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Bounds on the number of vertices of perturbed polyhedra 

Paul Armand 
Departement de Mathematiques, Faculte des Sciences de Limoges, 

123, rue Albert Thomas, 87060 Limoges Cedex, France 

Finding the incident edges to a degenerate vertex of a polyhedron is a non-trivial 
problem. So pivoting methods generally involve a perturbation argument to overcome 
the degeneracy problem. But the perturbation entails a bursting of each degenerate 
vertex into a cluster of nondegenerate vertices. The aim of this paper is to give some 
bounds on the number of these perturbed vertices. 

Keywords: Convex polytopes, degeneracy, linear programming, simplex method. 

l. Introduction 

Degeneracy of a polyhedron is a source of difficulties for both theory and 
computation in mathematical programming. This phenomenon may be avoided 
by considering slight perturbations of degenerate polyhedra, that is, by approximat­
ing the degenerate polyhedron by a nondegenerate one. This method was applied to 
a well-known proof of finiteness of the simplex algorithm [5, 7]. Another application 
is a connectedness result of Gal [9- 11, 15] concerning graphs of bases associated 
to the degenerate vertices of a polyhedron, which had induced an algorithm for find­
ing all incident edges to a degenerate vertex [20]. So the pivoting methods which 
require the search of all or part of the incident edges to a given vertex, for example 
the vertex enumeration methods (see for example [3, 21] and a survey in [8]), the 
linear multiobjective methods (see for example [1] and references . given therein), 
frequently need a perturbation argument such that the polyhedron is simple. But 
the perturbed polyhedron has generally many more vertices than the initial poly­
hedron. Here we give one lower and two upper bounds on the number of vertices 
of perturbed polyhedra. In our study, we resolutely adopt a geometric viewpoint. 
This permits the use of some basic facts in the field of convex polytopes as well as 
a strong result of Klee [19] concerning the number of vertices of unbounded poly­
hedra (see also [2]). 

This paper is organized as follows. In section 2 we extend the right hand side 
perturbation principle by introducting a perturbation function of a polyhedron and 
we define the corresponding perturbed polyhedron. We show that, for a given func­
tion, the family of perturbed polyhedra belongs to an equivalence class under the 
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combinatorial polyhedral equivalence relation. The perturbation entails a "burst­
ing" of each degenerate vertex into several nondegenerate vertices, called the 
broken-vertices. From an algorithmic viewpoint, a perturbation corresponds to a 
choice of lexicographic order on the set of bases that selects certain bases associated 
with a degenerate vertex. 

In section 3 we establish a connection between the redundant constraints in a 
representation of a polyhedron and the facets of the perturbed polyhedron. We 
show that for any representation of a full-dimensional polyhedron, there exist per­
turbation functions which preserve redundancy. In this case, the initial polyhedron 
and the perturbed polyhedron have the same number of facets. 

Section 4 is devoted to the minimum and maximum number of broken­
vertices. We show that this number can be equal to the number of vertices of 
some particular unbounded polyhedra. 

2. Perturbed polyhedra 

Here we call a polyhedron a convex subset of Rn defined by the intersection 
of a finite number of closed halfspaces. We shall say that a polyhedron is full­
dimensional if it is n-dimensional. A face of a polyhedron P is the empty set 0, P 
itself, or the intersection of P with a supporting hyperplane. The faces 0 and P 
are called improper faces, while the others are called proper. Vertices and edges of 
a polyhedron are respectively 0- and !-dimensional faces. A facet is a maximal 
proper face. The recession cone of a polyhedron Pis the polyhedral cone defined by 

rec P = {y: x +yE P, for all x E P}. 

A pointed polyhedron is a polyhedron with a line-free recession cone (i.e., 
rec P n -rec P = {0} ). A polyhedron is pointed if and only if its vertex set is non­
empty. Throughout this paper the polyhedra are implicitly assumed to be 
pointed. A bounded polyhedron (i.e., rec P = {0}) is called a polytope and it is 
the convex hull of its vertices. A d-dimensional polyhedron is said to be simple if 
it is pointed and if its vertices are incident to precisely d edges, or equivalently, to 
precisely d facets. Two pointed polyhedra P and Q are said to be equivalent if there 
exists a one-to-one correspondence 4> between the set of all faces of P and the set of 
all faces of Q such that 4> preserves the inclusion. Equivalently, P and Q are equiva­
lent if their face-lattices are isomorphic. For background material on the theory of 
polyhedra see [4, 17]. 

