N

N

Growth activity during fingering in a porous Hele Shaw
cell
Grunde Lgvoll, Yves Méheust, Renaud Toussaint, Jean Schmittbuhl, Knut
Jorgen Malgy

» To cite this version:

Grunde Lgvoll, Yves Méheust, Renaud Toussaint, Jean Schmittbuhl, Knut Jgrgen Malgy. Growth
activity during fingering in a porous Hele Shaw cell. Physical Review E: Statistical, Nonlinear, and
Soft Matter Physics, 2004, 70 (2), pp.026301. 10.1103/physreve.70.026301 . hal-00110571

HAL Id: hal-00110571
https://hal.science/hal-00110571
Submitted on 20 Nov 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00110571
https://hal.archives-ouvertes.fr

PHYSICAL REVIEW E 70, 026301(2004

Growth activity during fingering in a porous Hele-Shaw cell
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We present in this paper an experimental study of the invasion activity during unstable drainage in a
two-dimensional random porous medium, when (tivetting) displaced fluid has a high viscosity with respect
to that of the(nonwetting displacing fluid, and for a range of almost two decades in capillary numbers
corresponding to the transition between capillary and viscous fingering. We show that the invasion process
takes place in an active zone within a characteristic screening larfgtim the tip of the most advanced finger.
The invasion probability density is found to only depend on the distarioehe latter tip and to be indepen-
dent of the value for the capillary number Ca. The mass density along the flow direction is related analytically
to the invasion probability density, and the scaling with respect to the capillary number is consistent with a
power law. Other quantities characteristic of the displacement process, such as the speed of the most advanced
finger tip or the characteristic finger width, are also consistent with power laws of the capillary number. The
link between the growth probability and the pressure field is studied analytically and an expression for the
pressure in the defending fluid along the cluster is derived. The measured pressure is then compared with the
corresponding simulated pressure field using this expression for the boundary condition on the cluster.

DOI: 10.1103/PhysRevE.70.026301 PACS nunerd7.20.Gv, 47.55.Mh, 47.54r, 47.55-t

[. INTRODUCTION ments where viscous forces are domin@igcous fingerinyg
We emphasize on the dependence of the invasion probability

Different types of unstable fluid displacements in porousdensity ¢, or activity, on the distance to the most advanced
media play an important role in many natural and commerfinger tip along the interface. The invasion probability den-
cial processe$l,2]. Development of a better understanding sity ¢ is the growth probability of the invasion structure; it is
of these processes therefore has a broad scientific interest famdamental because both the structure and dynamics are
well as potentially huge economical benefits. The complexcontrolled by this function. Growth probability has been dis-
patterns observed in such processes have been extensivelyssed extensively in the past for diffusion limited aggrega-
studied and modeled over the last decades;[4e&] and tion (DLA) simulations[8—13 where it was found to be the
references therein. multifractal distribution of the harmonic measuyf—14. A

The geometry of the displacement structures observed istrong analogy exists between the structures obtained by
immiscible two-phase flow is in general controlled by the DLA and viscous fingering, as was first pointed by Paterson
competition between viscous forces, gravitational forces, aniL5]. Both processes obey the Laplacian growth equation
capillary forces; those various forces act on scales ranging v2P=0 1)
from the pore scale to the system size. The relative wettabili- '
ties, viscosities, and densities of the fluids, as well as the
heterogeneity of the underlying porous media, play an im- ve=VP, 2)
portant role in the competition process. The relative magniwhere P denotes the diffusing field—i.e., the probability
tudes of viscous and capillary forcéen pore scalpare  density of random walkers in DLA or the pressure in viscous
quantified through the dimensionlesapillary numberCa  fingering—andv denotes the speed of the interface. How-
=(uy vy @)/ (y k) Where u,, is the viscosity in the wetting ever, both processes differ in that accreting particles of fixed
(displacedl fluid, v¢ is the filtration speeda is the character- size are added one by one in DLA, at a random location set
istic pore sizey is the interface tension, aneis the perme- by the growth probability proportional to VP, whereas in
ability of the porous medium. an empty Hele-Shaw cell, which is a regular porous medium

