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Abstract

In this paper the Smith factorization is used systematically to derive a new

domain decomposition method for the Stokes problem. In two dimensions the

key idea is the transformation of the Stokes problem into a scalar bi-harmonic

problem. We show, how a proposed domain decomposition method for the bi-

harmonic problem leads to a domain decomposition method for the Stokes equa-

tions which inherits the convergence behavior of the scalar problem. Thus, it is

sufficient to study the convergence of the scalar algorithm. The same procedure

can also be applied to the three-dimensional Stokes problem.

As transmission conditions for the resulting domain decomposition method

of the Stokes problem we obtain natural boundary conditions. Therefore it can

be implemented easily.

A Fourier analysis and some numerical experiments show very fast conver-

gence of the proposed algorithm. Our algorithm shows a more robust behavior

than Neumann-Neumann or FETI type methods. October 31, 2006

1. Introduction

The last decade has shown, that Neumann-Neumann type algorithms, FETI, and

BDDC methods are very efficient domain decomposition methods. Most of the early

theoretical and numerical work has been carried out for scalar symmetric positive

definite second order problems, see for example [6, 12–14, 22]. Then, the method

was extended to different other problems, like the advection-diffusion equations

[1, 7], plate and shell problems [26] or the Stokes equations [21, 25].

In the literature one can also find other preconditioners for the Schur complement

of the Stokes equations (cf. [2, 25]). Moreover, there exist some Schwarz-type algo-

rithms for non-overlapping decompositions (cf. [15, 18, 19, 23]). A more complete list
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of domain decomposition methods for the Stokes equations can be found in [21, 27].

Also FETI [10] and BDDC methods [11] are applied to the Stokes problem with

success.

Our work is motivated by the fact that in some sense the domain decomposition

methods for Stokes are less optimal than the domain decomposition methods for scalar

problems. Indeed, in the case of two subdomains consisting of the two half planes it

is well known, that the Neumann-Neumann preconditioner is an exact preconditioner

for the Schur complement equation for scalar equations like the Laplace problem (cf.

[22]). A preconditioner is called exact, if the preconditioned operator simplifies to

the identity. Unfortunately, this does not hold in the vector case. It is shown in [17]

that the standard Neumann-Neumann preconditioner for the Stokes equations does

not possess this property.

Our aim in this paper is the construction of a method, which preserves this property.

Thus, one can expect a very fast convergence for such an algorithm. And indeed, the

numerical results clearly support our approach. This paper explains the ideas of [4] in

more detail. For an application to the compressible Euler equations see [3].

Let us give a short outline of the paper. In Section 2 we introduce the Stokes equa-

tions. Concentrating on the two-dimensional case, these equations are transformed

into a bi-harmonic operator with the help of the Smith factorization. Then, in Section 3

we introduce an iterative domain decomposition method for the bi-harmonic equa-

tions and we show how it can be used for the Stokes equations. Moreover, in Section 4

we discuss briefly, how this approach can be extended to the linearized Navier-Stokes

equations (Oseen equations). In the case of two subdomains we were able to derive an

algorithm which converges independently of the Reynolds number in two iterations.

Most likely, ongoing research will show that we will retrieve this behavior for more

general decompositions. Then, in Section 5 the algorithm is extended to the three-

dimensional Stokes problem. A finite volume discretization is discussed in Section 6.

Section 7 is dedicated to numerical results for the two-dimensional Stokes problem.

Finally, we give some concluding remarks.

2. Equivalence between the Stokes equations and bi-harmonic

problem

In this section we show the equivalence between the Stokes system and a fourth

order scalar problem (the bi-harmonic problem) by means of the Smith factorization.

This is motivated by the fact that scalar problems are easier to manipulate and the

construction of new algorithms is more intuitive. Additionally, the existing theory of

scalar problems can be used.

2.1. Stokes equations

We consider the stationary Stokes problem in a bounded domain Ω ⊂ R
d, d = 2, 3.

The Stokes equations are given by a velocity u and a pressure p satisfying

−ν∆u + ∇p + cu = f in Ω
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∇ · u = 0 in Ω

and some boundary conditions on ∂Ω. The Stokes problem is a simple model for

incompressible flows. The right hand side f = (f1, . . . , fd)
T ∈ [L2(Ω)]d is a source

term, ν is the viscosity and c ≥ 0 is a constant reaction coefficient. Very often c stems

from an implicit time discretization and then c is given by the inverse of the time step

size.

In the following we denote the d-dimensional Stokes operator by

Sd(v, q) := (−ν∆v + cv + ∇q,∇ · v).

2.2. Smith Factorization

Now we show, that the Stokes problem can be transformed into a scalar fourth-order

problem using the Smith factorization. We recall the Smith factorization of a matrix

with polynomial entries ([28], Theorem 1.4):

THEOREM 2.1: Let n be a positive integer and A a n × n matrix with polynomial

entries with respect to the variable λ: A = (aij(λ))1≤i,j≤n. Then, there exist matrices

E, D and F with polynomial entries satisfying the following properties:

• det(E) and det(F ) are constants,

• D is a diagonal matrix uniquely determined up to a multiplicative constant,

• A = EDF .

Here E and F are matrices, which operate on the rows resp. columns. The entries of

the diagonal matrix D = (dij(λ)) are given by dii = φi/φi−1, where φi is the greatest

common divisor of the determinants of all i × i sub matrices of A and φ0 = 1.

Application to the two-dimensional Stokes problem The Smith factorization is

applied to the following model problem in the whole plane R
2

Sd(u, p) = g in R
2 (1)

|u(x)| → 0 for |x| → ∞ (2)

with right hand side g = (f1, f2, 0)T . Moreover, it is assumed, that the coefficients

c, ν are constants.

We start with the two-dimensional case. The spatial coefficients are denoted by x
and y. In order to apply the factorization to the Stokes system, we first take formally

the Fourier transform of (1) with respect to y. The dual variable is denoted by k. The

Fourier transform of a function f is written as f̂ or Fyf . Thus, equation (1) yields

Ŝ2(û, p̂) = ĝ with û = (û, v̂) and

Ŝ2(û, p̂) =




−ν(∂xx − k2) + c 0 ∂x

0 −ν(∂xx − k2) + c ik
∂x ik 0








û
v̂
p̂



 . (3)
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Considering Ŝ2(û, p̂) as a matrix with polynomial entries with respect to ∂x, we

perform for k 6= 0 the Smith factorization. We obtain

Ŝ2 = Ê2D̂2F̂2 (4)

with

D̂2 =




1 0 0
0 1 0

0 0 (∂xx − k2)L̂2



 , F̂2 =




νk2 + c νik∂x ∂x

0 L̂2 ik
0 1 0





and

Ê2 = T̂−1
2




ikL̂2 ν∂xxx −ν∂x

0 T̂2 0
ik∂x −∂xx 1





where T2 is a differential operator in y-direction whose symbol is ik(νk2 + c). More-

over, L̂2 := ν(−∂xx + k2) + c is the Fourier transform of L2 := −ν∆ + c.

Remark: Using this factorization, problem (1) can be written as

D̂2ŵ = Ê−1
2 ĝ, ŵ := (ŵ1, ŵ2, ŵ3)

T := F̂2(û, p̂)T . (5)

From (5) we get ŵ1 = (Ê−1
2 ĝ)1 and ŵ2 = (Ê−1

2 ĝ)2. Noticing that ŵ3 =(
F̂2(û, p̂)T

)

3
= v̂ the previous equation yields after applying an inverse Fourier

transform

∆(−ν∆ + c)v = F−1
y

(
(Ê−1

2 ĝ)3

)
.