Any nonempty pointed polyhedron in Rn, defined by a set of n +m linear 
inequalities, can be transformed to an equivalent polyhedron described in the 
standard form of the feasible region of a linear program, namely 

P = {x ERn: Ax < b,x > 0}, (2.1) 

where A IS an m x n-matrix and b is an m-column vector with nonnegative 
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components. Such a transformation can be achieved by exactly n pivots of the 
Gaussian elimination method and by a Phase I linear programming (see for 
example [8]). Adding slack variables, the above representation can be transformed 
to the canonical form, 

(2.2) 

with A= (A,/), I being the m x m identity matrix. A basis B is a regular m x m­
submatrix of A. Using the basic-nonbasic partition, A becomes (B, N), so if 
Ay= b then y8 = B-1 b- B-1 NYN· With a basis B we associated the following set 

It is a full-dimensional polyhedral cone, thus it is a closed convex cone with a non­
empty interior defined by 

int K(B) = {z E lRm: B-1z > 0}. 

The basis B is feasible (with respect toP) if bE K(B). In this case, the vector y such 
that (y8 ,yN) = (B-1b, 0) is a vertex of P, and the vector x such that y = (x, b- Ax) 
is a vertex of P. The basis B is said to be degenerate if b lies on the boundary of K(B). 
In this case we denote by (J the number of null components of B-1 band say that the 
associated vertex is (]-degenerate [10, 20]. Equivalently, a vertex xis (]-degenerate if 
and only if precisely n + (J constraints are tight at x. Recall that a vertex is non­
degenerate if and only if a unique basis is associated with it, on the other hand, 
at least 2 and at most (n!<7) bases may define the same (]-degenerate vertex. A poly­
hedron is said to be degenerate if at least one vertex is degenerate. Denote by 11 the 
set of feasible bases (B-1 b > 0) and by 11' the one of infeasible bases (B- 1 b i 0). We 
define the stability cone of polyhedron P by 

S(A,b) = n K(B)\ U K(B), (2.3) 
BE91 BE91 1 

so it is the intersection of all the "feasible cones" with all the complements of 
"infeasible cones". Since bE S(A, b), it is a nonempty cone but not necessarily 
convex. The following two conditions are equivalent. 

• P (or P) is a nondegenerate polyhedron. 

• bE int S(A, b). 

LEMMA 2.1 

If the polyhedron P defined by (2.1) is nondegenerate, then for all 
c E int S(A, b), the polyhedron {x: Ax < c, x > 0} is equivalent toP. 
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Proof 

Let Q = {x: Ax < c, x > 0}. For convenience we use the canonical represen­
tation of P and Q and prove that P and Q are equivalent polyhedra. Let B be any 
basis. If B-1b > 0 thencE K(B), which implies B-1c > 0. Conversely, if B-1bi.O 
then c~ K(B), which implies B- c i 0. Therefore a basis is feasible with respect toP 
if and only if it is feasible with respect to Q, whence S(A, b) = S(A, c). As c is an 
interior point of S(A, c), the polyhedron Q is nondegenerate. Now, let F be a non­
enlpty face of P and let B be a basis associated with a vertex of F. By the non­
degeneracy assumption, there exists a unique index subset I of the non basic index 
set such that 

F ={yE P : Y; = 0, for all i E /}, 

(see for example [23]). The basis B is also associated with a vertex of polyhedron Q 
and the set {y E Q : Y; = 0, for all i E /}determines a unique face of Q. Obviously, 
this correspondence between the faces of P and Q preserves the inclusion and 
because of symmetry of c and b, it is one-to-one. D 

The perturbation principle consists in moving the vector b such that it 
never lies on the boundary of any cone K( B). Denote by x T the transpose 
vector of x. Let hT = (h1, ••• , hm), where each h; is a continuous function from 
[0, + oo) to R, such that h(O) = 0 and, for any hyperplane H of lRm, there is at 
most a finite number oft > 0 such that h(t) E H. Such a function will be called a 
perturbation June tion. 

LEMMA2.2 

Let z be a nonzero vector of lRm. Then there exists E > 0 such that for all 
t E (0, E], the scalar product (z, h(t)) has constant sign. 

Proof 

Suppose that the continuous function t ~ (z, h(t)), defined fort> 0, changes 
sign in any neighborhood oft= 0. Then there exists a nonfinite number oft> 0 
such that h(t) E {x: (z, x) = 0}, which contradicts the definition of a perturbation 
function. D 

From the standard form (2.1) of polyhedron P we define the family of 
perturbed polyhedra 

P(h(t)) = {x ERn : Ax < b + h(t), x > 0}. (2.4) 
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Throughout the sequel it will be implicitly assumed that the perturbed polyhedra are 
nonempty. Usually the perturbation function is defined by h(t) = (t, t 2, ... , tm)T, 
see [6, 16, 18]. (Other perturbation functions are used in the literature, see [5, 24, 
26]). 

PROPOSITION 2.3 

There exists E > 0 such that [P(h(t))]o<t$f is a family of equivalent nonde­
generate polyhedra. 