In this paper we address a drainage experiment in whiclof constant permeability, the growth process is deterministic
nonwetting air displaces a high-viscous wetting glycerin/and full layers are invaded along the whole interface, with a
water solution in a horizontal two-dimensional porous me-local velovity set by -V P. In the absence of surface tension,
dium; hence, gravity has no influence on the displacemenMullins-Sekerka instabilities develop in the deterministic La-
The porous medium consists of a Hele-Shaw cell filled withplacian growth problem, leading to cusp singularities of the
a random monolayer of monodisperse glass beads. We invesiterface in a finite timg16]. This instability is regularized
tigate the crossover regime between the regime of slow dishy the smallest scales accessible to the system, and another
placement for which capillary forces control the dynamics ofdifference between DLA and viscous fingering in regular po-
the invasion process and the geometry of the resulting invarous media is the nature of this so-called ultraviolet regular-
sion structurgcapillary fingering, and that of fast displace- ization, set by surface tension in viscous fingering or by the
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particle size in DLA. The boundary value at the interface is digital camera contact paper
given by surface tensiony for viscous fingeringPo«—v/r, o) )

wherer is the local curvature of the boundary between both plexiglas Pla
fluids, in contrast to DLA where it is set to constahtThese PROUEIRRNT e

differences lead to very different structures in channel

geometry—namely, stationary solutions corresponding to a outlet

Saffman-Taylor regular interface propagating at constant ve-pressure cushion e ERE mylar film
locity in the case of viscous fingering in Hele-Shaw cells

[7,17,18, as opposed to branched structures in the case o light box

DLA [19,2Q. In radial geometries however, solutions of both H= 'ﬂ

problems display branching and tip splitting, and some au-

thors have argued that none of the above-mentioned differ- i , )
ences affect the large scale structure and that viscous finger- F/G- 1. Sketch of the experimental setup with the light box for
ing patterns are identical to coarse grained DLA clusteré"um_'nat'c_’n' the porous model, and the digital camera. The porous
[21]. Using the recently developed Hastings-Levitov formal-medium is sandwiched between two contact papers and kept to-
ism of iterated conformal mapg22], the relationship be- 9€ther with a “pressure cushion.

tween DLA and deterministic Laplacian growth has been in-

tensely investigated[22—-28. Although the issue for strong dynamic component of the capillary presg§G&. We
Laplacian growth is still controversi§24-2q, it seems that do not observe a strong dynamic component of the capillary
DLA, Laplacian growth and viscous fingering in Hele-Shaw pressure in our experimen(isee below. The geometry of the
cells display indeed the same large-scale structure in radiahvader for drainage is also significantly different from the
geometry, with fractal dimensions respectively determined agwvader structure of imbibitiofi32—35.

D=1.713+0.000329], D=1.7[27], andD=1.70+£0.03{17]. In this study we study experimentally the growth prob-

The process of viscous fingering during drainage iara  ability density ¢(z) as a function of the distance (in the
dom porous medium, under study in the present papes, is flow direction) from the most advanced finger tip and its
priori distinct from the above cases: although the pressurdependence on the extraction sp&ed capillary numbex
field satisfies the Laplace equatigh) at large scales, the We also investigate experimentally the mass densit)
presence of glass beads in the Hele-Shaw cell affects th@long the flow direction of the invader and confront the be-
viscous fingering process, modifying significantly the pres-havior of the measured(z) andn(z) to what we expect from
sure boundary condition along the interface between the thna|ytica| arguments. A calculation of tlzedependence of
fluids, with respect to the empty Hele-Shaw cell case. Funthe pressure on the surface of the invader is presented, which
damentally, the local interface curvature controlling the capyields the z dependence of the capillary pressure and shows
illary pressure drop depends on the local pore geometry andl direct link with the measured growth probability density.
is independent of the large-scale curvature, and distributegressure measurements are performed in the model and com-
sizes of pore throats lead to a random distribution of capilpared with pressures simulated by solving the Laplace equa-
lary pressure thresholds inside the porous medium. Thesgn with this pressure boundary condition. Other features
capillary pressure threshold values introduce a lower cutoftharacteristic of the displacement, such as outermost tip
for the invasion probabilities, even for fast flows. In the slowvelocity and the width of the invasion fingers, are also
displacement limit for whictv¢=0, the invasion process is investigated.
entirely controlled by the fluctuations of the capillary thresh-  The present article is organized as follows. We first
old distribution inside the porous mediuf8,30]. For finite  present the experimental meth¢8ec. 1). We then discuss
displacement velocities, as this study will show, the growththe experimental resultsSec. 1ll), and prospectgSec. IV)
process is in this case intermediate between the one-by-omgfore concludingSec. \j.
feature of DLA and the layer-by-layer characteristic of La-
placian growth: in the system studied here, several pores Il. EXPERIMENTAL METHOD
along the interface are invaded simultaneously, although not
all of them—see Fig. 3—and it takes a finite time to invade The experimental setup is shown in Fig. 1. The porous
a full pore. This pore-scale randomness in viscous fingeringnodel consists of a monolayer of glass beads of dianaeter
results in branched structure as well in channel geometry, as1 mm which is randomly spread between two contact pa-
shown on Fig. 2, in contrast with the Saffman-Taylor fingerspers[31,36. The model is a transparent rectangular box of
obtained in empty Hele-Shaw cellZ]. This might also be dimensiond. X W and thickness.
the reason why the measured fractal dimensions of viscous Two models of widthaV=430 mm andNV=215 mm have
fingering patterns in radial geometry are reported slightlybeen used in the experiments; their other characteristics were
lower in random porous media similar to the one used herdgentical. They are respectively referred to in the rest of the
D=1.62[31], than in empty Hele-Shaw cell®=1.70[18]. article as the “wide” and “narrow” models.

