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Fracture of disordered solids in compression as a critical phenomenon.
|. Statistical mechanics formalism

Renaud Toussaihtand Steven R. Pride
Geosciences Rennes, Universite Rennes 1, 35042 Rennes Cedex, France
(Received 14 November 2001; revised manuscript received 13 June 2002; published 27 September 2002

This is the first of a series of three articles that treats fracture localization as a critical phenomenon. This first
article establishes a statistical mechanics based on ensemble averages when fluctuations through time play no
role in defining the ensemble. Ensembles are obtained by dividing a huge rock sample into many mesoscopic
volumes. Because rocks are a disordered collection of grains in cohesive contact, we expect that once shear
strain is applied and cracks begin to arrive in the system, the mesoscopic volumes will have a wide distribution
of different crack states. These mesoscopic volumes are the members of our ensembles. We determine the
probability of observing a mesoscopic volume to be in a given crack state by maximizing Shannon’s measure
of the emergent-crack disorder subject to constraints coming from the energy balance of brittle fracture. The
laws of thermodynamics, the partition function, and the quantification of temperature are obtained for such
cracking systems.
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I. INTRODUCTION proach has recently been proven exact in the special case of
fiber bundleq24].
When rocks and other disordered-solid materials are in The principal conclusion of our present theory is that at a
compression and then have an additional deviatoric straififitical-strain point, there is a continuous phase transition
applied to them, small stable cracks irreversibly appear afom states where cracks are uniformly distributed to states

random throughout the material. Each time the deviatori here coherently oriented cracks are grouped into conjugate

strain is increased, more cracks appear. In the softening r%_ands. Several facts justify classifying such band formation

: : ) _ s a critical phenomenon.
gime following peak stress, a sample will unstably fail along £t the localization of the cracks into bands spontane-

a plane localized at an angle relative to the principal-stresgsly preaks both the rotational and translational symmetries
direction. We have accumulated evidence Suggesting th@f the material even though our model Hamiltonian pre-
such localization is a continuous phase transition. serves these same symmetries. The entropy of the material
This is the first of three articles that develops a statisticatemains continuous and the ensemble of the most probable
mechanics that allows the possible phase transitions in states becomes degenerate at the localization transition; i.e.,
cracking solid to be investigated. Many studies have asPrior to localization, the most probable state is the intact
sumed that, fracture is a thermally-activated process andt@te, while right at the transition, certain banded states ac-

have used a statistical mechanics based on thermal fluctuguire the same probability as the intact state. Further, an
tions[1—5]. However, our interest here is with “brittle frac- autocorrelation length associated with the aspect ratio of the

ture” in which cracks appear irreversibly and in which ther- emergent-crack bands diverges in the approach to the critical

; _ .~ point. Unfortunately, quantitative laboratory measurements
mal fluctuations play no roIe._For this probler.n,. fche statisticSy¢ how the bands of cracks coalesce and evolve in size and
of the fracture process is entirely due to the initial quenchednape prior to the final localization point do not presently

disorder in the system. exist. We speculate in the third article of this series on how
A considerable literature has developed for so-calledsuch measurements might be performed.
“breakdown” phenomena in systems having quenched disor- Our explanation of localization based on the physics of
der and zero temperatufé—23. In particular, the burned- interacting cracks is distinct from the bifurcation analysis of
fuse[6—8], spring-networK9—11] and fiber-bundl¢12—17  Rudnicki and Rice[25] in which localization is a conse-
analog models for fracture have all been shown to yield variquence of a proposed phenomenological elasto-plasticity
ous types of scaling laws prior to the point of breakdownlaw. Our work provides a method for obtaining such a plas-
[18—23. Our work is different in that we directly treat the ticity law from the underlying physics.
fracture problemnot an analog model of))itassuming that
all of the statistics is due to quenched disorder. We obtain the
probability of emergent damage states by maximizing Shan-
non’s entropy subject to appropriate constraints. This ap- Rocks are a disordered collection of grains in cohesive
contact. The grains have varying shapes and sizes with typi-
cal grain sizes in the range of 10—1@0n but sometimes
*Present address: Department of Physics, University of Oslo, P.Gconsiderably larger. The contacts between the grains are gen-
Box 1048 Blindern, 0316 Oslo 3, Norway. Email address:erally weaker than the grains themselves and have strengths
Renaud.Toussaint@fys.uio.no and geometries that vary from one contact to the next. When
"Email address: Steve.Pride@univ-rennes1.fr deviatoric(i.e., shear strain is applied to a rock, grain con-