Proof 

It suffices to show that there exists E > 0 such that any basis is either feasible 
and nondegenerate with respect to P(h(t)) for all t E (o, €], or infeasible for 
all t E (0, €]. Indeed, for all t E (0, €], the vector b + h(t) will be an interior point 
of the stability cone S(A, b + h(e)), from which the conclusion will follow, cf. 
lemma 2.1. 

Let B be a basis. Every component of B-1(b + h(t)) is the scalar product of 
h(t) with a row vector of B-1

• By lemma 2.2, there exists €(B) > 0 such that the basis 
B is either feasible and nondegenerate or infeasible. Then we take f equal to the 
smallest E(B) over all of the bases B. D 

Throughout the sequel we shall denote by P(h) the perturbed polyhedron. It 
will indicate an element of this equivalence class. This result shows that the combin­
atorial structure of a perturbed polyhedron is independent of the value oft > 0 in a 
neighborhood of 0. This fact appears in the proof of the equivalence of the pertur­
bation method with the lexicographic pivoting rule of the simplex algorithm, see for 
example [6, chap. 10; 18, chap. 6], where it is shown that it is never necessary to 
compute the perturbation explicitly. 

Another well-known geometrical interpretation of the perturbation is the 
following. A vertex of Pis degenerate if more than n bounding hyperplanes pass 
through the vertex. Perturbing P consists in translating each hyperplane parallel 
to itself, such that there is no degeneracy. This entails a "bursting" of a degenerate 
vertex into a cluster of nondegenerate vertices. If x(h) is a vertex of the perturbed 
polyhedron then the basis associated with x(h) is also associated with a vertex x 
of the initial polyhedron. In this case x(h) will be called a broken-vertex of x. 
Note that when h(t) = (t, t 2

, ... , tm)T the broken-vertices correspond one-to-one 
to the lexicographic bases. 

PROPOSITION 2.4 

For any vertex x, the set of broken-vertices of xis nonempty. 
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Proof 

Let x 0 be a vertex of P (2.1) and let c be a normal vector to a supporting 
hyperplane of P such that, for all x E Px0

}, (c,x) > (c,x0
). Since the polyhedra 

P and P(h) have the same recession cone, namely the set {x: Ax < O,x > 0}, the 
problem min { (c, x), x E P(h)} has at least one minimal solution. Therefore, there 
exists a basis B associated with a vertex of P(h) which satisfies the dual-optimality 
condition, namely eN- cBB-1 N > 0, where c = (c, 0) E JR.n+m. Note that this con­
dition does not depend on the perturbation, thus the basis B is also dual-optimal 
with respect to the problem min { (c, x), x E P}. But x0 is the unique solution of 
the problem, therefore the basis B is necessarily associated with x0

. D 

The following result is fundamental for establishing the bounds of theorem 
4.4. Given a nondegenerate polyhedron P, it allows us to produce a polyhedron 
Q with a degenerate vertex such that the perturbed polyhedron Q(h) is equivalent 
toP. 

THEOREM 2.5 

Let P = { x : Ax < b, x > 0} be a nondegenerate polyhedron and let 
Q = {x: Ax < 0, x > 0} be the recession cone of P. Then there exists a pertur­
bation function h such that Q(h) and Pare equivalent polyhedra. 

Proof 

Without loss of generality we may suppose that P = { x : Ax < e, x > 0}, 
where e = (1, ... , l)T. Let K = S(A,e) be the stability cone (2.3) associated with 
P. By the nondegeneracy assumption, e is an interior point of K. Denote by (e;) 
the canonical basis of JR. m. Let us choose 'rJ > 0 sufficiently small such that the vec­
tors c; = e + rJe;, i E {I, ... , m}, are interior points of K. Consider the perturbation 
function h(t) = 2:~1 t;c;. Clearly h(t) E int K for all t > 0, and therefore the per­
turbed polyhedron Q(h) is equivalent to P (cf. lemma 2.1). D 

3. Stability of redundancy 

Let Q be a polyhedron in JRn with the following representation, 

where each Ki is a closed halfspace (also named constraint) with bounding hyper­
plane H;. Throughout the sequel it will be assumed that no two constraints of a 
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representation of a polyhedron are identical. The constraint K, is said to be 
redundant if 

The redundancy is said to be weak if Q n H, #0, in the other case it is strong. It is 
well-known that if K, is weakly redundant, then all the vertices of Q contained in H, 
are degenerate (see for example [13]). Given a vector y and a scalar number a, we 
shall denote by {(y) <a} the closed halfspace {x: (y,x) <a}. Given a pertur­
bation function h, the standard representation (2.1) of polyhedron P and the repre­
sentation (2.4) of perturbed polyhedron P(h) may be rewritten in the following 
form, 

m n 

p = n{(ai) < b;} n n{(e;) > 0} (3.1) 
i=l i=l 

and 

m n 

P(h) = n{ (a;) < b; + h;} n n{ (et) > 0}, (3.2) 
i=l i=l 

where (a;) are the row vectors of the matrix A and (e;) is the canonical basis ofiRn. 
Note that redundancy is always strong for the representation (3.2) since the 

perturbed polyhedron is nondegenerate. 