Imbibition experimentgwetting fluid displacing a non- To prevent bending of the model a 2-cm-thick glass plate
wetting fluid) were previously performed in a quasi-two- and a 2-cm-thick Plexiglas plate are placed on top of the
dimensional systernfi32,33, where the width of the viscous model. To squeeze the beads and the contact paper together
fingers was measured to scale with the capillary number awith the upper plate, a Mylar membrane mounted on a 2.5-
[32,33 w;=Ca®®. This scaling relation was explained by a cm-thick Plexiglas plate, below the model, is kept under a
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3.5-m water pressure as a “pressure cushion.” The upper ang~ 1=
lower plates are kept together by clamps, and the side bound '
aries are sealed by a rectangular silicon rubber packing
Milled inlet and outlet channels are made in the upper Plexi-
glas plate. The distance between the inlet and outlet channel
defines the length of the modél=840 mm. One should also
note that a few beads are removed from a small region nea
the center of the inlet channel, to initiate the invader in the
center of the inlet. This is done to avoid edge effects appear: "
ing when the invader grows to the lateral boundaries of the %
model. The porosity of the models is measured to be 0.6
and the permeability isk=(0.0166+0.001¥x 1072 cn? (a)-
=(1685+175 darcy.

The defending wetting fluid used in all our experimentsis FIG. 2. Displacement structures obtained for different with-
a 90% —10% by weighglycerol-watersolution dyed with  drawal rates(a) Ca=0.027,(b) Ca=0.059, andc) Ca=0.22. The
0.1% Negrosine to increase the contrast between the colorédiages have been treated to separate the two phases. The black
fluid and the invaderAir is used as the invading nonwetting frame denotes the outer boundaries of the model, while the black
fluid. The wetting glycerol-water solution has a viscosity of spot close to the right edge of the model denotes the position of the
mwy=~0.165 Pa s and a density pf,=1235 kg m?® at room  pressure sensor. The simulated pressure field is shown superim-
temperature. The corresponding parameters fomthravet- posed on the image. Dark shadings correspond to low pressures
ting air are u,,=1.9xX10° Pa s andp,,=116 kg m3. The  while light shadings correspond to high pressure.
viscous ratio is thudl = u,/ uy,~ 1074 The surface tension

between these two liquids ig=6.4X 102 N m™. The tem-  of the flow (positive in flow direction. The position of the
perature in the defending fluid is controlled and measured g4,gst advanced finger tip is denote[’q,; its speed along the
the outlet of the model during each experiment, so as tg: 54is is denoted;tip:'z{ip. The position along the' axis

accurately estimate the viscosity of the wetting fluid. _computed with respect to that of the most advanced finger
The absolute pressure in the wetting liquid is measured Bp s z=7, -7 Those coordinates are indicated in
ip :

