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Fracture of disordered solids in compression as a critical phenomenon.
[ll. Analysis of the localization transition

Renaud Toussaihtand Steven R. Pride
Geosciences Rennes, Universite Rennes 1, 35042 Rennes Cedex, France
(Received 14 November 2001; revised manuscript received 13 June 2002; published 27 September 2002

The properties of the Hamiltonian developed in Paper Il are studied showing that at a particular strain level
a “localization” phase transition occurs characterized by the emergence of conjugate bands of coherently
oriented cracks. The functional integration that yields the partition function is then performed analytically
using an approximation that employs only a subset of states in the functional neighborhood surrounding the
most probable states. Such integration establishes the free energy of the system, and upon taking the deriva-
tives of the free energy, the localization transition is shown to be continuous and to be distinct from peak stress.
When the bulk modulus of the grain material is large, localization always occurs in the softening regime
following peak stress, while for sufficiently small bulk moduli and at sufficiently low confining pressure, the
localization occurs in the hardening regime prior to peak stress. In the approach to localization, the stress-strain
relation for the whole rock remains analytic, as is observed both in experimental data and in simpler models.
The correlation function of the crack fields is also obtained. It has a correlation length characterizing the aspect
ratio of the crack clusters that divergesés(e.— £) 2 at localization.

DOI: 10.1103/PhysReVvE.66.036137 PACS nuniher62.20.Mk, 46.50+a, 46.65+¢, 64.60.Fr

I. INTRODUCTION Our approach for performing the sum over states begins
by determining which fieldsp maximize the Hamiltonian.

In Paper Il of this series, we obtained the HamiltonianBecause the temperature in strain-controlled experiments is
Ej(&,&y) of a population of interacting cracks which is the negative, such maximizing states are the dominant terms in
energy necessary to lead a mesovolume of a disordered-solieh. (1). Any change in the nature of the maximizing crack
system from uncracked and unstrained initial conditions, to dields or in the nature of the Hamiltonian in their neighbor-
final crack statg at a maximum imposed straig, that is  hood(e.g., the vanishing of a second derivajizerresponds
possibly different than the actual strainif the system has to a phase transition.
been subsequently unloaded. Using this Hamiltonian, we In Sec. Il, the localization transition is identified and the
prove here that at a well-defined straipn, the system under- geometrical nature of the crack fields in the “functional
goes a phase transition to bands of coherently orientedeighborhood” surrounding the maximizing states defined.
cracks. In Sec. lll, we sum only over this subset of all states to

To study the nature of this localization transition, we mustobtain an analytical approximation @f In Sec. IV, the free
evaluate the partition functioZ from which all physical energyF=—TInZ is differentiated with respect te andT
properties depending on the crack distribution are obtainetb determine both the sustained stresghe energyd, and
through differentiation. In Paper 1, it was established that the entropyS. In the approach to localization, no singularities
takes a standard form are present in eithd¥ or any of its derivatives with respect to

strain or temperature which demonstrates, among other
things, that the stress/strain relation is analytic upg(aod
Z(e,6,,T)=2, e Eileem/T, (1) including localization. In Sec. V, an external fieldis intro-
! duced that couples t@ permitting an autocorrelation func-
tion to be obtained. All singularities at localization are in the
despite the fact that it derives from the initial quenched dissecond(and highey derivatives ofF with respect toJ with

order in the grain-contact strengths and has nothing to déhe consequence that the correlation length divergeg as
with fluctuations through time. The possible crack stafes (¢ —¢) 2.

a mesovolume are defined by a local order parame(&)
distributed at each ceX of a regular square network of iden-
tical cells. The amplitude of(x) corresponds to the length
of a local crack(always less than cell dimensignand its A. Extrema of the Hamiltonian
sign indicates its orientationt(45° relative to the principal-
stress axip

II. PRINCIPLE OF THE TRANSITION

We now determine the most probable states by maximiz-
ing the HamiltonianE;(e,&,) along the load patte= g,.
From the summary of Paper I, we have
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neglected, andE™ is the energy due to crack interactions. determinant vanishes will be denoted by the unit veckdrs
The parameteq derives from the quenched-disorder distri- Thys, the matrice®, are positive definite; i.e., they have
bution and is bounded as ¥2<1. two strictly positive eigenvalues, except for those particular
That the Hamiltonian must be maximized and not mini-wave vectors lying along one of the two directions for which
mized comes from the temperature parameter being negati¥Rey become positive degenerate. The eigenvectd®, ais-

as was quantitatively established in Sec. IV of Paper I. Besqciated with the zero eigenvalues is easily computed to be
cause we assume the system is intact before strain is apphe[dly_ M /L]

it is a fact of our model that the intact state is always the  Tne positive-definite quadratic forms & are multi-
most probable. For this to hold true, the temperature must bglied by a negative constant which implies that the maximum
negative in strain-controlled experiments because the arrlv%f EM oceurs Wherfok=?&k=0 for every nonzerd with the

of cracks at constant strain always reduces the energy in &ception of thos satisfying Eq.(3). At these degenerate
mesovolume. angles, the Fourier modes @fand ¢ are related as

1. Mean-field terms L
k~

A mean-field simplification of the model built in Paper Il M VLS )
would reduce the Hamiltonian to the sole term
Now, the definition of the auxiliary fields,=|¢,| imposes a
1 . . ~ ~ . .
E04 (1—q)E&= [ A2+ (1— 2 series of constraints betwees, and . The simplest is
(1~a) plab™ (1= a)y] obtained by noting that the space integralséfand? must

1 )J[ A2 2) be the same which is equivalent to
—(1—q)ey| ko A+ Kk3y°],

whereA is the strain dilatationy the shear strain, and and Ek (Vb= -1 =0. ()
x; are combinations of the elastic moduli all as defined in