PROPOSITION 3.1 

If a constraint is nonredundant for the representation (3.1) of P, then the 
corresponding perturbed constraint is nonredundant for the representation (3.2) 
of P(h). 

Proof 

Denote by K; the halfspaces in representation (3.1) and by K;(h) those in (3.2). 
Suppose that K,(h) is redundant, then 

P(h) = n Kt(h) c K,(h). 
i :f: r 
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But when h tends to zero we have, 

whence the redundancy of K,. 

P= nK; c K,, 
i ::f:. r 

0 

We shall say that a perturbation function preserves redundancy if for any 
redundant constraint in (3.1) the corresponding perturbed constraint remains 
redundant in (3.2). Such a perturbation function will be called stable. 

PROPOSITION 3.2 

Any perturbation function preserves strong redundancy. 

Proof 

Let K be a constraint of a representation of polyhedron P, and let H be its 
bounding hyperplane. Suppose that the perturbed constraint is not strongly redun­
dant. Then its bounding hyperplane H(h) is a supporting hyperplane of P(h). There­
fore there exists a vertex x(h) of P(h) contained in H(h). When h tends to zero, x(h) 
tends to a vertex x(O) of P contained in H, then K is not strongly redundant for the 
re~~~~~~ 0 

On the other hand, a weakly redundant constraint can be transformed into a 
nonredundant one for the perturbed polyhedron. Before establishing the next result, 
note that the deletion of one weakly redundant constraint can make other redun­
dant constraints nonredundant. However, if a polyhedron is full-dimensional and 
no two constraints of its representation are identical, then all the redundant con­
straints can be deleted at the same time, without changing the polyhedron. 
Indeed, under the above assumptions there exists a one-to-one correspondence 
between the facets and the nonredundant constraints defining P (3.1) (see for exam­
ple [4, theorem 8.2]). 

THEOREM 3.3 

For any standard representation of a full-dimensional polyhedron, there 
exists a stable perturbation function. In this case, the polyhedron and the perturbed 
polyhedron have the same number of facets. 

Proof 

It follows from the above remark that for a stable perturbation function the 
two polyhedra have the same number of facets. 
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We may assume that then nonnegativity constraints { (e;) > 0} in (3.1) are 
nonredundant. Indeed, since P is n-dimensional, there exist at least n facets contain­
ing any vertex x of P. From among these facets, let us choose n of them such that 
their normal vectors are linearly independent (such a choice exists, otherwise the 
dimension of P would be smaller than n ). All these facets are defined by the inter­
section of P with the bounding hyperplanes of n nonredundant constraints. This 
choice corresponds to the choise of a basis associated with the vertex x. Denote 
by B this basis. Using the canonical form of P and the basic-nonbasic partition, 
we can write P in the following equivalent form, 

P(B) = {x E IRn: B-1Nx < B-1b,x > 0}. 

The transformation from P to P(B) maps the vertex x onto the origin ofiRn, and the 
n preceding constraints are mapped onto the nonnegativity constraints of P(B). 
Since the redundancy is invariant under a change of basis, we then have a poly­
hedron equivalent toP with nonredundant nonnegativity constraints. 

Now, assume that the constraints {(a;) < b;}, i = 1, ... , r, are weakly redun­
dant. Define the perturbation function as follows: h;(t) = t' (t to the ith power). 
Note that h has only positive components, so the constraints are moved away 
from any interior point of polyhedron P. Let 

m n 

Q(h) = n {(a;) < b; + h;} n n{ (e;) > 0}. 
i=r+l i=l 

By assumption and from the above mentioned remark, all the redundant constraints 
can be deleted at the same time in (3.1), hence P = Q(O). Now it suffices to show that 
Q(h) is included in nj=1 {(a;) < bi + h;}. In order to do this, we shall show that 

where lm is the closed unit ball and a is a positive number. Indeed, as 

and 

h· 
{(a;) < b;} + lla:ll B = {(a;) < b; + h;}, for all i = 1, ... , m, 

lim hr+I (t) = 0, 
t-+0 h;(t) 

for all i = 1, ... , r, 

(3.3) 

then when t tends to zero, P + ah,+1B C {(a;) < b; + h;} for all i = 1, ... , r. 
Actually, we shall show that the vertices x(h} of Q(h) verify 

