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STATISTICAL MECHANICS OF INTERACTING FIBER
BUNDLES

Renaud Toussaint
Department of Physics, University of Oslo, P.O.Box 1048 Bidern, N-0316 Oslo, Norway.

ABSTRACT
We consider quasistatic fiber bundle models with weak ioteras, i.e. where the perturbation emanating from
every broken fiber is small compared to the mean-field impasedage deformation of the bundle. Classical
load sharing rules are considered, namely purely locaklpwlobal or decaying as a power-law of distance.
All fibers have identical spring constants, reducing to z&fter their irreversible break, which happens at a
random threshold picked ab initio independently for evelpgififrom a quenched disorder (g.d.) distribution.
Initially, all fibers are intact and as the buffer plates amegpessively separated, with a controlled displacement
between them, fibers break one after the other. We are it¢ersthe probability distribution of configurations
of broken fibers, averaged over all possible realizatiotketinderlying g.d. (i.e. over all possible values of the
set of threshold distributions). This configurational disttion is accessed via integration over the independent
variables of the system, i.e. through mapping the thresteidpace onto the configurational space, via paths
corresponding to the deterministic evolution of bundlesrabterized by each set of realized g.d., up to a certain
imposed elongation. Using a perturbational approach allmiobtain this configurational distribution exactly
to leading order in the interactions. This maps this fiberdbeisystems onto classical statistical mechanics
models, namely percolation, standard Ising models or gdéimed Ising models depending on the range of
the interactions chosen in the load sharing rule. This eslanambiguously such g.d. based systems to
standard classical mechanics, which allows the use of #mcaged toolbox to derive various observables of
the system, as e.g. correlation lengths. The thermodynpanameters formally equivalent to temperature and
chemical potential, are analytically expressed functafitbe externally imposed deformation, with functional
dependences depending on the load sharing rule and theytarichoice of the q.d. distribution.

1 INTRODUCTION

The physical process of brittle failure under external Ibad long been studied, and is well un-
derstood in the case of a homogeneous solid (Griffith [1] },tbe behavior of mechanically het-
erogeneous systems is still an open subject of researchdiffivalty arises from the necessity of
quantifying the effect of randomness in the mechanical @rigs of many interacting constituents.
Despite many advances over the last 20 years [2], no anallytidfied description of such break-
down processes of heterogeneous materials is availablee ahoment. Most results in this field
are obtained from lattice models, e.g., spring or beam nésy@r fuse networks, scalar analog
of the elastic problem [2]. These simulations led to an ust@ading of the experimentally well-
established Hurst exponent of fracture surfaces [3]: 0.éncase of three dimensional fracture,
with a cross-over to 0.5 at small scales (see Bouchaud forie@wd4]), or 0.6 for the roughness of
a fracture front in interfacial brittle failure in mode | (8wittbuhl and Malgy [5] ). Fiber bundle
models, first introduced by Daniels [6] and Coleman [7], ar®ag the most studied paradigms of
simplified lattice models of breakdown processes in hetmegus materials. They consist of a bun-
dle of parallel fibers set under tension between two buffatgsl, with random elongation thresholds
for breaking, and a model-dependent load sharing rule. itisstates how the load carried by a
fiber is redistributed when it breaks among the survivingrband reflects the physical properties
of the buffer plates: purely rigid, elastic, or more comated. The most commonly considered



rules are the Global Sharing Rule (GLS), where the load i®otmiy distributed among all fibers,
and the Local Sharing Rule (LLS), where broken fibers onlyrloael the nearest surviving fibers.
Analytical solutions are available in these two extremesdsr the average load curve (Sornette [8]
for GLS) or the statistics of avalanches (Hemmer, Hanserkdwster [9,10,11]). For more general
load sharing rules, like these corresponding to platesoredipg elastically or transferring the load
as a power-law of distance to broken fibers, only numeridati®ms are available [12].