the outlet phan_nel and at a point at a distance of 280(mm Figs. 2 and 3.
the flow direction from the inlet channel and 38 mm from
the left boundarylooking in the flow directioh using Hon-
eywell 26PCA Flow-Through pressure sensors. Il RESULTS
The invader is visualized by illuminating the model from '
below with a light box and pictures are taken at regular in- We present 12 experiments using the wide model for val-
tervals with a Kodak DCS 420 CCD camera, which is con-ues of the capillary number Ca ranging from %.4072 to
trolled by a computer over a SCSI connection. This computeB.6X 10! and 5 experiments using the narrow model for
records both the pictures and the pressure measurementspillary numbers ranging from 3:31072to 1.9x 10°%. The
Each image contains 15361024 pixels, which corresponds latter series was conducted to check system size depen-
to a spatial resolution of 0.55 mm per pixel 613.22 pixels  dences. For every experiment, we have carefully investigated
per pore(1 mn¥); the color scale contains 256 gray levels. the invasion process.
The gray level distribution of the image presents two peaks Figure 2 displays air clusters observed for the same po-
corresponding, respectively, to the white air-filled and darkrous medium, at three different flow rates. The complex
gray glycerol-filled parts of the image. The image is filteredstructure of the air clusters is drawn in black. The particles of
S0 as to obtain a clear boundary between the two phasetje porous medium are not shown. The defender—i.e., the
through a scheme that mainly consists in removing the backglycerin/water solution—is drawn using a scale of grays
ground and thresholding at a gray level value between theanging from white around the air cluster to black near the
two latter peaks. All further image treatments are performedsetup outlet; these shadings represent the intensity of the
on the resulting black and white image. numerically estimated pressure field in the defending fluid
To check possible dynamic components of the capillarysee Sec. Ill A. Figure 2a) addresses an experiment carried
pressure we performed gravity stabilized experiments byut at a small ratéCa=0.027. It displays a fat cluster where
keeping the experimental model verti¢g86] and extracting capillary forces dominate the dynamics of the invasion pro-
the glycerol/water mixture from the bottom of the model. cess, leading to a so-calledpillary fingering At larger dis-
The capillary pressure was measured by recording the pregplacement rate§Ca=0.22, Fig. &)], the “fingers” appear
sure in the model as the stabilized fluid front approaches thehinner and less internal trapping of the defender is observed.
sensor. No systematic dynamic effect on the capillary presThis regime is dominated by viscous forces and is generally
sure was found. For the low injection rates the width of thelabeled awiscous fingeringFor intermediate capillary num-
fronts was further used to estimate the minimum and widttbers[Ca=0.059, Fig. &)], the aspect of the cluster includes
W, of the capillary pressure threshold distribution. both geometries: capillary fingering at small scale and vis-
Throughout the paper the following coordinate system iscous fingering at large scale.
used:(x,z’) is the orthonormal frame describing the porous The pressure field around the clusters exhibits a fingerlike
medium plane, witlz’ the spatial coordinate in the direction structure that has analogies to Saffman-Taylor fingers, as will

(b)
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FIG. 4. Plot of the position of the most advanced fingerzjg,
as a function of time. Data from the wide model. The time is res-
* .j-‘u‘f caled by dividing with the break through timyg which is the time
h % LR the most advanced finger reaches the outlet channel. The values of
‘—";, t, are 5347 s, 1204 s, 476 s, and 256 s for capillary numbers Ca
!ki.-. T equal to 0.027, 0.059, 0.12, and 0.22, respectively.

£ 2 3). The growth density’(2) is defined as the average num-
Qg Z ber of filled pores withifz,z+Az] divided with Az. After an
initial regime corresponding to the time needed for the long-
est finger to propagate a distance of the order of the width of
tip ' the porous mediunw, ¢'(2) is found to be fairly indepen-
dent of time up to a few percents variations. In a given ex-
FIG. 3. Two consecutive images taken at a time intetvdl  periment with constant Cap'(z) is then averaged over all
=15 during the experiment at Ca=0.059, drawn on top of eacimages excluding this initial regime, to obtain a good aver-
other. The invaded regions in the first image are painted light grayage of the stationary growth function. The growth probability
the growth areas obtained by subtracting the first picture from th‘?:lensity¢(z):K¢*(z), whereK is a normalization constant, is

other one are painted black. The coordinate system used throughogan found by normalizings’(2) with respect tez so that
the paper is also shown.

L
be discussed in Sec. IV. Accordingly, the displacement ex- fo $(z)dz=1. (3)
hibits obvious capillary-number-dependent features, which
are discussed in detail in Sec. Il B below. In Sec. Il A, we Note that, in the remainder of the papeis in units of pore
focus on the relation between the growth activity, the frozersize (a=1 mm).
structure left behind, and the pressure field in front of the The mass density of the frozen structufe) is defined as
fingers. the average number of filled pores witHin, z+Az] divided
with Az. The average is taken over all images in a given
experiment with constant Ca. Boiiz) and ¢(z) appeared to
be fairly robust with respect to the widthz of the analysis
strips used to compute them.
The growth activity has been investigated by measuring

the growth probability densitys(z) from series of images 2. Growth activity and the frozen structure left behind
and performing pressure measurements.