(3.4) 
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which implies (3.3). let x be a vertex of P and let x(h) E Q(h) be a broken-vertex of 
x. As Q(h) is nondegenerate and son-dimensional, there are exactly n constraints of 
Q(h) which are tight at x(h), say 

{ 
(x(h), e;) = 0, i E / 0 , 

(x(h), aj) = bj + h1, j E Jo, 

with j/01 + IJol = n. If J0 = 0, then x(h) = 0 which implies x = 0. Now suppose that 
J 0 is nonempty. The system above can be written Gx(h) = g(h), where G is then x n­
matrix with row vectors e; and a1, and g(h) is the corresponding column vector. 
Since x(h) is a vertex, the matrix G is invertible, hence x(h) = G-1g(h). Since x(h) 
is a broken-vertex of x it follows that x = G-1g(O). We then have 

llx(h)- xll = IIG-1(g(h)- g(O))II 

< IIG-11lllg(h) -g(O)II 

< allg(h)- g(O)JI, 

where a is an upper bound of IIG-1
11 for all matrices G corresponding to the vertices 

of Q(h). Since the constraints which are tight at x(h) are among those which are 
tight at x, and since lim1-+ 0 (h;(t)/h,+1 (t)) = 0, for all i = r + 2, ... , m, it follows 
that llx- x(h) 11 < ah,+1, which implies (3.4). D 

4. Bounds on the number of broken-vertices 

Using a result of K.lee about the number of vertices of a class of unbounded 
polyhedra [19, theorem 1], we derive some bounds for the number of broken-vertices 
of a degenerate vertex. 

This study is motivated by an algorithm of Kruse [20, p. 97] which finds all 
adjacent vertices of a degenerate vertex of a polytope ("N-tree method"). Starting 
from a basic B0 associated to a a-degenerate vertex x0 and using the lexicographic 
pivoting rule of Dantzig, Orden and Wolfe, the N-tree algorithm enumerates the 
whole set of lexicographic bases associated to x0 (that is, the bases which can be 
found from B0 by means of a finite sequence of "lexicographic pivoting oper­
ations"). Kruse emphasizes that the number of lexicographic bases depends on 
the starting basis B0 and on the arrangement of rows in the corresponding initial 
simplex tableau. He conjectures that there exists a starting basi~ B0 and an arrange­
ment of rows such that this number is not greater than r J a, where r is the number of 
feasible bases associated to the a-degenerate vertex x0

• Since the lexicographic 
variant is formally equivalent to the right hand side perturbation method, the 
conjecture can be rephrased as follows. There exists a perturbation function such 
that the number of broken vertices of x0 is not greater than rja. The following 
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example invalidates the conjecture in the particular case of a polytope which is not 
full-dimensional. 

EXAMPLE 4.1 

Consider the polytope 

P = {x ERn : Ix < b, x > 0}, n > 3, 

where I is the identity matrix ofRn and bT = (1, 0, ... , 0) . Let x be a point of P, then 

X; < 0, i = 2, ... , n, 

X; > 0, i = 1, ... , n. 

Thus Pis the line segment [x0 ,x1
), where x0 = 0 and x 1 =b. These two vertices are 

both (n - 1 )-degenerate since (2n- 1) constraints are tight at x0 or x 1
• By means of 

slack variables, the above system is transformed onto 

(I,I]y = b, y > 0, 

where yT = (xh ... , x2n)· There are precisely 2n regular n x n-submatrices of 
[I,/], each of them corresponding to a feasible basis. Moreover, a variable 
xz, i E {1, ... ,n}, is basic if and only if Xn+i is nonbasic. Therefore 2n-I bases are 
associated with x0 (resp. x 1

). For any perturbation function (such that the per­
turbed polytope is nonempty), the perturbed polytope will be defined by 

lx < b(h), x > 0, 

where b(h) is an n-column vector with only positive components. Therefore the 
perturbed polytope is equivalent to the n-dimensional cube. Since the latter has 
2n vertices, the number of vertices of P(h) is equal to the number of feasible 
bases. In particular, for any starting basis B0 associated to x0 and for any arrange­
ment of rows in the initial simplex tableau, the number of bases enumerated by 
Kruse's N-tree algorithm is equal to the number of feasible bases associated to x0

• 

0 

Following Klee [19] (see also [2]), for 3 < d < u < p, a pair (Q, G) is called a 
polytope pair of class (d,p, u) provided Q is a simple polytope of dimension dwithp 
facets and G is a facet intersecting precisely u other facets of Q. Klee has shown that 
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the minimal and maximal numbers of vertices of Q\G are respectively equal to 

cp(d,p, u) = (p- u- 2)(d- 1) + u, 

fjJ(d,p, u) = +d-u-1, 

where [a) stands for the greatest integer less than a, and (:) denotes the binomial 
coefficient. 