Paper Il. The second term is strictly negative and representsor 5 crack-state maximizing™, this condition further re-
the weakening of the rock due to the crack porosity which isyyires that

proportional toE, the volume average of the positive field

=|¢|. Therefore, this mean-field Hamiltonian is maximum _~ o~ Mﬁ ~ ~
- SN M (o= 03+ 2 | 1= |exp_=0 (6)
when =0, which uniquely corresponds to the uniform in- 0 FOIT Lts L2 k¥ —k—
tact stateyy= ¢=0. k+0
2. Interaction term It will be seen momentarily that along the directidd’s, the

' a2 g2 . oo
The interesting term is the interaction enefgf). As de- factors 1-M;./L,¢. are equal, and that this quantity is an

fined in the summary of Paper (the reader should consult increasing function of the shear-strain parameter
this summary for the definitions of all the terms in what =(x37)/(A«,), starting at a strictly negative value when
follows), E™ is a sum over wave numbeksof orthogonal =0 (no shear deformation yet applbedlrld Leach|rlg Oata
quadratic forms involvingR, and !, which are vectors con- particular valuao, . For every wave vectoty,e = | ¢,]? is
taining the k-space Fourier modes of the order-parametetrivially positive, and the definition ofy also requires that
fields ¢ andy. The sign of these forms is determined by the p2—32<0 for any crack state. From E¢6), we can con-
sign of the two eigenvalues of the symmetric matri€gs  clude that foro<w, the only crack-states maximizing the
For anyk, at least one of the eigenvalues is positive, SinC&qiaraction termEM must satisfy both~p§=¢~p§ and, for every

P, T_| _A2,2(1q_ 12 e
[<1’10]ar|13c|i(u[1i150]a coLskineA 'I%l(dletecrﬁli(r);?h'e g;/hneroef thlégsgcon onzerok, ¢,=;=0. Such a maximum thus corresponds
K i 9 0 a spatially uniform crack field.

eigenvalue, it is sufficient to take the determinantRyf. S oo
Usingu2+v2=1, it is straightforward to show that Al the degenerate poinb=uw,, the set of maximizing
ki Bk = crack states goes through a drastic change. Any nonzero Fou-

deﬂPk|=A4K‘l‘(l—a)[CUk+ w]?. 2) rier mode of ¢ and ¢ along the directionk™ no longer
modifiesE™ so long asez=743; i.e., so long as the crack
This is strictly positive for everk, except when field has the same sign over the entire mesovolume. This
degeneracy oE™ at w= w, is at the origin of the localiza-
v=Sin(26,) = - wlc, (3)  tion phase transition.

. ] ) ) The critical valuew., and the corresponding wave vec-
in which case the determinant and second eigenvalue akgysk for which nonzero Fourier modes qf and ¢ do not

zero. The vanishing of the determinant is thus independent qf yhtribute toEI™ are determined from the two conditions
the norm ofk, and takes place at either of two conjugate

angles 6, =arcsin¢-w/c)/2 or 6, = m/2— arcsin(-w/c)/2, det Py)=0, 7
where 6, represents the angle betwe&nand the crack- , ,
orientation vector,. The directions irk space at which the Li—Mi=0. 8
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Using the solution of Eq(7) given by Eq.(3) in the defini-
tions ofL, andM given in the summary of Paper I, E()
then becomes an equation fet,

[w2—(c?—1)]| w2+ @cz —o0. 9)

From the definitions of Paper Il, we hawe>1 while 1/2
<a<1. Thus, Eqs(7)—(8) can only be satisfied by

w=wci=i\/52—_l, (10
sin(20k)=—(\/c2—l)/c. (11

With a radial confining pressure maintained constant, and a
positive shear stress, ™ Tradial» the strain components of

the rock satisfy & gia<eradia aNd €,ix<0 SO that w , . "
. e FIG. 1. A part of the conjugate bands emerging at the critical
= (k3/ k1) (€ axiar™ €radia)/ (Eaxiart €radia) 1S @ positive and P g 9ing

monotonically increasing function of the axial stress, untilStrain. The bands perpendicularko are exclusively composed of
the rock possibly exhibits some positive volumetric strainfight-inclined cracks, while those perpendicularko contain only
(we will later show that this does not occur prior to localiza- eft-inclined cracks.
tion), where this quantity diverges tbc and increases fur-
ther starting from—cc. All of this establishes that Eq$7) =M, /L,=—1; or (2) ¢<0 everywhere and the wave vec-
and (8) have no solution until the first solutioen=w_ is  tor directions satisfiN,/M,=M,/L,= +1. Using again the
reached. At this particular strain value, nonzero Fourierefinitions ofL,,M,,N, given in the summary of Paper I,
modes ofe and ¢ having any wave vector lying in one of the first type of degenerate mode corresponds to wave vec-
the two directions defined by Eq1l) can be added to a tors satisfying sin(8)=—c?—1/c and cos()=— 1/c,
mesovolume with no change in the interaction energy. while the second type of mode has the same sine require-
For quartz as the rock mineral, ment, but an opposite value for the cosine. Uskdgto rep-
resent the wave vector direction corresponding to the first
) =12, condition, andk~ the wave vector direction for the second
c condition, we conclude that the emergent degenerate crack
50 that we find & i/ raga) = — 1.2 at the transition. Our states consist either of right-inclined cracks with spatial fluc-

model thus predicts the localization transition to occur after guations forming bands perpendicular td; or of left-
sign reversal o 44, but prior to the point wheré =¢,,,,  inclined cracks forming bands perpendiculakta Such ge-

