripM ∩
{
r′′ < ||z|| < r′

}
, which is(f).

Next, the compact manifold with boundaryM>r ∪Nr surely has finitely many
connected components, whose number is constant for allr̂λ < r < r̂λ+1, because
when r increases or decreases, the connected components of the slicesNr do
slide smoothly inS2n−1

r without encountering each other: this is(d). Finally, (e)
follows from (f) and the trivial fact that the two segments(r′′, r0) and(r′, r0) are
diffeomorphic, whenever̂rλ < r′′ < r′ < r0 < r̂λ+1. �

We can now state the very main technical proposition of this paper.

Proposition 5.3. Fix a radiusr satisfyingr̂λ < r < r̂λ+1 for someλ with 1 6

λ 6 κ − 1 and let M c
>r, c = 1, . . . , cλ, denote the collection of connected

components ofM ∩ {||z|| > r}. Then:

(i) eachM c
>r bounds in{||z|| > r} a uniquedomainΩ̃c

>r which is relatively
compact inCn;

(ii) the boundary inCn of eachΩ̃c
>r, namely:

∂Ω̃c
>r = M c

>r ∪ Nc
r ∪ R̃c

r

consists ofM c
>r together with some appropriate unionNc

r of finitely many
connected components ofNr = M ∩ {||z|| = r} and with an appropriate
regionR̃c

r ⊂ S2n−1
r delimited byNc

r;
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(iii) two such domains̃Ωc1
>r and Ω̃c2

>r, associated to two different connected
componentsM c1

>r andM c2
>r ofM>r, are either disjoint or one is contained

in the other;

(iv) for c1 6= c2, the regions̃Rc1
r andR̃c2

r are either disjoint or one is contained
in the other, while their boundariesNc1

r andNc2
r are always disjoint;

(v) for eachc = 1, . . . , cλ, every functionf holomorphic inVδ

(
M>r

)
>r

has
a restriction toVδ

(
M c

>r

)
>r

which extends holomorphically and uniquely

to Ω̃c
>r by means of a finite number of Levi-Hartogs figures.

We point out that in(i) and(ii) , neitherΩ̃c
r nor R̃c

r need be contained in our
original domainΩM (as it was the case in Section 4 forr̂κ−1 < r < r̂κ): this is
why we introduced a widetilde notation. We refer to the middle Figure 1 for an
illustration. Similarly, neither̃Ωc

r nor R̃c
r need be contained inCn

∖
ΩM : they both

may intersectΩM and Cn
∖
ΩM . Also, the number of connected components of

Nc
r is > that ofR̃c

r and may be>, as illustrated below.

Fig. 12: Possible topologies of the cut out hypersurfacesM>r

As a direct application, we may achieve the proof of our principal result.

Theorem 5.4.Under the precise assumptions of Theorem 2.7, holomorphic func-
tions inVδ(M) do extend holomorphically and uniquely toΩM by means of a
finite number of Levi-Hartogs figures:

∀ f ∈ O
(
Vδ(M)

)
∃ F ∈ O

(
ΩM ∪ Vδ(M)

)
s.t. F

∣∣
Vδ(M)

= f.

Proof. In the main Proposition 5.3, we chooser = r̂1 + ε (whereε > 0 satisfies
ε << δ) very close to the last, smallest singular radius. ThenM>r has a single
connected component,M>r itself, and it simply bounds

(
ΩM

)
>r

. The remainder
part ofM , namelyM ∩

{
||z|| 6 r̂1 + ε

}
is diffeomorphic to a very small closed

(2n − 1)-dimensional spherical cap and is entirely contained inVδ(M).
Fix an arbitrary functionf ∈ O

(
Vδ(M)

)
and restrict it toVδ

(
M>r

)
>r

. Thanks
to the proposition,f extend holomorphically and uniquely to

(
ΩM

)
>r

by means
of a finite number of Levi-Hartogs figures. Since

Vδ(M)
⋂ (

Vδ

(
M>r

)
>r

∪
(
ΩM

)
>r

)

is easily seen to be connected, we get a globally defined extended function which
is holomorphic in

Vδ(M)
⋃ (

Vδ

(
M>r

)
>r

∪
(
ΩM

)
>r

)
= Vδ(M) ∪ ΩM .

This completes the proof. �
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Proof of Proposition 5.3.In (i), let us check the uniqueness of a relatively com-
pactΩ̃c

>r. SinceM c
>r inherits an orientation fromM , the complement

{
||z|| >

r
}∖

M c
>r has at most 2 connected components. AsM ⋐ Cn is bounded, at least

one component contains the points at infinity, hence there can remain at most
one component of

{
||z|| > r

}∖
M c

>r that is relatively compact inCn.

If r satisfieŝrκ−1 < r < r̂κ, Proposition 4.5 already completes the proof.

Assume therefore thatr satisfieŝrµ < r < r̂µ+1, for someµ ∈ N with 1 6

µ 6 κ − 1. For everyλ with 2 6 λ 6 κ − 1, it will be convenient to flank each
singular radiuŝrλ by the following two very close nonsingular radii

(5.5) r̂−λ := r̂λ − η/2 and r̂+
λ := r̂λ + η/2 ,

with η being the same uniform thickness of extensional rinds as before. We fix
once for all an arbitrary functionf holomorphic inVδ

(
M>r

)
>r

. Letting λ be
arbitrary withµ 6 λ 6 κ − 1, the logic of the proof shows up two topologically
distinct phenomena that we overview.