LEMMA4.2 

Proof 

For 3 < d < u < p, 

fiJ(d,p, u) < fjJ(d,p, u- 1), 

fjJ(d,p, u) < fjJ(d,p + 1, u), 

<!J(d,p,p- 1) < <!J(d,p + l,p). 

fjJ(d,p, u) = <jJ(d,p, u- 1)- 1, implying (4.1). To show (4.2), consider 

1/;(d,p) = <jJ(d,p, u)- (d- u- 1). 

Thus <jJ(d,p +I, u)- fjJ(d,p, u) = 1/;(d,p + 1) -1/;(d,p), with 

1/;(d,p + 1) = 

Since 

( n) = n (n - 1) , 
k n -k k 

it follows that 

1/;(d,p + 1) = q 

(4.1) 

(4.2) 

(4.3) 
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with 

and 

For every integer n we have: 

Whence 

[d+2] 
and r = p- 2 . 

p-d 

As q > r, we deduce 

'1/J(d,p + 1) > r'ljJ(d,p), (4.4) 

and finally, 

- [d+2] d+2 
p 2 p- 2 d-2 

r= > =1+ . 
p- d - p- d 2(p -d) 

But d > 3 and p > d, therefore r > 1. 
To show (4.3) consider 

4>(d,p + 1,p) = 'ljJ(d,p +I)+ d-p- 1 > r'ljJ(d,p) + d- p- 1, 

the inequality be derived from (4.4). As 'ljJ(d,p) = 4>(d,p,p- 1)- (d- p), we 
have 

4>(d,p + l,p) > r4J(d,p,p- 1) + k, 

with k = (d- p)(1 - r)- 1. Replace r by its value, we have k = [(d + 1)/2)- 2. 
Since d > 3, then r > 1 and k > 0, which implies ( 4.3). D 
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LEMMA4.3 

For 3 < d < u < p, 

Proof 

r.p(d,p, u) < r.p(d,p, u- 1), 

r.p(d,p, u) < r.p(d,p + 1, u), 

r.p(d,p,p- I)< r.p(d,p + l,p). 

r.p(d,p, u) = (d- 1 )(p- 2) - u(d- 2), thus r.p decreases with respect to u and 
increases with respect top. A simple calculation shows that r.p(d,p,p- 1) = p- d 
andr.p(d,p+1,p)=p-d+I. 0 

We shall say that a constraint is weakly redundant at a vertex, provided the 
latter is contained in its bounding hyperplane. 

THEOREM 4.4 

Let x0 be a a-degenerate vertex of a full-dimensional polyhedron of1Rn, n > 3. 
Let 0 < r < a be the number of weakly redundant constraints at x0

. Then for any 
perturbation function, the minimum and maximum number of broken-vertices of 
x0 are respectively equal to: 

r.p(n, n +a- r + I, n +a- r) =a+ 1 - r, 

If the perturbation function is stable, then the maximum is equal to 

( 
[n] ) - +a-r 

cf>(n, n + e1- r + 1, n +a- r) = 2 
a-r 
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Proof 

The proof is divided into two parts. Firstly, we establish the bounds; then we 
prove the existence of degenerate vertices for which the bounds are attained. 
Throughout the proof we denote by v the number of broken-vertices of x0

• 

Establishing the bounds. Since x0 is a vertex of P, there exists a supporting 
hyperplane { (y) = a} of P such that 

P n { (y) =a} = {x0
} and P\{x0

} c { (y) <a}. 

There exists (3 <a such that all vertices of P except x0 are contained in the open 
halfspace { (y) < ,B}. Given a perturbation function h(t), when t tends to 0, the 
broken-vertices of a vertex x of P tend to x, thus we can choose the perturbed poly­
hedron such that the hyperplane { (y) = ,B} separates the broken-vertices of x 0 

from the remaining vertices of P(h) . The set Q = P(h) n { (y) > (3} is a polytope, 
indeed if z is a recession direction of Q then (y, z) > 0. But z is also a recession 
direction of P, then (y, x0 + z) < a, whence z = 0. Moreover, Q is of dimension 
n, the set F = P(h) n {y = (3} is a facet of Q and any vertex of Q is either a 
broken-vertex of x0 or a vertex of the facet F [4, theorem 11.11]. By proposition 
3.1, a nonredundant constraint is also nonredundant for the perturbed poly­
hedron, so each facet of P incident to x0 corresponds to a facet of Q. Moreover, 
such a facet intersects the facet F. Therefore, (Q, F) is a polytope pair of class 
(n,p, u) with 

p > p 1 = n + a - r + 1 and u > p 1 - 1. 