Il. THE PROBABILISTIC NATURE OF THE FRACTURE
PROBLEM
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tacts begin to break. In what follows, a broken grain contacstates that are simply the fraction of the mesovolumes in the

will be called a “crack.” Such a break is a stress-activatedsystem that are in the state

irreversible process. Once a grain contact is broken, there is We can understand how the various crack states emerge

no significant healing that occurs. Cracks are not arrivingdy appealing to a form of Griffith'§26] criterion. A cell will

and disappearing due to thermal fluctuations. This fact makelreak only if the change in the elastic energy due to the break

our definition of statistical ensembles quite different fromis greater than or equal to the bond-breaking enéigy. If

that in the usual application of statistical mechanics to moCa iS the effective elastic-stiffness tensor of the entire meso-

lecular systems, as we now go on to discuss. volume that holds after the break occurs ancCf is the
stiffness tensor that held before the break, Griffith’s criterion
can be stated,

A. Creating a statistical ensemble (Pe:(Cy—C,): e/2> €, )

We imagine dividing a hugéformally infinite) system
into mesoscopic volumes that will be called “mesovol-

umes.” Beciiuse the materials of int_erest here have a Wi‘?' olume at the moment of the break afll is the volume of
range of grain-scale disorder, many different crack states Will, \eqoyolume. This particular statement is an approximation
emerge in the various mesovolumes once energy has beglsed on an assumed linear elasticity and absence of residual
putinto the system and cracking begins. These various mesgain after unloading, but a general statement will be derived
volumes and the crack states they contain comprise the efy sec. 111 B. Since the mesovolume with an extra crack is
sembles in our theory. more compliant than without it, the weakest cells will begin

In order to be specific with our ideas, we now introduce atg hreak even after the slightest of applied strain.
simple model of the initial disorder and emergent-crack Yet an emergent-crack state is not just a trivial conse-
states. The purpose of this special model in the present papguence of theS(x) distribution in a mesovolume. Cracks
is to motivate how ensembles are formed; however, thaligned along bands concentrate stress allowing even large
model Hamiltonian developed in Paper I will be based uporbarriersé(x) to be overtaken along the band. In the present
it. model, this means that placing cracks along bands produces

In the model, each mesovolume is divided ihtadentical  a larger change in the elastic moduli of the mesovolume than
cells, where a cell has dimensions on the order of a grain sizglacing cracks in more random positions. Thus, at least
and whereN is a large number such as®0or more withD  above some applied strain level, we expect the banded states
the system’s dimension. In each cell, only a single grairto emerge as the ones that are significantly present in a rock
contact is allowed to break. The local order paramé@r  system. Nonbanded states at large strain are much more spe-
plicitly defined in Paper )lcharacterizes both the orientation cial. They can come only from mesovolumes in which the
and the length of such a broken grain contact. In the presenteak cells making up the state are all surrounded by strong
paper, an order-parameter description is not yet necessaells.

Prior to breaking, all cells are assumed to have the same A key idea here is that each mesovolume embedded in the
elastic moduli. system experiences the same global strain tensor and, as
The quenched disorder is in how the grain-contact breaksuch, has a crack state statistically independent from the
ing energy&(x) is distributed in the cells of a mesovolume. other mesovolumes. This is only valid so long as the emer-

We assume that only a fraction of the nominal grain-contactjent bands of organized cracks have a dimengidhat is
area is actually cemented together, and that the degree gfall relative to the sizé of the mesovolume. Screening
cementation from one contact to the next is random. Thuseffects due to destructive strain interactions between incoher-
the breaking energies(x) are random variables indepen- ently oriented cracks cause the far-field strain from a local
dently sampled from a distributionr(£) having support on  crack structure to fall off with distanceeven more rapidly
[0,/'d®~ ] whereT is the surface-energy density of the min- than the ¢/r)P fall off in an uncracked material. But even in
eral,d is the nominal linear dimension of a grain contact, andthe thermodynamic limit of infinite system sizes, the required
d®~! is the grain-contact area D dimensions. The statistical independence of the mesovolumes breaks down
quenched-disorder distribution(€) can have any assumed right at the critical strain where divergent bands of cracks
form. become important. The conclusion is that although our
We now define an infinite collection of distinct mesovol- ensemble-based statistics is valid in the approach to localiza-
umes by allowing for every conceivable way ti&&) may tion, it is incapable of describing the post-localization
be distributed in a mesovolume. Putting this collection to-physics.
gether forms the infinite rock mass whose properties we are
interested in determining. Each mesovolume so defined is a
deterministic system and upon slowly applying the same
strain tensore to all the mesovolumes, each will undergo a In the laboratory experiments to which we apply our
deterministic cracking scenario and end up in a well-definedheory, a sample is immersed in a reservoir from which either
crack state. We denote each of the possible final crack statemiform stress or strain conditions can be applied to the sam-
with an indexj. A principal goal of the present paper is to ple’s exterior surfac@(). The macroscopic strain tensoiis
obtain the occupation probabilitigg of these various crack defined in terms of the displacemantt points ond() as