+ £,a4ia Changes sign. These results are consistent with wha&tmetry is sketched in Fig. 1.

is observed in usual triaxial mechanical experimefets., These two sets of crack modes are conjugate to each
[1-3)). other; i.e., symmetric to each other under inversion of the

It can now be algebraically verified using the definitionsradial axis. Since they become statistically importantwas
of L, andM, given in Paper II, that + Milgi/LEgi does not — @c. Whereas the intact state or uniform states are the im-
portant states prior ta., the system spontaneously breaks

erend on the norrk hor on which of the ‘V.VO directionis™ its symmetry at the transition, which is characteristic of a
is selected. Further, it increases monotonically from a Negasyntinuous phase transition

tive value to reach zero when=w_ (facts used in obtain-
ing the above results

LS ( €axial~ €radial

o=
K3 €axialT Eradial

Further, the angle formed by these bands is at 45°
—| 6| from the axial direction. Using Eq11) and the defi-
nitions of k; and «, in terms of the Lameparameters, it is

B. Structure at the localization transition found that this angle is typically between 15° and 35° de-

The goal here is to define the geometric nature of thé?€nding on the rock minerg#] considered which is consis-
states maximizingE™ at the strain points;. Necessary con- tent with laboratory experiments.
ditions on the structure of the degenerate states were just Finally, we note that these special crack bands that leave
given and these are easily made into sufficient conditionsE" unchanged, make a negative contribution to the Hamil-
First, the degenerate states must correspond to crack fields nian through the mean-field ener§y” that is proportional
constant sign. They thus satisfy everywhefe ¢ or ¢= to ¢. Due to ther P range of elastic interactiong™ is
— ¢ or, equivalentlygn= @y Or 4= — ¢x. Considering this independent of the norm &f (it_ depends only on its orien-
together with the necessary conditions of E@.and (7),  tation. Thus, the spatial variation of the bands perpendicular
requires that the degenerate states be one of two types: 0 their lateral extent has no influence B, it only affects
>0 everywhere and the only possible nonzero FourieE™" through the number of cracks present. For large systems
modes ofe have wave vector directions that sati$fy/M,  and a narrow band of only a few cell widthg=A¢/¢?
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=A/¢, whereA and( are the linear size of a celyjrain) and  aproximation, the Fourier modes of the auxiliaffield are
of a mesovolume. Thus, such a thin band makes a negligiblgjyially related to those ofp as eithery, = ¢y for the posi-

contribution to ¢ for large systems, and is energetically tjve states, o= — ¢ for the negative states.

equivalent to the intact state. However, states with numerous \we now rescale the temperature Bs APT'/¢P. From
and/or wide bands can make a non-negligible contribution t@ne definition T=0U/JS and the fact that) is an energy
¢ and are, therefore, less probable. So this transition indeedensity independent of while Sis extensive and thus in-
corresponds to “localized” structures. Only those states withcreases ag®, we have thafl scales ag ~P. In taking the
a small number of small width bands along the special directhermodynamic limit in what follows, it is convenient to
tions are the statistically emergent ones as is observed work with the purely intensive paramef€f (that is indepen-
actual experiments on rocks. dent of €). Our partition function within the constant-sign

approximation then takes the form
lll. OBTAINING THE PARTITION FUNCTION

_y¢D P ~ 12
The sum over crack states in Ed) is equivalent to the ZZJ Do ex% De {d+e (is + 2 w*(K) ‘ﬂ; ]
functional integration + APT! € KeY ¢
—¢° @0
Z= do, |e Ele:&eml/T, 12 +f Dy ex d+el —
f(x];[ﬂ (PX) ( ) — ¢ ADT/ eD
~ |2
Si Hamiltonian i di .
ince our 'arnl onian |§ expressed in terms of the Fourier S Wk Pk ’ (14)
modes ¢y, it is shown in standard textbook$,6] that Z Key ¢P

further transforms to
whereDe is a compact notation for the functional measure
Z:f doo I (deRdale EleneenliT, (19 d?ooﬂkey(dZoEdZoL), and wheref . and[_ represent inte-
ke Y gration over the subsets ogffields that are everywhere either
positive or negative. The quantitielse, andw™ are defined
where R and'¢} are the real and imaginary part ¢f, and  in the summary of Paper Il as
Y is a half space of the set of the wave vectors correspond- 1
ing to the nonzero modes; i.e., corresponding in two dimen- _ - 2 _ 2
sions to the discrete sekq{,k,)=(27€¢/ny,27€/n,) with d= 2[aA (=), (15)
(ny,n,) eZ2. There is a small-wavelength cutoff given by
max(ny;|n)<¢/A that ensures that does not vary on € 5 5 5 5
scales smaller than that of a cell, and there is the arbitrary e=—5[ra(A"=qAR) + k3(y" = avm)], (16)
criterionk,;>0 made to divide this space into two symmetri-
cal parts. Equatiori13) is valid up to a multiplicative con- &2
stant that has no physical importance since the properties of w*(k)=—
a system correspond to the derivatives of the free enErgy (1)
=—TInz — (L= 2My+ Ny (&) . (17
An analytic approximation foZ is obtained by perform-
ing the functional integration over a properly chosen subseRecall that the values of the actual straiimtervening in the
of all the possible crack states. The definition of this subset iprobability distribution and in the partition function are those
based on what was learned in the preceeding section; namebong the load curve for whick= &,,,. Their formal distinc-
that among the states having a given nonzero crack occupgion only plays a role when partial derivatives of the free
tion ¢, the most probable are the uniform states, and preenergy are taken to define stress. We note then that the value
cisely at the phase transition, certain banded states may avf w* at e=g, is wi=—(1—0q)e’[1,+1]-P(k)-[1,
rive at almost no energy cost, and these emergent states algol]"/(1— «) and since we have shown ttRis a positive-
have the same sign over space. Thus, the geometrical chatefinite matrix, and that the temperaturé is negative, we
acteristic of all such states in the “functional neighborhood” have thatw* /T’ in Eq. (14) is strictly positive.
of the minimizing state is that in each one, all cracks are The symmetry of the problem under the parity transfor-
oriented in the same directidrither left or righ}. This prop-  mation (inversion of the radial axjsguarantees that both
erty justifies making a so-called “constant-sig@r “mean-  integrals in Eq.(14) are equal. Accordingly, only the first
phase’) approximation for the partition function in which integral over positive crack states will be treated. This inte-
only those states in which the sign does not change in spaggal separates into products of Gaussian integrals with the
will be considered. This still includes a huge range of state®nly remaining coupling between the Fourier modes coming
in which ¢ spatially varies. The excluded states in this ap-from the complicated constraints on the integration domain
proximation are guaranteed to have lower probabilities thamoundaries that are what guarante¢o have the same sign
the included ones and, as such, should have a negligibleverywhere in real space, ardto lie within [0,1]. But in
influence on the physical properties of the system. In thisrder to study any singular behavior of the free endtgn