A. Relation between growth activity, frozen structure,
and fluid pressures

For all experiments, the speed of the most advanced finger
tip was observed to be fairly constant. Figure 4 shows the
position of the most advanced finger tif,, for different
capillary numbers. After a short initial stage, the speed of the

To investigate the growth process, images have beefingers saturates to a constant average value. Linear fits to
taken with constant time delayt between each image. The the behaviorz, as a function of time outside the initiation
tip position of the longest finger is identified to find the co- stage provide an average finger tip spegglfor all experi-
ordinate systenix,z) and to be able to calculate the speed ofments.
the longest finger. The differential growth between two im- The measured invasion probability density functig(z)
ages is found by a direct image subtraction between twds plotted in Fig. 5 as a function of the distance to the finger
subsequent images. After the subtraction we typically have &p for the two system sizes on a linear-logarithmic plot. An
collection of invaded pores representing the groggtee Fig.  exponential-like decay is seen farxc W/2 with a deviation

1. Definition of growth probability densityg(z) and mass
density n(z)
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FIG. 5. Linear-logarithmic plot of the invasion probability densifz) as a function of the distanaeto the finger tip(insets are double
linear plots of the same invasion probability dengity) Data from the wide experimental model afiml from the narrow model. The solid
lines in the curves correspond to the model functidiB&?*) obtained from linear regression ovefdng(z)] for z<W/2, whereg(z) is
the average measured invasion probability density. Notedtmtare averages of all the datasets and not only the sets shown in the graphs
above. The average screening lenytls estimated from this fit.

from exponential behavior for larger lengths. A characteristicz(t):z{ip(t)—zt’ip(to):(t—to)vtip, Eq. (5) becomes

decay length or “screening lengti”is estimated from linear R (7 R

fits to the linear-logarithmic data fa<<W/2 (see Fig. 5. As -~ -~

we can see from these plots a nice data collapse is obtained, n(z)= vipJo HRdz= (). ©)
indicating that the invasion probability density(z) and,

thus, the screening lengthare independent of the capillary Using Eq.(4) we finally obtain the relation between the lin-
number for a given system. On the other hand, when comear density of invaded pore@®r “cluster-mass” densily
paring the two systems, the screening lengtdepends on n(z), to the cumulative invasion probability density distribu-
the system sizex=(72+10 mm for the wide model and tion ®(2):
=(33+5 mm for the narrow model. The actual shape of

Utip

function ¢ also seems to be weakly dependent on the system n(2) = ncP(2), ()
Size. where

Relating the mass of the frozen structun€z), to the in-
vasion probability densitys(z) and confronting the obtained ne. = Wy« Ca (8)
relation to experimental results provides new insights into ca ,uwa“vtip'

the displacement process. The total number of invaded por
in a time interval't,t+At] is RAt, whereR is the number of
invaded pores per time unit. For a given flow r@eR is
related toQ and to the characteristic pore volurivg,, by

eﬁm characteristic average mass density can also be related to
the filtration velocity:nCa:(W/az)(vf/vtip). Equation(7) is
confirmed by Fig. 6, whera(z)/nc, is plotted as a function

the relationQ=RV,,e SO that of z/a. All experimental plots collapse, confirming that there
is one single cumulative probability distributiak(z) for the
R= V_va (4) system for all experiments at different extraction speeds. The
az "’ function ®(z), computed as an average function from all cu-

mulative probability functions for the various experiments, is
plotted in Fig. 6 as a plain line. Note that, and conse-
quently n(z) are capillary number dependent, which is di-
rectly visible on Fig. 2. The explicit dependence of the satu-
ration mass density on Ca will be plotted in Figap The
inset of Fig. 6 shows 1r(z)/nc, on a linear-logarithmic
scale. The solid lines represents®¢z) and the dashed lines
1-e7?* which would be the model function for a pure expo-

whereW is the width of the systemr is the characteristic
pore size, and; is the Darcy or filtering velocity of the
wetting fluid; for a given porous medium and fluid pair
«Ca. The number of invaded pores in the analysis strip de
fined byze[z,z+Az] during time intervalt,t+At] is then
RAt¢(2)Az. The tip positionz, is further given byz,(t)
=Zy+vgpt Whereuy, is the speed of the finger tjmassumed to

be qonstaDtandzO:ztjp(t_IO). T.hls Is a fairly _goo_d approxi- nential ¢ (A is the screening length evaluated bejore
mation after a short initial regime as seen in Fig. 4.