where € is the strain tensor characterizing the entire meso-

B. Macroscopic observables
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800 . . . the figure due to the fact that no new cracks are created. Such
Basalt, Pconf=100 MPa ,,/ an unloading experiment defines the elasticsecant stiff-
oo r T : ness tenso€,
600 r . dr=C:de. (4
2
g S0 1 We model the unloading/reloading paths as being entirely
7 400 |- U(EEm) | reversible and in so doing neglect the small hysteresis due to
& friction along the opened cracks.
= In order to distinguish loading patli@ith crack creation
2507 | from unloading path§wi i i
g pathswithout crack creation all properties
200 - i are explicitly taken to depend on two strain variables;
namely, the maximum straig,, having been applied to a
100 ] sample, and the current strainthat is different than the
maximum only if the sample has been subsequently un-
0 5 s 8'1 Em ) 5 A loaded. Note that even if and ,, are written as tensors,

they each correspond to only one scalar degree of freedom
along the loading/unloading paths, since the radial compo-
FIG. 1. Stress-strain data courtesy of David Lockner of thenents can always be expressed in terms of the axial compo-
USGS Menlo Park. The slope measured upon loading a sample Bents via the type of radial control employde.g., p.
defined byD while that measured upon unloading and/or reloading=const in a standard triaxial t¢st
the sample is defined bg. The stress tensor corresponds to the volume average of
the local stress tensdr(x) that satisfieV - T(x) =0 at inte-
rior pointsx; i.e.,7=L [, T(x)dV and is a function of the
£=— nudS (2 current and maximum strains= 7( €, €,,) as shown in Fig. 1.
L=/ By averaging the elastostatic identi®- (Tx)=T over the
mesovolume we further have thatL P f,,n-TxdS.
wheren is the outward normal to the sample’s surface and The work densitydU performed on the sample when

L™ is the volume of the sample i@ dimensions. This defi-  there is an increment in straite is in both cases of loading
nition of deformation thus corresponds to the volume averang unloading

age of the local deformation tensBu(x) defined at interior
pointsx of the sample. It will soon be shown to be conjugate
to the macroscopic stress tensom the expression for the du= —f n-T-dudS 5)
work carried out on the sample. If strajrather than stregs a0
is the control variable, the displacements at poisf the
external surfac@() are given byu=x- &. =r:de. (6)

As shown in Fig. 1, a typical compression experiment
starts with the sample in a pure hydrostatic pressure state ad@ obtain Eq.(6) from (5), we have written the controlled
then systematically increases the deformation in the axiaflisplacements on a sample’s surfacelas-x- de where the
direction' keeping the radial “Confining” pressuge, con- strain incrementde is uniform overd(}. ThUS,dU corre-
stant. Other ways of controlling the radial stress during thesponds to the volume average of the local work density
experiment are to keep a constant ratio between axial an#i(x):dVu(x).
radial stress, or to impose a constant radial deformation. So The total energyJ per unit sample volume that goes into
long as the confining pressure does not become so large asthe sample during the loading up to a maximum strain tensor
induce a brittle-to-ductile transitiof28], these various ex- €m IS then
periments all result in the same type of localized structure at
large axial strains. When axial strain is monotonically in- N RPN
creased, cracks arrive at each strain increment and the defor- Uem) LO w(e’e)der, @)
mation and stress changes are related as

Axial Strain (%)

where g, is the strain associated with the initial isotropic
T _ stress. If after loading te,,, the sample is unloaded back to
dr= d_s-d";: D:de, (3 a current strain of, we have the general expression

where the fourth-order tensbris called the tangent-stiffness U(e, en)=U(ey)+ fe e e,):de’. (8)

tensor. This tensor defines the slopes between the various £m

stress and strain components as the sample is being loaded

and is an experimental observable. If the sample is unloaded back to the initial stress, corre-
If at some point in the stress history the axial pressure isponding to a possibly nonzero residual stralff, a last

reduced, we follow a different deformation path as seen irexperimental observable is the ener@ye,,)=U (£ &)
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(per unit sample volumethat went into crack creation and T
that is lost during the loading process . Cy=C;j
TN(SN-I) c
C. Ergodic hypothesis N-1

We have shown above that the experimentally measurablt L
variables of energy density, deformatione, and applied ) /
stressr correspond to volume averages of each field through- ¢ ! C; Cy ;
out a system. Our ergodic hypothesis amounts to assumin 1) Co ;
that the systems we work with are sufficiently large that such 11 A . i
volume averages can be replaced by ensemble averages g &, &, &y €v; €

U_E pE 8_2 De T_Z DT 9) FIG. 2. The heavy line is the actual path followed during the
T« Mj=j R & Mjij-
] j j

steady application of axial strain. Each vertical drop in stress cor-
responds to the arrival of a crack.

