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positive unit sphere of c0. This generalizes results of W. T.

Introduction

Let FIN be the family of nonempty finite sets of positive integers. A block sequence is an infinite sequence (x n ) n of elements of FIN such that for every n one has max x n < min x n+1 (usually written as x n < x n+1 ). The combinatorial subspace (x n ) n given by (x n ) n is the set of finite unions x n 0 ∪ • • • ∪ x nm . Using this terminology, the Hindman's pigeonhole principle [2] of FIN states that every finite coloring of FIN is constant in some combinatorial subspace, or, equivalently, every equivalent relation on FIN with finitely many classes has a restriction to some combinatorial subspace with only one class. It is easy to see, for example by considering the equivalent relation defined by s ∼ t iff min s = min t, that this is no longer the case for equivalence relations with an arbitrary number of classes. Nevertheless, it is still possible to classify them, much in the spirit of the original motivation of F. P. Ramsey [4] for discovering his famous Theorem. A result of Taylor [5] states that every equivalence relation on FIN can be reduced, by restriction to a combinatorial subspace, to one of the following five canonical relations: min, max, (min, max), =, FIN 2 , naturally defined by s min t iff the minimum of s is equal to the minimum of t, s max t iff the maximum of s is equal to the maximum of t, s(min, max)t iff both minimum and maximum are the same. Following some geometric ideas exposed in Section 2, one can generalize FIN as follows: Given a positive integer k, let FIN k be the set of mappings x : N → {0, 1, . . . , k}, called k-vectors, whose support supp x = {n : x(n) = 0} is finite and with k in their range. One can naturally extend the union operation on FIN to the join operation ∨ on FIN k by (x ∨ y)(n) = max{x(n), y(n)}. Let T : FIN k → FIN k-1 be the mapping defined by T (x)(n) = max{x(n) -1, 0}. A kblock sequence (x n ) n is an infinite sequence of members of FIN k such that max supp x n < min supp x n+1 for every n. The k-combinatorial subspace (x n ) n defined by a k-block sequence (x n ) is the set of combinations of the form T i 0 x n 0 ∨ • • • ∨ T im x nm with the condition that i j = 0 for some j, and where T i x is defined by T i x(n) = max{x(n)i, 0} for i > 0 and T 0 = Id. Gowers has proved in [1] that FIN k possesses the exact analogue of the pigeonhole principle of FIN: Every equivalence relation on FIN k with finitely many classes has a restriction to some 2000 Mathematics Subject Classification. Primary 05D10; Secondary 46B25. This Research was supported through a European Community Marie Curie Fellowship.

combinatorial subspace with only one class. The aim of this paper is to characterize equivalence relations on FIN k with arbitrary number of classes. More precisely, we are going to give a non redundant finite list T k of equivalence relations such that any other equivalence relation on FIN k can be reduced, modulo restriction to some k-combinatorial subspace, to one in the list T k .

Indeed, the elements of T k are determined by characteristics of a typical k-vector. Easy examples of these are the minimum and maximum of a finite set, that determine the Taylor's list for FIN. Generalizing this, given an integer i with 1 ≤ i ≤ k let min i s be the least integer n such that s(n) = i. Another more complex example is the following. Given two integers i and l such that 1 ≤ l ≤ i -1 ≤ k, let us assign to a given vector s of FIN k the set of integers n such that min i-1 s ≤ n ≤ min i s and s(n) = l. We illustrate this with the following picture.

Figure 1. an example of invariant

So, our first task will be to guess all the natural characteristics of a k-vector. Although these characteristics are not well defined for an arbitrary k-vector, we will show that every k-block sequence will have a k-block subsequence, called here a system of staircases for which all the vectors have all natural characteristics well defined. The precise definitions are given in Section 3.

In order to show that every equivalence relation is, when restricted to some k-combinatorial subspace, in T k we follow the ideas of Taylor's proof [5]. Let us explain this. Given an equivalence relation ∼ on FIN one defines the coloring c : [FIN] [START_REF] Prömel | Canonical partition theorems for parameter sets[END_REF] → {0, 1} 4 by a = (a 0 , a 1 , a 2 ) →

         c(a)(0) = 1 iff a 0 ∼ a 1 c(a)(1) = 1 iff a 0 ∪ a 1 ∼ a 0 c(a)(2) = 1 iff a 0 ∪ a 1 ∼ a 1 c(a)(3) = 1 iff a 0 ∪ a 1 ∪ a 2 ∼ a 0 ∪ a 2 , (1) 
where [FIN] [START_REF] Prömel | Canonical partition theorems for parameter sets[END_REF] is the set of 3-sequences of finite sets (a 0 , a 1 , a 2 ) such that a 0 < a 1 < a 2 . Since [FIN] [START_REF] Prömel | Canonical partition theorems for parameter sets[END_REF] has a pigeonhole principle (this is a simple extension of Gowers' result), one can find a block sequence X = (x n ) n such that c is constant on [X] [START_REF] Prömel | Canonical partition theorems for parameter sets[END_REF] with value s 0 ∈ {0, 1} [START_REF] Ramsey | On a problem of formal logic[END_REF] . An analysis of the value s 0 identifies the restriction of the equivalence relation ∼ to X as one of the five relations min, max, (min, max), =, FIN 2 . Let us re-write the coloring c in a way that will be easy to generalize to FIN k . Fix an alphabet of countably many variables {x n } n . An ∼-equation e is a pair ((x i 0 , . . . , x i l ), (x j 0 , . . . , x jm )), written as

x i 0 ∪ • • • ∪ x i l ∼ x j 0 ∪ • • • ∪ x jm , such that 0 = i 0 < • • • < i l , j 0 < • • • < j m .
We say that equation e is true in X iff for every sequence a 0 < • • • < a max{i l ,jm} in X the corresponding substitutions a i 0 ∪ • • • ∪ a i l and a j 0 ∪ • • • ∪ a jm are ∼-related; we say that the equation e is false in X iff for every sequence a 0 < • • • < a max{i l ,jm} in X one has that a i 0 ∪ • • • ∪ a i l ∼ a j 0 ∪ • • • ∪ a jm . The equation e is decided in X if it is either true or false in X. Using this terminology, one can re-state the fact that the coloring c is constant on X by saying that the equations x 0 ∼ x 1 , x 0 ∪ x 1 ∼ x 0 , x 0 ∪ x 1 ∼ x 1 and x 0 ∪ x 1 ∪ x 2 ∼ x 0 ∪ x 2 are all decided in X. Taylor's proved that these four equations determine the equivalence relation ∼. For an arbitrary integer k, the list of equations to be considered is, obviously, longer. For example, for k = 2 the equations

x 0 ∪ x 1 ∪ T x 2 ∼ x 1 ∪ T x 2 and x 0 + T x 1 ∪ x 2 ∼ x 0 ∪ x 2 ,
need to be considered. So, the next goal, after one has identified the list T k , is to find a set L of ∼-equations characterizing a given equivalence relation ∼ on FIN k . The first candidate for L is the set of all equations. It turns out that the lists T k consists on all the equivalence relations for which every equation is always true or always false, independently of the k-block sequence considered. So it does not seem reasonable to try to find directly a k-block sequence deciding all equations. Instead, we first find a smaller list of equations decided in some k-block sequence, but at the same time large enough to use the inductive hypothesis to provide a richer list of equations, determining our given equivalence relation as one of the list T k .

It is worth to point out that we give an explicit description of T k in a way that it is possible to describe the number t k of equivalence relations in T k using standard arithmetic functions, as for example the incomplete Γ function:

t k = |T k | = e 2 k [Γ(k, 1) -Γ(k + 1, 1)] 2 + Γ(k + 1, 1) 2 .
Since FIN k is isomorphic to a net of the positive sphere of c 0 , our result implies the immediate analogue for those nets. For example, given an equivalence relation R on P S c 0 and given some δ > 0 there is an infinite dimensional block subspace X of c 0 and some equivalence relation R ′ in our finite list such that every R ′ -class in X is included in the δ-fattening of some R-class.

This paper is organized as follows. In Section 2 we introduce FIN k as a natural copy of a net of the positive sphere of c 0 , extending some standard concepts coming from Banach space theory to FIN k . We also state the W. T. Gowers Pigeonhole principle of FIN k . The notion of equation is introduced in Section 3, together with the natural characteristics of a vector of FIN k . We describe the vectors for which these invariants are well defined, and we show that they appear "everywhere". We also define the family T k . In Section 4 our main theorem is proved, and in Section 5 we give an explicit formula to compute the cardinality of T k . Sections 6 and 7 deal with the finite version of our main result, and with some consequences for equivalence relations on the positive sphere of c 0 .

First Definitions and Results

Recall that c 0 = c 0 (R) is the Banach space of sequences of real numbers converging to 0, with the sup-norm defined for a vector x = (x n ) n of c 0 by x = sup n |x n |. Let (e n ) n be its natural Schauder basis, i.e., e n (m) = δ n,m . The support of a vector x = (x n ) n , is defined as supp x = {n : x n = 0} and let c 00 be the linear subspace of c 0 consisting of the vectors x = (x n ) n with finite support, i.e., only finitely many of the coordinates of x are not zero. Given two vectors x and y of c 00 we write x < y to denote that max supp x < min supp y.

Let P S c 0 be the set of norm one positive vectors of c 0 , i.e., the set of all vectors x = (x n ) n such that x = 1, and such that x n ≥ 0, for every n, and let P B c 0 be the set of positive vectors of the unit ball of c 0 . Observe that P B c 0 is a lattice with respect to (x n ) n ∨(y n ) n = (max{x n , y n }) n and (x n ) n ∧ (y n ) n = (min{x n , y n }) n , with 0 = (0) n , and 1 = (1) n . Notice also that P S c 0 is closed under the operation ∨, and that x ∨ y = x + y if x and y have disjoint support. In general, given two subsets N ⊆ A of c 0 and a positive number δ we say that N is a δ-net of A iff for every a ∈ A there is some x ∈ N such that ax ≤ δ.

For a given δ with 0 < δ < 1, let k be the least integer such that 1/(1 + δ) k-1 ≤ δ, and let

ε = 1/(1 + δ). Let N δ ={x ∈ P B c 00 : x(i) ∈ {1, ε, ε 2 , . . . , ε k-1 , 0}} M δ ={x ∈ P S c 00 : x(i) ∈ {1, ε, ε 2 , . . . , ε k-1 , 0}}. Since ε i -ε i+1 = ε i (1 -ε) = ε i (δ/(1 + δ)) < δ and ε k-1 ≤ δ, it
follows that N δ and M δ are δ-nets of P B c 0 and of P S c 0 , respectively. The set N δ is a sub-lattice of P B c 0 with respect to ∨ and ∧, and it is closed under scalar multiplication by ε, identifying ε l = 0 for l ≥ k (which means that we identify the coordinates less than ε k with 0). Also, for two x, y ∈ M δ , we have that

x ∨ ε i y, ε i x ∨ y ∈ M δ , for every 0 ≤ i ≤ k -1. Finally, note that N δ = k-1 i=0 ε i M δ , a disjoint union.
We define the mapping Θ = Θ δ :

N δ → {0, 1, . . . , k} N by Θ((x m ) m )(n) = k -log ε (x n ) if x n = 0 0 if x n = 0.
We can now give an equivalent definition of FIN k using the mapping Θ, and therefore giving a geometrical interpretation of it.

Definition 2.1. Fix, for a given integer k, a positive real number δ = δ(k) such that 1/(1 + δ) k-1 = δ. Let FIN k = Θ(M δ ), i.e., the set of functions s : N → {0, 1, . . . , k} eventually 0, and with k in the range. The elements of FIN k are called k-vectors.

Observe that Θ"N δ = k-1 i=0 Θ"ε i M δ , and that Θ"ε i M δ is the set of all functions s : N → {0, 1, . . . , k} eventually 0, and with ki in the range. So, Θ"

ε i M δ = FIN k-i . Hence, Θ"N δ = k i=1 FIN i =: FIN ≤k , whose members are called (≤ k)-vectors.
We can transfer the algebraic structure of N k ⊆ c 00 to FIN ≤k via Θ. In particular, for s, t ∈ FIN ≤k , let the support of s be supp s = {n : s(n) = 0}; we write s < t to denote that max supp s < min supp t, define s ∨ t and s ∧ t by

(s ∨ t)(n) = max{s(n), t(n)} and (s ∧ t)(n) = min{s(n), t(n)},
and let T be the transfer of the multiplication by ε, i.e., for a (≤ k)-vector s, let

T (s) = Θ(εΘ -1 (s)) = (s -1) ∨ 0.
Let S : FIN k-1 → FIN k be an inverse map for T , defined for a (k -1)-vector a by

S(a)(n) = a(n) + 1 if n ∈ supp a 0 if not.
It turns out that FIN ≤k is a lattice with operations ∨ and ∧, and it is closed under T . We will use the order ≤ L to denote the lattice-order of FIN ≤k , i.e., for s, t ∈ FIN ≤k , we write s ≤ L t iff s ∧ t = s. Note that FIN i ∨ FIN j = FIN max {i,j} and FIN i ∧ FIN j = FIN min {i,j} . We will use s + t for s ∨ t whenever s < t.

We now pass to introduce some combinatorial notions. A sequence of k-vectors (s n ) is called a finite k-block sequence if (s n ) is finite and if s n < s n+1 for every n; if such sequence is infinite, then we call it a (infinite) k-block sequence. We write FIN

[∞] k , FIN [n]
k and FIN

[<∞] k to denote respectively the set of k-block sequences, finite k-block sequences of length n, and the set of finite k-block sequences.

The k-combinatorial subspace α defined by a finite or infinite k-block sequence α = (s n ) n is the set of all k-vectors of α defined by

α = Θ((LinSpan Θ -1 {s n } n ) ∩ N δ ),
where LinSpan A denotes the linear span of a given subset A of c 0 . Using this one has that FIN k = (Θe n ) n . Similarly, we define for a given integer i ≤ k the set α i of i-vectors of α. A main property of the k-block sequences (a n ) n is that e n → a n naturally extends to a lattice isomorphism between FIN k and (a n ) n that preserves the operation T .

For M ≤ N ≤ ∞, and α = (s n ) n<N let [α] [M ] be the set of k-block subsequences of α, defined as

[α] [M ] = {(s n ) n<M ∈ FIN [M ] k : s n ∈ α (0 ≤ n < M )}.
Without loss of generality we will identify [α] [START_REF] Gowers | Lipschitz functions on classical spaces[END_REF] with α .

Given two finite block sequences α and β, and two infinite ones A and B, we define α β if and only if α ∈ [β] [|α|] , α A if and only if α ∈ [A] [|α|] , and B A if and only if B ∈ [A] [∞] . Notice that all these definitions come from the notion of subspace. For example, A ∈ B if and only if the space generated by Θ -1 A is a subspace of the space generated by Θ -1 B.

For a k-block sequence A = (a i ) i and a ∈ A , since

A = Θ(LinSpan Θ -1 {a i } i ∩N δ ), we have that Θ -1 a ∈ Θ -1 {a i } i ∩ N δ . Therefore, Θ -1 a = m i=0 ε d i Θ -1 a i ,
for some m, and with possibly some

d i = 0. This implies that a = Θ( m i=0 ε d i Θ -1 a i ) = m i=0 Θ(ε d i Θ -1 a i ) = m i=0 T d i a i . Finally, an infinite sequence (A r ) r∈N of infinite k-block sequences A r = (a r n ) n is called a fusion sequence of A ∈ FIN [∞] k if for all r ∈ N: (a) A r+1 A r A, (b) a r 0 < a r+1 0 . The infinite k-block sequence A ∞ = (a r 0 ) r∈N is called the fusion k-block sequence of the sequence (M r ) r∈N . Definition 2.2. Given a k-block sequence A = (a n ) n , let C A : A → F IN k be the mapping satisfying a = ∞ n=0 T k-C A (a)(n) a n , (2) 
for every k-block vector a of A. Since Θ -1 a = n≥0 ε k-C A (a)(n) Θ -1 a n , for every a, the mapping C A is well defined. We call the sum in (2) the canonical decomposition of a in A. Notice that C A (a) ∈ FIN k for every a.

For two (≤ k)-vectors s and t, (a) we write s ⊑ t when t↾supp s = s, i.e., if t restricted to the support of s is equal to s, and (b) we write s ⊥ t when there is no u ∈ FIN ≤k such that u ⊑ s, t, i.e., if s(n) = t(n) for every n ∈ dom s ∩ dom t.

Using this, if s = ∞ n=0 T k-ln a n , then T k-ln a n ⊑ a, for every n, while T k-ln a n ⊥ T k-l n ′ a n ′ for every n = n ′ . It follows that:

Proposition 2.3. Fix A = (a n ) n , a ∈ A and an integer n. If there are some r ≤ k and m such that T k-r a n (m) = a(m) = 0, then necessarily C A (a)(n) = r (i.e., T k-r a n ⊑ a).
The following is Gowers' pigeonhole principle for FIN k .

Theorem 2.4. [1] If FIN k is partitioned into finitely many pieces, then there is A ∈ FIN

[∞] k

such that A is in only one of the pieces.