In the present paper, we will present a formal analytical piragp of such quasistatic q.d. based
models onto standard statistical mechanics models, ngoeetylation, Ising and generalized Ising
models, depending on the particular disorder distribugioth load sharing rule adopted. Specifically,
we will consider any possible particular (initial) realiiman of the g.d. describing the set of break-
ing thresholds of the fibers, and compute to which configomadif broken and intact fibers each
realization leads when the initially intact system is mamitally extended from zero to a given
fixed extension. Considering then the ensemble of posstalézations of the g.d., we will obtain
the probability distribution of the possible damage configjions at the considered extension, as the
frequency of occurrence of each configuration among alliptess averaged over all realizations of
the g.d.. Insodoing, we will show that in the limit of smalténactions, the emerging configurational
distribution can be expressed as Boltzmannians of a sinupletibnal of the damage field, and re-
late these distribution to standard statistical mecharnit® equivalent of temperature, which will
be here a probabilistic energy scale, and external fielthgetie average fraction of broken fibers,
will be obtained analytically from the underlying g.d., tbsharing rule and extension achieved.
Relating analytically the well known Fiber Bundle Modelsgach classical models of statistical
mechanics is important in the sense that it allows to user#tghtional toolbox of standard statis-
tical mechanics, and possibly to classify the possiblesitenms corresponding to localization of
disorder and/or macroscopic rupture. Indeed the clasgdicaf rupture processes as second or
first order transitions, or spinodal nucleation proceskestill a subject of debate. The difficulty
of such classification in this problem lies in the absencenafydical form for the probability dis-
tribution of configurations of broken elements, apart fréva simplest cases (GLS,LLS). Although
such probability distributions in similar systems haverbpmposed [13], they were in general pos-
tulated, whereas we will here derive this distribution dilefrom first principles of evolution rules,
incorporating the choice of a load sharing rule and thresHdtribution.

We also underline that we will only consider quasistatic siegdin which the disorder is quenched
ab initio, and in which there is no evolution of microstateemtthe external parameter, imposed
average elongation, is kept fixed. This should be relevauliesrribe systems where the inverse
imposed strain rate is significantly lower than any charéstie time for thermal transition from
a fracture state to another at fixed external elongatiom\solue to molecular motion (otherwise
thermal rupture models with quenched disorder should bsidered, which is described in the GLS
case e.g. by Politi [14]). It is interesting to note that, wlaerages over all possible realizations
of the g.d. are considered, classical Boltzmannian digiobs still arise despite the absence of
any evolution of the system at fixed boundary conditions: piregpthe initial g.d. distribution over
configurational distributions of damage states, via deit@stic rules, still gives rise to classical
statistical mechanics solutions.

We have already shown the relationship between classat#@tital mechanics and quasistatic fiber
bundle models in the restricted framework of global sharing (Pride and Toussaint [15]), or in
interacting fiber bundle models, with an energy based elamiutile (Toussaint and Pride [16]). Here
we show that the particular choice of energy or force basetugen rule does not alter the main
results, and use a rule directly comparable to most nunienicdels.



Figure 1: Sketch of a fiber bundle between a rigid and a defolenglate, with the imposed raw
elongation, plus the elongation perturbation profile due to a broken fvéwcationz.

2 MODEL DESCRIPTION AND EVOLUTION RULES

We consider the following generic models: an ensemble odljgdrfibers are attached between
parallel plates, at locations placed on the site$ of a square lattice of dimensiod® = a x a,
with the lattice step considered as length unit. The fibezssapposed to have identical lendth

at rest, and to present the same spring constant, set to dok fikes the force unit. A fiber thus
carries aforcg = [, up to a threshold above which the fibers breaks irreversibly, so that aftedwar
f = 0independently of. This threshold is picked ab initio independently for eatierj from a
distributionp(t) = dP(t)/dt where the cumulative distributioR(¢) denotes the probability for a
threshold to be below. From the initial rest state, the plates are separated Whj parallel, and
the minimum distance between thefy, + [y , is increased in infinitesimal steps. The lower plate
is modelled as perfectly rigid, while the upper one is alldw@have more complicated mechanical
properties, which is reflected in the load sharing rule betwtbe fibers. When a fiber is broken at a
locationz;, this creates a force pertubatiefy on the corresponding site along the plates boundaries,
compared to the raw homogeneous force perlgiteat would be exerted by a bundle of intact fibers
(counted positively in the direction from the plates towgathe bundle). This force perturbation
possibly creates a deformation of the plate boundarytibitisd in Fig. 1, if the plate is deformable,