[(LkE2M+Ny)(e)
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the vicinity of localization,Z is determined in the thermody- The two partial derivatives of primary interest are those
namic limit in which both the system size and mesovolumethat give the dimensionless entropy density APS/¢P and
size{ are taken to be infinite. In this limit, the complicated the stressr. From Paper |, we have

integration bounds ik-space are not relevant. The integra-

tion can be carried out entirely dd" for ¢,/¢°, andR for ds
each of the variablegf/¢°, /¢ without changing the aT’
result because the contribution to these integrals in the ther-

modynamic limit comes from the immediate neighborhoodThe free energy of Eq23) is rewritten by replacing the sum
of ©o/€P=0 andg,/¢°=0. over the wave vector€,._y with a continuous integral

and = —
T e

’
&8 T, e

m

A technical proof of this can be obtained as follows: using¢®/(27)P [2™Ak dkfZd 6. After performing the trivial inte-
R* and R as the integration domains produces an uppegration overdk we have
bound forZ since this includes every positive crack field. A
lower bound can be obtained by reducing the integration T APT’
domain to a subset of the set of all positive crack fields in F=d+— |—7T|n( BT )] (24)
—00)/\/2]. Integrating mode by mode over this polyhedra, wherel is the integral

the result can be shown to be asymptotically equivalent to
the result of the upper bound in the limit whef® becomes | = f"/z In(—w*)de (25)
infinite. This exercise is left to the attention of the reader. a2 '
Thus, no coupling between tlkemodes exists in the ther-

which 0<po<¢® and =, v(|ef| +|eil)<=minfeo/\2,(€°
modynamic limit, and our approximation of the partition The integrandv™ is a temperature-independent strain func-

function takes the convenient form tion so that—dF/dT' gives
2 (I APT’
z=2z02, ] [2(k)?], (18) o=+ Tl - , 26
keY 2 2 ¢P
wherezy=e~ ¥A°T" and while fromF=U—-T's
21=f dxe (PeHAPT! (19 U=d+ 27", (27)
xeR™T 2
2(k)= dx & (oW (QxZ/APT’ 20 Since d represents the linear elastic response of an intact
" Jien . rock, andT’ decreases from zero to negative values as dam-
age accumulates, this expression shows that the average en-
In the limit {— + o, these two integrals become ergy decreases due to the presence of cracks and is thus
consistent with the negative curvature of the strain/stress
2,~APT'/(£Pe), (21)  load curve observed experimentally.
Before addressing how and F (and their derivatives
z(k)~\7APT [ €Pw™ (Kk)]. (22 behave at localization, we first establish the stress and tem-

perature behavior at localization.
Using Eq.(18), one then obtains the free-energy density in

the thermodynamic limit A. Mechanical behavior at localization

F=-T'(InZ)AP/¢P~d+

—20dF/9A, whereo (shear stregsandp (pressurgare both
positive and related to the axial and radial stress components
as

ADT!
> Inf ————1.

€D KeY ADT/
(23)

€Dw*(k)) Consider the stress componentss —2JF/dy and p=

The contributiorz, has vanished in this limit due to the fact

thatx Inx—0 asx—0. This is a technical consequence of the

fact that for states composed of a few single bandsan-  In standard laboratory experiments, the axial strgsgaries

ishes in the thermodynamic limit, as commented upon in thevhile the radial stress, = —p, is kept constant. The strain

previous section. componentsy (shear strainandA (dilatation) are similarly
related to the axial and radial strain as

—o=T7,—7, and —p=T1,+7,. (28

IV. SYSTEM PROPERTIES AT LOCALIZATION
vy=g,— &, andA=g,+e¢,. (29
The remaining task is to link this free energy to the ob-
servables of the system by taking the partial derivative of Using the definition ofv™ [Eq. (17)] along with the defini-

in the limit as localization is approached. tions of L, My, andN, given in the summary of Paper Il,
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we differentiate the integrdlwith respect to the actual strain where Im designates taking the imaginary part. We are inter-

variables, evaluate along the load path,&A and y.,
=1v), use the definitionrw=w3zy/A with the new constant

w3= K3/ Kk, and make the change of integration varialtes

=tan 16 to obtain exactly

w
9. 3

= mﬁwL (30

1
ﬁA|=m(2W—wﬁw|), (31

wheregq=1-1/(k+2) is the constant associated with the
exponenk=0 of the quenched disorder distribution, and the

integrald, | is defined

+e 9.9 dz
sa-| T2
g 1+2°

(32

with g(w,z) given by

9(w,2)=[1-a—2(1—a)c+(1—a)c®+ w?]z*
+[4aw+4(1—a)cw]B+[2+2a+2(1— a)c?
—2(2a—1)w?]Z?+[—daw+4(l—a)cw]z+1
—a+2(1—a)c+(1— a)c?+ w?. (33

Thus, the shear stress and pressure can be written as

!