A: Filling domains through regular radii intervals. Assume that at the regular
radius r̂−λ+1 = r̂λ+1 − η

2
, all domainsΩ̃c

>r̂−
λ+1

, c = 1, . . . , cλ, as well as the

corresponding holomorphic extensions, have been constructed. Then prolong the
domains (without topological change) asΩ̃c

>r̂+

λ

, c = 1, . . . , cλ, up tor̂+
λ = r̂λ + η

2

and fill in the conquered territory by means of a finite number of Levi-Hartogs
figures.

B: Jumping across singular radii and changing the domains. Restarting
at r̂+

λ with the domains̃Ωc
>r̂+

λ

, c = 1, . . . , cλ, distinguish three cases as follows.

Remind from§2.3 thatM is represented byv =
∑

16j6kλ
x2

j −
∑

16j62n−kλ−1 y2
j

in suitable coordinates(x, y, v) centered at̂pλ, wherekλ is theMorse coindexof
r(z)|M at p̂λ.

(I) Firstly, assumekλ = 0, namelyz 7→ r(z)|M has a local maximum at
p̂λ, or inversely, assumekλ = 2n − 1, namelyz 7→ r(z)|M has a local
minimum at p̂λ. This is the easiest case, the only one in which new
domains can be born or die, locally.

(II) Secondly, assumekλ = 1. This is the most delicate case, because in a
small neighborhood of̂pλ, the cut out hypersurfaceM>r̂+

λ
has exactly 2

connected components, so that two different enclosed domainsΩ̃c1
>r̂+

λ

and

Ω̃c2
>r̂+

λ

can meet here; it may also occur that the two parts nearp̂λ belong

to thesamedomain, i.e. thatc2 = c1. While descending down tôr−λ ,
we must analyze the way how the two (maybe the single) component(s)
merge. Three subcases will be distinguished, one of which showing a
crucial trick of subtracting one growing component from a larger one
which also grows (right Figure 1).
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(III) Thirdly, assume that2 6 kλ 6 2n − 2. In all these cases, locally in a
neighborhood of̂pλ, the cut out hypersurfaceM>r̂+

λ
has exactly 1 con-

nected component and the way how the corresponding single enclosed
domainΩ̃c

>r̂+

λ

grows will be topologically constant.

Reasoning by induction onλ and applying the filling processesA andB, we
then descend progressively inside deeper spherical shells, checking all properties
of Proposition 5.3. When approaching the bottom radiusr of Proposition 5.3, it
will suffice to shortcutA or B appropriately in order to complete the proof.

5.6. Filling domains through regular radii intervals. Recall thatr̂µ < r <
r̂µ+1, letλ with µ 6 λ 6 κ−1 and consider the regular radius interval

[
r̂+
λ , r̂−λ+1

]
.

We suppose first thatr 6 r̂+
λ , so that we may descend inside the whole spherical

shell
{
r̂+
λ < ||z|| 6 r̂−λ+1

}
. Afterwards, we explain how we stop in the case where

λ = µ andr̂+
µ < r < r̂−µ+1.

By descending induction onλ throughA andB, we may assume that at the
superlevel set(·)>r̂−

λ+1

, the domains̃Ωc
>r̂−λ+1

enclosed byM c
>r̂−λ+1

for 1 6 c 6 cλ

have been constructed and that each restrictionf c
r̂−
λ+1

of f ∈ O
(
Vδ

(
M>r

)
>r

)
to

Vδ

(
M c

>r̂−
λ+1

)
>r̂−

λ+1

extends holomorphically and uniquely to the domain

(5.7) Ω̃c
>r̂−λ+1

⋃
Vδ

(
M c

>r̂−λ+1

)
>r̂−

λ+1

.

For every radiusr′ with r̂+
λ 6 r′ < r̂−λ+1, the cut out hypersurfaceM>r′ =⋃

16c6cλ
M c

>r′ has the same number of connected components, eachM c
>r′ is

diffeomorphic toM c
>r̂−λ+1

and the differenceM c
>r′

∖
M c

>r̂−λ+1

is diffeomorphic to

N c
r̂−
λ+1

×
(
r′, r̂−λ+1

]
. Furthermore, each prolongatioñΩc

>r′ of Ω̃c
>r̂−

λ+1

is obviously

defined just by adding the tube domain surrounded byM c
>r′

∖
M c

r̂−
λ+1

. Then each

N c
r′ = ∂R̃c

r′ has finitely many connected componentsN c,j
r′ , with 1 6 j 6 jλ,c,

wherejλ,c is independent ofr′.
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Fig. 13: GettingVδ

(
Mc

>r̂
+

λ

)
r̂
+

λ

by adding legs toVδ

(
Mc

>r̂
−

λ+1

)
r̂
−

λ+1

p̂λ+1

p̂λ

r̂
+

λ

r̂
−

λ+1

Vδ

(
Mc

>r̂
−

λ+1

)
>r̂

−

λ+1

Vδ

(
Mc

>r̂
+

λ

)
>r̂

+

λ

r′

Sincef was defined inVδ

(
M>r

)
>r

and sincer 6 r̂+
λ , we claim that each

restrictionf c
r̂−
λ+1

may be extended holomorphically and uniquely to

(5.8) Ω̃c
>r̂−λ+1

⋃
Vδ

(
M c

>r̂+

λ

)
>r̂+

λ

.
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Indeed, to the original domain of definition (5.7) off c
r̂−λ+1

which was contained

in
{
||z|| > r̂−λ+1

}
, we add in the enlarged domain (5.8) a finite numberjλ,c of

tubular domains around the connected components ofM c
>r′

∖
M c

>r̂−
λ+1

. Because

δ was chosen so small thatVδ(M) is a small tubular neighborhood ofM , and
becausef ∈ O

(
Vδ

(
M>r

)
>r

)
is uniquely defined, we get a unique extension,

still denoted byf c
r̂−
λ+1

, to (5.8).