Here, E; is the average work per unit mesovolume requiredstrated that this postulate yields exact results for the special
to take an initially uncracked mesovolume from zero straincase of fiber bundles with global-load sharing.

to the strain tensog; . A similar definition holds fors;. In The constraints are what give the dimensionless function
both the definition ofg; and 7;=dE;/de;, the average is S defined by Eq.(10) all the thermodynamic information
over the initial quenched-disorder distribution. about our cracking system and must explicitly involve the

So long as each mesovolume contains crack states thatdependent variables & Such independent variables are
have no significant influence on the neighboring mesovoldetermined by establishing the first law of thermodynamics
umes(formally valid only in the thermodynamic limitthe  for a system cracking in compressive shear.
sum over the collection of mesovoluménsemble averag-
ing) is equivalent to a volume integral over the entire system. B. The work of creating a crack state
In practice, we will only ever consider ensembles that have
by definition g; = &; however, we could equivantly immerse de
each mesovolume in a uniform stress-tensor reservoir an&
allow g; to vary from state to state.

To obtain the first law, it is first necessary to define the
tailed energy balance for each crack state and to under-
and how the worlg; required to create stajedepends on
both the actual straia and on the maximum-achieved strain
En.

IIl. THERMODYNAMICS OF CRACK POPULATIONS

1. Griffith’s criterion and crack-state energy

A. Fundamental postulate . . . L
Consider a given mesovolume with a deterministic distri-

The fracture-mechanics problem of counting how manyyytion of breaking energieS(x) assigned to each cetl of
of the initial mesovolumes can be led to the same crack statge mesovolume. Starting from a state of isotropic stegin
appears to be hopelessly intractable. Fortunately, it also aRge slowly apply an additional axial deformation and monitor
pears to be unnecessary for systems containing initighow one crack after another enters the mesovolume until the
quenched disorder. Upon putting deviatoric strain energy intging| strain tensoe and final crack statpare arrived at. Lets
such a system, the emergent-crack statesll, on the one g5y that this statghas a total of\ cracks associated with it.
hand, attempt to mirror this quenched disorder with weakest Figure 2 details the history of how the stréasd, there-
cells breaking first; however, due to the energetics of th%re, work might evolve in the mesovolume as strain is ap-
crack interactions, many different types of initial mesovol-pjied and cracks arrive. Initially, the mesovolume will elas-
umes may be led to the same crack state which results ifica|ly deform according to the stiffness ten&y (no cracks
nonuniform crack-state probabilitigg even if the quenched- ye presentuntil the first crack arrives at the strain tenggr
disorder distribution is uniform. with an associated drop in the mesovolume’s stress. Lets say
We state our fun_damental postulate as foI!oWse prob- the bond-breaking energy of this first crack wés The
ability p; of observing a mesovolume to b‘? in crack state jmesovolume will now have a different overall stiffness ten-
can be determined by maximizing Shannon’s [27] measure Qo ¢, and will elastically deform with these new moduli
disorder until the second crack arrives and so on until &llcracks
have entered and the mesovolume has attained its final stiff-
S= —Z p;Inp;, (100  ness tensor of;=C,. The final tensoC; depends on both
] the location and orientation of thedé cracks in addition to
their number.
subject to constraints involving the macroscopic observables At some intermediate stage havimgcracks, the stress
that derive from the energetics of the fracture mechanicstensors,(€) is defined by integratingz=C,(&"):de’ from
That entropy is to be maximized can be expected since the[*>to &, whereg;*is the “residual” deformation observed
quenched disorder allows all states to be present in a suffipon unloading the sample back to zero stress as shown in
ciently large system. In recent wofR4], we have demon- the figure. We have
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£ , where by conventioW,, is the work performed after the
(€)= Lrescn rde’. (1) arrival of the last crack to get to the final deformatienThe
n superscripp on Ejp is simply indicating that this is the work
The elastic energy density corresponding to this state at déor one particular realization of the quenched disorder. Re-
formation ¢ is similarly writing the sum by introducing Eq$15) and(13), then gives
el res € N
En(ﬁ):En +fre57n(8,):d8,' (12) E}J:Ef\l/‘(s)_Egl(so)+z AEﬁI
£n n=1
whereE[°represents the residual elastic energy that remains N &+K,
in the system when the state withcracks is unloaded to =E}3'(8)+ 21 /0 —E§l(#0), 17
i

zero applied stress. These resid{zaro stressquantities are
present whenever plastic deformation occurs within a grain
contact. After a sample elastically returns to zero appliedvhere ES(e,) is the small and physically unimportant
stress, such plastic deformation remains and, accordinglpmount of energy that is stored in the initial isotropic strain
there is an elastic stress field surrounding any crack that exield. Equation(17) is the natural statement that the work
perienced plastic deformation. The strain energy associatgoerformed in creating stateat straine is the sum of the
with such local residual stress is what constitutes the residualastic energy density stored in the material in the final state

energyE.>. plus the energy irreversibly expended during the opening of
When thenth crack arrives in a strain-controlled experi- €ach crack. . _
ment, there is no change in the strajpand thus no external Both the loss terni, and the residual energi&s® (con-