T w3
oc=—2(1-a)y— ——

A (1-q) 34

9l (),

!

—p=2aA+ ———[27— wd, | (w)].

FEOR 39

ested in evaluating this integréhnd therefore, the roots
and ¢ and the functiorp) only in the approach to localiza-
tion; i.e., whendw = w— w. can be considered small. In this
limit, the second and third terms of E(38) (the residues
from ¢ andi) have numerators and denominators that are
both order 0 indw so that it suffices to know the behavior

{(w)=§pt+ & 00, (39

p(w)=po+pi1dw. (40)
However, the residue related tois proportional todw in
both the numerator and the denominator which requires
knowledge of this root to second order
{(w)={o+ {100+ Lo, (42)
The various strain-independent constad)ts p;, and{; are
all known groupings of the elastic constants derived from
Eqgs.(33), (36), and(37). The final result for the integral after
an enormous algebraic reduction is

A =1+11dw, (42
where the constants andl, are exactly
2 2
yee—1 2—c
lo=2m—— and 1;=27———. (43
c C

1. Stress and strain at localization
The shear stress and pressure may be written as

t

and p=po+p™,

o=0p+o"

whereoy=—2(1—a)y andpy=—2aA are the trivial lin-
ear variations of the uncracked material. We have just shown

The integrald, | is solved using the residue theorem once thethat at localization §w=0), the nontrivial shear stress due

rootsz of the quarticg(w,z) have been found.
This quartic decomposes into the exact form

9(w,2)=[z2-{(w)][z~ " (0)]u(w,2), (36)

U(w,2)=p(w)[z2-&(w)][z- & (0)], 37

where the star indicates taking the complex conjugate. The
roots {(w) and {*(w) both merge to the real axis in the

approach to localizatiom— w., while the other two roots
¢(w) and &* (w) remain complex at localization.

There are thus three simple polgsv), £(w), andi con-
tributing to g, if the loop is closed in the upper-hafplane
so that the residue theorem vyields

Dl 2,9(0) 2,9(6)
T m{u([+ ] pIM{EE- e 1+ ¢
7,9(1)

) 38
i~ 20— ¢ Ju(h) 38

to cracks and crack interaction is

2w, T, \Je2—1 0

int_ __
T a @ “
while the nontrivial pressure is
nt_ 27T, _ 45
¢ (:l-_q)AcC2

That these critical values are both negative follows because
T, (scaled temperature at localizatjois negative and\
(total dilatation at localizationwill soon be shown to be
negative. Equation$44) and (45) say that the presence of
cracks has lowered both shear stress and pressure relative to
an intact material at the same strain. This is indeed what is
observed in experiments.

To quantify the nature oAA;, we use that the confining
pressurep, is a known positive constant in standard experi-
ments on rocks so that
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T 27— (we+ w3)l (] merical evaluation arg.~ — 10~ 2(\ +2u), which confirms
Pr=—alct(1-a)y.— 2(1-qA . (46)  the rough estimate given in Sec. V of Paper Il. The typical
¢ value forA. is a few percent; i.e., the order of magnitude

Together withw.= w3y, /A, this represents an equation for €xperimentally observed at peak strégh

A, The conclusion is that at localization, both dilatatidg

and shear strainy,=w A./w3 are negative while|y,|

Oc| 2y T2 (wc+ w3)l ] 3 >|A.|. This demonstrates that the radial strajr=A.— vy,
0‘_(1_0‘);3 ctPrAct (1-q) Y is positive at localization, which is also consistent with ex-

(47) perimental observations.

BecauseT’ varies with strain, we have tha'it(’: is also a 2. Stress, strain, and temperature derivatives at localization

function of A; so that Eq.(47) is more than a simple qua-  \we now address how the stress and strain components, as

dratic in Ac. To obtain an order-of-magnitude estimate of || a5 the temperature are changing with the negative of
T¢, we use the approximate temperature expression based @Rjal straine = —¢,= — (A + y)/2 at localization.

noninteracting cracks, In the approach to localization we write=A + 5A, y
=7y.+ 38y, and T'=T,+ 8T’ using the exact differential

2
i: _ 2A equation for temperature to defidd’ in what follows (not
T d2(1—q)[ Ko+ k3(we/ w3)2]A2 the approximation The condition thap, is constant requires
or r/(l_q) that
XIn -1 Ti[27— (2wt wg)l ¢~ (we+ |
{ (M 200)dpA 2 5 + K3( 0ol 03)7] } 6A[—a+ o277 20t o9l (0ct ws)oc 1]]
2(1_Q)Ac

(48)

After putting Eq.(48) into Eq.(47), A is numerically deter-
mined using Newton’s method. The predictedis negative
for the range of confining pressupe of interest and remains
negative for all ranges of elastic moduli found in rocks. The
signs of the various terms in E47) imply that the transi- - 2(1_q)AC{27’_(“’°
tion happens when the temperature has sufficiently departed

from zero, but is still negative. Typical results from the nu-which along with—2 s = 6A + 5y gives

Tiws[l o+ (0. + w3)l
+5y{1—a+ colet (oot 03 1]]
2(1-q)A7

!