If the perturbation function preserves redundancy, it follows from theorem 3.3 that 
p = p 1 and u = p 1 - 1. So vis bounded from above by cjJ(n,p11p 1 - 1 ), which gives 
the supremum for a stable perturbation function. Now for any perturbation 
function, a weakly redundant constraint at x0 may define a facet of Q and such a 
facet may or may not intersect the facet F. Thus 

p < P2 = n + a + 1 and u < p - 1. 

Therefore vis bounded from below by 

min{<p(n,p,u) :pi <p <p2,Pt-1 < u <p-1}. 

By virtue of lemma 4.3 we have 
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and 

It follows that the infimum is equal to cp(n,p1 ,p1 - 1 ). Note that this case corre­
sponds to a stable perturbation function. 

In the same way, v is bounded from above by 

max { <P( n, p, u) : p 1 < p < p2, p 1 - 1 < u < p - 1}. 

As (,b increases with respect top and decreases with respect to u, cf. lemma 4.2, the 
maximum is attained for p = p2 and u = p 1 - 1 which gives the supremum. 

Attaining the bounds. First we shall show that the first upper bound is 
attained. We have to produce a full-dimensional polyhedron, with a a-degenerate 
vertex x 0 and with 0 < r < C1' weakly redundant constraints at x 0

• Let 
p = n +a+ 1, u = n +a-rand consider a polytope pair (Q, F) of class (n,p, u) 
for which the number of vertices of Q\F is equal to <,h(n,p, u). Then we shall prove 
that there exists a perturbation function such that v = <,h(n,p, u) . 

Let U be the unbounded simple polyhedron obtained from Q by applying a 
projective transformation that sends the facet F into the hyperplane at infinity 
[17, 19]. Then U has precisely u unbounded facets and its recession cone is full­
dimensional [2], moreover U and Q\F have the same number of vertices. Let 

p-1 

u = n { (y;) < a;} 
i=1 

be a representation of U such that each set F; = { (y;) =a;} nU is a facet of U. We 
may assume that each n of the hyperplanes { (y;) =a;} have a unique common 
point; if not, the vectors Yi can be slightly perturbed such that each n of them are 
linearly independent (the vectors Y; are said to be in general position). The recession 
cone of U is defined by 

p-1 

rec u = n{(y;) < 0}. 
i=l 

Clearly, the unique vertex x0 = 0 of rec U is a-degenerate. Now we shall show that a 
facet Fj of U is bounded if and only if the constraint { (yj) < 0} is redundant for the 
representation of rec U. Therefore the number of weakly redundant constraints at 
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x0 will be equal to r = p - 1 - u. The facet Fj is bounded if and only if its recession 
cone is equal to {0}, namely 

rec Fj = { (yj) = 0} n n{ (y;) < 0} = {0}. 
i#j 

This implies { (yj) = 0} n ni#j{ (y;) < 0} = 0, which is just a rephrasing of the 
redundancy of { (yj) < 0} [4, theorem 8.1]. Conversely, suppose that { (yj) < 0} is 
redundant, namely n{ (y;) < o} c { (yj) < o}. 

i #j 

Using polarity of cones [25, chap. 14], the above inclusion is equivalent to yj E C, 
where C is the cone generated by the vectors y;, i E {1, .. . ,p- 1}\{j}. The cone 
C is the polar cone of the pointed and full-dimensional cone rec U, so it is also 
pointed and full-dimensional. Let us show that Yj is an interior point of C. Since 
C is pointed, it is the conical hull of its extremal directions [25, theorem 18.5] and 
each of them is among the vectors Y;, i =I= j. Suppose that Yj is on the boundary of 
C. Then there exists a facet D of C which contains Yj· Since C is full-dimensional, 
the facet D has dimension ( n - 1) and so has at least ( n - 1) extremal directions. 
Therefore the hyperplane defined by D contains at least n vectors y;, which contra­
dicts the general position of Y;· Using again polarity, to say that Yj is an interior 
point of C is equivalent to 

Vx =I= 0, (x,y;) < 0, i E {1, . . . ,p- 1}\{j} =} (x,yj) < 0. 

This implies rec Fj = { (yj) = 0} n ni#j{ (Yi) < 0} = {0}, therefore Fj is bounded. 
Finally the vertex x 0 = 0 of rec U is a-degenerate and precisely r constraints are 
weakly redundant at x0

• Now its suffices to find a standard representation of 
rec U and apply theorem 3.3, which implies the existence of a perturbation function 
h such that the perturbed polyhedron (rec U)(h) is equivalent to U. 