The total number of invaded pores in an analysis strip of From the results presented above we conclude that the

. . ! o . active invasion zone is defined by a screening lengtrhich
width Az at a distance from the finger tip is thus given by is constant for a given porous media and liquid pair and at a

t , range of capillary numbers of two decades. However, we
n(z)Az= RJ Plz(t)]Azdt, () expect this result to be valid only for sufficiently high filtra-
o tion speed;. Indeed, on the one hand, the capillary fingering
wheret, is the time at whiclz;,=2'. Taking advantage of the regime(Ca=0) corresponds to an invasion that is controlled
linear relation between the coordinateand tip speedp, by fluctuations in the capillary threshold pressures, so that
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FIG. 6. Plot of the rescaled average mass density of nonwettingril@idnc,, wherenc,> Calvyp, inside the model as a function of the
distance to the tip of the most advanced fingga) the wide model angb) the narrow model. The average cumulative invasion probability
function ®(2) is plotted on top of the curves for comparison in the two cases. The insé arid (b) show the plots Il —n(z)/nc,] as a
function ofz. The solid lines in the insets correspond tallr®(z)], and the dashed lines have the slopa there\ is the screening length
of ¢(z) found from Fig. 5—i.e., respectively=(72+10 mm and(33+5 mm for the wide model and narrow model.

invasion occurs along the whole frof®,30]. There is no (10

well-defined finger tip or growth direction in that limit. The 3 o )

width of the capillary threshold pressure distributign is ~ FOr our systema/W~10", which is an order of magnitude

larger than the viscous pressure drop over the whole systefnaller than our lowest capillary number. ) _

and defining a screening length or active zone is not mean- ©On the other hand, for situations where the “pure viscous

ingful. fmgerlng” ina random porous r_ne_dla_ has been reached, _there
When the length of the system is larger than its width, it is!S N0 rapping of wetting liquid inside the fingers, which

found from both pressure measurements and simulations thigached the lower one-pore width linit Ca=0.2 in our

the decay in pressure into the structure from the longest finSyStem. Whether the screening length or active zone has the

ger occurs on a length scale of the order of the width of thes@Me width or behaves identically as for lower capillary

system(see Fig. 2 We therefore exped and notL to be numbers is not (_:Iear. We b_elleve that the spreenlng_by _the

the relevant length scale for the decay of the pressure field10St advanced finger is a viscous effect, which remains im-

close to the tip. Viscous forces can therefore be considered f°rtant as the displacement speed increases. In this one-pore

dominate capillary pressures if the following criteria are met;IMit, however, the tip speed dependence on the capillary
number is modified, as will be further detailed in Sec. Il B.

Ca> a/W.

W. < Wrog 3. Relation between the growth probability densidy(z)
C [}
K

and the fluid pressure

9

Figure 7 shows the dependence of the pressure difference
AP(2)=P(2)-P(x) in the wetting liquid as a function of the
distancez to the outermost tip for different capillary num-

or if we assumeN,;~ (P, = y/a, where(P.) is the average
capillary pressuréwhich is the case heye
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FIG. 7. Plot of the pressure differenckP(z)=P(z)-P(«) measured by the pressure sensor located in the positigiz,)
=(38 mm, 280 mm The inset is the same data plotted in a semilogarithmic plot wRé€zg is scaled withAP(0)=P(z=0)-P(x) to
illustrate the decay of the pressure figld) is for the wide model ancb) is for the narrow model.
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bers. HereP(«) = Py—P(«) is the liquid pressure along the ture within a timeft,t+At] at a position(x,z) is proportional
interface far behind the finger tip, witB, the pressure in the to (v(x,z)) times the probabilityp(x,z) that the throat gets
nonwetting liquid andP(x) the capillary pressure in this invaded; hence,

stagnant zone. It is important to note that the presBzpis

measured on the side of the modeldicated in Fig. 2 while $(x,2) = Cu(x,2))p(x,2), 13

the fingers are propagating in the central part of the modelvhereC is a normalization constant, which we can find by