We can now apply the same reasoning as in Proposition 4.5, which consists
of progressive holomorphic extension by means of thin rinds. Reproducing the
proof of Lemma 4.6 (with changes of notation only), we get forevery radiusr′

with r̂+
λ < r′ 6 r̂−λ+1 that

(5.9) Shellr
′+δ

r′

(
R̃c

r′ ∪ Nc
r′

)
is contained inΩ̃c

>r′

⋃
Vδ

(
M c

>r̂+

λ

)
>r̂+

λ

.

Similarly, reproducing the proof of Lemma 4.8 yields the connectedness of

Rind
(
Rc

r′, η
)⋂(

Ω̃c
>r′ ∪ Vδ

(
M c

>r̂+

λ

)
>r̂+

λ

)
,

and furthermore, this yields that the union, instead of the intersection, contains

Ω̃c
>r′−η

⋃
Vδ

(
M c

>r̂+

λ

)
>r̂+

λ

,

wheneverr′ − η is still > r̂+
λ (otherwise, shrink conveniently the thickness of

the last extensional rind, as in the proof of Proposition 4.5). Thus, by piling

up
r̂−λ+1

−r̂+

λ

η
rinds and by using a finite number6 C

(
r̂κ

δ

)2n−1
[

r̂−λ+1
−r̂+

λ

η

]
of Levi-

Hartogs figures, we get unique holomorphic extension to

(5.10) Vδ

(
M c

>r̂+

λ

)
>r̂+

λ

⋃
Ω̃c

>r̂+

λ

.

Finally, if r satisfieŝr+
µ < r < r̂−µ+1, descending from(·)>r̂−µ+1

with λ = µ as

above, we just stop the construction of rinds to(·)>r by shrinking appropriately
the thickness of the last extensional rind.

The property(iii) that enclosed domains̃Ωc
>r are either disjoint or one is con-

tained in the other remains stable asr decreases through the whole nonsingular
interval

(
r̂λ, r̂λ+1

)
, because their (moving) boundaries always remain disjoint, so

that property(iv) is also simultaneously transmitted to lower regular radii.This
completesA.

5.11. Localizing (pseudo)cubes at Morse points.We now studyB. Recall that
r̂µ < r < r̂µ+1, let λ with µ 6 λ 6 κ − 1 and suppose thatr 6 r̂−λ , so that
starting from(·)>r̂+

λ
, we may (and we must) continue the Hartogs-Levi filling

inside the whole thin spherical shell
{
r̂−λ < ||z|| 6 r̂+

λ

}
. Similarly as above, the

way how we should stop the process in the case whereλ = µ andr̂µ < r < r̂+
µ

is obvious.

By descending induction onλ throughA andB, we may assume that atr̂+
λ ,

the domains̃Ωc
>r̂+

λ

enclosed byM c
>r̂+

λ

for 1 6 c 6 cλ have been constructed
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and that each restrictionf c
r̂+

λ

of f ∈ O
(
Vδ

(
M c

>r

)
>r

)
to Vδ

(
M c

>r̂+

λ

)
>r̂+

λ

extends

holomorphically to the domain (5.10) of the previous paragraph.
By an elementary analysis of the Morse normalizing quadric,we will see that

in some small (pseudo)cube centered atp̂λ, there passes in most cases only one
componentM c

>r̂+

λ

, while in a single exceptional case, there can pass two (at

most) different connected componentsM c1
>r̂+

λ

andM c2
>r̂+

λ

. We will consider only

this single (or these two) component(s), because the other components do pass
regularly and without topological change accrossp̂λ, hence are filled in by Levi-
Hartogs figures exactly as inA.

Shrinking theδ1 of Theorem 2.7 if necessary (remind0 < δ 6 δ1), we may as-
sume that the Morse normalizing coordinates

(
v, x1, . . . , xkλ

, y1, . . . , y2n−1−kλ

)

nearp̂λ are defined in the ballBn(p̂λ, δ1) and that the map

z 7−→
(
v(z), x(z), y(z)

)
, B

n(p̂λ, δ1) −→ R
2n

is close inC1 norm to its differential at̂pλ, so that it is almost not distorting. Then
δ1 shall not be shrunk anymore.

Because in the estimates of the (finite) number of Levi-Hartogs figures,η only
appears as a denominator in a factorr′−r′′

η
(cf. Proposition 4.5), it is allowed to

work with extensional rinds of smaller universal positive thickness, at the cost
of spending a number of pushed analytic discs that is greater, of course, but still
finite. If necessary, we shrinkη > 0 to insure thatη1/2 << δ. Thenη will not be
shrunk anymore.

Thanks to these preliminaries, we may define a convenient (pseudo)cube cen-
tered at̂pλ by
(5.12)

Cη :=
{

z ∈ B
n(p̂λ, δ1) : |v(z)| < η, ||x(z)|| < 2 η1/2, ||y(z)|| < 2 η1/2

}
.

It then follows thatCη is properly contained inVδ(M) and is relatively small.
Reminding thatv(z) = r(z) − r(p̂λ), the radial thickness ofCη is equal to2η,
twice the differencêr+

λ − r̂−λ = η. We draw a diagram assumingkλ = 2n − 1
(see only the left one).