Since the matrices Ê2 and F̂2 have a determinant which is a non-zero number (i.e. a

polynomial of order zero), the entries of their inverses are still polynomial in ∂x. Thus,

applying Ê−1
2 to the right hand side ĝ amounts to taking derivatives of ĝ and making

linear combinations of them. If the plane R
2 is split into subdomains R

− × R and

R
+ × R the application of Ê−1

2 and F̂−1
2 to a vector can be done for each subdomain

independently. No communication between the subdomains is necessary.

At first glance, it is surprising that the two-dimensional Stokes equations can be

mainly characterized by the scalar fourth order differential operator ∆(−ν∆+c). But

one should note that the stream function formulation gives the same differential equa-

tion for the stream function in the two-dimensional case (cf. [8]). More interesting

in the three-dimensional case the Smith factorization yields a representation of the

system as two decoupled scalar equations, cf. Section 5.1.

3. A new algorithm for the Stokes equations

Our goal is to write for the Stokes equations on the whole plane divided into two half-

planes an algorithm converging in two iterations. Section 2.2 shows that the design

of an algorithm for the fourth order operator B := ∆L2 = ∆(−ν∆ + c) is a key

ingredient for this task. Therefore, we derive an algorithm for the operator B and then,

via the Smith factorization, we recast it in a new algorithm for the Stokes system.
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3.1. An optimal algorithm for the scalar fourth order operator

We consider the following problem: Find φ : R
2 → R such that

B(φ) = g in R
2, |φ(x)| → 0 for |x| → ∞ (6)

where g is a given right hand side. The domain Ω = R
2 is decomposed into two half

planes Ω1 = R
− × R and Ω2 = R

+ × R. Let the interface {0} × R be denoted by Γ
and (ni)i=1,2 be the outward normal of (Ωi)i=1,2. The algorithm, we propose, is given

as follows:

ALGORITHM 1: We choose the initial values φ0
1 and φ0

2 such that φ0
1 = φ0

2 and

L2φ
0
1 = L2φ

0
2 on Γ. We obtain (φn+1

i )i=1,2 from (φn
i )i=1,2 by the following iterative

procedure:

Correction step. We compute the corrections (φ̃n+1
i )i=1,2 as solutions of the homoge-

neous local problems






Bφ̃n+1
1 = 0 in Ω1

lim
|x|→∞

|φ̃n+1
1 | = 0

∂φ̃n+1
1

∂n1

= γn
1 on Γ

∂L2φ̃
n+1
1

∂n1

= γn
2 on Γ






Bφ̃n+1
2 = 0 in Ω2

lim
|x|→∞

|φ̃n+1
2 | = 0

∂φ̃n+1
2

∂n2

= γn
1 on Γ

∂L2φ̃
n+1
2

∂n2

= γn
2 on Γ

(7)

where γn
1 = −

1

2

(
∂φn

1

∂n1

+
∂φn

2

∂n2

)
and γn

2 = −
1

2

(
∂L2φ

n
1

∂n1

+
∂L2φ

n
2

∂n2

)
.

Updating step. We update (φn+1
i )i=1,2 by solving the local problems






Bφn+1
1 = g in Ω1

lim
|x|→∞

|φn+1
1 | = 0

φn+1
1 = φn

1 + δn+1
1 on Γ

L2φ
n+1
1 = L2φ

n
1 + δn+1

2 on Γ






Bφn+1
2 = g in Ω2

lim
|x|→∞

|φn+1
2 | = 0

φn+1
2 = φn

2 + δn+1
1 on Γ

L2φ
n+1
2 = L2φ

n
2 + δn+1

2 on Γ
(8)

where δn+1
1 =

1

2
(φ̃n+1

1 + φ̃n+1
2 ) and δn+1

2 =
1

2
(L2φ̃

n+1
1 + L2φ̃

n+1
2 ).

This algorithm has the proposed remarkable property. Formally we can show:

PROPOSITION 3.1: Algorithm 1 converges in two iterations.

Proof: The equations and the algorithm are linear. It suffices to prove convergence to

zero of the above algorithm when g ≡ 0. We make use of the Fourier transform in

the y direction. First of all, as φ0
1 = φ0

2 and L2φ
0
1 = L2φ

0
2 on Γ, from (8) we obtain

the same properties for φ1
1 and φ1

2. Then, note that at each step of the algorithm φn
i

satisfies the homogeneous equation in each subdomain

B̂φ̂n
i (x, k) = (∂xx − k2)(−ν(∂xx − k2) + c)φ̂n

i (x, k) = 0. (9)
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For each k ∈ R, (9) is a fourth order ordinary differential equation in x. The solution

in each domain tends to 0 as |x| tends to ∞. Just in order to simplify computations

we assume c > 0. Compare [17] for the case c = 0. Therefore, we get

φ̂n
1 (x, k) = αn

1 (k)e|k|x + βn
1 (k)eλ(k)x

φ̂n
2 (x, k) = αn

2 (k)e−|k|x + βn
2 (k)e−λ(k)x (10)

with λ(k) =
√

c/ν + k2. The first continuity relation L2φ
1
1 = L2φ

1
2 on the interface

Γ leads to α1
1(k) = α1

2(k) as

L̂2φ̂
1
i (0, k) = (−ν(∂xx − k2) + c)φ̂1

i (0, k)
= −ν(−k2 + λ2(k))β1

i (k) + c(α1
i (k) + β1

i (k)) = cα1
i (k), i = 1, 2,

and from φ1
1 = φ1

2 on Γ we finally get β1
1(k) = β1

2(k). Therefore, we can omit the

subscript indicating the number of the subdomain in α and β. Then, we can compute

γ1
1 , γ1

2 used by the correction step (7):

γ1
1 = −(α1(k)|k| + β1(k)λ(k)),

γ1
2 = −α1(k)|k|c.

A direct computation shows that the solutions of the correction step φ̃2
i , i = 1, 2,

whose expressions are of the form (10) are given by

̂̃φ2
1(x, k) = −α1(k)e|k|x − β1(k)eλ(k)x,
̂̃φ2
2(x, k) = −α1(k)e−|k|x − β1(k)e−λ(k)x.

Inserting this into (8) shows that the right hand side of the boundary conditions are

zero. Since we assumed g ≡ 0, this shows that φ̂2
i = 0 for i = 1, 2. ✷

3.2. From the fourth order operator B to the Stokes system

After having found an optimal algorithm which converges in two steps for the fourth

order operator B problem, we focus on the Stokes system (1)-(2) by translating this

algorithm into an algorithm for the Stokes system. It suffices to replace the operator

B by the Stokes system and φ by the last component (F2(u, p)T )3 of the vector

F2(u, p)T in the boundary conditions, by using formula (5).

The algorithm reads:

ALGORITHM 2: We choose the initial values (u0
1, p

0
1) and (u0

2, p
0
2) such that

(F2(u
0
1, p

0
1)

T )3 = (F2(u
0
2, p

0
2)

T )3 and L2(F2(u
0
1, p

0
1)

T )3 = L2(F2(u
0
2, p

0
2)

T )3 on

Γ. We compute ((un+1
i , pn+1

i ))i=1,2 from ((un
i , p

n
i ))i=1,2 by the following iterative

procedure:

Correction step. We compute the corrections ((ũn+1
i , p̃n+1

i ))i=1,2 as solutions of the

homogeneous local problems:
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S2(ũ
n+1
1 , p̃n+1

1 ) = 0 in Ω1

lim
|x|→∞

|ũn+1
1 | = 0

∂(F2(ũ
n+1
1 , p̃n+1

1 )T )3

∂n1

= γn
1 on Γ

∂L2(F2(ũ
n+1
1 , p̃n+1

1 )T )3

∂n1

= γn
2 on Γ






S2(ũ
n+1
2 , p̃n+1

2 ) = 0 in Ω2

lim
|x|→∞

|ũn+1
2 | = 0

∂(F2(ũ
n+1
2 , p̃n+1

2 )T )3

∂n2

= γn
1 on Γ

∂L2(F2(ũ
n+1
2 , p̃n+1

2 )T )3

∂n2

= γn
2 on Γ

(11)

where

γn
1 = −

1

2

(
∂(F2(u

n
1 , p

n
1 )T )3

∂n1

+
∂(F2(u

n
2 , p

n
2 )T )3

∂n2

)

γn
2 = −

1

2

(
∂L2(F2(u

n
1 , p

n
1 )T )3

∂n1

+
∂L2(F2(u

n
2 , p

n
2 )T )3

∂n2

)
.