This naturally extends to higher dimensions. Lemma 2.5. [6] Suppose that f :

FIN [n] k → {0, . . . , l -1}. Then there is a block sequence X such that f is constant on [X] [n] .
Proof. The proof is done by induction on n. Suppose it is true for n -1. We can find, by a repeated use of Theorem 2.4, a fusion sequence (X r ) r , X r = (x r i ) i , such that for every r and every [START_REF] Gowers | Lipschitz functions on classical spaces[END_REF] and every r < s.

(b 0 , . . . , b n-2 ) ∈ [(x i i ) i<r ] [n-1] the coloring f is constant on the set {(b 0 , . . . , b n-2 , x) : x ∈ X r } with value ε((b 0 , . . . , b n-2 ), r). By construction one has that X r X s if r ≤ s. So it follows that ε((b 0 , . . . ., b n-2 ), r) = ε((b 0 , . . . , b n-2 ), s) for every (b 0 , . . . , b n-2 ) ∈ [θ r ] [n-

This allows us to define

ε : [X ∞ ] [n-1] → {0, 1, . . . , l -1} by ε(b 0 , . . . , b n-2 ) = ε((b 0 , . . . , b n-2 ), r),
for some (any) integer r, where X ∞ = (x i i ) i is the fusion k-block sequence of (X r ) r . This coloring ε can be easily interpreted as a coloring of FIN , so by the inductive hypothesis there is some X X ∞ such that ε is constant on [X] [n-1] , and therefore f is also constant on [X] [n] .

Equations, Staircases and Canonical equivalence Relations

Roughly speaking, terms are natural mappings that assign k-vectors to finite block sequences of k-vectors of a fixed length n, and which are defined from the operations + and T i of FIN k . For example, the mapping that assigns to a block sequence (a 1 , a 2 ) of k-vectors the k-vector a 1 + T a 2 is a k-term which can be understood as the mapping with two variables

x 1 , x 2 defined by f (x 1 , x 2 ) = x 1 + T x 2 .
From two fixed k-terms f and g of n variables and one equivalence relation ∼ on FIN k we can define the natural coloring c f,g : [FIN k ] [n] → {0, 1} via c f,g (a 1 , . . . , a n ) = 1 if and only if f (a 1 , . . . , a n ) ∼ g(a 1 , . . . , a n ). A k-equation will be f ∼ g. The pigeonhole principle in Lemma 2.5 gives that for every equation f ∼ g (f and g with n variables) there is some infinite block sequence A such that, either for every (a 1 , . . . , a n ) in [A] [n] , f (a 1 , . . . , a n ) ∼ g(a 1 , . . . , a n ), or for all (a 1 , . . . , a n ) in [A] [n] , f (a 1 , . . . , a n ) ∼ g(a 1 , . . . , a n ), i.e., in A the equation f ∼ g is either true or false. As we explained in the introduction, Taylor proves that an equivalence relation ∼ on FIN is determined by a list of 4 equations (precisely, x 0 ∼ x 1 , x 0 ∼ x 0 + x 1 , x 1 ∼ x 0 + x 1 and x 0 + x 1 + x 2 ∼ x 0 + x 2 ). This is going to be also the case for arbitrary k, of course with a more complex list of equations.

3.1. Terms and equations. Definition 3.1. Let X = {x n } n≥1 be a countable infinite alphabet of variables. Consider the trivial map x : X → N, defined by x n → x(x n ) = n. A free k-term p is a map of the form s • x where s is a k-vector, i.e., it is a map p : X → {0, . . . , k} such that supp p is finite, and k is in the range of p. A natural representation of p is

p = p(x 0 , . . . , x l ) = l i=0 T k-m i x i ,
where 0 ≤ m i ≤ k, and at least one m i = k. For example T 2 x 1 + T x 2 + x 4 , and x 1 + x 5 are both free 3-terms. Notice that, if p is a free k-term, then p • x -1 is a k-vector. A free (≤ k)-term is s • x, where s is a (≤ k)-vector. It follows that the set of free (≤ k)-terms is a lattice. For example

p(x 0 , . . . , x n ) ∨ q(x 0 , . . . , x m ) = (p • x -1 ∨ q • x -1 ) • x.
We also have defined the operator T for a k-term p(x 0 , . . . , x n ) by

T (p(x 0 , . . . , x n )) = (T (p • x -1 ) • x).
For every (≤ k)-term p(x 0 , . . . , x n ) = n i=0 T k-m i x i we consider the following kind of substitutions: (a) Given a sequence of free (≤ k)-terms t 0 , . . . , t n , consider the substitution of each x i by t i p(t 0 , . . . , t n ) = n i=0 T k-m i t i .

In the case that p and t 0 , . . . , t n are free k-terms, then p(t 0 , . . . , t n ) is also a free k-term. (b) For a block sequence (a 0 , . . . , a n ) of (≤ k)-vectors, replace each x i by a i p(a 0 , . . . , a

n ) = n i=0 T k-m i a i .
If p is a free k-term, and a 0 , . . . , a n are k-vectors, then the result of the substitution p(a 0 , . . . , a n ) is a k-vector. The main reason to introduce free k-terms is the following notion of equations. Definition 3.2. A free k-equation (free equation in short) is a pair {p(x 0 , . . . , x n ), q(x 0 , . . . , x n ′ )} of free k-terms. Given a fixed equivalence relation ∼ on FIN k , we will write the previous free equation as p(x 0 , . . . , x n ) ∼ q(x 0 , . . . , x n ′ ). Given s, t, i 0 and i 1 -vectors respectively, a free j 0 -term p, and a free j 1 -term q such that max{i l , j l } = k for l = 0, 1, we consider the equations of the form s + p ∼ t + q and p + s ∼ q + t, called k-equations (or equations, if there is no possible confusion). The substitutions of (b 0 , . . . , b n ) in the equation s + p ∼ t + q will be allowed only when b 0 > s, t, and for an equation p + s ∼ q + t, provided that b n < s, t. This last condition implies that only finitely many substitutions are allowed for this latter equations, in contrast with the equations of the form s + p ∼ t + q. Definition 3.3. We say that a k-equation s + p(x 0 , . . . , x n ) ∼ t + q(x 0 , . . . , x n ) (or p(x 0 , . . . , x n ) + s ∼ q(x 0 , . . . , x n ) + t) holds (or is true) in A iff for every (a 0 , . . . , a n ) in [A] [n+1] with a 0 > s, t (resp. a n < s, t), s + p(a 0 , . . . , a n ) ∼ s + q(a 0 , . . . , a n ) (resp. p(a 0 , . . . , a n ) + s ∼ q(a 0 , . . . , a n ) + s). The equation s + p(x 0 , . . . , x n ) ∼ t + q(x 0 , . . . , x n ) (or p(x 0 , . . . , x n ) + s ∼ q(x 0 , . . . , x n ) + t) is false in A iff for every (a 0 , . . . , a n ) in [A] [n+1] with a 0 > s, t (resp. a n < s, t), s + p(a 0 , . . . , a n ) ∼ s + q(a 0 , . . . , a n ) (resp. p(a 0 , . . . , a n ) + s ∼ q(a 0 , . . . , a n ) + s). The equation is decided in A iff it is either true in A or false in A.

It is clear that, given a k-equation p(x 0 , . . . , x n ) ∼ q(x 0 , . . . , x n ′ ), we can assume that n = n ′ , since we can extend the terms of the equation adding summands of the form T k x and not changing the "meaning" of the k-equation.

Some properties of equations that will be useful are given in the following.

Proposition 3.4. Suppose that all free k-equations with at most five variables are decided in a given k-block sequence A. Then:

(i) If x 0 + T k-i x 1 + x 2 ∼ x 0 + x 2 is true in A, then x 0 + T k-j x 1 + x 2 ∼ x 0 + x 2 is true in A for every j ≤ i. (ii) If x 0 + x 1 + T x 2 ∼ x 0 + T x 2 or T x 0 + x 1 + x 2 ∼ T x 0 + x 2 are true in A, then x 0 + x 1 + x 2 ∼ x 0 + x 2 is also true in A. (iii) If the equation x 0 + x 1 + T i x 2 ∼ x 0 + T i x 2 is true in A, then the equation x 0 + x 1 +
T j x 2 ∼ x 0 + T j x 2 also is true in A for every j ≤ i. (iv) If the equation T i x 0 + x 1 + x 2 ∼ T i x 0 + x 2 is true in A, then the equation T j x 0 + x 1 +

x 2 ∼ T j x 0 + x 2 also is true in A for every j ≤ i. (v) If the equation x 0 + T k-r 1 x 1 + T k-r 0 x 2 ∼ x 0 + T k-r 0 x 2 holds, then also the equation x 0 + T k-r 2 x 1 + T k-r 0 x 2 ∼ x 0 + T k-r 0 x 2 for every r 1 > r 2 and r 0 .

Proof. Suppose that the k-block sequence A decides all the equations with at most five variables.

(i): Fix j < i. Then,

x 0 + T k-i x 1 + T k-j x 2 + x 3 ∼ x 0 + T k-i (x 1 + T i-j x 2 ) + x 3 ∼ x 0 + x 3 hold in A. (3) 
Hence,

x 0 + T k-i x 1 + (T k-j x 2 + x 3 ) ∼ x 0 + (T k-j x 2 + x 3 ) holds in A, (4) 
and we are done.

(ii): Suppose now that x 0 + x 1 + T x 2 ∼ x 0 + T x 2 is true in A. Then

x 0 + x 2 + T x 3 ∼ x 0 + T x 3 and x 0 + x 1 + x 2 + T x 3 ∼ x 0 + T x 3 are true in A. (5) 
Hence, x 0 + x 1 + x 2 + T x 3 ∼ x 0 + x 2 + T x 3 holds in A, and therefore,

x 0 + x 1 + x 2 ∼ x 0 + x 2 is true in A.
(iii): Suppose that x 0 + x 1 + T i x 2 ∼ x 0 + T i x 2 is true in A, and fix j ≥ i. Then, x 0 + x 1 + x 2 + T j (x 3 + T i-j x 4 ) ∼ x 0 + x 1 + x 2 + T j x 3 + T i x 4 ∼ x 0 + T i x 4 hold in A, and

x 0 + x 1 + T j (x 2 + T i-j x 3 ) ∼ x 0 + x 1 + T j x 2 + T i x 3 ∼ x 0 + T i x 3 hold in A, (6) 
which implies what we wanted.

(iv): This is showed in a similar manner that (iii). (v): Fix r 1 > r 2 and r 0 and suppose that the equation

x 0 + T k-r 1 x 1 + T k-r 0 x 2 ∼ x 0 + T k-r 0 x 2 holds in A. Then, x 0 +T k-r 2 x 1 +T k-r 1 x 2 +T k-r 0 x 3 ∼ x 0 +T k-r 1 (T r 1 -r 2 x 1 +x 2 )+T k-r 0 x 3 ∼ x 0 + T k-r 0 x 3 and (x 0 +T k-r 2 x 1 )+T k-r 1 x 2 +T k-r 0 x 3 ∼ x 0 +T k-r 2 x 1 ∼ T k-r 0 x 3 holds in A. Therefore, x 0 + T k-r 2 x 1 ∼ T k-r 0 x 3 ∼ x 0 + T k-r 0 x 3 is true in A.
3.2. Systems of staircases, canonical and staircase equivalence relations. Classifying equivalence relations of FIN k is roughly the same as finding properties of a typical k-vector.

One of these properties can be the cardinality, or, for example, the minimum or maximum of its support. Indeed Taylor's result on FIN tells that these are the relevant properties of 1-vectors.

For an arbitrary k > 1, one expects a longer list of properties. One example is obtained by considering for a given k-vector a the least integer n of the support of a such that a(n) = k; another one is obtained by fixing i with 1 ≤ i ≤ k and considering the least n such that a(n) = i. This is not always well defined, since for i < k there are k-vectors where i does not appear in their range. Nevertheless, this last property seems very natural to consider. Indeed we are going introduce a type of k-block sequences, called systems of staircases, where these properties, and some others, are well defined for every k-vector of their combinatorial subspaces.

Definition 3.5. Given an integer i ∈ [1, k] let min i , max i : F IN k → N be the mappings min i (s) = min s -1 {i}, max i (s) = max s -1 {i}, if defined, and 0 otherwise. A k-vector a is a system of staircases (sos in short) if and only if

(i) Range s = {0, 1 . . . , k}, (ii) min i a < min j a < max j a < max i a, for i < j ≤ k, (iii) for every 1 ≤ i ≤ k, Range a↾[min i-1 a, min i a] = {0, . . . , i}, Range a↾[max i a, max i-1 a] = {0, . . . , i}, Range a↾[min k a, max k a] = {0, . . . , k}.
The following figure illustrates the previous definition. A block subspace A = (a n ) n is a system of staircases iff every k-vector in A is an sos. In the next proposition we show, among other properties, that for every k-block sequence A there is sos

B ∈ [A] [∞] .
Proposition 3.6.

(i) T preserves sos, i.e., if a is an sos k-vector, then T a is an sos (k -1)-vector.

(ii) T k-j a+b, a+T k-j b are sos's, provided that a < b are sos's. Therefore, for every k-term p(x 0 , . . . , x n ) and every block sequence of sos (a 0 , . . . ,

a n ) ∈ [FIN k ] [n+1]
, the substitution p(a 0 , . . . , a n ) is also an sos. (iii) A k-block sequence A = (a n ) n is an sos if and only if a n is an sos for every n. (iv) If A is an sos, then any other B A is also an sos. (v) For every A there is some B A which is an sos.

Proof. It is not difficult to prove (i) and (ii) (for the last part of (ii), one can use induction on the complexity of the k-term p). To show (iii), let us suppose that a n is an sos for every n, and let us fix a ∈ (a n ) n . Then there is a k-term p(x 0 , . . . , x n ) such that p(a 0 , . . . , a n ) = a. Therefore, by (ii), a is an sos. Assertion (iv) easily follows from (ii). Finally, Let us prove (v):

Fix A = (a n ) n . For each n, let c n = k j=1 T k-j a (2k-1)n+j-1 + k-1 j=1 T k-(k-j) a (2k-1)n+k-1+j .
Notice that for every n one has that

Range c n ↾[0, min k (c n )] = Range c n ↾[max k (c n ), ∞) = {0, . . . , k}. Therefore, Range T k-j c n ↾[0, min j T k-j (c n )] = Range T k-j c n ↾[max j T k-j (c n ), ∞) = {0, . . . , j} for each j ≤ k. For n ≥ 0, let b n = k j=1 T k-j c n(3k-1)+j-1 + k j=1 T k-j c n(3k-1)+k-1+j + k-1 j=1 T k-(k-j) c n(3k-1)+2k-1+j . Now it is not difficult to prove that every b n is an sos. Definition 3.7. An equivalence relation ∼ on F IN k is canonical 1 in A if and only if every k-equation are decided in every sos B ∈ [A]
in the same way, i.e., iff for every k-equation p ∼ q, either for every sos B ∈ [A] one has that p ∼ q is true in B, or for every sos B ∈ [A] one has that p ∼ q is false in B. We will say that ∼ is canonical if it is canonical in FIN k .

Canonical equivalence relations are those for which all the equations p ∼ q are decided in every sos in the same way. It is not difficult to see that all the equivalence relations of the list {min, max, (min, max), =, FIN 2 } are canonical in FIN. Taylor's result for FIN says that there are no more canonical equivalence relations than the ones in this list. It will be shown later that for every k there is also a finite list of canonical equivalence relations. Indeed we will give an explicit description of how canonical equivalence relations look like.

In order to do the same to the equivalence relations in FIN k we have to give a list of relations naturally defined for a typical sos. Definition 3.8. For a set X, a k-block sequence A, and an arbitrary map f : A → X we define the relation R f on A by sR f t if and only if f (s) = f (t). Whenever there is no possible confusion, we are going to use the notation sf t instead of sR f t. Now fix an sos A. Recall that min i (s) = min{n : s(n) = i} for a given integer i ∈ [1, k] and s ∈ A . This mapping can be interpreted as min i : A → F IN i in the following way

min i (s)(n) = i if n = min i (s) 0 otherwise.
Extending this, define, for I ⊆ {1, . . . , k}, the mapping min

I : A → FIN max I ⊆ FIN ≤k by min I (s)(n) = i if n = min i (s)
, for i ∈ I and 0 otherwise, i.e., min

I (s) = {(min i (s), i) : i ∈ I},
and extended by 0 in the rest. Similarly, let

max i (s)(n) = i if n = max i (s) 0 otherwise,
and let max I :

F IN k → F IN max I be defined by max I (s) = {(max i (s), i) : i ∈ I}, again
extended by 0. Clearly min I = i∈I min i and max I = i∈I max i , where for two mappings f, g :

A → FIN ≤k we define (f ∨ g)(s) = f (s) ∨ g(s).
We now introduce a more sophisticated class of functions. For l ≤ i -1, let θ 0 i,l , θ 1 i,l : A → F IN l be the mappings defined by

θ 0 i,l (s) ={(n, l) : n ∈ (min i-1 (s), min i (s)) & s(n) = l},
extended by 0, and

θ 1 i,l (s) ={(n, l) : n ∈ (max i (s), max i-1 (s)) & s(n) = l},
extended by 0. In other words, for a given integer n

θ 0 i,l (s)(n) = l if n ∈ (min i-1 (s), min i (s)
) and s(n) = l 0 otherwise, and

θ 1 i,l (s)(n) = l if n ∈ (max i (s), max i-1 (s)) and s(n) = l 0 otherwise.
For example, for k = 4, i = 3, l = 2 and a given sos 4-vector s, θ 2 3,2 (s) is the 2-vector such that (θ 2 3,2 (s))(n) = 2 for every n such that (a) s(n) = 2, and (b) n is in the interval between min 2 (s) (i.e., the first m such that s(m) = 2) and min 3 (s) (i.e., the first m such that s(m) = 3), and it is zero otherwise.