work performed. However, there is a change in stiffnfessl  tained inEf') are potentially a function of the point in strain
possibly residual strajrresulting in an associated stress drophistory at which a grain contact actually breaks; e.g., most
Ar,=7,_1(g,)— 7(€,), and a drop in the stored elastic en- models one might propose for plastic deformation at a grain
ergy densityA Eﬁ'z Eﬁ'_l(sn)—Eﬁ'(sn). Energy conserva- contact are dependent on the applied stress level. However,

tion requires the elastic energy reduction to exactly balancewodeling such plastic processes seems uncertain at best. We

the work performed in opening the crack so that thus assume that at least for those crack states significantly
contributing to any phase transitiofstates with lots of
o EntKy cracks, the stress-history dependencekyf is, on average,
—AE + f—D=O, (13 negligible. Further, since the residual strain in brittle-fracture

experiments is never more than a few percent of the peak-
whereé&, is the bond-breaking work performed at the grainStress deformation and since the essence of the localization

contact of thenth crack, K, is the energy that went into Process does not seem to lie &*, we assume tha*
acoustic emissions when the crack arrived and/or expended =n&,. With these approximations, the work densi
in any mode Il frictional sliding or plastic deformation at the depends only on the final stajethe final straine (through
grain contact K, is a positive “loss” term), and, as earlier, Ef'), and the breaking energi¢y .

¢P is the volume of a mesovolume. Becauégis positive, The energy densitfz; needed later in our probability law
we can rewrite Eq(13) as an inequality is obtained by further averaging over the quenched disorder
in the breaking energies, to give
ﬁ=AEe'—ﬁ>o (14)
€D n €D/ !

el 'A/l el
Ej:Ej(8)+7j(8m)€_D_Eo(80)- (18)
which is a general statement of Griffith’s criterion. Upon
appealing to linear elasticitielastic stiffnesses independent ) ) ) )
of strain leve) and putting the residual deformation to zero Here,Nj=\is the total number of cracks in stgtand y; is
(no plasticity inside the crackswe arrive at the convenient the average energy required to break a single grain contact

statementPe,:(C,_,—C,):e,/2=&, given earlier. where the average is over all cells throughout all mesovol-
The work performed between the arrival of théh and umes led to Stat_E This ’yl can be different for different final
the (n+1)th crack is defined, crack states. It will also be greater at greater values of the

maximum straing,,, because, according to Griffith, the cells
en+1 el ol comprisingj can break at higher energy levels when the
W= L m(e'): &' =E (&n:1) —Eq(en). (19 gpainis greater. The first term in E(.8) corresponds to the
" purely reversible elastic energy and therefore depends only
Thus, the total work required to reach the final straiis the ~ On the actual strain state

sum(cf. Fig. 2
2. Specific expression for £

EP=> W (16) To facilitate the development in Paper Il and to be more
m=0 specific, we now use Griffith’s criterion to develop an ex-
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pression forE; that is based on linear elasticity. When the k+1 a .,
nth crack arrives, the linear-elastic variant of the Griffith YTl 9E= 50 em:6C:en, (29
criterion gives that

<¢Pg - —C.): where we have defined=(k+1)/(k+2). All dependence
En<t7en:(Co-1~Co)ien/2 (19 on the underlying quenched-disorder distribution in our
(20) theory is confined to the constamivhich for anyk>0 is in
the rangg 0.5,1].

where as earlies,, is the strain point on the load curve where SINce for noninteracting statdS, —C; :/Yﬁcv a com-

the nth crack arrives whilee,, is the final maximum strain Parison of Eqs(25) and (22) shows thatf;=q for all the

level of the experiment. The second inequality follows fromNoninteracting states. For the interacting states, the prefactor
the first since an extra crack always reduces the stiffness of i Must be slightly greater because now stress concentration
mesovolume. For any particular mesovolume in sfathe ~ Can allow stronger cells to break. It is thus concluded that for

average energy required to break a contgtthus satisfies all states, thef; of Eq. (22) are bounded ag=f;<1 which
when compared to how; varies from state to state can be

1M ¢P considered negligible. From here on, we simply tdke g
YJE)EF > gn<2_N5m:(CO_Cj):8mv (21)  for all states. . .
jn=1 j The essential physics for the average amount of work that

_ _ ) goes into building up any given crack stgtis thus captured
where the right-hand side comes from summing Ef). b

Since this inequality is independent of the history, every
wg;ov@gme that is led to stgtenust satisfy it. We may thus Ej(2,&m)= EJ_R( &)+ E}(sm), (26)
¥; in the form

<€Pg,:(Cho1—Cp)ien/2,

€D

1
Rip)— —pr (o -
')’j:sz—Nsmi(Co—Cj)ZEm, (22 EJ(S)_ZS'CJ'e’ (27)
i
where the fractiorf; is bounded as € f;<1. We next dem- | q _
onstrate that the variation d¢f from one state to the next is Ej(em)= 2&m (Co=Cj)iem, (28)
so small as to be neglected altogether.