Updating step. We update ((un+1
i , pn+1

i ))i=1,2 by solving the local problems:






S2(u
n+1
i , pn+1

i ) = g in Ωi

lim
|x|→∞

|un+1
i | = 0

(F2(u
n+1
i , pn+1

i )T )3 = (F2(u
n
i , p

n
i )T )3 + δn+1

1 on Γ
L2(F2(u

n+1
i , pn+1

i )T )3 = L2(F2(u
n
i , p

n
i )T )3 + δn+1

2 on Γ

(12)

where

δn+1
1 =

1

2
[(F2(ũ

n+1
1 , p̃n+1

1 )T )3 + (F2(ũ
n+1
2 , p̃n+1

2 )T )3],

δn+1
2 =

1

2
[L2(F2(ũ

n+1
1 , p̃n+1

1 )T )3 + L2(F2(ũ
n+1
2 , p̃n+1

2 )T )3].

This algorithm seems quite complex since it involves third order derivatives of the

unknowns in the boundary conditions on (F2(ũi, p̃i)
T )3. Writing ui = (ui, vi) and

using (F2(ũi, p̃i)
T )3 = ṽi, it is possible to simplify it. By using the Stokes equations in

the subdomains, we can lower the degree of the derivatives in the boundary conditions.

In order to ease the presentation in algorithm 3 we do not mention that the solutions

tend to zero as |x| → ∞. If we denote the k-th component of the unit outward normal

vector ni of Ωi by ni,k, we obtain for two subdomains the following:

ALGORITHM 3: We choose the initial values (u0
1, v

0
1, p

0
1) and (u0

2, v
0
2, p

0
2) such that

v0
1 = v0

2 and

ν
∂u0

1

∂n1

− p0
1n1,1 = −

(
ν

∂u0
2

∂n2

− p0
2n2,1

)

on Γ. We compute ((un+1
i , vn+1

i , pn+1
i ))i=1,2 from ((un

i , v
n
i , pn

i ))i=1,2 by the following

iterative procedure:

Correction step. We compute the corrections ((ũn+1
i , ṽn+1

i , p̃n+1
i ))i=1,2 as solutions of
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the homogeneous local problems






S2(ũ
n+1
1 , ṽn+1

1 , p̃n+1
1 ) = 0 in Ω1

ν
∂ṽn+1

1

∂n1

= γn
1 on Γ

ũn+1
1 = γn

2,1 on Γ






S2(ũ
n+1
2 , ṽn+1

2 , p̃n+1
2 ) = 0 in Ω2

ν
∂ṽn+1

2

∂n2

= γn
1 on Γ

ũn+1
2 = γn

2,2 on Γ
(13)

where γn
1 = −

1

2

(
ν

∂vn
1

∂n1

+ ν
∂vn

2

∂n2

)
and γn

2,i = (−1)i 1
2
(un

1 − un
2 ).

Updating step. We update ((un+1
i , vn+1

i , pn+1
i ))i=1,2 by solving the local problems






S2(u
n+1
i , vn+1

i , pn+1
i ) = g in Ωi

ν
∂un+1

i

∂ni

− pn+1
i ni,1 = ν

∂un
i

∂ni

− pn
i ni,1 + δn+1

ij on Γ

vn+1
i = vn

i + 1
2
(ṽn

1 + ṽn
2 ) on Γ

(14)

where δn+1
ij =

1

2

(
ν
∂ũn+1

i

∂ni

− p̃n+1
i ni,1

)
−

1

2

(
ν
∂ũn+1

j

∂nj

− p̃n+1
j nj,1

)
and j = 3 − i.

LEMMA 3.1: Consider the model case Ω = R
2, Ω1 = R

− × R and Ω2 = R
+ × R.

We assume that all variables vanish at infinity. Then, the Algorithms 2 and 3 are

equivalent.

Proof: First, notice (F2(ũ
n
i , p̃

n
i )T )3 = ṽn

i and (F2(u
n
i , p

n
i )T )3 = vn

i . Thus, the first

interface conditions of (11) resp. (12) are obviously the same as the first interface

conditions of (13) resp. the second one of (14).

To prove the complete equivalence between these algorithms, we start with the local

problems in Ω1 by transforming the second interface condition of the correction step

(11):

∂xL2ṽ
n+1
1 = −

1

2
∂x (L2v

n
1 − L2v

n
2 ) on Γ.

Using the second equation of the Stokes system

L2(F2(u
n
i , p

n
i )T )3 = (−ν∆ + c)vn

i = ∂yp
n
i + f2, i = 1, 2,

we obtain

∂x(−∂yp̃
n+1
1 ) = −1

2
∂x((−∂yp

n
1 + f2) − (−∂yp

n
2 + f2)),

= −1
2
∂y(−∂xp

n
1 + ∂xp

n
2 ) on Γ.

Interchanging the partial derivatives and using the first equation of the Stokes system

and the fact that all functions vanish at infinity, by integrating with respect to y we get

∂y(L2ũ
n+1
1 ) = −1

2
∂y (L2u

n
1 − L2u

n
2 ) on Γ ⇔

L2ũ
n+1
1 = −1

2
(L2u

n
1 − L2u

n
2 ) on Γ.

(15)
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If we differentiate the first interface condition (11) with respect to y and using the

incompressibility constraint (∂yṽ
n+1
i = −∂xũ

n+1
i , i = 1, 2) yields

−ν∂xxũ
n+1
1 =

1

2
ν∂xx (un

1 − un
2 ) on Γ. (16)

We subtract (16) from (15). Thus, we obtain

(−ν∂yy + c)ũn+1
1 = −1

2
(−ν∂yy + c)(un

1 − un
2 ) on Γ ⇔

ũn+1
1 = −1

2
(un

1 − un
2 ) on Γ

which is exactly the second transmission condition (13) of the correction step.

Next, we consider the second interface condition of the updating step (12). Using

again the second equation of the Stokes system we obtain:

∂yp
n+1
1 = ∂yp

n
1 + 1

2

(
∂yp̃

n+1
1 + ∂yp̃

n+1
2

)
on Γ ⇔

pn+1
1 = pn

1 + 1
2

(
p̃n+1

1 + p̃n+1
1

)
on Γ.

(17)

Of course, one could stop with boundary condition (17). But we will derive a more

natural boundary condition. Therefore we also use the second transmission condition

of (12) and mix both conditions. Differentiating the first interface condition of (12)

with respect to y gives

∂yv
n+1
1 = ∂yv

n
1 +

1

2
∂y

(
ṽn+1

1 + ṽn+1
2

)
on Γ.