(Fig. 2. integrating the above equation along the invasion front:
The pressure seems to be linearly dependent on the dis-

tance from the tip during a first stage before the tip reaches J _ f

the sensor. In a second stage, after the finger tip has passed s ¢lx.2di=C s (wx2)p(x.2)dl (14

the sensor, pressure relaxes and reaches the Ritoe A
closer inspection of the pressure cun(ese Fig. 7 shows I C
that there is no clear systematic dependence of the pressure 1 :—f a(v(x,2))p(x,2dl = —Q, (15)
relaxation on the capillary number. The pressure difference als a

P(2)-P(«») decays with approximately the same length for

. ; - . . whereQ is the flow rate, and thus
the different capillary numberésee inset of Fig. )/ This

indicates that the details of the internal structure of the “fin- _a

,, . : C=—. (16)
gers” do not have a strong influence on the pressure field on Q
large scales.

The pressure measurements are related to the invasion Since we have assumed a flat capillary threshold distribu-
activity by the following considerations. Let us consider thelion of width W, the probability that the pore at position
local speed of an interface located in an arbitrary pore throdt:2) gets invaded is

between two pores, one filled with air and the other with the 1 _
wetting liquid. LetP(x,2) be the pore pressure in the wetting p(x,y) = W[PO_ P(x,2) - P{""]. (17)
liquid andP(x, z) be the capillary pressure threshold value to ¢

invade that pore. Note that this is different from the pressurd-rom Egs.(12)—17) we obtain, for the growth probability
P(2) defined as the pressure measured on the side of thaensity ¢(x,2z) in position(x,z),
model at the sensor position. The pore throat at position

is passed under the condition that the pressure difference d(x,2) = L[po_ p{"in_ P(x,2)]%. (18)
P.(x,2=Py—P(x,2) is larger than the capillary threshold QuWe
pressureP(x,2) at this position. If invasion occurs, a char- ayeraging this expression ovarand introducing the number
acteristic value of the speed of the interface will be of interface sites at a distanedrom the tip, f(z), we obtain
. 2k Py - P(%,2) - Py(x,2) a the invasion probability density(z) as
v(X,Z) = — .
a $(2) = F(2)(H(X,2)x, (19
In this equation we have used the permeability of the porous
media x as an approximation for the average single pore d(2) = f(z)L[po_ p{"i”_<p(x,z)>x]2, (20)
permeability to get the right order of magnitude. Let QuWe

N(P;(x,2)) be the capillary pressure distribution. For the sakeror which we have assumed thR(x,2) is a function ofz
of simplicity, we assume a flat capillary pressure distributionomy (lowest-order approximationEquation(20) yields
with lower limit P{"", upper limitP{"® and widthW,. Under

the condition that the viscous pressure drop over a pore MQWCM>1/2
does not exceellV, (which we have checked by means of fa « '
numerical simulations the expectational value of the inter- ) ) . _ .
face velocity(average value over the capillary threshold dis-Which can be rewritten by introducing the relation between

(P(x,2))x=Py— P"" - ( (22)

tribution), while the pore is getting invaded, will be the flow rate and the capillary number. Accordingly the av-
erage pressure in the wetting fluid in the immediate vicinity
1 PomP2) of the interface and at positianis related to the activityb(z)
(v(x,2)) = mn |l —[Po-P(x2) according to
Po—P(x,2) = P{" Jpmin  au 9
) W &(z 1/2
- P(x,2)]dP (P(X,2))y = P — P - (Cay vvc—@> . (22
a f(2
_K min
= J[Po‘ P(x,2) - P{™]. (12) Let us now look closer at the “snapshots” of the experi-

_ ments shown in Fig. 2. Far=0, the last correction term in
Here, P™" is the minimum of the distribution for capillary Eg.(22) is 170 Pa for the fastest experimeé@a=0.22 and
threshold; wherPy—P(X,2) goes to that minimum, the ex- 65 Pa for the slowest experimer{tS8a=0.027. At the same
pectational value for the speed of the interface goes to zeranoment, the imposed external pressures in the outlet channel
The growth probability densitg(x,z) for the invasion struc-  are 3055 Pa for the fastest and 625 Pa for the slowest experi-
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e outlet boundary was far ahead of the finger tip, and the pres-
‘ T Gzoen ] sure boundary condition was equivalent to an imposed gra-
= Ca=022 1 dient at infinite distance. To check the importance of this
boundary effect on the magnitude of the pressure difference,
. the simulated pressure has been compared with the pressure
differenceAP(z) evaluated from measurements at the outlet
channel, as the finger tip progressed further than the stage
- ] corresponding to the simulations. The agreement in Fig. 8
¢ sk of' 14 between the simulated pressure and the data points

.I o corresponding to the outlet channel measurements is then

: 27700 0100 200 300 400 500 ] satisfactory.