Vδ(M)
Fig. 14: The radial (pseudo)cubeCη centered atp̂λ

v

p̂λ

M

x

x

Cη

v

Vδ(M)

x

r̂
+
λ

r̂
−

λ

Cη

r̂λ

Mc
>r̂

λ+
Mc

>r̂
λ+

Ω̃c
>r̂

λ+

4η1/2

2η1/2

Rind
−p̂λ

Rind
−

η/2
η/2

η/2

η/2

2η

2η2η

5.13. Topology of horizontal super-level sets in the complement of quadrics.
Simultaneously to the proof, we provide an auxiliary elementary study. Letn ∈
N with n > 2, let k ∈ N with 0 6 k 6 2n − 1, let x = (x1, . . . , xk) ∈ Rk,



A MORSE-THEORETICAL PROOF OF THE HARTOGS EXTENSION THEOREM 27

let y = (y1, . . . , y2n−1−k) ∈ R2n−1−k, let v ∈ R, and inR2n equipped with the
coordinates(x, y, v), consider the quadric of equation

(5.14) v =
∑

16j6k

x2
j −

∑

16j62n−1−k

y2
j ,

which we will denote byQk. The coordinatev playing the rôle ofr(z) − r(p̂λ)
near a singular radiuŝrλ having Morse coindexkλ, we want to understand how
the topology of the super-level sets

{
v > ε

}
∩

(
R

2n\Qk

)

(which relate to the possible domainsΩ̃c
>r for r close tor̂λ) do change when the

parameterε descends from a small positive value to a small negative value.

Fig. 15: Growing of superlevel domains near a local maximum or minimum

In the casek = 0 (left figure) the quadric looks like a spherical cap, its com-
plementR2n

∖
Q0 having exactly two connected components. For positive values

of ε, there is only one (green) super-level component{v > ε} ∩
(
R2n

∖
Q0

)
.

As ε becomes negative, this component grows regularly, allowing a newly cre-
ated hole to widen inside the slices{v = ε}. The (blue) holes then pile up to
constitute a newly created, local componentM c

>r̂−
λ

.

The (reverse) casek = 2n−1 exhibits the local end of some componentM c
>r̂−λ

.

In a while, we will see that there is a salient topological difference between the
two remaining (less obvious) cases2 6 k 6 2n − 2 andk = 1, the exceptional
one. Before pursuing, we conclude the proof ofB in casêpλ is a local maximum
or minimum.

We assumekλ = 2n − 1, the casekλ = 0 being already considered (es-
sentially completely) in Section 4. Observe thatM>r̂+

λ
∩ Cη is diffeomorphic

to S2n−2 × (c/2, c), hence connected. Thus, letM c
>r̂+

λ

denote the single com-

ponent enteringCη. By descending induction throughA andB, M c
>r̂+

λ

bounds

a relatively compact domain of holomorphic extensionΩ̃c
>r̂+

λ

, with ∂Ω̃c
>r̂+

λ

=

M c
>r̂+

λ

∪Nc
r̂+

λ

∪ R̃c
r̂+

λ

, as in property(ii) of Proposition 5.3, all the other properties

also holding true on(·)>r̂+

λ
. Denote bỹRc,k

r̂+

λ

, 1 6 k 6 kλ,c, the connected com-

ponents of̃Rc
r̂+

λ

and byN
c,j

r̂+

λ

, 1 6 j 6 jλ,c, with jλ,c > kλ,c, the components of

Nc
r̂+

λ

.
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R̃
c,1

r̂
+

λ

Ω̃c

>r̂
+
λ

Fig. 16: Two distinct Hartogs-Levi fillings at a point of Morse coindex2n − 1

r̂λ
Rind

−

r̂
+

λ

p̂λ r̂
−

λ

Ω̃c

>r̂
+
λ

Vδ

(
Mc

>r̂
+

λ

)
>r̂

+
λ

Mc

>r̂
+

λ

R̃
c,2

r̂
+

λ

R̃
c,1

r̂
+
λ

Rind
−

We do the numbering so thatCη encloses the first (small)Nc,1

r̂+

λ

, which is diffeo-

morphic to a small(2n − 2)-dimensional sphere. Also, we number so that the
boundary of̃Rc,1

r̂+

λ

in S2n−1

r̂+

λ

containsNc,1

r̂+

λ

, whencẽRc,1

r̂+

λ

meetsCη. We do not draw

Cη.

Observe that, by means of extensional rinds that are symmetric around the
other components̃Rc,2

r̂+

λ

, . . . , R̃
c,kλ,c

r̂+

λ

, we may achieve the Hartogs-Levi filling ex-

actly as inA, becauser(z)|M is regular inVδ

(
N

c,j

r̂+

λ

)
, for everyj such thatNc,j

r̂+

λ

is

contained in the boundary of each of these other components.Hence it remains
only to discuss what is happening in a neighborhood of the single component
R̃

c,1

r̂+

λ

, and especially near̂pλ.

For the disposition of̃Ωc
>r̂+

λ

∩Cη, or equivalently of̃Rc,1

r̂+

λ

∩Cη, two cases occur.

Let
(
v, x1, . . . , x2n−1

)
be the Morse coordinates centered atp̂λ.

(a) As illustrated by the left figure above,̃Ωc
>r̂+

λ

∩ Cη consists of the space7

lying above
{
v = η/2

}
and above

{
v = x2

1 + · · ·+x2
2n−1

}
, a cap-shaped

space which is clearly connected; the regionR̃
c,1

r̂+

λ

is then diffeomorphic

to a small(2n − 1)-dimensional ball.

(b) As illustrated by the right figure above,Ω̃c
>r̂+

λ

∩ Cη consists of the space

lying above
{
v = η/2

}
but below

{
v = x2

1+· · ·+x2
2n−1

}
; the dimension

of S2n−1

r̂+

λ

being> 3, the regionR̃c,1

r̂+

λ

∩ Cη is connected, a fact that a one-

dimensional diagram cannot show adequately; thenΩ̃c
>r̂+

λ

∩ Cη is also

connected.