Now, using the incompressibility constraint yields

−ν∂xu
n+1
1 = −ν∂xu

n
1 −

1

2
ν∂x

(
ũn+1

1 + ũn+1
2

)
on Γ. (18)

Adding (17) and (18) we end up with

−ν∂xu
n+1
1 + pn+1

1 = −ν∂xu
n
1 + pn

1

+
1

2

(
−ν∂xũ

n+1
1 + p̃n+1

1

)
+

1

2

(
−ν∂xũ

n+1
2 + p̃n+1

2

)
,

which is exactly the first transmission condition (14) of the updating step. The refor-

mulation of the initial conditions of the algorithm can be done analogously.

The same computations can be performed for subdomain Ω2. ✷

Remark: The assumption that the pressure vanishes at infinity is artificial. If we

would only use that the derivatives of p vanish, then the first interface condition of

the updating step is determined only up to a constant. In practice, one could easily

avoid this problem by providing an appropriate coarse space.

In order to write the resulting algorithm in an intrinsic form, we introduce the stress

for each subdomain Ωi

σi := σi(u, p) := ν
∂u

∂ni

− pni
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on the interface for a velocity u, a pressure p and the normal vector ni. For any

vector u its normal (resp. tangential) component on the interface is uni
= u · ni

(resp. uτ i
= (I − ni ⊗ ni) u). We denote σi

ni
:= σi

ni
(ui, pi) · ni = ν ∂ui

∂ni
· ni − pi

and σi
τ i

:= (I − ni ⊗ ni) σi as the normal and tangential parts of σi, respectively.

We can now generalize the previous algorithm to a more general decomposition

into non overlapping subdomains: Ω̄ = ∪N
i=1Ω̄i and denote by Γij = ∂Ωi ∩ ∂Ωj the

interface between subdomains Ωi and Ωj , i 6= j. The new algorithm for the Stokes

system reads:

ALGORITHM 4: Starting with an initial guess ((u0
i , p

0
i ))

N
i=0 satisfying u0

i,τ i
=

u0
j,τ j

and σi
ni

(u0
i , p

0
i ) = σj

nj
(u0

j , p
0
j) on Γij , ∀i, j, i 6= j, the correction step is

expressed as follows for 1 ≤ i ≤ N :






S2(ũ
n+1
i , p̃n+1

i ) = 0 in Ωi

ũn+1
i,ni

= −
1

2
(un

i,ni
+ un

j,nj
) on Γij

σi
τ i

(ũn+1
i , p̃n+1

i ) = −
1

2
(σi

τ i
(un

i , p̃
n
i ) + σ

j
τ j

(un
j , p̃

n
j )) on Γij

(19)

followed by an updating step for 1 ≤ i ≤ N :






S2(u
n+1
i , pn+1

i ) = g in Ωi

un+1
i,τ i

= un
i,τ i

+
1

2
(ũn+1

i,τ i
+ ũn+1

j,τ j
) on Γij

σi
ni

(un+1
i , pn+1

i ) = σi
ni

(un
i , p

n
i )

+
1

2
(σi

ni
(ũn+1

i , p̃n+1
i ) + σj

nj
(ũn+1

j , p̃n+1
j )) on Γij.

(20)

The boundary conditions in the correction step involve the normal velocity and the

tangential stress, whereas in the updating step the tangential velocity and the normal

stress are involved. As we will see in Section 5, in three dimensions the algorithm has

the same definition.

PROPOSITION 3.2: For a domain Ω = R
2 divided into two non overlapping half

planes, Algorithms 2 and 4 are equivalent and both converge in two iterations.

Proof: The equivalence of both algorithms has already been shown. The convergence

in two steps of Algorithm 4 is obvious, since the algorithm was derived directly from

Algorithm 2 which converges in two steps. ✷

4. Extension to the Oseen equations

The next step is an extension of this technique to the Oseen equations

{
−ν∆u + b · ∇u + cu + ∇p = f in Ω
∇ · u = 0 in Ω.

(21)
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In comparison to the Stokes equations we have added the convective term b · ∇u.

Now, the equation is not symmetric anymore. Standard linearization techniques for

the incompressible Navier-Stokes equations leads to the Oseen problem. Therefore

the efficient numerical solution of the Oseen problem is very important. The Oseen

operator is given by

Od(u, p) = (−ν∆u + b · ∇u + cu + ∇p,∇ · u)T , d = 2, 3.

Our aim is to derive a domain decomposition method which is robust with respect to

the viscosity ν. To our knowledge up to now this is an unsolved problem. Here we just

want to give a brief outline, how the Smith factorization can be used in order to derive

a new domain decomposition method for the Oseen equations. For the details we refer

to [5]. We only consider the two-dimensional case. Applying the Smith factorization

to the Fourier transform of O2(u, p) (in the y-direction) yields Ô2(u, p) = ÊO
2 D̂O

2 F̂O
2 .

The diagonal matrix is given by the Fourier transform of

DO
2 =




1 0 0
0 1 0
0 0 LO

2 ∆





with the second order differential operator LO
2 u = −ν∆u + b · ∇u + cu. Similarly to

the Stokes case, we exhibit an iterative algorithm for the scalar fourth order problem

given by the differential operator LO
2 ∆, which converges in at most two steps in the

case of Ω = R
2 and Ω1 = R

+ × R and Ω2 = R
− × R. Following [1] our algorithm is

given as follows:

ALGORITHM 5: We choose the initial values φ0
1, φ0

2 such that

LO
2 φ0

1 = LO
2 φ0

2, φ0
1 = φ0

2 on Γ = ∂Ω1 ∩ ∂Ω2.

Then, we obtain (φn+1
i )i=1,2 from (φn

i )i=1,2 by the following procedure.

Correction step. We compute the corrections (φ̃n+1
i )i=1,2 as solutions of






LO
2 ∆φ̃n+1

i = 0 in Ωi

lim
|x|→∞

φ̃n+1
i = 0

∂(LO
2 φ̃n+1

i )

∂ni

= −
1

2

(
∂(LO

2 φn
1 )

∂n1

+
∂(LO

2 φn
2 )

∂n2

)
on Γ

(
ν

∂

∂ni

−
1

2
b · ni

)
φ̃n+1

i = −
1

2
ν

(
∂φn

1

∂n1

+
∂φn

2

∂n2

)
on Γ.

(22)

Updating step. We update (φn+1
i )i=1,2 by solving the local problems:






LO
2 ∆φn+1

i = g in Ωi

lim
|x|→∞

φn+1
i = 0

LO
2 φn+1

i = LO
2 φn

i +
1

2

(
LO

2 φ̃n+1
i + LO

2 φ̃n+1
2

)
on Γ

φn+1
i = φn

i +
1

2
(φ̃n+1

1 + φ̃n+1
2 ) on Γ.

(23)



Dolean, Nataf, Rapin: A new domain decomposition method for the Stokes equations 12

Using the same technique as for the Stokes equations, we could derive the following

algorithm, which converges in two steps for our model problem given by Ω = R
2,

Ω1 = R
− × R and Ω2 = R

+ × R.

ALGORITHM 6: Starting with an initial guess satisfying u0
i,τ i

= u0
j,τ j

and σi
ni

=

σj
nj

on Γij , the correction step is expressed as follows for i = 1, 2, j = 3 − i:






O2(ũ
n+1
i , p̃n+1

i ) = 0 in Ωi

σi
τ i

(ũn+1
i , p̃n+1

i ) −
1

2
(b · ni)ũ

n+1
i,τ i

= −
1

2
(σi

τ i
(un

i , p
n
i ) + σ

j
τ j

(un
j , p

n
j )) on Γij

(−ν∂τ iτ i
+ (b · τ i)∂τ i

+ c)ũn+1
i,ni

+
1

2
(b · ni)∂ni

ũn+1
i,ni

= γn
ij on Γij

(24)

with γn
ij := −

1

2
(−ν∂τ iτ i

+ (b · τ i)∂τ i
+ c +

1

2
(b · ni)∂ni

)
(
un

i,ni
+ un

j,nj

)
.