+w3)|c}=0,

1dA 21— q)(1— @)A2T + gl + (0t w3)l ]+ A (2T [ 27— (we+ w3)l]dT' Ide
2 de —2(1—q)AYT.+ 27— 2(we+ w3)l . — (0 + w3)?l4

: (49

1dy 2(1-q) AT, =27+ (2we+ w3)l ¢+ (we+ w3) wel 1— A/ (2T [ 27— (we+ w3)l ]d T /de
2de —2(1—Q)AYT. 4 27— 2(we+ w3)l c— (e + w3)2l 4 '

(50)

To obtain an exact expression fdT'/de (within the context of having employed the mean-phase approximati@nuse the
formalism of Sec. IV A of Paper | to write

o !

2

o

dU+a, U+ 2) J,7=0.
(51)

(71—/’)/ 58A+

(?AU+(?AmU+B aT,A+(ayU+aymu+ o’?AU+(9AmU+g

2

’ + — 1
dr U de

Using Eq.(27) for U, we havedr/U=7/2, ,U=alA=—py/2, d,U=(1—a)y=—00/2, dr U= 0, andame =0 so that the
temperature derivative at localization is given by

1dT’ B [27T—wcl)(1—a)+twslca]2(1—q) A+ w3( we+ w3) (27 1+ w3|§)Té/Ac
2 de —[27—(wct w0yl 2+ (1—q) ] —2(1— Q) AYT,+ 27— 2(we+ w3)l o~ (0o + w3)21 1]

(52
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4 ' ' ' ' 4 cracks start to coalesce along a weakened band and unstable
failure sets in. These predictions are consistent with the ex-
N 2r 12 perimental observations.
® o} TTee—e_ 19
,E _____________ B. Entropy and its derivatives at localization
e = ~ L "1 The exact result, | =1,+1,6w with |, and|, as given
olw al \‘\.\_ 14 by Eq.(43) means that the integralof Eq. (25) is itself both
S T~ finite and continuous in the limit a8w— 0. Because it has
-6 "\\\ 1 -6 further been shown thdt’ remains finite and continuous at
T K-iscre "‘-\\ localization, Egs(24) and(26) then show that both the free
8 _._Kk-250Pa T~ 1-8 energy and the entropfand all of their derivatives with re-
RN spect to straipremain finite and continuous @ — 0. This
-10 . . . . -10 . . L. .
0 100 200 300 400 500 demonstrates exactly that the localization transition is a con-
p, (MPa) tinuous phase transition and allows us to classify it as a criti-
cal point.
FIG. 2. The localization value of the axial tangent modulus
do/de as a function of the radial confining pressyme The three V. CORRELATION FUNCTION
curves represent different assumed bulk moduli for the mineral. The
other rock properties ar&=10 J/inf, d,=10 um, u=15 GPa, A. Derivation of a diverging correlation length
andq=3/4. The qualitative study of Sec. Il B leads to the conclusion

that the localization transition is associated with the creation

This derivative is numerically calculated to be finite and of conjugate bands of coherently oriented cracks. In this final
negative for the ranges of elastic moduli and radial confiningsection, the statistical correlation between cracks will be
pressures of interest, thus indicating that the localizatiofyyantitatively addressed.
transition always preceeds the phase transition where the The autocorrelation function is defined as
temperature diverges te-o. Since rocks fail immediately
after localization, the temperature-divergence transition is G(x,Y)=(e(X)e(¥)) = {@e(X) ) e(y)) (54
not observed in rock experiments.

Last, we determine the variation of the stress componentgnd will be determined using a standard method of statistical
with axial straine at localization. Sincep, is constant, we mechanicq5,6,8. First, the HamiltoniarE[ ¢] is general-
have thadp/de =do/de = —d7,/de. These derivatives de- jzed to include an additional coupling of the local figl@x)

fine the so-called “tangent modulus” given by with an aribitrary fieldJ(x) coming from some external
source
1 d(T_ w3 IC dT’ Téw3(|C+ ‘Ucll) dA
2de  2(1-q)Ac de  2(1-g)AZ de E’[cp,J]zE[@]—J' L EPxIX)e(x). (55)
Xe
- (1- +T—é 2 |97 53
(1=a) 2(1—q)A§ @311 4g” (53 The partition function becomes then a functional of the ex-

ternal field

where the derivativesiA/de, dy/de, and dT'/de have

been given above. Z[J1=| Il (de,e E'leT (56)
In Fig. 2, we plot howdo/de varies with radial confining xe)

pressure for various values of the elastic constants. The plot

shows that for a sufficiently large ratio of bulk to shearand the averages involved in E&4) are obtained by taking

modulus, the axial pressure is always decreasing at localizagnctional derivatives ofZ[J] with respect toJ and then

tion, which means that it has already passed through th%tting the external field go to zero; i.e.,

stress maximum. However, for sufficiently small bulk moduli

and at low confining pressures, localization can also occur T 82

prior to peak stress. Thus, peak stress and localization are (p(X))=1liMm 5 —=——, (57
distinct in our theory. Localization can occur in either the 3-0Z 83(x)

hardening or softening regime depending on the bulk modu-

lus and confining pressure. When localization occurs in the 2 527

softening regimélarge bulk modulu the strain/stress curve (e(X)@(y))y=Ilim 7 530053 (58
around peak stress is necessarily an analytiadratig func- J-0 (x)8J(y)