In case(a), nearp̂λ, a piece of̃Ωc
>r̂+

λ

ends up while descending to the lower

super-level set(·)>r̂−
λ

. We do not use any extensional rind there, we just observe
that unique holomorphic extension is got for free in

[
Vδ

(
M c

>r̂−λ

)
>r̂−

λ

]
∩ Cη,

since this domain is fully contained inVδ

(
M>r

)
>r

.

7Sets written “{·}” here are understood to be subsets ofCη.
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In case(b), we apply Hartogs Levi extension toRind
(
R̃

c,1

r̂+

λ

, η
)

and we get

unique holomorphic extension from (5.10) to
[
Vδ

(
M c

>r̂−λ

)
>r̂−

λ

] ⋃
Rind

(
R̃

c,1

r̂+

λ

, η
)
.

The union of this open set together with (5.10) contains a unique well defined
domainΩ̃c

>r̂−λ
with the property that the passage from̃Rc,1

>r̂+

λ

to R̃
c,1

>r̂−
λ

fills a hole,

as illustrated by the right diagram above, whenceNc
>r̂−

λ

has one less connected

component, because the(2n − 2)-sphereNc,1
>r̂λ+ε drops whenε < 0.

The properties that two different domainsΩ̃c1
>r̂+

λ

andΩ̃c2
>r̂+

λ

are either disjoint

or one is contained in the other is easily seen to be inheritedby Ω̃c1
>r̂−

λ

andΩ̃c2
>r̂−

λ

:

it suffices to distinguish two cases:c2 6= c andc1 6= c, or c2 6= c andc1 = c; to
look at(a) or (b) and then to conclude.

The proof ofB in casekλ = 2n − 1 is complete. The casekλ = 0 is simi-
lar: two subcases(a’) — reverse(a) — and(b’) — reverse(b) — then appear;
subcase(a’) exhibits the birth of a new component (blue left Figure 15), as al-
ready fully studied in Section 4 while subcase(b’) (green left Figure 15) shows
that an external component descends regularly as do clouds around a hill.

5.15. The regular cases2 6 kλ 6 2n − 2. Let k with 2 6 k 6 2n − 2 and
consider the quadricQk of (5.14). We claim thatQk ∩

{
v > ε

}
has exactly one

connected component for everyε > 0. Indeed,Qk ∩
{
v > ε

}
can be represented

as ⋃

y1,...,y2n−k−1

⋃

ε′>ε

{
x2

1 + · · ·+ x2
k = ε′ + y2

1 + · · · + y2
2n−1−k

}
.

Sinceε′ is always positive, we hence have a smoothly parameterized family of
(k − 1)-dimensional spheres that are all connected. Consequently, the union is
also connected, as claimed.

To view the topology more adequately, in the casen = 2, we draw a short
movie consisting of the 3-dimensional slices

{
v = ε′

}
∩

(
R2n

∖
Qk

)
, whereε′ =

2
3
η, 1

2
η, 0, −1

2
η. To conceptualize (in casen = 2) the super-level sets

{
v > ε

}
∩

(
R

2n
∖
Qk

)
=

⋃

ε′>ε

{
v = ε′

}
∩

(
R

2n
∖
Qk

)
,

it suffices to pile up intuitively the images of the corresponding movie.
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Fig. 17: Sliced view of the growing of the two possible domains in case2 6 kλ 6 2n − 2

So letM c
>r̂+

λ

be the single connected component ofM∩
{
||z|| > r̂+

λ

}
that enters

Cη. The corresponding domaiñΩc
>r̂+

λ

can be located from one or the other side.
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Its prolongation up to the deeper sublevel set(·)>r̂−
λ

(viewed only insideCη) con-
sists of piling up the (blue) small symmetric regions or the (green) surrounding
regions drawn above.

We do the numbering so thatN
c,1

r̂+

λ

entersCη, being a (connected) hyperboloid

as drawn in the first picture of Figure 17 and so thatR̃
c,1

r̂+

λ

entersCη as one (con-

nected, blue or green) side of this hyperboloid. As previously in the two cases
kλ = 0 andkλ = 2n − 1, the Hartogs-Levi filling goes through exactly as in
the regular caseA for all otherR̃c,2

r̂+

λ

, . . . , R̃
c,kλ,c

r̂+

λ

. Next, by putting finitely many

Levi-Hartogs figures inRind
(
R̃

c,1

r̂+

λ

, η
)

we get holomorphic extension from the

domain (5.10) to [
Vδ

(
M c

>r̂−
λ

)
>r̂−λ

] ⋃
Rind

(
R̃

c,1

r̂+

λ

, η
)
.

The intersection of (5.10) with this open set is connected becauseR̃c,1

r̂+

λ

is con-

nected, and the union of both contains a well defined domainΩ̃c
>r̂−λ

obtained by

adding the (blue or green) slices of Figure 17.

§6. THE EXCEPTIONAL CASEkλ = 1

6.1. Illustration. To begin with the most delicate case, we draw a 3-dimensional
diagram showing a saddle-likeM localized in a (pseudo)cubeCη centered at̂pλ.

Cη

x

v

y

M

M−

>ε M+
>ε

R
−

ε

p̂λ

Cη

Mc2

>r̂
+

λ

Mc1

>r̂
+

λ

Fig. 18: Slices and superlevel sets at a Morse point of coindex kλ = 1

p̂λ r̂
−

λ

r̂
+

λ

R̃
c1,1

r̂
+
λ

R̃
c2,1

r̂
+

λ

R̃
∗

r̂
−

λ

{v = ε}

For everyε satisfying0 < ε < η, there are two connected componentsM−
>ε

andM+
>ε of M>r̂λ+ε ∩ Cη, namely the two upper tips of the saddle, defined in

equations by

M±
>ε :=

{
v = x2 − y2

1 − · · · − y2
2n−2

}
∩

{
± x > 0

}
∩

{
v > ε

}
.