The updating step is given by






O2(u
n+1
i , pn+1

i ) = f in Ωi

un+1
i,τ i

= un
i,τ i

+
1

2
(ũn+1

i,τ i
+ ũn+1

j,τ j
) on Γij

σi
ni

(un+1
i , pn+1

i ) = σi
ni

(un
i , p

n
i ) + δn+1

ij on Γij

(25)

with δn+1
ij =

1

2
(σi

ni
(ũn+1

i , p̃n+1
i ) + σj

nj
(ũn+1

j , p̃n+1
j )) and j = 3 − i.

This algorithm is more complicated than the one for the Stokes equations. But we

would like to emphasize, that all interface conditions are intrinsic except the second

interface condition in the correction step. There, some tangential derivatives are in-

volved.

Remark: For b · ni = 0 the interface condition (24) can be further simplified. Using

the fact that the interface condition is a second order ordinary differential equation in

the tangential direction, it can be simply written as

ũn+1
i,ni

= −
1

2
(un

i,ni
+ un

j,nj
) on Γij. (26)

Thus, in the case b = 0 we recover the intrinsic Algorithm 4 of the Stokes problem.

5. The three-dimensional case for the Stokes equations

As one can see, the Algorithm 4 was derived using the structure of the two-

dimensional Stokes operator. Thus, it is not clear, what happens in the three-

dimensional case. We will show, that using the Smith factorization we also end up

with the intrinsic Algorithm 4.
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5.1. Smith Factorization

Performing a Fourier transform in y- and in z-direction for the three-dimensional

Stokes operator S3 (with dual variables k and η), we obtain

Ŝ3 =





L̂3 0 0 ∂x

0 L̂3 0 ik

0 0 L̂3 iη
∂x ik iη 0



 (27)

where L̂3 := ν(−∂xx + k2 + η2) + c is the Fourier transform of L3 := −ν∆ + c.

Applying the Smith Factorization yields

Ŝ3 = Ê3D̂3F̂3

with matrices

D̂3 =





1 0 0 0
0 1 0 0

0 0 L̂3 0

0 0 0 (∂xx − k2 − η2)L̂3



 ,

Ê3 = T̂−1
3





ikL̂3 ν∂xxx −νiη∂x −ν∂x

0 T̂3 0 0
0 iη(ν(k2 + η2) + c) −ν(k2 + η2) + c 0

ik∂x −∂xx iη 1



 ,

F̂3 =





−ν(∂xx − η2) + c νik∂x νiη∂x ∂x

0 L̂3 0 ik
0 −iη ik 0
0 1 0 0



 .

T3 is the differential operator in y and z direction with symbol ik(ν(k2 + η2) + c).
We see analogously to the two-dimensional case that the Stokes operator S3 is

determined by the diagonal matrix D3. Therefore, it can be represented by the fourth

order differential operator L3∆ and the second order differential operator L3.

5.2. The three-dimensional algorithm

Our starting point is the intrinsic Algorithm 4. We check in this section that indeed

also in three dimensions the Algorithm 4 converges in only two steps in the case of

the whole space R
3 divided into the two half spaces.

Let us consider the domain Ω := R
3 divided into Ω1 := {(x, y, z) ∈ R

3 | x <
0} and Ω2 := {(x, y, z) ∈ R

3 | x > 0}. The common interface is given by Γ :=
{(x, y, z) ∈ R

3 | x = 0}. For this special geometry the intrinsic Algorithm 4 can be

simplified. We write u = (u, v, w) . We obtain the following algorithm:
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ALGORITHM 7: We start with an initial guess ((u0
i , p

0
i ))i=1,2 satisfying

u0
1,τ 1

= u0
2,τ 2

, σ1
n1

(u0
1, p

0
1) = σ2

n2
(u0

2, p
0
2) on Γ.

Compute the following correction step for ((ũn+1
i , p̃n+1

i ))i=1,2:






S3(ũ
n+1
i , p̃n+1

i ) = 0 in Ωi

ν
∂ũn+1

i,τ i

∂ni

= −
1

2

(
ν
∂un

i,τ i

∂ni

+ ν
∂un

j,τ j

∂nj

)
on Γ

ũn+1
i = −

1

2

(
un

i − un
j

)
on Γ

(28)

for j = 3 − i. Then the updating step for ((un+1
i , pn+1

i ))i=1,2 is given as follows






S3(u
n+1
i , pn+1

i ) = g in Ωi

un+1
i,τ i

= un
i,τ i

+
1

2
(ũn+1

i,τ i
+ ũn+1

j,τ j
) on Γ

σi
ni

(un+1
i , pn+1

i ) = σi
ni

(un
i , p

n
i )

+
1

2

(
σi
ni

(ũn+1
i , pn+1

i ) + σj
nj

(ũn+1
j , pn+1

j )
)

on Γ.

(29)

Algorithm 7 yields two completely uncoupled domain decomposition methods for

scalar problems.

PROPOSITION 5.1: The decomposition is given by Ω := R
3, Ω1 := {(x, y, z) ∈

R
3 | x < 0} and Ω2 := {(x, y, z) ∈ R

3 | x > 0}. Assume that the velocity

components un
i , ũn

i and the pressure components pn
i , p̃

n
i are given by Algorithm 7.

Then the variables

vn
i = (F3(u

n
i , p

n
i ))4 , ṽn

i = (F3(ũ
n
i , p̃

n
i ))4 ,

γn
i := (F3(u

n
i , p

n
i ))3 = −∂zv

n
i + ∂yw

n
i ,

γ̃n
i := (F3(ũ

n
i , p̃

n
i ))3 = −∂zṽ

n
i + ∂yw̃

n
i

(30)

satisfy for i = 1, 2 the correction step






∆L3ṽ
n+1
i = 0 in Ωi

L3γ̃
n+1
i = 0 in Ωi

ν
∂γ̃n+1

i

∂ni

= −
1

2
ν

(
∂γn

1

∂n1

+
∂γn

2

∂n2

)
on Γ

∂(L3ṽ
n+1
i )

∂ni

= −
1

2

(
∂(L3v

n
i )

∂n1

+
∂(L3v

n
2 )

∂n2

)
on Γ

ν
∂ṽn+1

i

∂ni

= −
1

2
ν

(
∂vn

1

∂n1

+
∂vn

2

∂n2

)
on Γ,

(31)
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and the updating step (i = 1, 2)






∆L3v
n+1
i = (E−1

3 g)4 in Ωi

L3γ
n+1
i = (E−1

3 g)3 in Ωi

γn+1
i = γn

i +
1

2
(γ̃n+1

1 + γ̃n+1
2 ) on Γ

L3v
n+1
i = L3v

n
i +

1

2

(
L3ṽ

n+1
1 + L3ṽ

n+1
2

)
on Γ

vn+1
i = vn

i +
1

2
(ṽn+1

1 + ṽn+1
2 ) on Γ.

(32)

Note that the algorithm decouples completely into two algorithms. One is defined for

vn
i and ṽn

i . The other one is defined for γn
i and γ̃n

i .

Proof: We only give the proof for Ω1. The proof of the iterations in Ω2 is similar.