tion, whereas when it occurs in the hardening regismaall
bulk modulus with small confining pressiiréhe peak stress Since the original Hamiltonian is most easily handled in Fou-
presumably corresponds to a sharper variation as micraier form, the external coupling will be expressed as
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0z APT’
o d®x I(x) @(x) - = -7 z2(K)z (k
LEQ 7.2 " e 111 [zr077 (0]
1 (~ ~ ~ ~ o~ ADT!
=~ 5| Jopot2 2 TeR+22 Toi, +——— 7 11 [z (07 (K 66
¢P & & ® 3 L [z=0z 0], (69
(59 ~r
iz |, 23 L
where the superscrip® and | refer once again to the real TR w|Aall AP OW (KT’ [zr(K)Z/ (k)]
and imaginary parts of a complex quantity. The functional k
derivatives relative td(x) must then be expressed by their I 23R
counterparts in Fourier space, +zF —— [z (K)z; (K)];. (67)
p p 1L AD€DW_(k)T’[ r(K)Z (K)] (
5 83 0 8k Letting the external field go to zero, both of these terms
8I(X) k¥ Do) | 8I(X) fs+ 53(X) ﬁll( disappear, so that using the chain rule of E&f), the aver-

age of the crack variable at any pointx in a mesovolume is
given by Eq.(57) to be

(e(x))=0.

The modified partition function will again be determined us-AS €xpected, there is no spontaneous symmetry breaking
ing the constant-sign approximation, but now the presence di"ior to the transition. _ _

the external field breaks the symmetry between the sum over Consequently, the autocorrelation function reduces to only
positive and negative crack fields, so that both terms need the second derivatives & in Eq. (58). Differentiating Egs.

be kept in the generalization of Eql4). This leads to a (66)—(67) with respect toJy, JE, and JL,, and taking the
slightly more complicated version of E(L8) for the expres- limit where J goes uniformly to zero leads to

sion of Z in the thermodynamic limit

= > K O s k J 60
—kEYU{O} cog 'X)EE sin( 'X)EL . (60

9’z 9’z 1 . 1 |2Zy8g
SRR Sl El | - DyDT/’
Z:zorszHY (25 (k)2 (k)]+2; TT [za(k>zr<k>1], 00 0Ny LW (k) w (k) JATEET
(61) 9?7 2APT’
g2 ¢3Pe3

wherez, is again the trivial intact term, and where
where Z,=Z[0] is the original partition function without

Zf:f +dx ef(eeDijo)x]/ADTr, (62) external source. All the remaining cross derivatives go to
xeR zero,
(3Pt (0w () AP *z 9’z 9°Z o
k) — —[— 23 x+ €Pw (K)x T — = - =5 =~ — = = =0.
Zr (k) Jxegdxe - (63 dIRAI,,  IRIT,  d3dde

I _ N . ~r  Through the chain rules of Eq60), these equalities show
with z" (k) having the same form & (k) after replacingly  that the autocorrelation function has the fo@iix;y) = G(x
with J,.. In the following, the forms implying derivatives —y) due to the symmetry of the problem under translation
with respect taJ, are to be implicitly understood as having for an infinite system. The Fourier transforG(x;y)
the same forms as their counterparts with respedftahese == Gye'“ *V/¢P is thus given by
imaginary components will not be explicitly written gut

. . - . - 1
The integrals are easily performed giving G = 2A0T n 69)
n —
w(k)  w(k)
z; =APT'/[etP =]y, (64 _
whenk#0. The special valu&,=2A3PT’3/e3¢3P does not
~R\2 o play any role in the thermodynamic limit.
* N (Jk) TAST In real space, the autocorrelation function is obtained by
zz (K)=ex . (69 . . .
APEOWE(K) T £Pw=(K) an inverse Fourier transform:
. . . . . 1 2@/A 2@ .
The first derivatives of with respect to the external field are G(X)= — f kdk f doG(k)e'kx. (69)
then 47%J)o 0
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Using G(—k)=G(k) which is a consequence of being
mr-periodic functions, and working in polar coordinates
=(x,6y) andk=(k,6), the angular integral is divided into
two symmetric domains which gives

20lAKdK [0t m
G(x,ex)zf — doG(k,#)cogkxcog - 6,)].

0 22 Oy

Sincew™ and therefor& only depend on the angular part of
k, the integral ovek=|K| yields

Oyt é@
d (0)

G(x,0,)=
(%.6) 0= 0, 212
27 [ 2mx cog 60— 6y)
X sin
Axcog 60— 0,) A

N 1
x%cog (69— 6y)

S(27rxcos(¢9—6x)) }
co§ ————| 1|

For x> A, this integral is dominated by a neighborhood of FIG. 3 Fprm of an isoautocorrelation curve in the approach to
6= 6,+m/2, of angular sizec;A/x with c; a constant of the localization transition.

order unity. The functiorG(6) is almost constant over this This, along with ther periodicity of w*, shows thatG is
small neighborhood, and this integral can be well apprOXi'symmetric under parity; i.eG(x, 72— 6,) = G(x, 6,).

mated as The angular dependence is best shown by considering
B0+ 7/2) X curves of isocorrelation&(x, 6,) =c3, wherecs is constant
X—|G(_ along a curve. Such curves obgy Ah(6,)/c;. The direct

A? A study of the functionw® shows that it admits quadratic
maxima along the directiong™[ =], scaling as max(*)
with the dimensionless integré};, defined as =w'(0'[7])=—a(éw)?> when the transition is approached,
wherea is a positive constant. This comes from the fact that

G(X,0y)=

|G(u):2772f” d 2m sin2mu cos 6) ] EM is degenerate exclusively for the critical angles, at
9=0 ucog6) reduced straim. . Outside a small neighborhood 6f [ 7],
w* remains bounded. The definition bfand the exchange
{co§27ucogd)]—1} under parity ofw™ shows then that such an isocorrelation
u2co2(9) curve has four branchegspikes along the directions- 6*