With ε = 1
2
η, we are simply looking atM>r̂+

λ
∩ Cη. By descending induction

throughA andB, we are given two domains of holomorphic extensionΩ̃c1
>r̂+

λ

and

Ω̃c2
>r̂+

λ

whose boundary containsM−
>η/2 andM+

>η/2, respectively.

Firstly, we assume thatc2 6= c1. Since each one of the two pieces of hy-
persurfacesM−

>η/2 and M+
>η/2 has two sides, there are2 × 2 = 4 subcases
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to be considered for the relative disposition ofΩ−
>η/2 := Ω̃c1

>r̂+

λ

∩ Cη and of

Ω+
>η/2 := Ω̃c2

>r̂+

λ

∩ Cη, with c2 6= c1.

(a) Ω−
>η/2

(
resp. Ω+

>η/2

)
consists of the space lying above the hyperplane

{v = η/2} and below the left (resp. right) tip of the saddle, namely in
equations:

Ω±
>η/2 =

{
v > η/2

}⋂{
± x > 0

}⋂ {
v < x2 − y2

1 − · · · − y2
2n−2

}
.

(b) Ω−
>η/2 is the small nose as in(a) but Ω+

>η/2 consists of the other side,

i.e. of the (rather bigger) space lying inside
{
v > η/2

}
left to M+

>η/2,
namely in equations:

Ω+
>η/2 =

{
v > η/2

}∖({
x > 0

}⋂{
v 6 x2 − y2

1 − · · · − y2
2n−2

})
.

(c) Symetrically to(b), Ω+
>η/2 is the small nose as in(a) but

Ω−
>η/2 =

{
v > η/2

}∖({
x < 0

}⋂{
v 6 x2 − y2

1 − · · · − y2
2n−2

})
.

(d) Finally,Ω−
>η/2 is as in(c) andΩ+

>η/2 is as in(b).

The last subcase(d) cannot occur, because it is ruled out by property(iii)
of Proposition 5.3, which holds on the super-level set(·)>r̂+

λ
by the inductive

assumption.
Secondly, we assume thatc2 = c1. Then there can occur a subcase(a’) very

similar to(a), in whichc2 = c1, so thatΩ−
>η/2 andΩ+

>η/2 belong to thesameen-
closed relatively compact domain. But withc2 = c1, no subcase similar to(b) —
or to (c) — can occur, becauseM−

>η/2 ⊂ ∂Ω+
>η/2 — or M+

η/2 ⊂ ∂Ω−
>η/2 —

would then bound thesamerelatively compact domain from its both sides, but
we already know from the beginning of the proof, that one sideat least must
always contain the points at infinity.

Finally, with c2 = c1 = c, there remains the following last subcase (unseen
previously).

(e) Ω>η/2 := Ω̃c
>r̂+

λ

∩ Cη consists of the space lying above
{
v = η/2

}
and

above the saddle, namely

Ω>η/2 =
{
v > η/2

}⋂{
v > x2 − y2

1 − · · · − y2
2n−2

}
.

As M = ∂ΩM lies inCn with n > 2, whence2n− 2 > 2, there is at least one
dimension ofy ∈ R2n−2 which is missing in the left figure above. To view the
topology more adequately, coming back to the abstract quadric Q1 and assuming
n = 2, we plan to draw a short movie consisting of the 3-dimensional slices{
v = ε′

}
∩

(
R2n

∖
Q1

)
, whereε′ = 2

3
η, 1

2
η, 0, −1

2
η.

Recall that we are interested in the connected components ofthe super-level
sets {

v > ε
}
∩

(
R

2n
∖
Q1

)
=

⋃

ε′>ε

{
v = ε′

}
∩

(
R

2n
∖
Q1

)
.
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As suggested by this sliced union, to conceptualize these 4-dimensional (in case
n = 2) super-level sets, it suffices to pile up intuitively the images of the corre-
sponding movie.
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{
v = 1

2
η
} {

v = 0
}

merge

{
v = − 1

2
η
}

{
v = 2

3
η
}

Fig. 19: Sliced view of the merging of the two domains in subcase(a) of kλ = 1

Here, the second picture showsR̃
c1
r̂+

λ

∩ Cη (in blue, to the left) together with

R̃
c1
r̂+

λ

∩ Cη (in black, to the right). Then the third picture shows how thetwo

components do touch and the fourth one shows how they should be merged as
ε′ = −1

2
η becomes negative. The complete discussion follows in a while.

We next offer the movie of(b), the movie of(c) being obtained from it just by
a reflection across the hyperplane{x = 0}.