A tighter lower bound forf; is obtained by considering \yhere the superscripRandl denote respectively the revers-
crack stateg having \j noninteracting cracks. Since the ipje and irreversible part of the energy. The intact hydrostatic
cracks do not interact to concentrate stress, all of\theells energyE&(£,) has been neglected since it does not involve

that broke had thgir breaking energies somewhere in theacks and, therefore, cannot influence the probability of the
range G=sE<SE={"€,:5C:€,/2, wheresC is the change  arious crack states.

in the stiffness tensor due to the arrival of a single noninter-
acting crack andE is the associated change in the elastic
energy. Since the breaking energies are independent random
variables taken from the distributiom(£), we obtain Using the ergodic hypothesis discussed earlier, the aver-
age energy density in a disorded solid can be writtén

C. The laws of our crack-based thermodynamics

B =2>.p;E;. We are interested in hoW changes when incre-
em(e)de . ;
0 ments ine and g, are applied to the system.
/i —— (23 In general, a small increment ld can be written as
f m(e)de
° du=>, Edp+> p,dE;. 29
i i

for noninteracting crack statgs

We now appeal to a specific form for the probability dis-
tribution r(&). Initially, our rocks are intact and it is ex-
pected that more grain contacts are entirely bondéd (
=I"d®" 1) than entirely unbonded 0). We thus assume a
monotonic distributions® with k>0 satisfying the normal-

The first term involving the probability change is entirely
due to crack creation. Some mesovolumes that were in less
cracked states prior to the increment, are transformed to state
j during the increment, while mesovolumes that were in state
j, are transformed to other more cracked states. If in the

- D-1
ization fgd m(e)de=1 so that increment, the number of mesovolumes arriving in sjase
. different than the number leaving, there is a chadge in
(k+1) & the occupational probability of that state. Such changes are
m(€)= rdP-tlgp-1 =c& (29) the only way to change the disorder in the system, so that
Using thisw, the average energy required to break a contact 2 E;dp;=TdS (30)

in a noninteracting crack state is
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is the work involved in changing the system’s disorder via D. The probability distribution
crack production. The proportionality constants formally To obtain the probability of observing a mesovolume to

a temperature and will be treated in d%tail. | be in crack stat¢, we maximizeS=—X;p; Inp; subject to
Using the decompositioR; (&, &y) =Ej'(¢) + Ej(em), W the constraint thaf;p;=1, and to the additional constraints

can write the second term of E(9) as thate;=¢, £,;= €y, and=;p;E;=U. These constraints de-
fine our canonical ensemble. Other ensembles can be defined
by considering other constraints involvi , and U;
; pjdEj=; pjdEJR—i-; p,dE) . @y Y 9 Y &m

however, since all ensembles yield identical average proper-
ties in the thermodynamic limit, we elect to work only with

The first part is due to purely elasticeversible¢ changes in  the canonical ensemble due to its analytical convenience.
each mesovolume and may be further written This maximization problem is solved using Lagrange
multipliers to obtain the Boltzmannian

e o BT
;deEj 7.de, (32 pj=—5—. Wwhere Z=§j: e 5T, (36)

where 7 is the average stress tensor acting on the mesovolnd where the paramet@ris exactly the partial derivative
umes. This result can be verified by appealing either to quu/,93|&8 called “temperature.”

(27) or to the more general statement of Ef)2). "
The second park;p;d E} represents the average work
performed in creating cracks in just the final strain increment
de,,. Some of the initial mesovolumes led to stat maxi- Any equilibrium physical property that depends on the
mum straine,,+ de,, had all their cracks in place before the distribution of cracks throughout the system can be obtained

final strain increment, while others had cracks arrive in thefrom the partition functiorz given by Eq.(36).

E. The free energy and its derivatives

final increment. We write To do so, a thermodynamic potentigl called the free-
energy density is introduced that is relatedztby
> pjdEj=g:dep, (33) F(e,em,T)=—TInZ(&,&y,T). (37)
]

This potentialF is the Legendre transform with respectSo

where the tensog has units of stress but is quite distinct Of the total-energy densitY) =U(¢,£,,S) as can be seen
from the stress tensar. from
The “first law” for the rock mass is then

U—TS=Z ijJ-+T2 P; Ian:—TInZZ p;j=F,
i ] i

dU=r7:de+qg:de,,+TdS (34
(38)
with the formal definitions where we used that lg=—E;/T-InZ.
When (g,¢,,T) are the independent variables, the first
_ E _ ﬂ _ ﬂ law can be obtained by taking the total derivative of E3Y)
= . g= , and T= .
Je s 9&m| o JS
8m, E, 8,8m dZ
(35 dF=—-T— —InzdT
The natural variables of the fundamental functionare dE dT
(S,&,&y). Equivalently if S is treated as the fundamental ——T> | - M E.—|p,—InzdT
function, thenS=9S(U, ¢,¢,) which means that the con- j T P2 ™
straints placed on the maximization imust involveU, &, 4T
and &,. =(F-U)—+ [dER(£)+dE!
The “second law” of this crack-based thermodynamics is ( ) T ; pil '(8) J(Em)]
thatdS=0 (equal to zero only ide,,=0 so that no cracks
=—-SdT+rde+g.de,, (39