Now for the situation with a stable perturbation function (lower bound and 
second upper bound), it suffices to restart the above procedure with a polytope pair 
(Q, F) of class (n,p,p- 1), withp = n +a - r + 1, for which the number of vertices 
of Q\F is equal to <p(n,p,p- 1) (resp. f/>(n,p,p- 1)). Then we choose a represen­
tation of the unbounded polyhedron U and add r strongly redundant constraints. 
Obviously, the latter correspond to weakly redundant constraints for the recession 
cone of U. D 

Using the notation of the proof above, by lemma 2.2 we can easily derive the 
following formula, 

4>(n,phPI- 1) = min{f/>(n,p, u): Pt < p < P2,Pt- 1 < u < p- 1}. 
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Therefore we might think that a stable perturbation function generates fewer 
vertices than any other. This is true for the dimensions 2 and 3 (see below), but 
the following example shows that this is false for the dimension 4. 

EXAMPLE 4.5 

Consider P = {x E 1R4
: Ax < b, x > 0} with 

Pis a 4-dimensional polytope and is the convex hull of the vertex x0 = (I, 0, 0, 0) T 

with a 3-dimensional polytope contained in the hyperplane { (e1) = 0}. There are 8 
facets of P containing x0

. The first constraint {((I, 0, 0, 0)) < 1} is redundant at x0
. 

Hence 9 constraints are tight for x0
, thus x0 is 5-degenerate. For the stable pertur­

bation function h(t) = (t, t2
, ... , t 6)T there are 15 broken-vertices of x0

, although 
for the non-stable perturbation function g(t) = (t6

, t 5
, . . • t)T, this number is only 

equal to 8. D 

Before dimension 3, consider full polytopes of lR 2• If x0 is a-degenerate, then 
its degeneracy is only due to redundancy. Therefore a stable perturbation function 
generates only one broken-vertex. If it is not stable the number of broken-vertices is 
bounded from above by (a+ 1). Now we consider the three-dimensional case. 

PROPOSITION 4.6 

Let x0 be a a-degenerate vertex of a full-dimensional polyhedron of JR3
• Let r 

be the number of weakly redundant constraints at x0
• For any stable perturbation 

function the number of broken-vertices of x0 is equal to v = a- r + I. Moreover, 
for any perturbation function this number is always greater than v. 

Proof 

Suppose the perturbation function stable, then the upper and lower bounds 
of theorem 4.4 are both equal to v = 1 +a- r. Now suppose that among the 
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redundant constraints, there are 1 < k < r nonredundant constraints for 
the perturbed polyhedron. Let (Q, F) be the polytope pair as in the proof 
of theorem 4.4. Then (Q, F) is of class (3,p, u) with p = 4 + u- r + k and 
3 + u - r < u < p - 1. Since <p decreases with respect to u, cf. lemma 4.3, 
then the number of broken-vertices of x0 1s lowered by 
cp(3, 4 + u- r + k, 3 + u- r + k) = u- r + k + 1 > v. D 

The case of higher dimensions contradicts somewhat our intuition. For 
if a redundant constraint for the perturbed polyhedron becomes nonredundant 
(by a change of perturbation function), the perturbed polyhedron is in a way 
truncated such that the new polyhedron has one additional facet. Now, if a simple 
d-dimensional polytope Pis truncated to obtain a polytope P' such that P' is simple 
and has one more facet than P, then 

• if d = 2 or 3, P' has more vertices than P, 

• if d > 4, P' may have fewer vertices than P. 

For a polyhedron P we denote by Pk the number of k-dimensional faces. The above 
remark is trivial for d = 2 and for dimension 3 follows from the Dehn-Sommerville 
relations (see for example [4, § 17]), 

p0 = 2p2 - 4 and p 1 = 3p2 - 6. (4.5) 

Now suppose that d = 4. Let P be a simple dual neighbourly polytope with k facets 
(for example the dual of a cyclic polytope with k vertices), see [4, §§13-14]. Then 

P3 = k and Po = !k(k- 3). 

Let F be a facet of P. Translate the hyperplane determined by F onto a hyper­
plane H, such that F is one one side of Hand the vertices of P\F are on the other 
side, H containing no vertex. Let Q = H' n P, where H' is the closed halfspace 
bounded by Hand including F. Since any facet of P intersects the others, Hinter­
sects every facet different from F, and G = H n Pis a facet of Q. Hence Q is a 
simple polytope with one additional facet. Vertices of Q are the union of those 
of F and those G. The latter result from the intersection of the hyperplane H 
with external edges of F. Since F is simple, there is precisely one external edge 
per vertex, therefore q0 = 2/0. The facet F is a 3-dimensional simple polytope 
with k- 1 facets, therefore by (4.5) we have q0 = 4(k- 3). At last we have 
p0 > q0 as soon as k > 9. 0 

This example is based on a counterexample of Mattheiss and Schmidt [22] 
invalidating a conjecture of Mattheiss [21] about a vertex enumeration algorithm. 
A similar construction can be found in [8, p. 388]. 
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