For 1 ≤ l ≤ k, let

θ 2 l (s) = {(n, l) : n ∈ (min k (s), max k (s)) & s(n) = l}
extended by zero. We illustrate this with another example: For k = 4, l = 3 and an sos 4-vector s, θ 2 3 (s) is the 3-vector with value l = 3 in every element n of the support of s such that (a) s(n) = 3, and (b) n is in between min 4 (s) and max 4 (s), and 0 otherwise.

By technical convenience, we declare θ 0 i,-1 , θ 1 i,-1 and θ 2 -1 the 0 mapping (hence, the equivalence relations associated to them are all equal to FIN 2 k ). Also, for I = ∅, the mappings min I and max I are simply the 0 functions, i.e., 0(s)(n) = 0 for all s and n. Remark 3.9. (i) Sometimes we will use min i or max i as a integers instead of i-vectors, i.e., for example min i (s) will denote the unique integer n such that min i (s)(n) = i. (ii) Also, we can extend the mappings f defined before for FIN k to all FIN ≤k by setting f (s) = f (s), if it is well defined, and f (s) = 0, if not. For example, for a (≤ k)-vector s,

min i (s)(n) = i iff i ∈ Range s
and n is the minimum m such that s(m) = i, and min i (s) = 0 otherwise; and θ 0 i,l (s) will have the same definition, provided that the mappings min i-1 and min i are well defined for s, and so on.

Proposition 3.10. Suppose that l is such that -1 < l ≤ i -1. Then, (i) ∼ θ 0 i,l ⊆ ∼ min i-1 ∩ ∼ min i , ∼ θ 1 i,l ⊆ ∼ max i ∩ ∼ max i-1 , and ∼ θ 2 l ⊆ ∼ min k ∩ ∼ max k . (ii) ∼ θ 2 l ⊆ ∼ θ 2 l+1 and ∼ θ ε i,l ⊆ ∼ θ ε i,l+1 .
Proof. We prove the result in (i) for θ 0 i,l . The other cases can be shown in a similar way. Suppose that

θ 0 i,l (s) = θ 0 i,l (t); we show that min i-1 (s) = min i-1 (t). Let n be such that min i-1 (t)(n) = i -1. By symmetry, it suffices to prove that s(n) = i -1. So, let r be the unique integer such that T k-C A (t)(r) a r (n) = i -1. Note that C A (t)(r) ≥ i -1.
There are two cases to consider: (a) C A (t)(r) = i -1. Since a r is an sos, there is some m ≥ n such that T k-C A (t)(r) a r (m) = l, and hence θ 0 i,l (t)(m) = l and θ 0 i,l (s)(m) = l. This implies that C A (s)(r) = C A (t)(r), and hence

T k-C A (t)(r) a r ⊑ s. Hence, s(n) = T k-C A (t)(r) a r (n) = i -1. (b) C A (t)(r) > i-1. Then, θ 0 i,l is well defined for T k-C A (t)(r) a r , and θ 0 i,l (T k-C A (t)(r) a r ) ⊑ θ 0 i,l (t) = θ 0 i,l (t) 
, which implies that T k-C A (t)(r) a r ⊑ s, and again we are done.

Let us now prove the result for θ 2 l in (ii). Suppose that

θ 2 l (s) = θ 2 l (t), i.e., {n ∈ [min k (s), max k (s)] : s(n) = l} = {n ∈ [min k (s), max k (s)] : t(n) = l}. Let n ∈ (min k (s), max k (s)) be such that s(n) = l + 1. We show that t(n) = l + 1. Let r be the unique integer such that T k-C A (s)(r) a r (n) = l + 1. Then, C A (s)(r) ≥ l + 1, and since a r is an sos, T k-C A (s)(r) a -1 r {l} = ∅. Moreover, Claim. (T k-C A (s)(r) a r ) -1 {l} ∩ (min k (s), max k (s)) = ∅.
Proof of Claim: Let r 0 , r 1 be the unique integers such that a r 0 (min

k (s)) = a r 1 (max k (s)) = k.
Observe that r 0 ≤ r ≤ r 1 . There are two cases: If r 0 < r < r 1 , then we are done since

(T k-C A (s)(r) a r ) -1 {l} ∩ [min k (s), max k (s)] = (T k-C A (s)(r) a r ) -1 {l} is non empty.
Suppose that r 0 = r (the case r 1 = r is similar). Then, C A (s)(r) = k, and min k s = min k a r . So, (a r ) -1 {l} ∩ (min k (a r ), max k (s)) = ∅, since a r is an sos, and therefore Range a r ↾ (min k a r , max k a r ) = {0, . . . , k}.

Now that for every

m ∈ (T k-C A (s)(r) a r ) -1 {l} ∩ (min k s, max k s) one has that t(m) = l, since (T k-C A (s)(r) a r ) -1 {l} ∩ (min k s, max k s) ⊆ θ 2 l (t). By Proposition 2.3, C A (t)(r) = C A (s)(r), and hence T k-C A (s)(r) a r ⊑ t, which implies that t(n) = T k-C A (s)(r) a r (n) = s(n) = l.
The second inclusion in (ii) is shown in a similar manner. The details are left to the reader.

The collection of mappings introduced in Definition 3.8 can be divided into pieces as follows.

Definition 3.11. Let F min = {min 1 , . . . , min k }, F max = {max 1 , . . . , max k }, F mid ε = {θ ε i,l : i ∈ {1, . . . , k} l ∈ {1, . . . , i -1}}, for ε = 0, 1, and

F mid = {θ 2 l : l ∈ {1, . . . , k}} ∪ {0}. Set F = F min ∪ F max ∪ F mid 0 ∪ F mid 1 ∪ F mid .
Given a k-block sequence A we say that a function f :

A → FIN ≤k is a staircase function (in A) if it is in the lattice closure of F. An equivalence relation ∼ in A is a staircase (in A) iff ∼ = ∼ f
for some staircase mapping f . Definition 3.12. Let f, g : A → FIN k be two functions defined on the k-combinatorial subspace defined by A. (i) We say that f and g are incompatible, and we write f ⊥ g, when f (s) ⊥ f (s) for every s ∈ A . (ii) We write f < g to denote that f (s) < g(s) for every s ∈ A . (iii) We say that f and g are equivalent (in A), and we write f ≡ g, when ∼ f ≡ ∼ g , i.e., if f and g define the same equivalence relation in A.

Remark 3.13. The family F is pairwise incompatible, i.e. if f = g in F then f ⊥ g. Also, if f < g then f ⊥ g.

The following makes the notion of staircase relation more explicit. Proposition 3.14. Suppose that A is an sos, and suppose that f : A → FIN ≤k . Then the following are equivalent: (i) f is staircase. (ii) There are

I ε ⊆ {1, . . . , k}, J ε ⊆ {j ∈ I ε : j -1 ∈ I ε }, (l (ε) j ) j∈Jε with l (ε) j ≤ j -1 (for ε = 0, 1) and l (2) k such that f = min I 0 ∨ j∈J 0 θ 0 j,l (0) j ∨ θ 2 l (2) k ∨ max I 1 ∨ j∈J 1 θ 1 j,l (1) j 
.

We say that (I 0 , J 0 , (l

(0) j ) j∈J 0 , I 1 , J 1 , (l (1) 
j ) j∈J 1 , l (2) 
k ) are the values of f . (iii) Either f = 0 or there is a unique sequence

f 0 < f 1 < • • • < f n , f 0 = 0 such that f ≡ n i=0 f i in A.
Proof. This decomposition is a direct consequence of the fact that F is a pairwise incompatible family and the inclusions exposed in Proposition 3.10. Proposition 3.15. Fix a staircase mapping f with decomposition

f = f 0 ∪ • • • ∪ f n with f 0 < • • • < f n in F, an sos A = (a n ) n and k-vectors s and t of A. Then (i) f (s) = f (t) if and only if f i (s) = f i (t) for every 0 ≤ i ≤ n. (ii) f (s) = f (t) iff f (s↾supp t) = f (t) and f (t↾supp s) = f (s). 2 2
Notice that s↾supp t is not necessarily a k-vector, but we can still apply f to it; see Remark 3.9.

(iii) Suppose that s 0 , s 1 < t 0 , t 1 are (≤ k)-vectors of A such that s 0 + t 0 , s 1 + t 1 and s

0 + t 1 are k-vectors. If f (s 0 + t 0 ) = f (s 1 + t 1 ), then f (s 0 + t 0 ) = f (s 0 + t 1 ).
Proof. (ii) follows from the fact that f i < f j for i < j. Let us check (ii) using (i). We may assume that f ∈ F. There are several cases to consider.

(a) f = min i . Suppose that min i (s) = min i (t). Then, i ∈ Range s↾supp t, and hence min i (s↾ supp t) = min i s = min i t = min i (t↾supp s). Suppose now that min i s < min i t. Then, min i s <

min i t ≤ min i (t↾supp s). So, min i (t↾supp s) = min i s. (b) f = max i is shown in the same way. (c) f = θ 0 i,l . Suppose that θ 0 i,l (s) = θ 0 i,l (t).
Then, by (a), min j s = min j t↾supp s, and min j t = min j s↾supp t, where j = i -

1 or j = i. Fix n ∈ (min i-1 (s), min i (s)) such that s(n) = l. Then, t(n) = l, and hence θ 0 i,l (t↾s)(n) = l. Now suppose that θ 0 i,l (t↾s)(n) = l. Then, t(n) = l, and hence s(n) = l.
Suppose that θ 0 i,l (s) = θ 0 i,l (t↾supp s) and θ 0 i,l (t) = θ 0 i,l (s↾supp t). Then, min j (s) = min j (t) for

j = i -1, i. Fix n such that θ 0 i,l (s)(n) = l. Then, θ 0 i,l (t↾supp s)(n) = l, which implies that t(n) = l. (d) The cases of f = θ 1
i,l and f = θ 2 l have a similar proof that (c). Let us prove (iii). To do this, fix s 0 , s 1 , t 0 , t 1 as in the statement, and suppose that f (s 0 + t 0 ) = f (s 1 + t 1 ). Suppose that f = min i . If min i (s 0 + t 0 ) = min i (s 0 ), then clearly min i (s 0 + t 0 ) = min i (s 0 + t 1 ). If not we have that min i (s 0 + t 0 ) = min i (t 0 ), hence by our assumptions min i (s 1 + t 1 ) = min i (t 0 ). Since s 1 < t 0 , it follows that min i (s 1 + t 1 ) = min i (t 1 ) and we are done. Suppose now that f = max i . If max i (s 0 + t 0 ) = max i (s 0 ), then max i (s 1 + t 1 ) = max i (s 1 ) (now using the fact that t 1 > s 0 ), and therefore, t 1 is a (< i)-vector. So, max i (s 0 +t 0 ) = max i (s 0 +t 1 ). If max i (s 0 + t 0 ) = max i (t 0 ), then max i (s 1 + t 1 ) = max i (t 1 ) and we are done. Suppose now that f = θ 0 i,l and suppose that θ 0 i,l (s

0 + t 0 )(n) = θ 0 i,l (s 1 + t 1 )(n) = l. If s 1 (n) = l, then s 0 (l) = l, and hence (s 0 + t 1 )(n) = l. If t 1 (n) = l, then clearly (s 0 + t 1 )(n) = l.
By symmetry, we are done in this case. The cases f = θ 0 i,l and f = θ 2 l have a similar proof. We leave the details to the reader. Proposition 3.16. Any staircase equivalence relation is canonical.

Proof. By Proposition 3.15, it suffices to prove the result only for staircases functions f ∈ F. So, we fix f ∈ F, set ∼ = ∼ f and consider an equation p(x 0 , . . . , x n ) ∼ q(x 0 , . . . , x n ) where p(x 0 , . . . ,

x n ) = n d=0 T k-m d x d and q(x 0 , . . . , x n ) = n d=0 T k-u d x d . Set p * = p • x -1 and q * = q •x -1 . So p * (d) = m d and q * (d) = u d for d ≤ n
and 0 for the rest. Fix two sos's A and B (B can be equal to A), and suppose that p(a 0 , . . . , a n ) ∼ f q(a 0 , . . . , a n ) for some (a 0 , . . . , a n )

∈ [A] [n+1] . We show that p(b 0 , . . . , b n ) ∼ q(b 0 , . . . , b n ) for every (b 0 , . . . , b n ) ∈ [B] [n+1]
. There are several cases to consider depending on f . (a) f = min i . Let d 0 be the first d such that m d ≥ i, and d 1 be the first d such that u d ≥ i.

Then min i (p(a 0 , . . . , a n )) = min i (T k-m d 0 )a d 0 and min i (q(a 0 , . . . , a n )) = min i (T k-u d 1 )a d 1 . Since min i (T k-m d 0 )a d 0 = min i (T k-u d 1 )a d 1 , we have that d 0 = d 1 (otherwise, a d 0 ⊥ a d 1 ). Hence m d 0 = u d 1 (because T r a ⊥ T s a if r = s)
. So p and q satisfy that for every d < d 0 , both m d and u d are less than i and

m d 0 = u d 0 = i. This implies that min i p(b 0 , . . . , b n ) = T k-m d 0 b d 0 = min i q(b 0 , . . . , b n ). (b) f = max i has a similar proof. (c) f = θ 0 i,l . By Proposition 3.10, ∼ θ 0 i,l ⊆ ∼ min i-1 ∩ ∼ min i . Hence min i-ε p(a 0 , . . . , a n ) = min i-ε q(a 0 , . . . , a n ) for ε = 0, 1. Define, for ε = 0, 1, d ε as the least integer d such that p * (d j ) = q * (d j ) ≥ i -1 + ε. So, d 0 ≤ d 1 and θ 0 i,l p(a 0 , . . . , a n ) =θ 0 i,l d 1 d=d 0 T k-m d a d (7) θ 0 i,l q(a 0 , . . . , a n ) =θ 0 i,l d 1 j=d 0 T k-u d a d . (8) 
We see now that for every d ∈ [d 0 , d 1 ] either m d and u d are both less than l or Proposition 3.17. Suppose that ∼ is a staircase equivalence relation with values I 0 , J 0 , I 1 , J 1 , (l

m d = u d . To do this, suppose that d ∈ [d 0 , d 1 ] is such that m d ≥ l. Then θ 0 i,l T k-m d a d ⊑ θ 0 i,l p(a 0 , . . . , a n ) = θ 0 i,l q(a 0 , . . . , a n ). Since for d = d ′′ in [d 0 , d 1 ] one has that T k-u d ′ a d ′ ⊥ T k-m d a d , it follows that T k-m d a d ⊑ T k-u d a d ,
(0) j ) j∈J 0 , (l (1) j ) j∈J 1 and l (2)
k , and suppose that A is an sos.

(i) Let 0 ≤ r 0 < r 1 ≤ r 2 . If T k-r 0 x 0 + T k-r 2 x 1 + x 2 ∼ T k-r 0 x 0 + x 2 is true in A, then r 1 / ∈ I 0 . (ii) If l 2 k = -1, then the equation x 0 + x 1 + x 2 ∼ x 0 + x 2 is true in A. If l 2 k = -1
, then for every 0 < l < l 2 k the equation x 0 + T k-l x 1 + x 2 ∼ x 0 + x 2 holds in A. (iii) Suppose that i / ∈ I 0 , and let j = max

I 0 ∩ [1, i]. Then the equation T k-j x 0 + T k-i x 1 + x 2 ∼ T k-j x 0 + x 2 is true in A. (iv) If l (0) j = -1, then the equation T k-(j-1) x 0 + T k-(j-1) x 1 + x 2 ∼ T k-(j-1) x 0 + x 2 is true in A. (v) Suppose that l (0) j = -1, and let h < l (0) j . Then the equation T k-(j-1) x 0 + T k-h x 1 + x 2 ∼ T k-(j-1) x 0 + x 2 is true in A.
(vi) Suppose that p(x 0 , . . . , x n ) is a (≤ k)-term, and suppose that p(x 0 , . . . ,

x n ) + T k-l x n+1 + x n+3 ∼ p(x 0 , . . . , x n ) + T k-l x n+2 + x n+3 holds in A. Then p(x 0 , . . . , x n ) + T k-l x n+1 + x n+2 ∼ p(x 0 , . . . , x n ) + x n+2 also holds.
The analogous symmetric results are also true.