ol(y) = eJ(|ly — z)lo, 1)

where we have assumed isotropy and invariance of the systder translation. This is conceptually
realized by considering biperiodic boundary conditiomglthe lattice boundaries, with threshold-
ing of the interactions for separations exceeding the tlingtice dimensioru. We assume that
e < 1,and0 < J(r) < 1 for any separation. The fact that/l <« [, is granted if the plates are
significantly stiffer than the fiber bundle, e.g. if they aiggd or elastic with a Young modulus much
higher than the fibers’ spring constant divided by the eldargriattice site area. The load sharing
rule is then univoquely defined by the functidifr). Classically considered cases are: perfectly
rigid plates (GLS), withJ(r) = 0 [8,9], or the opposite case (LLS), whe¥ér) = 0 for any sepa-
rationr, except/(r = 1) = 1, i.e. interactions are only carried between nearest neighi0,11].
Power-law decay have also been considered [12] whérg ~ »—<, the special case ef = 1 cor-
responding to a purely elastic plate [17]. Note also thatlastie sheet put under extension, where
circular flaws smaller than a lattice step nucleate whenestiold in local strain is achieved, will
present such power-law strain perturbations emanating &eery flaw witha = 2, which is thus a
special case of the models discussed here.

The evolution rule of the system is as follows: for a certairernched realization of the g.d. in



the set of rupture thresholffs }, the bundle is monotonically brought from zero to a macrpgco
elongationy. Each time that the local elongatién+ §l(z) of some fiber at: reaches its breaking
thresholdt,, this fiber breaks irreversibly @ kept fixed. The local elongations are then updated
on all fibers according to Eq[|(1). If this leads to breakagethbér fibers, the one corresponding
to the minimum oft, /[lop + §l(z)] is removed, and this avalanche procedure is iterated upeto th
point where all thresholds of surviving fibers are abovertbingation. This completely defines
a deterministic path for the state of the bundle as functioly for each possible realization of the
g.d.. The state of the bundle is referred to by an order paerfield ¢ = {p.}, with locally

v, = 0 for an intact fiber, ang, = 1 for a broken one. For different realizations of the g.d., a
priori different bundle stateg will be obtained for identical final elongatiohs For each possible
statep and elongation, we definB|p, ly] as the frequency of occurencepft final elongatiori,
over all possible realizations of the initial q.d. —i.e. whhe deterministic experiment is performed
ab initio as many times as there are possible g.d. realimmtioMe are interested in computing
the configurational probability distributioR|[-, ] for every elongation, and the associated average
mechanical properties.

3 RESULTS

We first consider the simple Global Load Sharing rule. Cosvéidy a fiber state, each fiber is
brought at the same elongatibrindependently of the remaining ones. Thus, the probalfdityhis
fiber to be broken i, = P(ly), and the probability that it has survivedlis- P, independently

of the other fibers. The state of each fiber@atare then independent random variables, and the
probability of a given state, which specifies the state of each fiber in every locationjngply
Plp,lo) = P'(1—Py)N~"wheren = " _ ¢, is the number of broken fibers in the state considered,
andN — n the number of surviving ones. The configurational probghilistribution is thus simply
given by a site percolation model with probability of occapgF.

The average fraction of broken fiberdats thusP,, and the mechanical properties are also directly
obtained: Since the total force carried by the bundlE[ig, lo] = 1o Y. (1 — ¢.), its average value
over all realizations of the g.d. 8 = Niy(1 — P), which is also the mechanical behavior of a fiber
bundle in GLS with imposed total force (rather than elormatiin the limit of large size&v — oo
[8,9]. If F(ly) presents a single maximum, this corresponds to a peak striesh a priori does not
coincide with the percolation transition happening’at= 1/2. We notice that this configurational
probability can also be cast under the foftfp, ly] = exp[—In[(1 — Py)/Po] Y, va]/Z whereZ

is a normalization factor.