We start with the updating step. The last interface condition of (32) is a direct con-

sequence of (29). We consider now the second interface condition of (29). Using the

incompressibility constraint (∂xu
n+1
i = −∂yv

n+1
i − ∂zw

n+1
i , i = 1, 2) yields

−ν
∂

∂y
vn+1

1 − ν
∂

∂z
wn+1

1 − pn+1
1 = −ν

∂

∂y
vn

1 − ν
∂

∂z
wn

1 − pn
1 (33)

+
1

2

(
−ν

∂

∂y
ṽn+1

1 − ν
∂

∂z
w̃n+1

1 − p̃n+1
1

)
−

1

2

(
ν

∂

∂y
ṽn+1

2 + ν
∂

∂z
w̃n+1

2 + p̃n+1
2

)
.

Differentiating the first component of the first interface condition of (29) with respect

to y and the second component with respect to z, multiplying with ν and adding to

(33) yield

pn+1
1 = pn

1 +
1

2

(
p̃n+1

1 + p̃n+1
2

)
.

Now we differentiate with respect to y and use the Stokes equations. We obtain exactly

the second interface condition of (32):

L3v
n+1
1 = L3v

n
1 +

1

2

(
L3ṽ

n+1
1 + L3ṽ

n+1
2

)
.

In order to derive the first interface condition of (32), we differentiate the second

component of the first interface condition of (29) with respect to y and the first

component with respect to z. Subtracting both equations yields

−∂zv
n+1
1 +∂yw

n+1
1 = −∂zv

n
1 −

1

2

(
∂zṽ

n+1
1 + ∂zṽ

n+1
2

)
+∂yw

n
1 +

1

2

(
∂yw̃

n+1
1 + ∂yw̃

n+1
2

)

on Γ or, using the definitions for γn
i , γ̃n

i in (30),

γn+1
i = γn

i +
1

2
(γ̃n+1

1 + γ̃n+1
2 ) on Γ,

which is exactly the first interface condition of (32).
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Next, we will prove the equivalence of the correction step for the two algorithms.

By differentiating the second component of the first interface condition of (28) with

respect to y we obtain

ν∂xyw̃
n+1
1 = −

1

2
ν(∂xyw

n
1 − ∂xyw

n
2 ) on Γ.

Differentiating the first component of the first equation of (28) with respect to z and

subtracting it from the previous equation we get

ν∂xyw̃
n+1
1 − ν∂xzṽ

n+1
1 = −ν

1

2
(∂xyw

n
1 − ∂xyw

n
2 ) + ν

1

2
(∂xzv

n
1 − ∂xzv

n
2 ).

Using the definition (30) of γn
i and γ̃n

i we obtain the first interface condition of (31).

Finally we have to derive the second interface condition of (31). We start with the

first interface condition of (28). Differentiating the first component with respect to y
and the second one with respect to z we obtain

ν∂xyṽ
n+1
1 + ν∂xzw̃

n+1
1 = −

1

2
ν (∂xy(v

n
1 − vn

2 )) −
1

2
ν (∂xz(w

n
1 − wn

2 )) .

Next we insert the incompressibility condition:

−ν∂xxũ
n+1
1 =

1

2
ν∂xx(u

n
1 − un

2 ). (34)

Differentiating the second interface condition of (28) in tangential directions yields

(−ν∂yy − ν∂zz + c)ũn+1
1 = −

1

2
(−ν∂yy − ν∂zz + c)(un

1 − un
2 ).

Now we add equation (34). We get

L3ũ
n+1
1 = −

1

2
(L3u

n
1 − L3u

n
2 ).

We use the Stokes equations and differentiate with respect to y

∂y(∂xp̃
n+1
1 ) = −

1

2
(∂y(∂xp

n
1 ) − ∂y(∂xp

n
2 )) .

Interchanging the partial derivatives and using again the Stokes equations, we end up

with the second interface condition of (31):

∂xL3ṽ
n+1
1 = −

1

2
ν(∂xL3v

n
1 − ∂xL3v

n
2 ).

Thus, everything is shown. ✷

Remark: The algorithm decouples into two scalar problems. Since one knows, that

each of these scalar algorithms converges into at most two steps, we obtain conver-

gence in two steps for the three-dimensional case, too.
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6. Discretization

For the discretization of the two-dimensional case we choose a second order centered

Finite Volume approach with a staggered grid (cf. [20]). In our numerical experiments

we only consider the case, where the domain Ω is given by rectangles using regular

grids. In Figure 1(a) a standard staggered grid for velocity (u, v) and pressure p is

plotted. Each equation of the Stokes system is discretized by different control cells.

Figure 1: (a) Staggered grid, (b) a cell K corresponding to the first velocity component u.

In Figure 1(b) you see a typical interior control cell for the first equation. Let us study

the discretization in more detail. We consider the first equation of the Stokes system

for (u, v, p) and integrate it over a cell Kij with center xi,j (position of ui,j). Using

integration by parts we obtain

∫

Kij

f1dx =

∫

Kij

(−ν∆u + cu + ∂xp) dx

=

∫

∂Kij

(
−ν∂nKij

u + pnij,1

)
ds +

∫

Kij

cudx

where nij,k is the k-th component of the outward normal nij of Kij . Now this equation

is discretized. We replace the derivatives of u by corresponding central differences

and approximate the remaining integrals by the midpoint rule. For the pressure we

assume that it is constant along the edges. We denote the length of an interior cell Kij

in x-direction by ∆x and the length in y-direction by ∆y.

For an interior cell Kij we obtain the following equation

∆x∆y f(xi,j) = ∆x∆y cui,j + ∆y(−pi,j−1/2 + pi,j+1/2) (35)

+
∆y

∆x
ν(2ui,j − ui,j+1 − ui,j−1) +

∆x

∆y
ν(2ui,j − ui−1,j − ui+1,j).
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(a) (b) (c)

Figure 2: Boundary cells for u: (a) horizontal boundary cell, (b) vertical boundary cell, (c) corner cell.

The different cells at the boundary are plotted in Figure 2. One has to distinguish

between cells connected to horizontal boundaries or vertical boundaries and corner

cells, see Figure 5. Let us start with the cells which are connected to the horizontal

boundaries. In the new domain decomposition method there are interface conditions

for the normal stress. Since the normal stress on a boundary edge cannot be computed

directly, we have to introduce an artificial value ũi,j . Then, the stress on the horizon-

tal boundary can be approximated by ν
ũi,j−ui,j

∆y/2
. Therefore we obtain for the cell in

Figure 2 (a) the following modification of equation (35):

∆x∆yf(xi,j) = ∆x∆y cui,j + ∆y(−pi,j−1/2 + pi,j+1/2)

+
∆y

∆x
ν(2ui,j − ui,j+1 − ui,j−1) +

∆x

∆y
ν(ui,j − ui+1,j) +

∆x

∆y/2
ν(ui,j − ũi,j).

Next we consider a vertical boundary cell. Now, the cell Kij is given by a half cell, cf.

Figure 2 (b). We introduce on the boundary an artificial unknown σi,j for the normal

stress. Then the discretization is given by

∆x

2
∆yf(xi,j) =

∆x

2
∆y cui,j + ∆y pi,j+1/2

+
∆y

∆x
ν(ui,j − ui,j+1) + ∆y σi,j +

∆x/2

∆y
ν(2ui,j − ui−1,j − ui+1,j).

The corner cells are the combination of horizontal and vertical cells, cf. Figure 2 (c):

∆x

2
∆yf(xi,j) =

∆x

2
∆y cui,j + ∆y pi,j+1/2

+
∆y

∆x
ν(ui,j − ui,j+1) + ∆y σi,j +

∆x/2

∆y
ν(ui,j − ui−1,j) +

∆x/2

∆y/2
ν(ui,j − ũi,j).

Thus, for each cell of u we obtain one equation.