Proof. We give some of the proofs. The rest are quite similar, and the details are left to the reader. The main idea is to use the decomposition of f = n i=0 f i be the decomposition of f into elements of

F with f 0 < • • • < f n . (i): Fix (a 0 , a 1 , a 2 ) ∈ [A] [3] . Then min r 1 (T k-r 0 a 0 + T k-r 2 a 1 + a 2 ) = min r 1 T k-r 2 a 1 , while min r 1 (T k-r 0 a 0 + a 2 ) = min r 1 (a 2 ). Hence min r 1 (T k-r 0 a 0 + T k-r 2 a 1 + a 2 ) = min r 1 (T k-r 0 a 0 + a 2 ).
For the rest of the points (ii) to (vi) one shows that in each case the corresponding equations for ∼ f i hold for every 0 ≤ i ≤ r, and then use Proposition 3.15 to conclude that the desired equation also holds. 

2 k = -1, then k ∈ I 0 ∩ I 1 . Hence if ∼ is a min-relation or a max-relation, then l 2 k = -1. (ii) The equation x + s ∼ x + t is true if ∼ is a min-relation and the relation s + x ∼ t + x is true if ∼ is a max-relation.

The main Theorem

The next theorem is the main result of this paper.

Theorem 4.1. For every k and every equivalence relation ∼ on FIN k there is an sos B such that ∼ restricted to B is a staircase equivalence relation.

Again we use Taylor's result, now to expose the role of equations. Fix an equivalence relation ∼ on FIN. A diagonal procedure shows that we can find a block sequence A = (a n ) n such that for every i 0 , i 1 , i 2 , i 3 , j 0 , j 1 , j 2 , j 3 ∈ {0, 1} and every s, t ∈ A , the equation

s + T i 0 x 0 + T i 1 x 1 + T i 2 x 2 + T i 3 x 3 ∼ t + T j 0 x 0 + T j 1 x 1 + T j 2 x 2 + T j 3 x 3 is decided in A. (9)
For arbitrary k, the corresponding result is stated in Lemma 4.2. We consider the same cases considered in original Taylor's proof: (a) x 0 ∼ x 1 holds. Then ∼ is A 2 on A : Let s, t ∈ A , pick u > s, t, and hence s, t ∼ u. (b) x 0 ∼ x 1 is false, x 0 + x 1 ∼ x 0 is true, and x 0 + x 1 ∼ x 1 is false. Let us check that ∼ is ∼ min on A . Fix s, t ∈ A . Suppose that s ∼ min t, and let n be the least integer such that C A (s)(n) = 1. Then s = a n + s ′ , t = a n + t ′ , and using the fact that x 0 + x 1 ∼ x 0 holds, s, t ∼ a n . Suppose now that s ∼ min t, and suppose that min(s) < min(t), and pick n as before. Then s ∼ a n , a n < t, and a n ∼ t, a contradiction. (c) x 0 ∼ x 1 is false, x 0 + x 1 ∼ x 0 is false, and x 0 + x 1 ∼ x 1 is true. Similar proof that 2. shows that ∼ is ∼ min on A . (d) x 0 ∼ x 1 is false, x 0 + x 1 ∼ x 0 and x 0 + x 1 ∼ x 1 are false, and x 0 + x 1 + x 2 ∼ x 0 + x 2 is true. We show that ∼ is ∼ min ∩ ∼ max on A . It is rather easy to prove that ∼ min ∩ ∼ max ⊆ ∼ on A . For the converse, suppose that max s = max t and s ∼ t. We may assume that max s < max t. Let n be the maximal integer m such that C A (t)(m) = 1. Then, t = t ′ + a n , and hence the equation s ∼ t ′ + x 0 holds and hence t ′ + x 0 + x 1 ∼ t ′ + x 0 also holds which implies that x 0 + x 1 ∼ x 0 holds, a contradiction. Notice that this proves that if x 0 + x 1 ∼ x 0 is false, then ∼ ⊆ ∼ max . We assume that max s = max t but min s = min t. Suppose that min s < min t. We show that s ∼ t. Suppose again that s ∼ t and work for a contradiction. Let n 0 , n 1 be the minimum and the maximum of the support of s in A resp., and let m 0 be the minimum of the support of t i A. Then s = a n 0 + s ′ + a n 1 , t = a m 0 + t ′ + a n 1 . Using that the equation x 0 + x 1 + x 2 ∼ x 0 + x 2 is true, we may assume that s ′ = t ′ = 0. Since n 0 < m 1 ≤ n 1 , either the equation x 0 + x 2 ∼ x 1 + x 2 is true or the equation x 0 + x 1 ∼ x 1 is true. But the first case implies that the equations x 0 + x 3 ∼ x 1 + x 2 + x 3 and x 0 + x 3 ∼ x 2 + x 3 hold and hence x 0 ∼ x 0 + x 1 holds, a contradiction.

(e) x 0 ∼ x 1 , x 0 + x 1 ∼ x 0 , x 0 + x 1 ∼ x 1 , x 0 + x 1 + x 2 ∼ x 0 + x 2 are false. Then ∼ is = on A .
Suppose that s ∼ t, and suppose that s = t. Since x 0 +x 1 ∼ x 0 is false, then max s = max t (see 4. above). Let n be the maximal integer m < max s such that C A (s)(m) = C A (t)(m), and without loss of generality we assume that C A (s)(n) = 1 and C A (s)(n) = 0. Then, s = s ′ + a n + s ′′ , and t = t ′ + s ′′ , with t ′ < a n . Therefore the equation s ′ + x 0 + x 1 ∼ t ′′ + x 1 holds, which implies that s ′ + x 0 + x 1 + x 2 , s ′ + x 0 + x 2 ∼ t ′′ + x 2 holds, and hence the equation

x 0 + x 1 + x 2 ∼ x 0 + x 2 is true, a contradiction.
For arbitrary k the proof is done by induction on k, making use of several lemmas. From now on we fix an equivalence relation ∼ on FIN k . Our approach is the following. By the pigeonhole principle Theorem 2.4, there is always an sos A who decides a finite class of equations. It turns out that two kind of equations we are interested in are of the form x 0 + s ∼ x 0 + t, s + x 0 ∼ t + x 0 where s and t are (k -1)-vectors. The reason is that if they are decided, then we can define naturally the (k -1)-equivalence relations

s ∼ 0 t iff s + x 0 ∼ t + x 0 holds, s ∼ 1 t iff x 0 + s ∼ x 0 + t holds.
and then use the inductive hypothesis to detect both ∼ 0 and ∼ 1 as (k -1)-staircase equivalence relations. The next thing to do is to interpret ∼ 0 and ∼ 1 as k-relations ∼ ′ 0 and ∼ ′ 1 , and then prove that in a suitable restriction ∼⊆∼ ′ 0 ∩ ∼ ′ 1 . Finally, a few more equations decided in some sos will force the decomposition ∼=∼ ′ 0 ∩ ∼ ′ 1 ∩R for a suitable staircase relation R.

Lemma 4.2.

There is some sos A = (a n ) n such that for every 5-tuples i, j ∈ {0, . . . , k} [START_REF] Taylor | A canonical partition relation for finite subsets of ω[END_REF] , and every (≤ k)-vectors s and t of A , the k-equation

s + 4 l=0 T i(l) x l ∼ t + 4 l=0
T j(l) x l is decided in A.

Proof. We find a fusion sequence (A r ) r of k-block sequences, A r = (a r n ) n such that for every integer r the equations s + 4 l=0 T i(l) x l ∼ t + 4 l=0 T j(l) x l are decided in A r for every (≤ k)vectors s, t of (a i i ) i<r and every i, j ∈ {0, . . . , k} [START_REF] Taylor | A canonical partition relation for finite subsets of ω[END_REF] . Once we have done this, the fusion sequence A = (a r r ) r works for our purposes: Fix an equation e, s + 4 l=0 T i(l) x l ∼ t + 4 l=0 T j(l) x l , and let r be the least integer such that s, t are (≤ k)-vectors of (a i i ) i<r . Then e is decided in A r , hence it is also decided in A.

We justify the existence of the demanded fusion sequence. Suppose we have already defined A r = (a r n ) n . Let L be the set of all the k-equations of the form

s + 4 l=0 T i(l) x l ∼ t + 4 l=0 T j(l) x l
where s and t are (≤ k)-vectors in (a i i ) i≤r ≤k and i, j ∈ {0, . . . , k} [START_REF] Taylor | A canonical partition relation for finite subsets of ω[END_REF] . Let Λ : [(a r n ) n≥1 ] [START_REF] Taylor | A canonical partition relation for finite subsets of ω[END_REF] → {0, 1} L be the finite coloring defined for each (c 0 , . . . , c 4 ) ∈ [(a r n ) n≥1 ] [START_REF] Taylor | A canonical partition relation for finite subsets of ω[END_REF] and each equation e of the form s + 4 l=0 T i(l) x l ∼ t + 4 l=0 T j(l) x l ∈ L by Λ(c 0 , . . . , c 4 )(e) = 0 iff

s + 4 l=0 T i(l) c l ∼ t + 4 l=0 T j(l) c l .
By Lemma 2.5, there is

A r+1 ∈ [(a (r) n ) n≥1 ] [∞]
such that Λ is constant on [A r+1 ] [START_REF] Taylor | A canonical partition relation for finite subsets of ω[END_REF] , which is equivalent to all the equations considered above being decided in A r+1 .

4.1. The inductive step. The relations ∼ ′ 0 and ∼ ′ 1 . Suppose that Theorem 4.1 holds for k -1. Our intention is, of course, to prove the case for k. To do this we first associate two k -1-relations to our fixed k-relation ∼ as follows.

Lemma 4.3. There is an sos A and two staircase k -1-equivalence relations ∼ 0 and ∼ 1 on A k-1 such that for every s, t ∈ A k-1 , the k-equation s + x 0 ∼ t + x 0 is true in A if and only if s ∼ 0 t, and

(10)

the k-equation x 0 + s ∼ x 0 + t is true in A if and only if s ∼ 1 t. ( 11 
)
Moreover ∼ 0 and ∼ 1 are such that for any two (k -1)-vectors s and t of A,

s ∼ 0 t iff the (k -1)-equation s + x ∼ 0 t + x holds in A, and (12) 
s ∼ 1 t iff the (k -1)-equation x + s ∼ 0 x + t holds in A. (13) 
Proof. Let B = (b n ) n be an sos satisfying Lemma 4.2. Then for (k -1)-vectors s and t of B the (k -1)-equations s + x 0 ∼ t + x 0 are decided in B. Now define the relation ∼ ′ on B k-1 as follows. For s, t ∈ B k-1 ,

s ∼ ′ t iff s + x 0 ∼ t + x 0 holds in B.
It is not difficult to see that ∼ ′ is an equivalence relation. By the inductive hypothesis there is some (k -1)-block sequence

B ′ = (b ′ n ) n ∈ [(T b n ) n ] [∞]
and some canonical equivalence relation ∼ 0 such that ∼ ′ coincides with ∼ 0 on B ′ (since, by Proposition 3.16, all staircase equivalence relations are canonical). The k-block sequence A = (Sb ′ n ) n≥1 and the k-equivalence relation ∼ 0 clearly satisfy (10). We prove assertion (12) for ∼ 0 . To do this, suppose that s ∼ 0 t. Then the k-equation s + x 0 ∼ t + x 0 holds. Since the equation s + T x 0 + x 1 ∼ t + T x 0 + x 1 is decided, it must be true. It follows that for every k-vector b > s, t we have that s + T b ∼ 0 t + T b. Since ∼ 0 is canonical, we obtain that the (k -1)-equation

s + x 0 ∼ 0 t + x 0 holds in A, (14) 
as desired. Now assume that (14) is true. Fix a (k -1)-vector u > s, t. Then s + u ∼ 0 t + u, i.e., the k-equation s + u + x 0 ∼ t + u + x 0 holds. Hence s + x 0 ∼ t + x 0 holds, that is s ∼ 0 t.

We justify now the existence of a staircase k-1-equivalence relation ∼ 1 and an sos A such that the statements (11) and (13) hold. We can find a fusion sequence (A r ) r , A r = (a r n ) n , of k-block sequences of A, and a list (∼ n a ) a∈ (a i i ) i<r k defined on A r k-1 such that for every s, t ∈ A r k-1 , a + s ∼ a + t if and only if s ∼ n a t.

Let A ∞ = (a n n ) n be the fusion sequence of (A r ) r . Now for every a ∈ A ∞ let n(a) be unique integer unique n such that a ∈ (a i i ) i<n \ (a i i ) i<n-1 . Define the finite coloring c :

A ∞ → canonical equivalence relations on F IN k-1 by c(a) = ∼ n(a) a
. By Lemma 2.5 there is some A ∈ [A ∞ ] [∞] in which c is constant, with value ∼ 1 . We check that A and ∼ 1 satisfy what we want. Fix a ∈ A and two k -1-vectors s, t of A with a < s, t; then a ∈ θ n(a) and s, t are k -1-block sequences of A n(a) . So, a + s ∼ a + t if and only if s ∼ n(a) a t if and only if s ∼ 1 t. I.e. x 0 + s ∼ x 0 + t holds iff s ∼ 1 t. Notice that in particular all equations x 0 + s ∼ x 0 + t are decided in A.

Let us prove now the assertion (13). To do this, fix two (k -1)-vectors s, t of A. If s ∼ 1 t, then x 0 + s ∼ x 0 + t. Given a (k -1)-vector u < s, t, choose a k-vector a < u in (Sb ′ n ) n≥0 . Then a + u + s ∼ a + u + t, and this implies that u + s ∼ 1 u + t; in other words, the (k -1)-equation x 0 + s ∼ 1 x 0 + t holds. Suppose now that the (k -1)-equation x 0 + s ∼ 1 x 0 + t holds. Pick (k -1)-vector u < s, t. Then the k-equation x 0 + u + s ∼ x 0 + u + t is true, and hence also x 0 + s ∼ x 0 + t holds (since this equation is decided).

Finally, we justify the existence of the fusion sequence (A r ) r . Suppose we have already defined A r = (a r n ) n fulfilling its corresponding requirements. For every a ∈ (a i i ) i<r , put ∼ n+1 a = ∼ n a . For every a ∈ (a i i ) i≤r \ (a i i ) i<r , let R a be the relation on (a r n ) n≥1 k-1 defined by sR a t if and only if a + s ∼ a + t.

By the inductive hypothesis, we can find some B (a r n ) n≥1 such that for every a ∈ (a i i ) i≤r \ (a i i ) i<r the relation R a is staircase when restricted to B. Then A r+1 = B satisfies the requirements.

Roughly speaking, the assertions (12) and (13) tell that the (k -1)-relation ∼ 0 does not depend on the part of a (k -1)-vector before min k-1 and that ∼ 1 does not depend on the part of a (k -1)-vector after max k-1 . Indeed (12) and (13) determine the form of ∼ 0 and ∼ 1 . To express this mathematically we introduce the following useful notation. Definition 4.4. For l ≤ k, let max l k : FIN k → FIN k be defined by

(max l k s)(n) = s(n) if n ≤ max k (s) and s(n) ≥ l, 0 otherwise.
In other words max l k is the staircase function with values I 0 = {l, . . . , k}, J 0 = {l + 1, . . . , k}, for every j ∈ J 0 , l (i) For every k-vectors s, t of A, one has that s R t iff x + s R x + t holds in A.

(0) j = l, l (2) 
(ii) Either R is a max-relation or there is some max-relation R ′ and some l ∈ {1, . . . , k} such that R = R ′ ∩ max l k . The analogous result for s + x R t + x is also true.

Proof. Fix a staircase relation R with values

I ε , J ε , (l (ε) j ) j∈Jε (ε = 0, 1) and l (2)
k such that for every k-vectors s, t one has that s R t iff x + s R x + t holds. Suppose that I 0 = ∅, since otherwise R is a max-relation. Let l = min I 0 . We show that I 0 = {l, l + 1, . . . , k}, J 0 = {l + 1, . . . , k}, for every j ∈ J 0 , l

(0) j = l, l (2) 
k = l and k ∈ I 1 . First we show that l

(2) k = -1. If not, the equation x 0 + x 1 + x 2 R x 0 + x 2 is true and hence the equation

x 1 + x 2 R x 2 is true, which implies that l / ∈ I 0 , a contradiction. If l (2) 
k > l, then the equation x 0 + T k-l x 1 + x 2 R x 0 + x 2 is true and hence the equation T k-l x 1 + x 2 R x 2 is true, which implies again that l / ∈ I 0 . If l

k < l, then the equation T k-l (2) k x 0 + x 1 R x 1 holds and hence the equation

x 0 + T k-l (2) k x 1 + x 2 R x 0 + x 2 holds, (15) 
which contradicts the definition of l

k . We now show that I 0 = {l, . . . , k}. It is clear that I 0 ⊆ {l, . . . , k} since l is the minimum of I 0 . We prove the reverse inclusion {l, . . . , k} ⊆ I 0 . Suppose not, and set j = min{l, . . . , k} \ I 0 .