are createdwhile a “third law” may be proposed by simply
definingT=0 whenS=0. The system will have zero emer- — R
gent disorder before cracks begin to arrive and so our thiréf"here ,We have used the definitions thpt dE/(€)/de and
law states that the temperatuFestarts at zero and then in- Yi :qu(sm)/dem' , . .
creases in magnitude as the number of cracks in the system With 8=1/T, the various thermodynamic functions are
increases from zero. The justification for this postulaterelated to the partial derivatives of #ife, &y, 8) as
comesa posterioriwhen it is found that in order to have zero
probability for a mesovolume being in anything but the un- dinz _2 E;p;=U, (40)

i

cracked state§=0), we must have thal=0. B
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19InzZ > 41 Second, we use the fact thdt=U (B, €,&,) to obtain
T3 e & PITT
B de 5 " audﬂ+ au+ au)d +<au+ au a4t
- = e+ | —
149InZ B de, OJemy ° \dey Jemy
B e 2 9PI79 “2 U U
+|——+-—]df,. (46)
dey  depy

These results, along wit=In Z+ BU, are used in Paper IlI.
Upon equating Eqgs(45) and (46) we obtain a first-order
IV. TEMPERATURE nonlinear differential equation fq8

The temperature is a well-defined essential part of our dg
quenched-disorder statistics. Through the probability jpaw a(ﬂ,sz)d—+b(ﬂ,ez):0, (47)
=e Ei/T/Z, the temperature quantifies the energy scale that &z
separates probable from improbable states and how this ®herea andb are given by
ergy scale evolves with strain. No other meaning should be

read intoT. We now demonstrate how to exactly obtdin aU N U aU ) af, +( U auU ) of,
a=—— Cc Y Y3 C e YR
A. Evolution of temperature with strain P dex  demy] I Jey  Iemy %1;8)

The only way energy enters the system is by performing

work on the external surface. Thus, the general reladibn U oU U 9uU |\ of,
= 7:de holds for either loading or unloading situations. This =TTt o TPt o - Er

! k . ; > de, demy dey demy de,
previously unused fact provides a differential equation for
T=1/B that permits everything about our system to be ex- Ju  du | of, ”
actly known once an order-parameter based model for Pt Ey d€my Je,’ (49)

Ej(e,&y) is determined and the functional sums defining
Z(&,&n,B)=2e PEi(#em are performed. We are to user,=— B 'dInZ/de, and U=—3InZ/9pB in

The temperature and entropy only evolve along load paththese expressions farandb once the functiorZ(e,&n,,8)
defined bye= ¢, and only such paths need be considered irhas been determined. Furthermore, all partial derivatives are
what follows. UsingdU= 7:de, the first law[Eq. (34)] can to be evaluated along the load curve; i.e., af,
then be rewritten as =f(B.e2), emy=T1y(B,e,), andey,,~¢,.

TdS+g:de=0. (43) y y
B. Initial conditions

Since it always requires energy to break contacts, we have In order to integrate Eqi47), initial conditions must be
thatg:de>0 and consequentlydS<0. Furthermore, since provided. The initial conditions of our so-called “third law”
the entropy(disordey necessarily grows during the crack- (j.e., the intact conditions thg@= — whene,=0) are not
creation processat least initially, the temperature of our \yell-defined forB. Thus, Eq.(47) must be integrated not
system is negativéat least initially. from the intact state, but from a state that contains at least a

The load path of a standard triaxial experiment is whenfew cracks so thaB# — .
axial straine, monotonically increases while the radial con-  Accordingly, we define “one-crack” initial conditions by
fining stressr, = 7,= — p. remains constant. Along this path, considering the point in strain history where on average
all properties evolve only as a function of,. With  throughout the ensemble of mesovolumes, there is one crack
Z(&,y,B) considered as known, the radial deformationin each mesovolume. If there akecells in a mesovolume,
components can be expressed in terms of the axial deforméne probability of any given cell to be broken somewhere in
tion by using the two equations the ensemble is theR,;=1/N. This same probability can

also be obtained from Griffith’s criterion by integrating the

3 _9Inz _9Inz quenched-disorder distribution of Eq24) to obtain P,
P e, | T aey | =[SE,/(PdP~1) ]k L where 8E,=¢Pe,:5C:£,/2 is the
" elastic energy change due to a single isolated crack and
to obtain the two functions whereeg, is the strain tensor at which on average there is a
single crack in each mesovolume. Thus, we haye5C: g,
ex=F(B.e,) and s,=f,(B.c,) 44y  =2Id°~1/(NY&TD¢P) that can be used to obtain an ex-
pression for the initial axial strain,; at which on average
that are valid only along the load path. there is one crack per mesovolume.
We now write dU in two different ways. First,dU To obtain the inverse temperatu@ corresponding to
=7:de is evaluated along the load path to obtain this initial strain, the exact probability of observing a particu-
lar type of crack state is determined and compared to our
dU=7,de,—p(df,+dfy). (45  temperature-dependent Boltzmannian. The particular states
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we choose to analyze are, for simplicity, those having precell has broken when the maximum strain tensor is ats