������
������
������
������
������
������

������
������
������
������
������
������

��
��
��
��
��

��
��
��
��
��

������
������
������
������
������

������
������
������
������
������

�
�
�
�
�
�

�
�
�
�
�
�

������
������
������
������
������

������
������
������
������
������

��
��
��
��
��
��

��
��
��
��
��
��

������
������
������
������
������

������
������
������
������
������

�
�
�
�
�

�
�
�
�
�

Fig. 20: Sliced view of the substraction of the left domain insubcase(b) of kλ = 1

substract

Here again, the second picture showsR̃
c1
r̂+

λ

∩ Cη (in blue, to the left) together

with R̃
c2
r̂+

λ

∩ Cη (the large (black) region, containing the small (blue) one). Then

the third picture, namely the sliceε′ = 0, shows a not allowed situation: the left
cone does boundtwo regions from itstwo sides, contrary to thea priori unique
relatively compact domaiñΩc1

r̂λ
⊂

{
||z|| > r̂λ

}
we are seeking to construct,

when starting from̃Ωc1
r̂+

λ

. The trick is then tosuppressthe (blue) small slice, or

equivalently to subtract it from the (black) large slice which contains it. Then the
black winning slice continues to grow up to

{
v = −η/2

}
(fourth picture). The

complete discussion follows in a while.
Finally, here is the (simpler) movie of(e).
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Fig. 21: Sliced view of the growing of the external domain in subcase(e) of kλ = 1

6.2. Jumping across the singular radius: merging process.Assumingkλ = 1,
we can now completeB in subcase(a), postponing subcase(a’). We look at
Figures 17 and 18.
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LetM c1
>r̂+

λ

∩Cη andM c2
>r̂+

λ

∩Cη be the two “nose” components ofM>r̂+

λ
entering

Cη. Here,c2 6= c1. By descending induction throughA andB, M c1
>r̂+

λ

andM c2
>r̂+

λ

bound some two relatively compact domains of holomorphic extensionΩ̃c1
>r̂+

λ

and

Ω̃c2
>r̂+

λ

with ∂Ω̃c1
>r̂+

λ

= M c1
>r̂+

λ

∪ N
c1
r̂+

λ

∪ R̃
c1
r̂+

λ

and∂Ω̃c2
>r̂+

λ

= M c2
>r̂+

λ

∪ N
c2
r̂+

λ

∪ R̃
c2
r̂+

λ

as

in property(ii) of Proposition 5.3, all the other properties also holding true on
(·)>r̂+

λ
.

We remind that the other domainsΩ̃c
>r̂+

λ

for c 6= c1 andc 6= c2 with 1 6 c 6 cλ

do pass regularly througĥrλ up to(·)>r̂−
λ

, thanks toA.

For i = 1, 2, denote bỹRci,k

r̂+

λ

, 1 6 k 6 kλ,ci
, the connected components ofR̃

ci

r̂+

λ

and byNci,j

r̂+

λ

, 1 6 j 6 jλ,ci
, with jλ,ci

> kλ,ci
, the components ofNci

r̂+

λ

. We do the

numbering so that̃Rc1,1

r̂+

λ

(resp. R̃c2,1

r̂+

λ

) entersCη to the left (resp. right), together

with N
c1,1

r̂+

λ

(resp.Nc2,1

r̂+

λ

), as illustrated by Figure 17.

As in the casekλ = 2n−1, for i = 1, 2, by means of extensional rinds that are
symmetric around the other componentsR̃

ci,2

r̂+

λ

, . . . , R̃
ci,kλ,ci

r̂+

λ

, we may achieve the

Hartogs-Levi filling exactly as inA, becauser(z)|M is regular inVδ

(
N

ci,j

r̂+

λ

)
, for

everyj such thatNci,j

r̂+

λ

is contained in the boundary of each of these other com-

ponents. Hence it remains only to discuss what is happening in a neighborhood
of the two components̃Rci,1

r̂+

λ

, i = 1, 2, and especially near the saddle pointp̂λ.

While descending from̂r+
λ to r̂−λ , the two regions̃Rc1,1

r̂+

λ

⊂ S2n−1

r̂+

λ

andR̃
c2,1

r̂+

λ

⊂

S2n−1

r̂+

λ

do merge as a single connected region contained inS2n−1

r̂−λ
that we will de-

note byR̃∗
r̂−
λ

, see the right Figure 17. In Morse theory ([31, 19]), one speaks of

attaching a one-cell, since in the merging process, the two regions are essentially
joined by means of a (thickened) segment directed along thex-axis. It follows
that the two hypersurfacesM c1

>r̂+

λ

andM c2
>r̂+

λ

do merge as a connected hypersur-

faceM∗
>r̂−

λ

containing them, and furthermore, that the two domainsΩ̃c1
>r̂+

λ

and

Ω̃c2
>r̂+

λ

do prolong uniquely up to the slightly deeper super-level set (·)>r̂−λ
, merg-

ing as a uniquely defined domaiñΩ∗
>r̂−

λ

which is relatively compact inCn and

which contains̃R∗
r̂+

λ

in its boundary∂Ω̃∗
>r̂+

λ

.

As c2 6= c1, the new number of domains in the interval(r̂λ−1, r̂λ) is lowered
by a unit,i.e. cλ−1 = cλ − 1 (if c2 = c1 as in(a’), the number would not change,
i.e. cλ−1 = cλ).

For i = 1, 2, let f ci

r̂+

λ

denote the restriction off ∈ O
(
Vδ

(
M>r

)
>r

)
to

Vδ

(
M ci

>r̂+

λ

)
>r̂+

λ

. By descending induction throughA andB, f ci

r̂+

λ

extends holomor-

phically and uniquely tõΩci

>r̂+

λ

. Then both functions do extend holomorphically
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and uniquely to
Vδ

(
M∗

>r̂−λ

)
>r̂−

λ

,

since they coincide withf nearp̂λ. We then introduce the two extensional rinds
Rind

(
R̃

ci

r̂+

λ

, η
)
, drawn in the right Figure 17. Two applications of Proposition 3.7

together with a geometrically clear connectedness property yield unique holo-
morphic extension to

Rind
(
R̃

c1
r̂+

λ

, η
)⋃

Rind
(
R̃

c2
r̂+

λ

, η
)⋃

Vδ

(
M∗

>r̂−
λ

)
r̂−λ

⋃
Ω̃c1

>r̂+

λ

⋃
Ω̃c2

>r̂+

λ

.