Then the equation T k-j-1 x 0 + T k-j x 1 + x 2 R T k-j-1 x 0 + x 2 is true and hence the equation

x 0 + T k-j-1 x 1 + T k-j x 2 + x 3 R x 0 + T k-j-1 x 1 + x 3 is
true, which implies that the equation x 0 + T k-j x 1 + x 2 R x 0 + x 2 also holds. This contradicts the fact that j > l and that ∼ ⊆ R θ 2 l . Notice that I 0 = {l, . . . , k} implies that J 1 = {l + 1, . . . , k}.

We show that l (0) j = l for all j ≥ l + 1. Suppose that l (0) j = -1. This implies that the equation T k-(j-1) x 0 + T k-(j-1) x 1 + x 2 R T k-(j-1) x 0 + x 2 holds. Again by adding one variable at the beginning of both terms and using the fact that j -1 ≥ l we can arrive at a contradiction to the fact that l

(2) k = l. Suppose now that l (0) j < l. Then the equation T k-l (0) j x 0 + x 1 R x 1 is true, and adding a variable we arrive at a contradiction. Suppose that l (0) j > l, then the equation

T k-(j-1) x 0 + T k-l x 1 + x 2 R T k-(j-1) x 0 + x 2 is true, (16) 
which yields a contradiction in the same way as before. It is not difficult to check that the converse and the analogous situation for min are also true.

Proposition 4.5 and ( 12) and (13) determine the relations ∼ 0 and ∼ 1 as follows.

Corollary 4.6. The relation ∼ 0 is either a min-relation or there is some l ≤ k -1 and some min-relation R such that ∼ 0 = R ∩ min l k-1 and ∼ 1 is either a max-relation or there is some

l ≤ k -1 and some max-relation R such that ∼ 1 = R ∩ max l k-1 .
Recall that ∼ 0 and ∼ 1 are both staircase equivalence relations of FIN k-1 . We now give the proper interpretation of both as k-relations. Suppose that k > 1. We know that either ∼ 1 is a max-relation, or ∼ 1 = max l k-1 ∩R, with R a max-relation. Let

∼ ′ 1 = ∼ 1 if ∼ 1 is a max-relation θ 1 k,l ∩ R if I 0 = ∅.
Notice that in the second case we have that max k ⊆∼ ′ 1 . We do the same for ∼ 0 : It is either a min-relation or ∼ 0 = R ∩ min l k-1 , being R a min-relation. Let

∼ ′ 0 = ∼ 0 if ∼ 0 is a min-relation R ∩ θ 0 k,l if I 1 = ∅.
In this second case we have that min k ⊆∼ ′ 0 . For k = 1, let

∼ ′ 0 = ∼ ′ 1 = FIN 2 1
. So, although ∼ 0 is not a min-relation and ∼ 1 is not a max-relation, their corresponding interpretations ∼ ′ 0 and ∼ ′ 1 as k-relations are a min-relation and a max-relation, respectively. The relations ∼ ′ 0 and ∼ ′ 1 have similar properties than ∼ 0 and ∼ 1 .

Proposition 4.7. Let s and t be (k -1)-vectors. Then

(i) s + x ∼ ′ 0 t + x holds iff s ∼ 0 t iff s + x ∼ t + x holds. (ii) x + s ∼ ′ 1 x + t holds iff s ∼ 1 t iff x + s ∼ x + t holds. (iii) s + x 0 + x 1 ∼ ′ 0 t + x 0 + x 2 holds iff s ∼ 0 t. (iv) x 0 + x 2 + s ∼ ′ 1 x 1 + x 2 + t holds iff s ∼ 1 t.
Proof. We show the result for ∼ 1 ; for ∼ 0 the proof is similar, and we leave the details to the reader. If ∼ 1 is a max relation, then there is nothing to prove. Suppose that

∼ 1 = max l k-1 ∩R, for some l ≤ k -1, where R is a max relation. So, ∼ ′ 1 = θ (1) 
k,l ∩ R and we only have to show that

s max l k-1 t iff the equation x + s θ (1) k,l x + t holds, ( 17 
)
which is not difficult to check (see Figure below). 

n>n 1 T k-C D (s)(n) d n .
Using this, we have the decomposition

s = f D s + b n 0 + m D s + b n 1 + l D s.
So f D s is the part of s before the occurrence of min k s, m D s is the part of s between min k s and max k s, and l D s is the part of s after max k s. All these definitions are local, depending on a fixed sos D.

Let A = (a n ) n satisfy both Lemmas 4.2 and 4.3, and let B = (b n ) n be defined for every n by b n = T a 3n + a 3n+1 + T a 3n+2 . The role of B is to guarantee that for every k-vector s of B the first part f A s and the last part l A s are both (k -1)-vectors. We need this because ∼ ε (ε = 0, 1) gives information only about (k -1)-vectors, since it is a k -1-relation.

From now on we work in B, unless we explicitly say the contrary. The following proposition tells us that many equations are decided in B. Proposition 4.9. Let p(x 1 , . . . , x n-1 ) and q(x 1 , . . . , x n-1 ) be (≤ k -1)-terms. Then:

(i) The equation x 0 + p(x 1 , . . . , x n-1 ) ∼ x 0 + q(x 1 , . . . , x n-1 ) is decided in B.
(ii) The equation x 0 + p(x 1 , . . . , x n-1 ) ∼ x 0 + q(x 1 , . . . , x n-1 ) holds in B iff the equation x 0 + p(x 1 , . . . , x n-1 ) ∼ ′ 1 x 0 + q(x 1 , . . . , x n-1 ) holds in B. The analogous results for ∼ ′ 0 are also true.

Proof. Fix two (≤ k -1)-terms p = p(x 1 , . . . , x n-1 ), q = q(x 1 , . . . , x n-1 ).

(i) Fix a finite block sequence (c 0 , . . . , c n-1 ) in B. Suppose that c 0 + p(c 1 , . . . , c n-1 ) ∼ c 0 + q(c 1 , . . . , c n-1 ). By definition of B, c 0 = c ′ 0 + c ′′ 0 , where c ′ 0 is a k-vector of A and c ′′ 0 is a (k -1)vector of A. Hence,

c ′′ 0 + p(c 1 , . . . , c n-1 ) ∼ 1 c ′′ 0 + q(c 1 , . . . , c n-1 ). ( 18 
)
Since the relation ∼ 1 is (k -1)-canonical in A, the (k -1)-equation

x 0 + p(x 1 , . . . , x n-1 ) ∼ 1 x 0 + q(x 1 , . . . , x n-1 ) is true in A. ( 19 
)
Fix (d 0 , . . . , d n-1 ) in B, and set

d 0 = d ′ 0 + d ′′ 0 . Then, d ′′ 0 + p(d 1 , . . . , d n-1 ) ∼ 1 d ′′ 0 + q(d 1 , . . . , d n-1 ), ( 20 
)
and hence, the equation

x 0 + p(d 1 , . . . , d n-1 ) ∼ x 0 + q(d 1 , . . . , d n-1 ) holds in A, (21) 
which implies that d 0 + p(d 1 , . . . , d n-1 ) ∼ 1 d 0 + q(d 1 , . . . , d n-1 ), as desired.

(ii) Suppose that x 0 + p(x 1 , . . . , x n-1 ) ∼ x 0 + q(x 0 , . . . , x n-1 ) holds in B. Then for a given block sequence (c 0 , c 1 , . . . , c n-1 ) in B, the equation

x 0 + T c 0 + p(c 1 , . . . , c n-1 ) ∼ x 0 + T c 0 + q(c 1 , . . . , c n-1 ) holds in B. (22) 
By Proposition 4.7, the assertion (22) implies that

x 0 + T c 0 + p(c 1 , . . . , c n-1 ) ∼ ′ 1 x 0 + T c 0 + q(c 1 , . . . , c n-1 ) holds in B. (23) 
Since ∼ ′ 1 is canonical, the equation

x 0 + T x 1 + p(x 2 , . . . , x n ) ∼ ′ 1 x 0 + T x 1 + q(x 2 , . . . , x n ) holds in B. ( 24 
)
Therefore the equation x 0 + p(x 1 , . . . , x n-1 ) ∼ ′ 1 x 0 + q(x 1 , . . . , x n-1 ) holds in B, as desired.

Proposition 4.10. Suppose that a, b are k-vectors of B, s, t are ≤ (k -1)-vectors of B such that a < s, b < t and suppose that a

+ s ∼ ′ 1 b + t. (i) If a, b < s, t, then a + s ∼ a + t. (ii) If l A a = l A b = 0, and max k (a) > max k (b), then b + s ∼ b + t.
The corresponding analogous results for ∼ ′ 0 are also true.

Proof. Let us check (i): By point (iv) of Proposition 3.15, we have that a + s ∼ ′ 1 a + t. By construction of B, a = a ′ + a ′′ where a ′ is a k-vector and a ′′ is a (k -1)-vector, both of A. But since the relation is ∼ ′ 1 is staircase, it is canonical, and hence the k-equation

x 0 + a ′′ + s ∼ ′ 1 x 0 + a ′′ + t holds in A. (25) 
It follows from Proposition 4.9 that a ′′ +s ∼ 1 a ′′ +t, and hence, by definition of ∼ 1 , the k-equation

x 0 + a ′′ + s ∼ x 0 + a ′′ + t holds in A. ( 26 
)
Replacing in (26) x 0 by a ′ , we obtain that a + s ∼ a + t.

(ii): Since l A a = l A b = 0, we have that a + s = a ′ + a n 0 + s and b + t = b ′ + a m 0 + t. Since max k (a) > max k (b), it follows that n 0 > m 0 . This together with the fact that a+s ∼ ′ 1 b+t implies that max k ⊆ ∼ ′ 1 and hence, by definition, ∼ ′ 1 has to be max-relation. Set i = max I 1 (∼ ′ 1 ) < k. Then the equation

p(x 0 , . . . , x r ) + T k-i ′ x r+1 ∼ ′ 1 q(x 0 , . . . , x r ) + T k-i ′ x r+1 is true, (27) 
for every terms p and q, and every i ′ ≥ i. Now set

t = t ′ + T k-j a n 0 + t ′′ .
Notice that t ′′ is an i-vector, and s is an i ′ -vector for some i ′ ≥ i. By (27),

a + s = a ′ + a n 0 + s ∼ ′ 1 b ′ + a m 0 + t ′ + T k-j a n 0 + s ∼ ′ 1 b ′ + a m 0 + s = b + s. ( 28 
)
Hence, b + t ∼ ′ 1 b + s, and since b < s, t, 1. implies that b + s ∼ b + t.

Our intention is to show that ∼ ⊆ ∼ ′ 1 . To do this, we decompose the relation ∼ ′ 1 as the final step of a chain

∼ ′ 1 (1) ⊆ • • • ⊆ ∼ ′ 1 (k) = ∼ ′ 1
and we prove by induction on j that ∼ ⊆ ∼ ′ 1 (j).

Definition 4.11. Suppose that R is a max-relation with values I 0 = ∅, I 1 , J 1 and (l

(1) j ) j∈J 1 . For every i ≤ k -1 we define I 1 (i) = I 1 ∩ [0, i], J 1 (i) = J 1 ∩ [0, i],
and let R(i) be the staircase equivalence relation on FIN k with values I 1 (i), J 1 (i), and (l (1) j ) j∈J 1 (i) . So the relations between R(i + 1) and R(i) is the following:

R(i + 1) =      R(i) if i + 1 / ∈ I 1 max i+1 ∩ R(i) if i + 1 ∈ I 1 and i / ∈ I 1 max i+1 ∩ R(i) ∩ θ 1 i+1,l (1) i+1 if i + 1 ∈ J 1 ,
and R = R(k). Observe that each R(i) is also a staircase equivalence relations on every sos of FIN i . Roughly speaking, R(i) is the staircase equivalence relation whose values are the ones from R which are smaller than i. Remark 4.12. One has that for a given i ≤ k -1, s R(i)t iff the equation with variable

x x + s↾[max i (s), max 1 (s)] R(i)x + t↾[max i (s), max 1 (s)] holds. ( 29 
)
Proposition 4.13. Suppose that R is a max-relation of FIN k . Fix j ′ < j < j ′′ , and suppose that s is a j ′ -vector, t is a (< j)-vector, and a is a j ′′ -vector such that a + s R(j)T l a + t for some l > 0. Then, R(j) = R(j ′ ), and hence s ′′ R(j)t ′′ .

Proof. Set s ′ = a + s and t ′ = T l a + t, and suppose that s ′ R(j)t ′ . We are going to show that I 2 (j) = I 2 (j ′ ), which will imply that R(j) = R(j ′ ), as desired. We know that

s ′ ↾[max j (s ′ ), max 1 (s ′ )] R(j)t ′ ↾[max j (s ′ ), max 1 (s ′ )].
Notice that for every r ∈ [j, j ′ ), max r (s ′ ) = max r (a), hence max r (s ′ ) = max r (t ′ ) , since a and T l a have nothing in common except 0's. This implies that I 2 (j) ⊆ [j ′ , 1] and hence I 2 (j) = I 2 (j ′ ).

Lemma 4.14. ∼ ⊆ ∼ ′ 1 (j), for every j ≤ k. In particular, ∼ ⊆ ∼ ′ 1 .

Proof. The proof is by induction on j. Notice that if k = 1, then ∼ ′ 1 = FIN 2 1 and hence there is nothing to prove. Suppose that k > 1. Let I 1 , J 1 and (l (1) j ) j∈J 1 be the values of ∼ ′ 1 . j = 1: Suppose that 1 ∈ I 1 (otherwise there is nothing to prove), i.e., ∼ ′ 1 (1) = ∼ max 1 . Suppose that s ∼ t but max 1 (s) < max 1 (t), and let n and i be the unique integers such that

max 1 T k-i a n = max 1 t and t = t ′ + T k-i a n . (30) 
So, s = s ′ + T k-i ′ a n , for some i ′ < i and some k-vector s ′ . The fact that s ∼ t implies that the equation

s ′ + T k-i ′ x 0 ∼ t ′ + T k-i x 0 holds in B, which implies that the equation s ′ + T k-i ′ (x 0 + T i ′ x 1 ) ∼ t ′ + T k-i (x 0 + T i ′ x 1 ) is true. Therefore s ′ + T k-i ′ x 0 + ∼ t ′ + T k-i x 0 + T k-i+i ′ x 1 holds, (31) 
(31) implies that the equation

t ′ + T k-i x 0 ∼ t ′ + T k-i x 0 + T k-i+i ′ x 1 is true, (32) 
and hence, also

x 0 + T k-i+i ′ x 1 ∼ x 0 is true in B. (33) 
But since ji + i ′ < k, we have that

x 0 + T x 1 ∼ x 0 + T x 1 + T k-i+i ′ x 2 is true, (34) 
and by Proposition 4.9, we have that

x 0 + T x 1 ∼ ′ 1 x 0 + T x 1 + T k-i+i ′ x 2 holds, (35) 
which contradicts the fact that 1 ∈ I 1 . j j + 1. Assume that ∼ ⊆ ∼ ′ 1 (j) and let us conclude that ∼ ⊆ ∼ ′ 1 (j + 1). There are two cases: (a) j / ∈ I 1 : Suppose that j + 1 ∈ I 1 (otherwise, there is nothing to prove), and set

β = max I 1 ∩ [0, j]. (36) 
Notice that β can be 0. By definition of ∼ ′ 1 , we know that if j + 1 = k belongs to I 1 , then j = k -1 also belongs to I 1 . So, j + 1 < k. We only need to show that ∼ ⊆ max j+1 : Suppose that s ∼ t, and max j+1 s < max j+1 t; and(< (j + 1))-vectors s ′′ and t ′′ . Observe that in the previous decomposition of s, s ′ needs to be a k-vector. By the inductive hypothesis,

set s = s ′ + T k-l a n + s ′′ , t = t ′ + T k-l ′ a n + t ′′ , with l < l ′ , l ′ ≥ j + 1,
s ′ + T k-l a n + s ′′ ∼ ′ 1 (j)t ′ + T k-l ′ a n + t ′′ . (37) 
Since ∼ ′ 1 is a staircase equivalence relation, (iv) of Proposition 3.15 gives that

s ′ + T k-l a n + s ′′ ∼ ′ 1 (j)s ′ + T k-l a n + t ′′ (t ′′ can be 0), (38) 
which implies that s ′ + T k-l a n + s ′′ ∼ ′ 1 s ′ + T k-l a n + t ′′ ,
and hence, by Proposition 4.10,

s ′ + T k-l a n + s ′′ ∼ s ′ + T k-l a n + t ′′ . Resuming, we have that s ′ + T k-l a n + t ′′ ∼ t ′ + T k-l ′ a n + t ′′ , (39) 
and hence, the equation

s ′ + T k-l x 0 + T k-α x 1 ∼ t ′ + T k-l ′ x 0 + T k-α x 1 holds, (40) 
where j ≥ α ≥ β is such that t ′′ ∈ FIN α . Notice that since j / ∈ I 1 , and j ≥ α ≥ β = max I 1 ∩ [0, . . . , j], the equation

x 0 + T k-r x 1 + T k-α x 2 ∼ ′ 1 x 0 + T k-α x 2 is true, (41) 
for all r ≤ j. Hence,

x 0 + T k-r x 1 + T k-α x 2 ∼ x 0 + T k-α x 2 is true. (42) 
There are two now two subcases to consider: (a.1) l ≤ j. Then

s ′ + T k-α x 2 ∼ s ′ + T k-l x 1 + T k-α x 2 ∼ t ′ + T k-l ′ x 1 + T k-α x 2 is true, (43) 
and hence,

x 0 + T k-l ′ x 1 + T k-l ′ x 2 + T k-α x 3 ∼ x 0 + T k-l ′ x 1 + T k-α x 3 is true, (44) 
which implies that

x 0 + T k-(j+1) x 1 + T k-α x 2 ∼ x 0 + T k-α x 2 holds. (45) 
By Proposition 4.9,

x 0 + T k-(j+1) x 1 + T k-α x 2 ∼ ′ 1 x 0 + T k-α x 2 holds, (46) 
which contradicts the fact that j + 1 ∈ I 1 . (a.2) j + 1 ≤ l < l ′ . Then, the equation

s ′ + T k-l (x 0 + T l-j x 1 ) + T k-α x 2 ∼ s ′ + T k-l x 0 + T k-α x 2 holds, (47) 
and hence,

t ′ + T k-l ′ x 0 + T k-(j+l ′ -l) x 1 + T k-α x 2 ∼ t ′ + T k-l ′ x 0 + T k-α x 2 holds, (48) 
which implies that

x 0 + T k-(j+l ′ -l) x 1 + T k-α x 2 ∼ x 0 + T k-α x 2 holds. ( 49 
)
Since i ′i > 0 the assertion (49) contradicts the fact that j + 1 ∈ I 1 .