For more general Load Sharing Rules, i.e. for non-zero sbdtinctionsJ, the configurational
probability distribution can also be obtained by pertuidratthrough the following reasoning: we
consider a given stateand final elongatiofy. The elongation of each fiber in the final std{e;) =
lo[L+¢ >, J(|ly—=l|)], is by construction the maximum elongation that this fibes fte@ched from
the initial state. We also havéxr) > I,. We utilize these two facts to first obtain an upper bound
of the probabilityP[p, z] via these arguments: if any fibersuch asp, = 1 in the considereg
state had a threshold suchas> [(z), this particular fiber should survive and the staté not
reached. Conversely, if there is amysuch asp, = 0 in the considered state, having a threshold
belowt, < I(x), this fiber should break and the final state will also not befed. Consequently, a
necessary condition to reach the stat&t| is that each fiber such ag. = 1 has a threshold realized
below!(z), and each one such as = 0 had a threshold abovéz). The probability of these two
events to happen for each fiber threshol&ig < i(z)) = lo +loe >_, J(|ly — z|[)) = Po + 6 Py,
andP(t > l(z)) = 1 — Py — 6 P;, where by Taylor expansion of the cumulative distributi®n
around, we defined P, = elo 3, J(|ly — z|[))po, With po = p(lo) = dP/dz(lo). An upper bound



to the probability of observing the considered statie thus

Plool< T mo+ép) [[ (1-R—dP.). )
{z/pa=1} {z/¢-=0}

A lower bound can be obtained by expressing a set of sufficemditions on the individual thresh-
olds for the considered stateto be reached d: if all fibers such ag, = 1 had a threshold below
lo, while all the others had their thresholds abéie), the statep will be reached with certainty.
In addition, other nonoverlapping subsets of the ensenflrieatized thresholds lead with certainty
to the considered state: if all fibers such@s= 0 have thresholds realized abol(e), all fibers
such asp,, = 1 but one have thresholds beldy and the last one has a threshold betwikeand

lo + 6l(x), the first ones are intact with certainty, the second onesmalen with certainty under
the effect of the basic mean field elongation, and thus thetassidered fibers also breaks with cer-
tainty due to the elongation perturbations coming from ttiepbroken ones. Adding the measures
of these nonoverlapping subsets in the g.d. space (comdsmpto the set of thresholds), we obtain
a lower bound seeken for:

P[%lo]Z{[ I e+l Y op ] <Po>1} [I a-r-sr). 3
1}

{z/pa=1} {z/pa=1} {y#z/py= {z/p.=0}

To leading ordeO(e), these lower and upper bounds are identical, so that theeatbetermines
exactly the probability of occurence of configuratianthat we look for, with interactions included
through a perturbation analysis. This can be expressed easily by considering the logarithm of
the above: to leading order in the interactiansP[p, lo] = e~ H1¥-ol /7 with Z a normalization
factor, and

1-R epolo epolo
Hlp, lg] =1 z — o P oy P (1 — 4
[, lo] n< j2) >;Sﬁ j2) %J%ﬁ Sﬁy+1_POEZny<P( ey)  (4)

In this function, the first leading term corresponds to themfield GLS result, and is analog to a
chemical potential, influencing the average number of bmdikers at a given level. The second term
reflects the tendency of damage to cluster due to stressripatitns, and is thus analog to a bulk
energy. The third term arises from the fact that it is lessljiKor a fiber to be intact if it interacts
with many broken ones. In the LLS model, this positive ternuldaarise only at the boundary
between broken and non broken clusters, and is thus analogitderfacial tension.

It is possible to extract a formal temperature arising frdnpassible realizations of the initial g.d.,
directly related to the variance of elastic energy overedlized systems, by noting that the elastic
energy in the ensemble of fibersis = (1/2) > (1 — ¢z)(lo + 6l(x))? ~ 13/2>" (1 — pu) +
136>, J(1ly — z|)(1 — @x)py, SO that we can expres§[p] = (E[¢] — 1>, ¢2)/T up to

a constant, with a unique possible choice for the formal &nempire and chemical potentidl, =
2Py(1—Po)lo/po andp = 2(Po(1—Po)lo/po) In[Po/(1—Fo)] = (1§ /2)[1+ (4P —1)e 3=, J(||]])]-

If desired, it is then possible to use standard statistiedhmnics techniques to derive from a poten-
tial defined as-T'In(Z), the statistical characteristics of the system as mechbai@racteristics
(sustained force by the bundle, averaged over all readzatdf the g.d.), average number of broken
fibers, Shannon entropy or autocorrelation function of tretesm [16].