In sum, we have got unique holomorphic extension to

Vδ

(
M∗

>r̂−λ

)
r̂−
λ

⋃
Ω̃∗

>r̂−λ
.

To establish(iv) of Proposition 5.3 at(·)>r̂−λ
, it suffices to show(iii) , which

is checked to be equivalent. We observe that, for logical reasons only, a given
regionR̃c

r̂+

λ

for c 6= c1 andc 6= c2 can:

• be disjoint fromR̃
c1
r̂+

λ

and also disjoint from̃Rc2
r̂+

λ

;

• be contained iñRc1
r̂+

λ

or (exclusive “or”) inR̃
c2
r̂+

λ

;

• containR̃
c1
r̂+

λ

or (inclusive “or”) R̃c2
r̂+

λ

.

But we claim that in the latter case,R̃c
r̂+

λ

necessarily contains both regionsR̃
c1
r̂+

λ

andR̃
c2
r̂+

λ

. Indeed, otherwise the boundaryNc
r̂+

λ

of R̃c
r̂+

λ

should separatẽRc1
r̂+

λ

∩ Cη

from R̃
c2
r̂+

λ

∩Cη in the level set
{
v = η

2

}
∩Cη, which is impossible sinceNc

r̂+

λ

∩Cη

is exactly equal to
(
N

c1,1

r̂+

λ

∩ Cη

) ⋃(
N

c2,1

r̂+

λ

∩ Cη

)
, not more.

It follows in all cases thatNc
r̂+

λ

= ∂R̃c
r̂+

λ

is disjoint fromCη, hence it lies in
{
r̂−λ 6 ||z|| 6 r̂+

λ

}∖
Cη. Consequently, the regular flow of∇ rM

||∇rM ||
on

[
M ∩

{
r̂−λ 6 ||z|| 6 r̂+

λ

}] ∖
Cη

pushes down regularlyNc
r̂+

λ

, as a uniquely defined compact 2-codimensional

Nc
r̂−
λ

⊂ S2n−1

r̂+

λ

, disjointly from the newly created merged boundaryN∗
r̂−
λ

=

∂Ω̃∗
>r̂−λ

⊂ S2n−1

r̂−λ
. This information suffices now to check that(iii) and (iv) of

Proposition 5.3 are transmitted to(·)>r̂−λ
, just for logical reasons.

The proof ofB in casekλ = 1, subcase(a) is complete. Subcase(a’) involves
only minor differences.

6.3. Subtracting process.We now summarize the discussion of subcase(b), fo-
cusing only on topological aspects and dropping the formal considerations about
holomorphic extensions. For an adequate three-dimensional illustration, think of
a smoothly cut cylindrical piece of modelling clay in which athin finger drills a
hole.
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M

r̂λ
r̂λ

N
∗

r̂
−

λ

N
c1,2

r̂
+

λ

N
c1,1

r̂
+

λ
r̂+

λ

r̂−λ

Fig. 22: Three-dimensional view of subcase(b) at a point of Morse coindexkλ = 1

As in §5.6, in Cη, there enter exactly two domains̃Ωci

>r̂+

λ

, i = 1, 2, with

Ω̃c1
>r̂+

λ

⊂ Ω̃c2
>r̂+

λ

by the induction assumption. Also, there enter two connected

regionsR̃ci,1

r̃+

λ

⊂ S2n−1

r̂+

λ

, i = 1, 2, with R̃
c1,1

r̃+

λ

⊂ R̃
c2,1

r̃+

λ

. Their boundaries contain two

connected hypersurfacesN
ci,1

r̂+

λ

of S2n−1

r̂+

λ

, i = 1, 2, which enterCη as the two caps

of the third pic of Figure 19.
By descending the interval(r̂λ, r̂

+
λ ) up to (·)>r̂λ

, we get two regions̃Rci,1
r̂λ

,
i = 1, 2, that touch at̂pλ, namely the left cone and the exterior of the right cone
in the second pic of Figure 19.

While descending further to(·)>r̂λ−ε, with ε > 0 very small, the left cone
does merge with the right (white) cone. Observe that the points of this (white)
cone may be joined continuously to points of the (white) right cap of the first pic,
which by hypothesis lies outsidẽΩc2

>r̂+

λ

, hence in the same connected component

as the points at infinity. Consequently, we cannot prolong the left domainΩ̃c1
>r̂+

λ

so that its prolongation contains the left cone in the slice{v = 0} (third pic),
because no admissible prolongation would enjoy the relative compactness(i) of
Proposition 5.3. Hence we have no other choice except to suppressΩ̃c1

>r̂λ
when

attaining(·)>r̂λ
. We then get a new domaiñΩ∗

>r̂λ
defined as̃Ωc2

>r̂λ
minus the

closure ofΩ̃c1
>r̂λ

(subtraction process), which is checked to be relatively compact

in Cn. This domain then descends as a uniquely defined domainΩ̃∗
>r̂−

λ

at (·)>r̂−
λ

.

We also get a corresponding connected regionR̃∗
r̂−
λ

approximately equal tõRc2,1
r̂λ

minus the closure of̃Rc1,1
r̂λ

whose boundary contains a connecteddN∗
r̂−
λ

(bottom

right Figure 21), obtained by mergingNc1,1
r̂λ

with N
c2,1
r̂λ

.

The last subcase(e) above is topologically similar to what happens in§5.15,
hence the proof of Proposition 5.3 is complete. �
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analitica di più variabili complesse, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat.
(8) 22 (1957), 706–715.

[10] FORNÆSS, J.E.:The disc method, Math. Z.227(1998), no. 4, 705–709.
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