(b) j ∈ I 1 . We assume that j + 1 ∈ I 1 because otherwise there is nothing to prove. Then

∼ 1 (j + 1) = ∼ 1 (j) ∩ θ (1) 
j+1,l ∩ max j+1

,

where l = l (1) 
j+1 . Suppose that s ∼ t. By the inductive hypothesis, s ∼ ′ 1 (j)t, and in particular max j (s) = max j (t). Let m 0 = max{max j+1 s, max j+1 t}. First we show that

(s↾[m 0 , max j (s)]) -1 (l) = (t↾[m 0 , max j (s)]) -1 (l), (50) 
i.e., for all n ∈ [m 0 , max j (s)], s(n) = l iff t(n) = l. Suppose not, and let

m 1 = max{m ∈ [m 0 , max j (s)] : (s(m) = l or t(m) = l) and s(m) = t(m)}.
Suppose that s(m 1 ) = l, and that t(m 1 ) = 0. Let n 1 be the unique integer n such that

T k-C B (n) a n (m 1 ) = s(m 1 ) = l, and let h = C B (n 1 ) ≥ l. So, h ′ = C B (n 1 ) = h, s = s ′ + T k-h a n 1 +
s ′′ , and t = t ′ + T k-h ′ a n 1 + t ′′ , with s ′′ , t ′′ both j-vectors. By definition of m 1 , the equation

x + s ′′ ∼ ′ 1 (j + 1)x + t ′′ holds, (51) 
and hence, x + s ′′ ∼ ′ 1 x + t ′′ and x + s ′′ ∼ x + t ′′ also both hold.

So, s ′ + T k-h a n 1 + s ′′ ∼ t ′′ + T k-h ′ a n 1 + s ′′ , and hence, the equation

s ′ + T k-h x 0 + T k-j x 1 ∼ t ′ + T k-h ′ x 0 + T k-j x 1 holds. (53) 
There are two subcases to consider:

(b.1) h > h ′ . Since x 0 + T k-r x 1 + T k-j x 2 ∼ ′ 1 x 0 + T k-j x 2 is true, the equation x 0 + T k-r x 1 + T k-j x 2 ∼ x 0 + T k-j x 2 holds for every r < l. Since l + h ′ -h < l, s ′ + T k-h x 0 + T k-l x 1 + T k-j x 2 ∼ s ′ + T k-h (x 0 + T h-l x 1 ) + T k-j x 2 ∼ (54) t ′ + T k-h ′ (x 0 + T h-l x 1 ) + T k-j x 2 ∼ t ′ + T k-h ′ x 0 + T k-(l+h ′ -h) x 1 + T k-j x 2 ∼ (55) ∼ t ′ + T k-h ′ x 0 + T k-j x 2 ∼ s ′ + T k-h x 0 + T k-j x 2 hold. ( 56 
)
Notice that we have used that h ≥ l, and so T h-l makes sense. Summarizing, the equation

s ′ + T k-h x 0 + T k-l x 1 + T k-j x 2 ∼ s ′ + T k-h x 0 + T k-j x 2 holds, (57) 
and hence, the equation

x 0 + T k-l x 1 + T k-j x 2 ∼ ′ 1 x 0 + T k-j x 2 holds, (58) 
which is a contradiction with the fact that ∼ ′ 1 ⊆ θ 1 j+1,l . (b.2) h < h ′ . Then h ′ > l, and repeating the previous argument used for the case h > h ′ , we conclude that the equation

t ′ + T k-h ′ x 0 + T k-l x 1 + T k-j x 2 ∼ t ′ + T k-h ′ x 0 + T k-j x 2 holds, (59) 
and hence,

x 0 + T k-l x 1 + T k-j x 2 ∼ ′ 1 x 0 + T k-j x 2 holds, (60) 
which is a contradiction. The proof will be finished once we show that max j+1 s = max j+1 t. So suppose otherwise, without loss of generality, that max j+1 s > max j+1 t. Let n 1 ∈ N be such that max j-1 (s) = max j-1 (T k-h b n 1 ), where h = C B (n 1 ) ≥ j + 1. Then one has the decomposition

s = s ′ + T k-h a n 1 + s ′′ , t = t ′ + T k-h ′ a n 1 + t ′′ ,
where h ′ < h and s ′′ , t ′′ are j-vectors. From (50), it follows that

x 0 + s ′′ ∼ ′ 1 (j + 1)x 0 + t ′′ holds, (61) 
and hence,

s ′ + T k-h a n 1 + t ′′ ∼ t ′ + T k-h ′ a n 1 + t ′′ . (62) 
This implies that the equation

s ′ + T k-h x 0 + T k-j x 1 ∼ t ′ + T k-h ′ x 0 + T k-j x 1 is true. (63) 
Using a similar argument to the above, we arrive at the equation

s ′ + T k-h (x 0 + T h-l x 1 ) + T k-j x 2 ∼ t ′ + T k-h ′ (x 0 + T h-l x 1 ) + T k-j x 2 is true, (64) 
and hence,

s ′ + T k-h x 0 + T k-l x 1 + T k-j x 2 ∼ t ′ + T k-h ′ x 0 + T k-(l+h ′ -h) x 1 + T k-j x 2 ∼ (65) 
∼ t ′ + T k-h ′ x 0 + T k-j x 2 ∼ s ′ + T k-h x 0 + T k-j x 2 holds, (66) 
which is again a contradiction, since it implies that

x 0 + T k-l x 1 + T k-j x 2 ∼ ′ 1 x 0 + T k-j x 2 holds. ( 67 
)
Proposition 4.15. Suppose that a, b are k-vectors of B, s, t are (≤ (k -1))-vectors of B such that a < s and b < t, and suppose that a + s ∼ b + t.

(i) If a < t and b < s, then a + s ∼ a + t and hence a + t ∼ b + t.

(ii) If a < t and max k a < max k b, then a + s ∼ a + t and hence a + t ∼ b + t.

Proof. (i) is a consequence of Proposition 4.10(1) and Lemma 4.14. Let us prove (ii). To do this, suppose that a, b, s, t are as in the statement. By Lemma 4.14 one has that a + s ∼ ′ 1 b + t. Since max k (a + s) < max k (b + t), we have that ∼ ′ 1 =∼ 1 , where ∼ 1 is a max-relation of FIN k-1 . This implies that s ∼ 1 t, from which the desired result easily follows. 4.2. Determining the relation ∼. We already know that ∼ ⊆ ∼ ′ 1 . The following identifies the staircase equivalence relation that will be equal to ∼ on B in terms of which equations hold or not in B. This will conclude the proof of Theorem 4.1.

Theorem 4.16.

(i) Suppose that x 0 + T k-(l-1) x 1 + x 2 ∼ x 0 + x 2 is true, and

x 0 + T k-l x 1 + x 2 ∼ x 0 + x 2 is false. Then ∼ = ∼ ′ 0 ∩ ∼ θ 2 l ∩ ∼ ′ 1 . (ii) Suppose that x 0 + x 1 + x 2 ∼ x 0 + x 2 is true. (a) If T x 0 + x 1 + x 2 ∼ T x 0 + x 2 and x 0 + x 1 + T x 2 ∼ x 0 + T x 2 are both false, then ∼ = ∼ ′ 0 ∩ min k ∩ max k ∩ ∼ ′ 1 . (b) If T x 0 + x 1 + x 2 ∼ T x 0 + x 2 is true, and x 0 + x 1 + T x 2 ∼ x 0 + T x 2 is false, then ∼ = ∼ ′ 0 ∩ max k ∩ ∼ ′ 1 . (c) If T x 0 + x 1 + x 2 ∼ T x 0 + x 2 is false, and x 0 + x 1 + T x 2 ∼ x 0 + T x 2 is true, then ∼ = ∼ ′ 0 ∩ min k ∩ ∼ ′ 1 . (d) If T x 0 + x 1 + x 2 ∼ T x 0 + x 2 and x 0 + x 1 + T x 2 ∼ x 0 + T x 2 are both true, then ∼ = ∼ ′ 0 ∩ ∼ ′ 1 .
The proof is done in various steps. (i) If the equation

T x 0 + x 1 + x 2 ∼ T x 0 + x 2 is true, then ∼ ′ 0 ∩ max k ∩ ∼ ′ 1 ⊆ ∼. (ii) If the equation x 0 + x 1 + T x 2 ∼ x 0 + T x 2 is true, then ∼ ′ 0 ∩ min k ∩ ∼ ′ 1 ⊆ ∼. (iii) If the equation x 0 + T k-(l-1) x 1 + x 2 ∼ x 0 + x 2 is true, then ∼ ′ 0 ∩ ∼ θ 2 l ∩ ∼ ′ 1 ⊆ ∼, for every l ≤ k. (iv) If the equation x 0 + x 1 + x 2 ∼ x 0 + x 2 is true, then ∼ ′ 0 ∩ min k ∩ max k ∩ ∼ ′ 1 ⊆ ∼. (v) If the equations T x 0 + x 1 + x 2 ∼ T x 0 + x 2 and x 0 + x 1 + T x 2 ∼ x 0 + T x 2 are both true, then ∼ ′ 0 ∩ ∼ ′ 1 ⊆ ∼.
Proof. (i): Suppose that the equation T x 0 + x 1 + x 2 ∼ T x 0 + x 2 holds. Then, T x 0 + T x 1 + x 2 + x 3 ∼ T x 0 + x 3 holds, and the equations T x 0 + T x 1 + x 2 + x 3 ∼ T x 0 + x 3 ∼ T x 0 + x 2 + x 3 also hold. This implies that the equation

T x 0 + T x 1 + x 2 ∼ T x 0 + x 2 is true. ( 68 
)
Hence the relation ∼ 0 is a min-relation, which implies that ∼ ′ 0 so is a min-relation. Set R = ∼ ′ 0 ∩ max k ∩ ∼ ′ 1 and suppose that sRt. Then max k s = max k t. Let n be such that max k s = max k = max k b n . Therefore, s = s ′ + a 3n+1 + s ′′ and t = t ′ + a 3n+1 + t ′′ . It is not difficult to show that the equation

T x 0 + x 1 + x 2 R T x 0 + x 2 holds. ( 69 
)
So, we may assume that s ′ and t ′ are (k -1)-vectors of A. Since s ∼ ′ 1 t, we have that s ′ + a 3n+1 + s ′′ ∼ s ′ + a 3n+1 + t ′′ . Since s ∼ ′ 0 t, we have that s ′ + a 3n+1 + t ′′ ∼ ′ 0 t ′ + a 3n+1 + t ′′ , and hence s ′ ∼ 0 t ′ , which implies that s ′ + x ∼ t ′ + x is true. In particular s ′ + a 3n+1 + t ′′ ∼ t ′ + a 3n+1 + t ′′ , i.e., s ∼ t.

The proofs of (ii), (iii) and (iv) are similar. We leave the details to the reader. Let us check point (v): Fix s

= f A s + a n 0 + m A s + a n 1 + l A s, t = f A t + a m 0 + m A t + a m 1 + l A t such that sRt, where R = ∼ ′ 0 ∩ ∼ ′ 1 .
If m 0 = n 0 , then sR ∩ min k t, and hence we are done by 2. So, suppose that n 0 < m 0 . Since ∼ ′ 0 is a min-relation and ∼ ′ 1 is a max-relation, the equations T x 0 + x 1 + x 2 RT x 0 + x 2 and x 0 + x 1 + T x 2 Rx 0 + T x 2 are true. Therefore, sRf A s + a n 0 + l A s and tRf A t + a m 0 + l A t. Since s ∼ f A s + a n 0 + l A s and t ∼ f A t + a m 0 + l A t the proof will be finished if we show that

f A s + a n 0 + l A s ∼ f A t + a m 0 + l A t. ( 70 
) Since f A s + a n 0 + l A s ∼ ′ 0 f A t + a m 0 + l A t and f A s + a n 0 + l A s ∼ ′ 1 f A t + a m 0 + l A t
, by the last point of Proposition 4.10 (for both ∼ ′ 0 and ∼ ′ 1 ), we have that

f A s + a m 0 + l A t ∼ f A t + a m 0 + l A t and f A s + a n 0 + l A s ∼ f A s + a n 0 + l A t. ( 71 
) But f A s + a m 0 + l A t ∼ f A s + a n 0 + l A t,
and we are done.

Lemma 4.18. If the equation

x 0 + x 1 + T x 2 ∼ x 0 + T x 2 is false, then ∼ ⊆ max k .
Proof. Suppose that s ∼ t but max k s > max k t. Set

s =f A s + a n 0 + m A s + a n 1 + l A s t =f A t + a m 0 + m A t + a m 1 + l A t,
where n 1 > m 1 . Set l A t = t ′ + T k-i a n 1 + t ′′ , where t ′ < T k-i a n 1 < t ′′ , and i < k. By Proposition 4.15

f A t + a m 0 + m A t + a m 1 + t ′ + T k-i a n 1 + l A s ∼ f A s + a n 0 + m A s + a n 1 + l A s, (72) 
and therefore, the equation

f A t + a m 0 + m A t + a m 1 + t ′ + T k-i x 0 + T x 1 ∼ f A s + a n 0 + m A s + x 0 + T x 1 holds. ( 73 
) Since ∼⊆∼ ′ 1 and ∼ ′ 1 is a canonical relation, the ∼ ′ 1 -equation f A t + a m 0 + m A t + a m 1 + t ′ + T k-i x 0 + T x 1 ∼ ′ 1 f A s + a n 0 + m A s + x 0 + T x 1 holds. ( 74 
)
Since ∼ ′ 1 is a staircase relation, the truth of the last equation implies that k / ∈ I 1 (∼ ′ 1 ), and hence ∼ ′ 1 is a max-relation with max(I 1 (∼ ′ 1 )) at most k -1. Therefore,

f A t + a m 0 + m A t + a m 1 + t ′ + T k-i x 0 + T x 1 ∼ ′ 1 f A t + a m 0 + m A t + a m 1 + t ′ + T x 1 is true, (75) which implies that f A t + a m 0 + m A t + a m 1 + t ′ + T k-i x 0 + T x 1 ∼ f A t + a m 0 + m A t + a m 1 + t ′ + T x 1 is true. (76)
Hence, the equation

f A t + a m 0 + m A t + a m 1 + t ′ + T x 1 ∼ ′ 1 f A s + a n 0 + m A s + x 0 + T x 1 holds, (77) 
from which we conclude that

x 0 + x 1 + T x 2 ∼ x 0 + T x 2 is true, (78) 
a contradiction.

Lemma 4.19. Suppose that x 0 + T k-(l-1)

x 1 + x 2 ∼ x 0 + x 2 is true but x 0 + T k-l x 1 + x 2 ∼ x 0 + x 2 is false. Then ∼ ⊆ ∼ θ 2 l
. In particular, ∼ ⊆ min k ∩ max k .