Last, we note that Eq.[|(4) maps these models onto well-knoves:odefining a spia, = 2¢, —

1, we can expres$] = —p3I o, — BjJuy ) ,, 020, With an external fields/ = In[(1 —



Py)/Pol/2 — (epolo/2Py) Y, J(||x||) and coupling factopj = epolo/[4Po(1 — Py)]: this corre-
sponds to generalized Ising models of coupling constapg, and reduces to standard Ising model
for LLS, and percolation for GLS. Such models have a critmaiht at zero external field, and a
certain value of coupling factgsj.. When the external fieldI reverses sign, the coupling factor
has a certain unique valugj,., and such model should go through a percolation-like ttemsiif
Bjr < Bje., a first order transition if3j,. > (§j., a second-order transition #j,. ~ (4., or no
transition if0 < G5, < Gje.

4 CONCLUSION

For quasistatic interacting fiber bundle models with quedlctiisorder in the breaking thresholds,
we have shown analytically how to obtain the probabilitytrdisition over damage configurations,
when all possible realizations of the initial quenched disoare considered. We have mapped these
g.d. based models onto paradigms of classical statistlogips, namely percolation, standard or
generalized Ising models for respectively, global, locarbitrary decaying load sharing rules. The
functional dependence of the coupling parameters overltrgation reached has been explicited
analytically as forms which depend on the g.d. distributoad the load sharing rule considered.
This allows to obtain the possible phase transitions in systems depending on these: second order
ones associated to percolation, Ising or generalized ksiitigal points, first order ones associated
to (possibly generalized) Ising models, or none. This eanatytical mapping should be confronted
to direct numerical testing in future work.

5 REFERENCES

[1] A.A. Griffith, Philos. Trans. Roy. Soc. London A, vol. 221, pp. 163 (1920).

[2] H.J. Herrmann and S. Roux, edatistical models for the fracture of disordered materials
(North-Holland, Amsterdam) (1990).

[3] A. Hansen and J. Schmittbuhl, Phys. Rev. Lett., vol. 315504 (2003).

[4] E. Bouchaud, J. Phys. Condens. Matt. vol. 9, p.4319 (1997

[5] J. Schmittbuhl and K.J. Malgy, Phys. Rev. Lett., vol, #8888 (1997).

[6] H.E. Daniels, Proc. Roy. Soc. Avol. 183, p.404 (1945).

[7]1B.D. Coleman, J. Appl. Phys. vol. 29, p.968 (1958).

[8] D. Sornette, J. Phys. Avol. 22, p.L243 (1989).

[9] P.C. Hemmer and A. Hansen, Journal of Applied Mechanigk,59, p.909 (1992).

[10] A. Hansen and P.C. Hemmer, Phys. Lettt. A, vol. 184, $.3994).

[11] M. Kloster and A. Hansen and P.C. Hemmer, Phys. Rev. E5&) p.2615 (1997).

[12] R.C. Hidalgo, Y. Moreno, F. Kun and H.J. Herrmann, PHev. E, vol. 65, 046148 (2002).
[13] R.L. Blumberg-Selinger, Z.G. Wang, W.M. Gelbart andBen-Shaul, Phys. Rev. A, vol. 43,
p.4396 (1991).

[14] A. Politi, S. Ciliberto and R. Scorretti, Phys. Rev. B).v66, 026167 (2002).

[15] S.R. Pride and R. Toussaint, Physica A, vol. 312, p.25@2).

[16] R. Toussaint and S.R. Pride, Cond-mat/0403412, pne(2004).

[17] J. Schmittbuhl, A. Hansen, and G. G. Batrouni, Phys..Rett. vol. 90, 045505 (2003).