For the equation of the second velocity component v we proceed in a similar man-

ner. The center of the cells for v are always given by the second velocity component.
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Figure 3: (a) Interior cell for the second velocity component v, (b) cell for the pressure p.

In Figure 3 (a) an interior cell is plotted and in Figure 4 you can see, how the boundary

cells can be treated.

The third equation is discretized with the help of the pressure nodes. Considering

the cells centered by the pressure nodes, we observe that all cells can be handled in

the same way, cf. Figure 3 (b). Integrating over an arbitrary cell Kij yields

0 =

∫

∂Kij

unij,1 + vnij,2ds,

where nij,k is the k-th component of the outward normal nij of Kij . Thus, the dis-

cretization is given by

0 = ∆y(−ui,j−1/2 + ui,j+1/2) + ∆x(−vi−1/2,j + vi+1/2,j).

Remark: In the correction step the pressure is only determined up to a constant. In

order to avoid singular problems, we regularize the pressure equation by

0 = ∆y(−ui,j−1/2 + ui,j+1/2) + ∆x(−vi−1/2,j + vi+1/2,j) + ǫpi,j

using a small value ǫ > 0. In the numerical experiments we have chosen ǫ = 10−3.

Finally, we discuss, how boundary conditions are imposed. Again, we restrict our-

selves to the case of the first velocity component u. The boundary conditions for v
are imposed analogously. On vertical boundaries Dirichlet conditions resp. Neumann

conditions are imposed by simply setting the nodes for u resp. σi,j on the interface.

For horizontal boundaries Dirichlet conditions are imposed by setting the artificial

values ũi,j . A Neumann condition ν∂nu = g is discretized by setting

g(xi,j) = ν
∂u

∂n
(xi,j) ≈ ν

ũi,j − ui,j

∆y/2
(36)

for all nodes xi,j corresponding to the artificial unknowns ũi,j (cf. Figure 2 (b)).
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(a)

(b)

(c)

Figure 4: Boundary cells for v: (a) horizontal boundary cell, (b) vertical boundary cell, (c) corner cell.

Figure 5: A 2 × 2 decomposition with pressure cells and interface velocity degrees of freedom.

For the domain decomposition we split the global rectangle Ω into local rectangles

Ωi in a such a way that we retrieve local subdomains with the above pattern. This

means, that the subdomains consist of the union of cells of the pressure nodes. In

Figure 5 an example for a 2 × 2 decomposition is shown. For the implementation

of the domain decomposition algorithm a discretization of the interface conditions is

needed. Fortunately, all interface conditions are of Dirichlet- or Neumann-type. For

the sake of simplicity only the case of vertical interfaces is described. For horizontal

interfaces the role of the first and the second velocity component has to be switched.

Thus, in the correction step (19) a Dirichlet condition

ũn+1
i = −

1

2
(un

i − un
j ) (37)

for the first velocity component u and a Neumann condition

σi
τ i

(ũn+1
i , p̃n+1

i ) = −
1

2
(σi

τ i
(ũn

i , p
n
i ) + σj

τ j
(un

j , p̃
n
j )) (38)
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for the second component v has to be imposed in subdomain Ωi. Neumann conditions

can be imposed following the line of (36), where normal derivatives of the right hand

side of (38) can be computed by finite differences. For the Dirichlet conditions we just

set the values on the interface to the corresponding value using the interface Dirichlet

data of adjacent subdomains.

In the update step (20) we have a Neumann condition for the first velocity com-

ponent and a Dirichlet condition for the second component. Imposing the Neumann

condition for the first component is simple. One just sets the artificial stress σi,j on

the interface to the given value using the artificial stresses on the interface of the

correction step. For the Dirichlet condition the artificial unknowns of the second

velocity component on the interface are used.

We consider two different types of domain decomposition methods. First, we apply

directly the discrete version of Algorithm 4. In the second version we have accelerated

the algorithm using a Krylov method. Due to the non-symmetric structure of the

boundary conditions we apply the GMRES method [24].

7. Numerical results

In this section we will analyze the performance of the new algorithm. It will be

compared with the standard Schur complement approach using a Neumann-Neumann

preconditioner (without coarse space), cf. [25]. We will extend the preliminary results

of [4], where we made some numerical experiments for the two subdomain case, using

standard inf-sup stable P2/P1-Taylor-Hood elements on triangles.

We consider the domain Ω = [0.2, 1.2] × [0.1, 1.1] decomposed into two or

more subdomains of equal or different sizes. We choose the right hand side f

such that the exact solution is given by u(x, y) = sin(πx)3 sin(πy)2 cos(πy),
v(x, y) = − sin(πx)2 sin(πy)3 cos(πx) and p(x, y) = x2 + y2. The viscosity ν is

always 1. We solve the problem for different values of the reaction coefficient c,

which can arise for example, when one applies an implicit time discretization of the

unsteady Stokes problem.

First, the interface system is solved by a purely iterative method (denoted respec-

tively by itNew and itNN for the new algorithm and the Neumann-Neumann precon-

ditioner) and then accelerated by GMRES (denoted respectively by acNew and acNN

for the new algorithm and the Neumann-Neumann preconditioner). In all tables we

count the smallest number of iterations, which is needed to reduce the euclidian norm

of the preconditioned residual by the factor TOL = 10−8. In brackets the number of

steps is printed, which is needed to achieve

max
i=1,...,N

‖ui
k − uh‖L∞(Ωi) ≤ 10−6,

where ui
k is the discrete solution of iteration step k in subdomain i and uh is the

global discrete solution. The case that the algorithm is not converged within 100 steps

is denoted by −.
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7.1. Two-subdomain case

We first consider a decomposition into two subdomains of same width and study the

influence of the reaction parameter and of the mesh size on the convergence. We can

c itNew itNN acNew acNN

102 2 (2) 16 (15) 1 (1) 6 (6)

100 2 (2) 17 (15) 1 (1) 6 (6)

10−3 2 (2) 17 (15) 1 (1) 6 (6)

10−5 2 (2) 17 (15) 1 (1) 6 (6)

h itNew itNN acNew acNN

1/24 2 (2) 16 (14) 1 (1) 6 (6)

1/48 2 (2) 17 (15) 1 (1) 6 (6)

1/96 2 (2) 17 (15) 1 (1) 6 (6)

Table 1: (a) Influence of the reaction parameter on the convergence (h = 1/96), (b) Influence of the

mesh size for c = 10−5.

see in Table 1(a) that the convergence of the new algorithm is optimal. For the iterative

version convergence is reached in two iterations. Since in this case the preconditioned

operator for the corresponding Krylov method reduces in theory to the identity, the

Krylov method converges in one step. This is also valid numerically. Moreover, both

algorithm are completely insensitive with respect to the reaction parameter. The ad-

vantage in comparison to the Neumann-Neumann algorithm is obvious.

In Table 1(b) we fix the reaction parameter c = 10−5 and vary the mesh size. The

conclusions are similar: both algorithms converge independently of the mesh size

and, again, we observe a clearly better convergence behavior of the new algorithm.

The same kind of results are valid for different values of c (not presented here).

Next, we consider a decomposition into two subdomains where the first subdomain

is thinner than the second one. We study the influence of the ratio between the length

L1 of the first subdomain and the global domain L for three different values of c (see

Tables 2, 3).