Proof. Fix l as in the statement. Since we assume that the equation

x 0 + T k-l x 1 + x 2 ∼ x 0 + x 2 is false, (79) 
by Proposition 3.4(1,2), we know that

x 0 + x 1 + T x 2 ∼ x 0 + T x 2 is false. ( 80 
)
So, by Lemma 4.18, we obtain that ∼ ⊆ max k . Suppose that s ∼ t. Take the decomposition

s =f B s + b n 0 + m B s + b m + l B s t =f B t + b n 1 + m B t + b m + l B s,
where we implicitly assume that l B s = l B t, since s ∼ ′ 1 t. Observe that showing that sθ 2 l t is the same that proving that

for all n ∈ [min{n 0 , n 1 }, m], either C B (s)(n), C B (t)(n) < l, or C B (s)(n) = C B (t)(n). ( 81 
)
Assume on the contrary that (81) is false, and let α be the last n ∈ [min{n 0 , n 1 }, m] for which

max{C B (s)(n), C B (t)(n)} ≥ l and C B (s)(n) = C B (t)(n). (82) 
Set l 0 = C B (s)(α), and l 1 = C B (s)(α). Notice that α < m. Without loss of generality, we assume that l 1 < l 0 (the other case has a similar proof). Set

s ′ = n<α T k-C B (s)(n) b n t ′ = n<α T k-C B (t)(n) b n .
Using this notation, we have that the equation

s ′ + T k-l 0 x 0 + x 1 ∼ t ′ + T k-l 1 x 0 + x 1 holds. ( 83 
)
There are two cases: n 0 ≤ n 1 . We first show that in this case s ′ + T k-l 0 x 0 is a k-term. If n 0 = n 1 , then α > n 0 , and hence s ′ is a k-vector. Suppose that n 0 < n 1 . If α > n 0 , then s ′ is a k-term. If α = n 0 , then l 0 = k, and clearly s ′ + T k-k x 0 = s ′ + x 0 is a k-term. We consider two subcases: (a) l 1 < l ≤ l 0 . Then, by our assumption that x 0 + T k-(l-1) x 1 + x 2 ∼ x 0 + x 2 holds, we have that

s ′ + T k-l 0 x 0 + T k-l 1 x 1 + x 2 ∼ s ′ + T k-l 0 x 0 + x 2 holds. ( 84 
)
By (83),

s ′ + T k-l 0 x 0 + T k-l 1 x 1 + x 2 ∼ t ′ + T k-l 1 x 0 + T k-l 1 x 1 + x 2 ∼ (85) ∼ s ′ + T k-l 0 x 0 + T k-l 0 x 1 + x 2 holds, (86) 
which implies that the equation

s ′ + T k-l 0 x 0 + T k-l 0 x 1 + x 2 ∼ s ′ + T k-l 0 x 0 + x 2 holds. ( 87 
)
This contradicts the fact that l 0 ≥ l.

(b) l ≤ l 1 < l 0 . Then,

s ′ + T k-l 0 x 0 + T k-l 1 (T l 0 -l )x 1 + x 2 ∼ s ′ + T k-l 0 x 0 + x 2 holds, (88) 
and by (83),

s ′ + T k-l 0 x 0 + T k-l 1 (T l 0 -l )x 1 + x 2 ∼ t ′ + T k-l 1 x 0 + T k-l 1 (T l 0 -l )x 1 + x 2 ∼ (89) ∼ s ′ + T k-l 0 x 0 + T k-l x 1 + x 2 holds. ( 90 
)
Again, this yields a contradiction. n 1 < n 0 . It can be shown that t ′ + T k-l 1 x 0 is a k-term. We consider the same two subcases as above:

(a) l 1 < l ≤ l 0 . Then

t ′ + T k-l 1 x 0 + T k-l 1 x 1 + x 2 ∼ s ′ + T k-l 1 x 0 + x 2 holds, (91) 
and hence,

s ′ + T k-l 0 x 0 + T k-l 0 x 1 + x 2 ∼ s ′ + T k-l 0 x 0 + x 2 holds, (92) 
which, by (83), implies that

t ′ + T k-l 1 x 0 + T k-l 0 x 1 + x 2 ∼ t ′ + T k-l 1 x 0 + x 2 holds, (93) 
a contradiction, since l 0 ≥ l. (b) l ≤ l 1 < l 0 . Then t ′ + T k-l 1 x 0 + T k-l 1 (T l 0 -l )x 1 + x 2 ∼ t ′ + T k-l 1 x 0 + x 2 holds. (94) 
Using that

t ′ + T k-l 1 x 0 + T k-l 1 (T l 0 -l )x 1 + x 2 ∼ s ′ + T k-l 0 x 0 + T k-l x 1 + x 2 ∼ (95) ∼ t ′ + T k-l 1 x 0 + T k-l x 1 + x 2 holds, (96) 
we arrive at a contradiction.

Corollary 4.20. Suppose that

x 0 +T k-(l-1) x 1 +x 2 ∼ x 0 +x 2 is true, but x 0 +T k-l x 1 +x 2 ∼ x 0 +x 2 is false. Then, ∼ = ∼ ′ 0 ∩ ∼ θ 2 l ∩ ∼ ′ 1 .
Proof. By Proposition 4.17,

∼ ′ 0 ∩ ∼ θ 2 l ∩ ∼ ′ 1 ⊆ ∼.
We only need to show that ∼ ⊆ ∼ ′ 0 . Suppose that s ∼ t, and consider the decomposition

s =f A s + a n 0 + m A s + a m 0 + l A s t =f A t + a n 1 + m A t + a m 1 + l A t.
Since max k s = max k t, we have that m 0 = m 1 , and since s ∼ ′ 1 t, by Proposition 4.7(4), we may assume that l A s ∼ 1 l A t. By Lemma 4.19, s ∼ θ l 2 t, and using the fact that the equations x 0 + T k-j x 1 + x 2 ∼ x 0 + x 2 are true for all j < l, we may also assume that n 0 = n 1 and m A s = m A t. Therefore, the equation f A s + x 0 ∼ f A t + x 0 holds. By definition of ∼ 0 , we have that f A s ∼ 0 f A t, and by Proposition 4.7(3), s ∼ ′ 0 t, as desired.

Lemma 4.21. Suppose that T x 0 + x 1 + x 2 ∼ T x 0 + x 2 is true, and

x 0 + x 1 + T x 2 ∼ x 0 + T x 2 is false. Then, ∼ = ∼ ′ 0 ∩ max k ∩ ∼ ′ 1 .
Proof. We only need to show that ∼ ⊆ ∼ ′ 0 . Suppose that s ∼ t. Consider the following decompositions of s and t

s =f A s + a n 0 + m A s + a m + l A s t =f A t + a n 1 + m A t + a m + l A s.
Notice that, since T x 0 + x 1 + x 2 ∼ T x 0 + x 2 is true, we have that x 0 + x 1 + x 2 ∼ x 0 + x 2 is true. Hence, we may assume that m A s = m A t = 0. Notice also that, since

T x 0 + x 1 + x 2 ∼ T x 0 + x 2 is true, (97) 
and since f A s and f A t are (k -1)-vectors (this is why we use the decompositions of vectors of B in A), we have that

s ∼ f A s + a n 2 + l A s and t ∼ f A t + a n 2 + l A s. (98) 
This implies that f A s ∼ 0 f A t, and, by Proposition 4.7(1,3),

s ∼ ′ 0 f A s + a n 2 + l A s ∼ ′ 0 f A t + a n 2 + l A t ∼ ′ 0 t, (99) 
as desired.

Proposition 4.22. Suppose that x 0 + x 1 + T x 2 ∼ x 0 + T x 2 holds, and suppose that T

x 0 + x 1 + x 2 ∼ T x 0 + x 2 is false. Then, ∼ ⊆ min k .
Proof. Suppose that s ∼ t. Take the decomposition

s =f A s + a n 0 + m A s + a m 0 + l A s t =f A t + a n 1 + m A t + a m 1 + l A t.
Suppose that n 0 = n 1 , and without loss of generality assume that n 0 < n 1 . Since x 0 + x 1 + T x 2 ∼ x 0 + T x 2 holds, we have that

f A s + a n 0 + l A s ∼ f A t + a n 1 + l A t. (100) 
By Proposition 4.15(2), we have that

f A s + a n 0 + l A t ∼ f A t + a n 1 + l A t, (101) 
and hence (since l A t is a (k -1)-vector), the equation

f A s + x 0 + T x 2 ∼ f A t + x 1 + T x 2 holds. ( 102 
)
This implies that

f A s + x 0 + x 1 + T x 3 ∼ f A t + x 2 + T x 3 ∼ f A s + x 1 + T x 3 holds, (103) 
which implies that the equation

f A s + x 0 + x 2 ∼ f A s + x 2 is true. ( 104 
)
Since f A s is a (k -1)-vector, we have that

T x 0 + x 1 + x 2 ∼ T x 0 + x 2 is true, (105) 
a contradiction.

Lemma 4.23. Suppose that x 0 + x 1 + T x 2 ∼ x 0 + T x 2 is true, and

T x 0 + x 1 + x 2 ∼ T x 0 + x 2 is false. Then, ∼ = ∼ ′ 0 ∩ min k ∩ ∼ ′ 1 .
Proof. By Proposition 4.17, we have that 

∼ ′ 0 ∩ min k ∩ ∼ ′ 1 ⊆ ∼. Let us show that ∼ ⊆ ∼ ′ 0 ∩ min k ∩ ∼ ′ 1 .
=f A s + a n 0 + m A s + a n 1 + l A s t =f A t + a n 0 + m A t + a m 1 + l A t.
Since the equation

x 0 + x 1 + T x 2 ∼ x 0 + T x 2 is true, we have that f A s + a n 0 + l A s ∼ f A t + a n 0 + l A t, (106) 
and, by Proposition 4.15,

f A s + a n 0 + l A s ∼ f A t + a n 0 + l A s, (107) 
which easily leads to that s ∼ ′ 0 t. Lemma 4.24. Suppose that x 0 + x 1 + x 2 ∼ x 0 + x 2 is true , and that

x 0 + x 1 + T x 2 ∼ x 0 + T x 2 and T x 0 + x 1 + x 2 ∼ T x 0 + x 2 are both false. Then, ∼ ⊆ min k ∩ max k .
Proof. By Lemma 4.18, we know that ∼ ⊆ max k , and by Lemma 4.14, ∼ ⊆ ∼ ′ 1 . So, we only need to show that ∼⊆ min k . Suppose that s ∼ t, set

s =f A s + a n 0 + m A s + a m + l A s t =f A t + a n 1 + m A t + a m + l A t.
Suppose on the contrary that n 0 < n 1 . There are two cases to consider: n 1 = m. Hence, n 0 < m and

s ∼ f A s + a n 0 + a m + l A s and t = f A t + a m + l A t. (108) 
By Proposition 4.15,

f A s + a n 0 + a m + l A s ∼ f A t + a m + l A s, (109) 
which implies that the equation

f A s + x 0 + x 1 ∼ f A t + x 1 is true, (110) 
a contradiction, since f A s is a (k -1)-vector. n 1 < m. Then, by our assumptions, and Proposition 4.15,

f A s + a n 0 + a m + l A s ∼ f A t + a n 1 + a m + l A s. (111) 
Hence, the equation

f A s + x 0 + x 2 ∼ f A t + x 1 + x 2 is true, (112) 
which readily implies that T x 0 + x 1 + x 2 ∼ T x 0 + x 2 must be true, a contradiction.

Corollary 4.25. Suppose that x 1 + x 2 + x 3 ∼ x 1 + x 3 is true , and that

x 1 + x 2 + T x 3 ∼ x 1 + T x 3 and T x 1 + x 2 + x 3 ∼ T x 1 + x 3 are both false. Then, ∼ = ∼ ′ 0 ∩ min k ∩ max k ∩ ∼ ′ 1 .
Proof. By Proposition 4.17,

∼ ′ 0 ∩ min k ∩ max k ∩ ∼ ′ 1 ⊆ ∼.
Let us show the opposite inclusion. By Lemma 4.24, we have that ∼ ⊆ min k ∩ max k . It remains to show that ∼ ⊆ ∼ ′ 0 . Suppose that s ∼ t, where s = f A s + a n + m A s + a m + l A s and t = f A t + a n + m A t + a m + l A s (we may assume that l A s = l A t, since max k (s) = max k (t)). There are two cases: n < m. Then,

f A s + a n + a m + l A s ∼ f A t + a n + m A t + a m + l A s which directly implies that s ∼ ′ 0 t. The proof for n 0 = m is quite similar. Lemma 4.26. Suppose that T x 0 + x 1 + x 2 ∼ T x 0 + x 2 and x 0 + x 1 + T x 2 ∼ x 0 + T x 2 are both true. Then, ∼ = ∼ ′ 0 ∩ ∼ ′ 1 . Proof. It is enough to show that ∼ ⊆ ∼ ′ 0 . Suppose that s ∼ t, with s = f A s + a n 0 + m A s + a m 0 + l A s and t = f A t + a n 1 + m A t + a m 1 + l A t.
We may assume that s = f A s + a n 0 + l A s, and t = f A t + a n 1 + l A t. W.l.o.g. we assume that n 0 ≤ n 1 , and hence, by Proposition 4.15,

f A s + a n 0 + l A t ∼ f A t + a n 1 + l A t. (113) 
Case n 0 = n 1 . By definition of ∼ ′ 0 , (113) implies that

f A t + a n 0 + l A t ∼ ′ 0 f A s + a n 0 + l A t, (114) 
but trivially f A s + a n 0 + l A t ∼ ′ 0 f A s + a n 0 + l A s, and we are done. Case n 0 < n 1 . Then,

f A s + x 0 + T x 2 ∼ f A t + x 1 + T x 2 is true, (115) 
which easily yields

f A s + x 1 + T x 3 ∼ f A t + x 1 + T x 3 is true. ( 116 
)
This implies that s ∼ ′ 0 t.

Corollary 4.27. Every equivalence relation on FIN k is canonical in some sos.

This corollary has the following local version.

Corollary 4.28. For every block sequence A and every equivalence relation ∼ on A there is an sos B ∈ [A] [∞] on which ∼ is canonical.

Proof. Fix the canonical isomorphism Λ : FIN k → A (i.e., the extension of Θe n → a n ). It is not difficult to show the following facts: 

(i) B = (b n ) n is an sos iff F B = (F b n ) n is
= n≥0 T k-C A (s)(n) a n and t = n≥0 T k-C A (t)(n) a n . Suppose first that s ∼ t. Since ∼ is canonical, the equation n≥0 T k-C A (s)(n) x n ∼ n≥0 T k-C A (t)(n) x n holds in A, (117) 
and hence, also in B, i.e., n≥0

T k-C A (s)(n) x n ∼ ′ n≥0 T k-C A (t)(n) x n holds in B. (118) 
But since ∼ ′ is staircase, it is canonical (Proposition 3.16), and hence, equation (118) also holds in A, and in particular, s ∼ ′ t. Suppose now that s ∼ ′ t. Since ∼ ′ is canonical in any sos, the equation

n≥0 T k-C A (s)(n) x n ∼ ′ n≥0 T k-C A (t)(n) x n holds in A, (119) 
hence, also in By definition, ∼ ′ is equal to ∼ restricted to B, and hence

n≥0 T k-C A (s)(n) x n ∼ n≥0 T k-C A (t)(n) x n holds in B. ( 120 
)
Since ∼ is canonical, the equation (120) holds in A, and in particular, s ∼ t.

Counting

The purpose now is to give an explicit formula for the number t k of staircase equivalence relations on FIN k . To do this, recall that e n (1) = n j=0 1 j! is the exponential sum-function and that Γ(a, x) = ∞ x t a-1 e -t dt is the incomplete Gamma function. Recall also that Γ(n, 1) = (n -1)!e -1 e n-1 (1) for every integer n. Remark 5.1. Let us say that a canonical equivalence relation R is linked free iff I 0 (R) and I 1 (R) have no consecutive members and k / ∈ I 0 (R) ∩ I 1 (R). The number l k of linked free canonical equivalence relations of FIN k is the Fibonacci number F 2k+2 for 2k + 2, since F l+2 is the number of subsets of {1, 2, . . . , l} with no consecutive elements, and since R is linked free iff the set I 0 (R) ∪ {2k + 1i : i ∈ I 1 (R)} ⊆ {1, 2, . . . , 2k} has no consecutive numbers.

the finite version

Theorem 6.1. For every m there is some n = n(m) such that for every equivalence relation ∼ on e 0 , . . . , e n there is some sos (a 0 , . . . , a m-1 ) (e 0 , . . . , e n ) such that ∼ is a staircase equivalence relation in a 0 , . . . , a m-1 .

Proof. Suppose not. Then, there is some m such that for every n there is some equivalence relation ∼ n on e 0 , . . . , e n which is not a staircase relation when restricted to any sos (a 0 , . . . , a m-1 ) of (e i ) n i=0 . Let U be a non-principal ultrafilter on (ii) For s, t ∈ a 0 , . . . , a m-1 one has that s ∼ t iff s ∼ n t.