cisely one broken cell. again  just the  cumulative  distribution Py,
The probabilityp; of a state consisting of one broken cell =[¢Pg, :5C:g,,/(2I'd°~*)]*" 1. In this case, the probabil-
andN—1 unbroken cells can be written as ity of observing a noninteracting stajeconsisting of ]

cracks isp;= P/nfj(l— P.)N~M) where we have forgone the
analysis of the preceeding section demonstrating that the
whereP; is again the probability of having a single broken unbroken-cell probabilities are negligibly influenced by the
cell and (1- P;)N"1 is the probability of having\—1 bro- ~ Strain perturbations from th&/; broken cells(at least fork

ken cells in the absence of other cracks. Thus, the product0). We may write

I1,[1— 6P(x)] is the probability that no cells broke due to

the strain perturbations cause(_:i by the presence pf a first bro- P;=Po exp{ _ |n<i _ 1)]\/,
ken cell, wherex represents distance from this first broken Pm

cell. We definedE,(x) as the elastic energy change in a N .
mesovolume when a second cell breaks solely in the petvheré po=(1—Pp)" is the probability of the unbroken
turbed strain field emanating from a first broken cell. ThisState. _ - o
energy varies with the separation distarjgg between the For such dilute states, the Hamiltonian of E26) is writ-
two cracks agx| "°. We have ten (with £,,=€) as

pj=P1(1-PN 1= 6P(X)], (50

(56)

()

k+1 1 1-
5Ez(><>) C2 Ei=—&y:Coi&m— ﬂ.em :6C e, (57)

W(e)de:<Fle Zm, ] 2 2

SE

SP(x)= f ’
0

(51 so that our probability law predicts

where Eq.(24) was used forr and wherec, depends on B(1-q)

both the overall applied strain and the angle from the first- P;=Po ex;{Tsm:éc:sm/\/j : (58
crack’s orientation to the second crack. Singe is small

compared to ondgrestricting to models where cracks are
smaller than the cell siz&, since the separation distanog
always exceeds)itwe have

Upon using 1P, =[2I'd® "/ (¢Pe: 6C: £,) 1" and equat-
ing Egs.(58) and (56), the temperature is identified

_ —2Inf{[2Td® Y/ (£P ey 5Ciey) 1“1 -1}

1 c =
L[1- 6P(x)]=1— —J — 24 (52 Blem) (1—q)en: 0C: &
€0 J = a]x[P6HD) (59
and sincek>0, this spatial integral over the mesovolume This expression foi8 has the expected behavior that
can be neglected in the thermodynamic limit. —» when e,=0, and thatB is a negative and increasing
The conclusion is that function of &, up to the strain pointP,,=1/2 where it

p smoothly goes to zero. Fd?,,>1/2, B is a positive and
p|= P,(1-P)N"1=p, L =poe”"N-D (53 increasing functhn ot,,. Our probability law withB nega- N
1-P; tive predicts the intact state to have the greatest probability,
while whenP,,>1/2 and g is positive, the most probable
state jumps to every cell being broken. Although such a
phase transition occurs in fiber bund[@4], we demonstrate

wherepy=(1—P;)" is the probability of the entirely intact
state. This can be compared to our probability law where

from Eqgs.(26)—(28), we have in Paper Il using the exact differential equation for tempera-
(1-9) ture, Fhat the localization transi;ipn always occurs prior to
P;=Po ex;{ B1 5 e 5Cigq|. (54) this divergent-temperature transition.

We emphasize that Eq59) is an approximation to the
extent that due to the long-range nature of elastic interac-
tions, one can never truly define a noninteracting state. We

(ONVEHDIn(N— 1) use it to obtain an order-of-magnitude idea of the tempera-
By=— _ (55 ture at a given strain. But it should always be considered
(1—q)rdP? preferable to obtain the temperature by integrating the exact
Eq. (47) from the first-crack(or other exadtinitial condi-
tions.

Thus, the inverse temperature that holds wheng; is

C. Approximate approach to the temperature

The approach just taken in defln_ln_g the initial co_nd|t|ons V. CONCLUSIONS
suggests a convenient way of obtaining an approximate ex-
pression for the temperature. The present theory of fracture in disordered solids works
Consider “dilute” statesj where cracks do not signifi- from the postulate that the probability; of observing a
cantly interact. In this case, the probabilly, that any one  mesovolume in a given emergent-crack sfedad at a given
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applied strain can be determined by maximizing Shannon’sf real systems and to compare such predictions to laboratory
measure of the emergent-crack disorder subject to constraindata.

that come from the energy balance of brittle fracture. These
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