L1/L itNew itNN acNew acNN

0.1 - (-) - (-) 6 (7) 8 (8)

0.2 30 (22) 32 (22) 6 (5) 7 (7)

0.3 7 (5) 18 (16) 5 (3) 6 (6)

0.4 7 (5) 18 (15) 4 (3) 6 (6)

0.5 2 (2) 17 (15) 1 (1) 6 (6)

L1/L itNew itNN acNew acNN

0.1 - (-) - (-) 7 (7) 8 (8)

0.2 20 (15) 22 (18) 5 (5) 7 (7)

0.3 7 (5) 18 (16) 4 (3) 6 (6)

0.4 6 (5) 18 (15) 4 (3) 7 (7)

0.5 2 (2) 17 (15) 1 (1) 6 (6)

Table 2: Influence of the length of the first domain: (a) c = 10−5, h = 1/100, (b) c = 1.0, h = 1/100.

We observe that the iterative counterparts of the algorithms is very sensitive to the

size of the first subdomain (it might not even converge when the parameter c is very

small), but as expected not the accelerated one. Secondly, when the parameter c is suf-

ficiently large (which corresponds to small time steps when using a time discretization
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L1/L itNew itNN acNew acNN

0.1 20(16) 46 (40) 5 (5) 8 (7)

0.2 9 (7) 17 (16) 4 (3) 7 (6)

0.3 6 (5) 17 (15) 3 (3) 6 (6)

0.4 4 (4) 17 (16) 3 (2) 7 (7)

0.5 2 (2) 16 (15) 1 (1) 6 (6)

Table 3: Influence of the length of the first subdomain (c = 102, h = 1/100).

scheme), or of order 1, we have only small variations of iteration numbers in the case

of thinner subdomains.

7.2. Multi-domain case

Now we analyze the case of a decomposition into more than two subdomains. Two

cases are considered: strip-wise decompositions (with subdomains of the same size or

with a variable length, see Tables 4, 5) and more general decompositions with cross

points.

7.2.1. Strip-wise decomposition

First of all we fix the mesh size h = 1/96 and for different values of c we vary

the number of subdomains. In the case of a strip-wise decomposition into N

N itNew itNN acNew acNN

2 2 (2) 17 (15) 1 (1) 6 (6)

4 - (-) - (-) 6 (8) 7 (-)

6 - (-) - (-) 10 (15) 13 (-)

8 - (-) - (-) 13 (21) 19 (-)

N itNew itNN acNew acNN

2 2 (2) 17 (15) 1 (1) 6 (6)

4 - (-) - (-) 9 (7) 13 (13)

6 - (-) - (-) 14 (12) 20 (25)

8 - (-) - (-) 20 (17) 30 (31)

Table 4: Influence of the number of subdomains: h = 1/96 (c = 10−5 (left), c = 1 (right)).

N itNew itNN acNew acNN

2 2 (2) 16 (15) 1 (1) 6 (6)

4 45 (34) - (-) 5 (5) 10 (9)

6 - (-) - (-) 8 (7) 15 (15)

8 - (-) - (-) 11 (10) 21 (21)

Table 5: Influence of the number of subdomains (c = 102, h = 1/96).

subdomains, the iteration numbers counted in GMRES iterations are increasing

quickly for smaller c for both algorithms (cf. Table 4). Due to the ill-conditioning

of the Neumann-Neumann preconditioner this algorithm does not reach the given



Dolean, Nataf, Rapin: A new domain decomposition method for the Stokes equations 24

tolerance of 10−6 most probably because of the absence of a coarse grid. But a

suitable coarse space will heal this. For large c (cf. Table 5) the behavior of the two

domain case is conserved. The number of iteration steps is almost reduced by a factor

of two. Moreover, for all cases the convergence is still independent of the mesh size.

Next, we consider a 4 × 1 strip-wise decomposition into subdomains of variable

length (here [m1, m2, m3, m4] denotes the number of discretization points in x-

direction per subdomain). Again, we can conclude, that the new algorithm shows

c N itNew itNN acNew acNN

10−5 [16, 32, 16, 32] - (-) - (-) 6 (9) 9 (-)

[16, 48, 16, 16] - (-) - (-) 8 (10) 9 (-)

[48, 16, 16, 16] - (-) - (-) 7 (12) 10 (-)

100 [16, 32, 16, 32] - (-) - (-) 9 (8) 14 (14)

[16, 48, 16, 16] - (-) - (-) 11 (10) 14 (13)

[48, 16, 16, 16] - (-) - (-) 12 (12) 16 (17)

102 [16, 32, 16, 32] 96 (74) - (-) 6 (5) 13 (12)

[16, 48, 16, 16] - (-) - (-) 7 (6) 12 (11)

[48, 16, 16, 16] - (-) - (-) 7 (6) 14 (14)

Table 6: Influence of the number of subdomains (h = 1/96).

clearly better results.

Next we analyze the case, where all subdomains are quadratic. Therefore, we con-

sider the domain Ω = (0.2, 0.2 + N) × (0.1, 1.1) split into N × 1 subdomains.

N itNew itNN acNew acNN

2 2 (2) 17 (14) 1 (1) 6 (6)

3 7 (6) 37 (29) 4 (3) 7 (6)

4 15 (13) 38 (29) 4 (4) 7 (7)

6 21 (18) 38 (29) 5 (5) 8 (7)

8 25 (22) 38 (29) 6 (6) 8 (7)

Table 7: Influence of the number of subdomains (c = 1, h = 1/24).

Again, we observe in Table 7 a better convergence for the new algorithm. But for a

larger number of subdomains the convergence behavior is similar.

7.2.2. General decomposition

The final test cases treat general decompositions into N × N subdomains. Two dif-

ferent values for the reaction coefficient c are analyzed.

The iterative variants do not convergence in the multi-domain case with cross points

within 100 steps (except one case), cf. Table 8. Applying the accelerated variants,

we observe in the case 2 × 2 a faster convergence of the new algorithm. For more



Dolean, Nataf, Rapin: A new domain decomposition method for the Stokes equations 25

c N × N itNew itNN acNew acNN

10−5 2x2 - (-) - (-) 9 (9) 13 (13)

3x3 - (-) - (-) 27 (28) 14 (-)

4x4 - (-) - (-) 35 (40) 22 (-)

100 2x2 - (-) - (-) 9 (9) 13 (13)

3x3 - (-) - (-) 27 (30) 26 (28)

4x4 - (-) - (-) 35 (39) 36 (39)

102 2x2 66 (61) - (-) 8 (7) 11 (11)

3x3 - (-) - (-) 21 (22) 21 (21)

4x4 - (-) - (-) 25 (27) 27 (27)

Table 8: Influence of the number of subdomains (h = 1/96).

subdomains both algorithms need almost the same number of iteration steps. This

behavior can be explained by the presence of floating subdomains, which causes

additional problems. Here, a suitable coarse space will decrease the number of needed

iteration steps.

8. Conclusion

In this paper we have shown that the Smith factorization is a powerful tool in order

to derive new domain decomposition methods for vector valued partial differential

equations. Recently, one of the authors used the Smith factorization in order to design

perfectly matched layers (PML) for the compressible Euler equations (cf. [16]).

The proposed domain decomposition method for the Stokes system shows very fast

convergence and is robust with respect to the mesh size, the reaction coefficient and

the width of the subdomains. Especially, the robustness for large reaction coefficients

is remarkable. These kinds of problems have to be solved, if one applies an implicit

time scheme to the unsteady Stokes equations.

Moreover, we outlined, how this approach can be used in order to derive a domain

decomposition method for the Oseen equations. We expect that the proposed algo-

rithm will be robust with respect to the viscosity ν. To our knowledge this would be

the first one showing this behavior.

Of course, the convergence of both methods is not completely satisfactory in the

multi-domain case with cross points. But the number of needed iteration steps can be

dramatically decreased by using an appropriate coarse space. A suitable choice of a

coarse space for our new approach is subject of further research.
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