This can be done as follows: For every pair s, t ∈ a 0 , . . . , a m-1 , let

A s,t = {n : s ∼ n t} ∈ U if s ∼ t {n : s ∼ n t} ∈ U if s ∼ t. (128) 
Let n = min s,t∈ a 0 ,...,a m-1 A s,t . Then ∼ n is ∼ restricted to (a 0 , . . . , a m-1 ), and hence is a staircase equivalence relation, a contradiction. Corollary 6.2. For every m there is some n = n(m) such that for every equivalence relation ∼ on e 0 , . . . , e n there is some sos (a 0 , . . . , a m-1 ) (e 0 , . . . , e n ) such that ∼ is a canonical equivalence relation on a 0 , . . . , a m-1 . Corollary 6.3. For every m there is some n = n(m) such that for every (b 0 , . . . , b n ) and every equivalence relation ∼ on b 0 , . . . , b n there is some sos (a 0 , . . . , a m-1 ) (b 0 , . . . , b n ) such that ∼ is a staircase equivalence relation when restricted to a 0 , . . . , a m-1 .

Proof. Let n = n(m) be given by Theorem 6. 

s ∼ can t iff F -1 s ∼ can F -1 t iff F -1 s ∼ ′ F -1 t iff s ∼ t.
Therefore ∼ can and ∼ coincide on b 0 , . . . , b m-1 . Definition 6.4. We say that a staircase relation ∼ is symmetric iff I 1 (∼) = I 0 (∼) = I, J 1 (∼) = J 0 (∼) = J and l (0) j = l (1) j for every j ∈ J. Corollary 6.5. For every m there is some n = n(m) such that for every equivalence relation ∼ on e 0 , . . . , e n there are disjointly supported sos's a 0 , . . . , a m-1 ∈ (e i ) n i=0 such that ∼ is a symmetric staircase relation in a 0 , . . . , a m-1 .

Before we give the proof of this, let us observe that if a 0 , . . . , a m-1 are disjointly supported k-vectors then the mapping e i → a i extends to a lattice-isomorphism from (e i ) m-1 i=0 → (a i ) m-1 i=0 that preserves the operation T .

Proof. Fix an integer m. Let n be given by Theorem 6.1 when applied to 2m. Suppose that ∼ is an equivalence relation on (e i ) n i=0 . Then there is some sos (b i ) 2m 

θ 0 i,l (s) = θ 0 i,l (t) iff θ 1 i,l (s) = θ 1 i,l (t).

(130)

In the case of equivalence relations with some additional properties, we have the following stronger result.

Proposition 7.7. Fix δ, γ > 0, set k = k(δ), and suppose that R is an equivalence relation on P S c 0 such that (i) for every x, y ∈ P S c 0 and every z ∈ P S c 0 with x ∧ y ≤ L z ≤ L x ∨ y, if (x, y) ∈ R, then (x, z) ∈ R, and (ii) for every sos k-block sequence B = (b n ) n and every x ∈ P S (Θ -1 δ bn)n there is some k-vector x of B such that [x] R ⊆ ([Θ -1 δ x] R ) γ . Then, there is some δ-sos X and some δ-staircase equivalence relation R such that (a) for every R-equivalent classes α in P S X , there is a R-equivalent class β in P S X such that α ⊆ β δ+γ , and (b) for every R-equivalence class β there is a R-equivalence class α such that β ⊆ (α) δ .

Proof. Define R on FIN k via Θ δ . Then, there is some sos A = (a n ) and some staircase equivalence relation R f such that R is R f on A . Let R = R f (1) , and X = (x n ) n , where x n = Θ -1 δ a n for every n. (b) is shown in Proposition 7.6. Let us show (a). Fix x ∈ P S X , and choose a k-vector x of A such that [x] R ⊆ ([x ′ ] R ) γ where x ′ = Θ -1 δ x. Let us show that [x ′ ] R ⊆ ([x ′ ] R ) δ on P S X . Fix y ∈ [x ′ ] R . Then, there is some k-vector ȳ of A such that x ′ ∧ y ≤ L y ′ ≤ L x ′ ∨ y and yy ′ ≤ δ, where y ′ = Θ -1 δ ȳ. Hence, y ′ ∈ [x ′ ] R , and therefore,

y ′ ∈ [x ′ ] R ′ .

Figure 2 .

 2 Figure 2. A typical sos.

  and hence u d = m d . (d) The cases f = θ 1 i,l and f = θ 2 k have a similar proof. Let us now give some other properties of equations for staircase equivalence relations.

Definition 3 .

 3 18. We call a staircase relation a min-relation if its corresponding set I 1 = ∅, and a max-relation if I 0 = ∅. Remark 3.19. (i) Proposition 3.10 states that if l

Proposition 4 . 5 .

 45 k = l and I 1 = {k}. Symmetrically, we can define min l k by min l k (n) = s(n) iff n ≥ min k s and s(n) ≥ l, and 0 otherwise. Suppose that R is a staircase relation, and suppose that A is an sos. The following are equivalent:

Figure 3 .

 3 Figure 3. The relation between ∼ 1 and ∼ ′

  (i) is in Corollary 4.20, and (ii.a), (ii.b), (ii.c) and (ii.d) in Corollary 4.25, and Lemmas 4.21, 4.23 and 4.26 respectively. We start with the following proposition that gives one of the inclusions. Proposition 4.17.

2 l:

 2 Let A k , B k be the set of min-relations and max-relations respectively, and seta k = |A k | and b k = |B k |. Let C k ⊆ A k be the set of min-relations R such that k / ∈ I 0 (R), and let D k ⊆ B k be the set of max-relations R such that k / ∈ I 1 (R). Set c k = |C k | and d k = |D k |. Notice that (i) c k = a k-1 , (ii) A k = A k-1 ∪ {R ∩ ∼ min k : R ∈ C k-1 } ∪ {R ∩ ∼ min k ∩ ∼ θ 0 k,l : l = -1 or l = 1, . . . , k -1, R ∈ A k-1 \ C k-1 }. So, a k = a k-1 + c k-1 + k(a k-1c k-1 ).Hence,a k = (k + 1)a k-1 -(k -1)a k-2 , a 0 = 1, a 1 = 2. (121)By standard methods, we conclude thata k = e (1 + k) k!Γ(1 + k, 1) Γ(2 + k) = k!e k (1). (122)Now let T k be the set of staircase equivalence relations of F IN k and t k = |T k |. Then,T k = ({R ∩ S : R ∈ A k , S ∈ B k } \ {R ∩ S : R ∈ A k \ C k , S ∈ B k \ D k }) (123) ∪ {R ∩ S ∩ ∼ θ R ∈ A k \ C k , S ∈ B k \ D k , l = -1 or l = 1, . . . , k}.(124)Hence,t k = a 2 k -(a kc k ) 2 + (k + 1)(a kc k ) 2 = k(a ka k-1 ) 2 + a 2 k (125)and from (122) and (125), we obtain thatt k = (k!e k (1)) 2 + k (k!e k (1) -(k -1)!e k-1 (1))

1 .

 1 Fix b 0 , . . . , b n , and an equivalence relation ∼. Let F be the canonical isomorphism between e 0 , . . . , e n and b 0 , . . . , b n . Define ∼ ′ on e i n i=1 via F , i.e., s ∼ ′ t if and only ifF (s) ∼ F (t). Fix an sos (c i ) m-1 i=0 (e i ) ni=1 and a staircase equivalence relation ∼ can such that s ∼ ′ t if and only if s ∼ can t, for every s, t ∈ c i m-1 i=0 . Let b i = F c i , for every i = 0, . . . , m -1. Then (b 0 , . . . , b m ) is an sos since sos are preserved under isomorphisms, and ∼ can is well defined on (b 0 , . . . , b m-1 ). Since ∼ can is staircase one has that s ∼ can t if and only if F -1 s ∼ can F -1 t for every s, t ∈ b 0 , . . . , b m-1 . Hence,

- 1 i=0 1 i=0.

 11 such that ∼ is a staircase relation when restricted to (b i ) 2m-Let a i = b i + b 2m-i-1 for every 0 ≤ i ≤ m -1. A typical vector b ∈ (a i ) r i b 2m-i-1 . Let s, t ∈ (a i ) m-1 i=0 .Then one has that min i (s) = min i (t) iff max i (s) = max i (t), and

  By Proposition 4.22 and Lemma 4.14, we have that ∼ ⊆ min k ∩ ∼ ′ 1 . So, we only need to show that ∼ ⊆ ∼ ′ 0 . Suppose that s ∼ t with s

  an sos. (ii) For every canonical equivalence relation ∼ can , every sos B, and s, t ∈ B , s ∼ can t iff F -1 s ∼ can F -1 t. We define ∼ ′ on FIN k by s ∼ ′ t iff F s ∼ F t. Find a canonical equivalence relation ∼ can and an sos B such that ∼ and ∼ can are the same on B . Let C = F B, which is an sos. Then ∼ and ∼ Proof. Notice that, since ∼ is canonical in A, A = A works for both Lemmas 4.2 and 4.3. Hence, ∼ is a staircase equivalence relation in B = (T a 3n + a 3n+1 + T a 3n+2 ) n . Let ∼ ′ be this staircase relation, which is equal to ∼ when restricted to B. We show that ∼ and ∼ ′ are not only equal in B, but also in A. Fix s and t in A, and take their canonical decompositions in A s

can are the same in

C : s ∼ can t iff F -1 s ∼ can F -1 t iff F -1 s ∼ ′ F -1 t iff s ∼ t.

Corollary 4.29. Every canonical equivalence relation is a staircase equivalence relation.

  [START_REF] Hindman | Finite sums from sequences within cells of a partition of N[END_REF] , (126) or, equivalently,t k = e 2 k [Γ(k, 1) -Γ(k + 1, 1)] 2 + Γ(k + 1, 1) 2 . (127)This is a table with the first few values of t k :

	k 0 1 2 3	4	5	6
	t k 1 5 43 619 13829 446881 19790815

  N, and define the equivalence relation ∼ on F IN k by s ∼ t if and only if {n : sR n t} ∈ U, where R n = ∼ n ∪(FIN k ) 2 is an equivalence relation on FIN k . It is easy to see that ∼ is an equivalence relation. By Theorem 4.1, there is some sos A = (a n ) n on which ∼ is a staircase equivalence relation, say ∼ can . Choose n large enough such that: (i) (a 0 , . . . , a m-1 ) (e i ) n i=0

this name is not arbitrary chosen: We will show that every equivalence relation is, when restricted to some combinatorial subpace, canonical.
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Let (I 0 , J 0 , (l (0) j ) j∈J 0 , I 1 , J 1 , (l

k ) be the values of ∼ when restricted to (b i ) 2m-1 i=0 . Using (129) and (130) it follows that our fixed relation ∼ is when restricted to (a i ) m-1 i=0 a symmetric staircase relation with values (I 0 ∪ I 1 , J 0 ∪ J 1 , (l j ) j∈J 0 ∪J 1 , I 0 ∪ I 1 , J 0 ∪ J 1 , (l j ) j∈J 0 ∪J 1 , l

k ) and where for each j ∈ J 0 ∪ J 1

Remark 6.6. (1) Prömel and Voigt were the firsts to observe in [3] the Corollary 6.5 for FIN. We thank the referee for pointing us out this.

(2) Let S k be the set of symmetric staircase relations of FIN k , and set s k = |S k |. Using the notation from the Section 5 one has that

Hence (1).

Canonical relations and continuous maps on P S c 0

Our result on equivalence relations on FIN k gives some consequences about equivalence relations on P S c 0 . Let us start with some natural definitions.

For a fixed δ > 0, let k be the first integer such that 1/(1 + δ) k-1 < δ, and set

and for 0 ≤ i ≤ k, let

x, y ∈ P B c 0 , and a k-vector s of FIN k . Let i be the unique integer such that ρ ∈ I

Definition 7.2. Given a staircase mapping f of FIN k , we consider the following two extensions to an arbitrary δ-sos X = (x n ) n . The fist one is f (0) : P S X → FIN ≤k , closing the following diagram:

The second one is f [START_REF] Gowers | Lipschitz functions on classical spaces[END_REF] : P S X → P B c 0 , defined by

Proposition 7.3. Fix a staircase f , and some δ-sos X.

Proof. (i) is not difficult to check. Let us show (ii). To do this, suppose that f is a staircase mapping. Then f is in the algebraic closure of F (see Definition 3.11), i.e., there is a finite list

n . Since for every point x ∈ P S X the support of f (1) i (x) is finite, we may assume that f ∈ F. We give the proof for the case f = min i . The other cases can be shown in a similar way. For l > 0 we define the following perturbations of the intervals

These are open intervals of P S c 0 . For each l, let f l : P S X → P B X be defined for n ∈ N as follows,

Let us see that f l is continuous, and that f l → l f . Suppose that x r → r x, with x r , x ∈ P S X .

Let n be the unique integer such that f l (x)(n) = x(n) > 0, i.e., x(n) ∈ I (δ) i,l and x(m) ∈ [0, γ i (δ)) for every m < n. Since both sets are open, there must be some r ′ such that x r ′′ (n) ∈ I (δ) i,l and x r ′′ (m) ∈ [0, γ i (δ)), for every r ′′ > r ′ and every m < n. Therefore, for all r ′′ > r ′ , f l (x r ′′ ) = f l x. Let us check now that f l → f . Fix x, and we show that f l (x) → f (x). Again, Let n be the unique integer such that f l (x)(n) = x(n) > 0. Let l ′ be such that x(m) ∈ [0, γ i (δ) -1/l) for every m < n. Then f l ′′ x(m) = 0 and f l ′′ x(n) = x(n), for every l ′′ ≥ l ′ and every m < n. Also, f l ′′ x(m) = 0 for every m > n. All this implies that f l ′′ (x) = f (x).

The rest of the points (iii)-(vi) are not difficult to prove. We leave the details to the reader.

For an equivalence relation R, and

Proof. To prove (i), fix x ∈ P S X , and let x be a k-vector of A such that x -Θ -1 δ x ≤ δ and [START_REF] Gowers | Lipschitz functions on classical spaces[END_REF] x = f [START_REF] Gowers | Lipschitz functions on classical spaces[END_REF] y, and hence f (0) y = f (0) x = f (0) x ′ . Let ȳ be a k-vector of A such that y -Θ -1 δ ȳ ≤ δ and f (0) y = f (0) Θ -1 δ ȳ, and set y ′ = Θ -1 δ ȳ. Then, f (0) x ′ = f (0) y ′ , which implies that f [START_REF] Gowers | Lipschitz functions on classical spaces[END_REF] x ′ = f (1) y ′ , i.e., y ′ ∈ [x ′ ] R and hence y ∈ ([x ′ ] R ) δ .

(ii): By Proposition 3.15, we may assume that f ∈ F. Again, we give a proof for the case f = min i , since the other cases can be shown in a similar way. Suppose that (x, y) ∈ R f (1) , and fix z ∈ P S X with x ∧ y ≤ L z ≤ L x ∨ y. Let n be the unique integer such that f [START_REF] Gowers | Lipschitz functions on classical spaces[END_REF] x(n) = x(n) = y(n) = f [START_REF] Gowers | Lipschitz functions on classical spaces[END_REF] y(n) > 0. Then x(m), y(m) ∈ [0, γ i (δ)) for every m < n. Therefore, z(n) = x(n) = y(n) and z(m) ∈ [0, γ i (δ)) for every m < n. This implies that f [START_REF] Gowers | Lipschitz functions on classical spaces[END_REF] (z) = f (1) (x).

Definition 7.5. A δ-staircase equivalence relation is R f (1) for some staircase f . The next result is the interpretation of Theorem 4.1 in terms of equivalence relations on P S X . Proposition 7.6. Let R be an equivalence relation on P S X . Then for every δ > 0 there is some δ-sos X and some δ-staircase equivalence relation R such that:

(i) R and R coincide in an ε-net of P S X for some ε < δ. (ii) For every R-class α on P S X there is a R-class β on P S X such that α ⊆ β δ .

Proof. Fix δ, and let k = k(δ). Define R on FIN k via Θ δ . Then there is some sos k-block sequence A = (a n ) n and some staircase equivalence relation R f such that R and R f coincide on A . Set R = R f (1) and X = (x n ) n , where x n = Θ -1 δ a n for every n. (i): For ε = (1 + δ) k-1 , N = Θ -1 δ ( (a n ) n ) is a ε-net of P S(X) satisfying our requirements. (ii): For a fixed x ∈ P S X choose some k-vector x of A such that xx ′ ≤ δ and f (0) x = f (0) x ′ , where x ′ = Θ -1 δ x. We show that [x] R ⊆ ([x ′ ] R ) δ . Suppose that y ∈ P S X is such that f [START_REF] Gowers | Lipschitz functions on classical spaces[END_REF] x = f [START_REF] Gowers | Lipschitz functions on classical spaces[END_REF] y. Pick some k-vector ȳ of A such that yy ′ ≤ δ and f (0) y = f (0) y ′ where y ′ = Θ -1 δ ȳ. Then, f (0) x = f (0) y and hence f (0) x ′ = f (0) y ′ , which implies that f [START_REF] Gowers | Lipschitz functions on classical spaces[END_REF] x ′ = f (1) y ′ . Therefore, y ′ ∈ [x ′ ] R .