+ /2, whose extenf diverge to+« as

An asymptotic study of this oscillating integral far>1
shows that (u)~c,/u, with c,, a positive constant of or-
der unity. Reformulating Eq(68) with

1
J’_
wh(O+ml2)  wo(0+72)

N -2 -2
E~2A(—-T )a—cg(wc—w) ~CasA(gc—e) % (72

The fact thatw™ remains bounded outside any small neigh-
borhood of 8*[ 7] also means that the width of the
(70) branches remains finite; i.e., that the aspect ratio of the
branchesé/p also diverges ase(—) 2. This is qualita-
tively illustrated in Fig. 3. This prediction can be interpreted
as corresponding to the formation of clusters of microcracks
having aspect ratio§/p that diverge as the cracks organize
G(x, 60 ~N(60)~ - (71 into long thin structures along which the sample will ulti-
mately fail to form the experimentally observed shear bands.
This establishes that along any direction, the autocorrelations )
decay as\/x (for two points separated by a significant num- B. Experimental measurement of§
ber of grainsx>A). It would certainly be desirable to have direct experimental
Concerning the angular dependenceGyfthe symmetry verification of whether the crack bands have aspect ratio that
of the system under parity leads w (6)=w"(7/2— 6) diverge as 1/.— €)?. Unfortunately, there are many practi-
[which can also be verified directly from the definitions of cal problems that have prevented the direct measurement of
w™ and the dependencies bf,M,N, onu,=cos(¥) and the autocorrelation function of cracks in materials like rocks.
v=sin(20) given in paper Il, together with the fact that the We comment here on three types of measurements that either
parity symmetry keeps constant but changes the signujf have or could be used to quantify the autocorrelation.

h(8)=2c,T’

gives the real space autocorrelation function in the form

036137-10



FRACTURE OF DISORDERED ... . Ill... PHYSICAL REVIEW E 66, 036137 (2002

First, following ideas used by Davy and Bonri&] in  the free energy and entropy of the system remain continu-
interpreting their sandbox shear experiments, one can meaus and finite at the localization transition which justifies
sure the local deformation of a large sample by covering thealling it a critical-point phenomena. Such continuity also
surface with pixels and monitoring the shear strain of eactflemonstrates that the stress/strain behavior of the rock is
pixel. The total shear strain of the system is then approxientirely analytic up to and including localization. The only
mated by taking the average over the surface pixels. If thélivergence at localization is in the second derivatives- of
system deformation is plotted as a function of the pixel sizeWith respect to the external fielti The consequence is that
it is expected that when the pixels are smaller than the emefh€ correlation lengttaspect ratip of the emergent-crack
gent band structures, the system deformation will decrease &4sters diverges asw—w) 2. Presumably, if the “mean-

a power law of increasing pixel size as was observed byhase” approximation had not been invoked gnd if order-
Bonnet and Davy. However, at a particular pixel size there i9arameter contributions proportional ' and higher had

a crossover to a constant system deformation as pixel siZeeen retained in the Hamiltonian through a renormalization
increases. The pixel size at the crossover point is at least &¢heme, then a nontrivial exponent on this scaling law might
indirect measurement of the correlation lengthabove  €MEerge. . _ o
which a volume-averaged description of the system holds The mechanical behavior of the system at localization ex-
with properties independent of the pixel size. hibits many qualities observed in actual experiments on

Second, a direct measurement of the autocorrelation bgocks. First, the stress components at localization are reduced
tween cracks can in principle be obtained via acousticlelative to their values if the rock had remained intact. The

emissions monitoring10]. However, the present resolution total dilatation A; remains negative at localization, even
of this method(millimeters in centimeter-scale specimgns though the radial strain is positive. With radial confining
and the difficulty in determing the mode of the individual Stress kept constant, the tangent modidi/de are, most
crack events prevents having a satisfactory sampling for stfiormally, negative at localization indicating that the load
tistical analysis. It seems that improvements on these presefitfve has already gone through a smooth quadratic peak
limitations are possible. stress prior to localization. Nonetheless, for rocks with a suf-
Last, by analogy with the probing of spin populations by ficiently low bulk quul_us and at suff_iciently low cpnfinin_g
electromagnetic waves to study the ferro/paramagnetic trarressures, the localization can occur in the hardening regime,
sitions, it should be possible to send plane sound waveBresumably followed by a sharp peak stress corresponding to
through a system and measure the scattering cross sectiontf§ unstable coalescence of cracks as the sample fails along a
the waves scatter from the structure of the evolving microShear band. These results are consistent with what experi-
crack population. We have not yet obtained the rigorous contentalists observe.
nection between such a measured cross section and the Fou-Using the exact differential equation that controls the tem-
rier transform of our autocorrelation function; however, suchPerature in the theory, it has been demonstrated that the tem-
a relation almost certainly exists. No experimental attempt®erature is becoming even more negative at localization that
to measure the correlation function of cracking systems ifmeans that the temperature is always finite at localization.

this manner has been attempted to our knowledge. Unfortunately, the exact valuk, of the temperature at local-
ization is difficult to obtain because it is a result of integrat-
VI. CONCLUSION ing the differential equation from the initial conditions. Al-

though this could be done numerically, we have instead used

We now summarize the principal results that havean approximate value of; based on a noninteracting crack
emerged in our study. First, we have demonstrated that at model.
well-defined strain poinw=w., thin bands of coherently By far the most important signature of the localization
oriented cracks can be added to the system at no energetiansition is the divergence of the aspect ratio of the crack
cost. Such localized structures break the symmetry that heldlusters. As reported, no definitive experimental work has yet
when w<w, and correspond to a phase transition that webeen performed to test this prediction and we hope that ex-
named the “localization transition.” It was demonstrated thatperimentalists take this as a challenge.
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