Too T 0 To0 0 300 a0 S00 To compare the Iengt_h scal_e of the decay of th_e pressure
z/a for z>0 between the simulations and the experiment, we
. . . then compare the pressure data measured inside the model at

FIG. 8. The simulated pressure along the line wik38 mm  the sensor position to the simulation data scaled by a factor
(corresponding to the coordinate of the pressure senstor the ¢, asAP(x,z=0), which would be equal in experiments
Invasion structures in Fig. 2. The data points in the main grap nd simulations. Such a rescaling of the simulation pressure

show the corresponding pressures measured at the outlet sensor. In . . - . ;

) ! . . . rofile simply corresponds to the result of an identical simu-
the inset we plot scaled simulation data with corresponding pressur%tion still carried on the invasion clusters of Fig. 2. with
data measured inside the model(a, z,)=(38 mm, 280 mm 9. 2

identical boundary conditions derived from the growth den-
ments. The minimum capillary pressure is estimated tcsity function for the pressure along the clusters, but where
373 Pa and the width of the capillary distribution to 200 Pa.the imposed pressure along the bottom boundary is such that
This indicates that the correction term in E82) should not  the pressure at poir(ks,zt’ip) would coincide with the pres-

be neglected. In Fig. 2 is shown the gray-scale map of theure measured in the experiments when the tip passed at the
pressure field at a particular time, simulated from the dissame height as the sensor—-i.e., whgr .. This ensures
placement structures obtained experimentally. A very strongnat the pressure gradient and pressure value in the region
screening is seen for all injection rates. The large-scale struggyound the tip of the invading cluster are of the same order in
ture of the pressure field in the vicinity of tip of the longest these rescaled simulations and in the experimental stages
finger looks visually very similar even if the invader struc- corresponding ta~0 in Fig. 7, which is a first-order tech-
ture is quite different. In the simulations of the pressure fieldnique to correct for the strong boundary effect and compare
we have used Eq22) to set the proper boundary conditions. \yith these experimental situations where the bottom bound-
The pressure field has been calculated by solving the Laplacgy is much farther away. The pressure measured in the ex-
equation for the pressure using a conjugate gradient methqghriments at sensor position and this scaled simulation data
[37]. We used the boundary condition given by E&2) on  gre plotted in the inset of Fig. 8. This comparison shows that
the cluster and the inlet line. As boundary condition on thejhe decay in the pressure happens at comparable length
outlet we used the pressuRe=) — APy, where AP isthe  geales in the simulations and experiments.

total viscous pressure drop imposed in the corresponding ex- Eventually, the local structure of the finger and the lateral
periment at that moment. To obtal(»)=Py—Pc(), the  x distance from the invader to the pressure sensor will also
capillary pressureP () was measured in the experiments have an important influence on the pressure field. The differ-
for large values of. Figure 8 shows the simulated pressureence in the pressure field between the left and the right side
AP(x5,2)=P(xs,2)—P() as a function of the coordinate of the finger(looking in the flow directiol in Fig. 2 illus-
relative to the tip position defined as previously, at a fixedtrates this point. The deviation between the experimental
lateral positionxs corresponding to the coordinate of the data points and the simulations for the lowest capillary num-
pressure sensor. It is important to note that this is somewhdger of the main part of Fig. 8 may be explained by this effect.
different from the experiments since the pressure is measurets the lateral positior;, of the invading structure moves

at differentz’ positions, but at the same time—i.e., with a during the experiment and is importantly varying from an
fixed geometry of the invasion cluster—while in the experi-experiment to the next, this effect also explains the important
ments the pressure is measured at a fixegosition, at dif-  dispersion of the scaled pressure drapR(z)/AP(0) ob-
ferent times corresponding to various stages of the invasiogerved in the inset of Fig.(i).

cluster. The length scale of the decay of the pressure>d
is very similar in the experiments and the simulatigase
comment below However, the pressure differendd(z) in
the simulations is lower than thAP(z) measured by the As stated in the introduction to Sec. Ill, Fig. 2 clearly
sensoifat position(xs,z;) =(38 mm, 280 mnj in the model  shows that some features of the invading cluster depend on
(see Fig. 7. This is due to the strong boundary effects of thethe capillary number. The masgz) of the invasion cluster
pressure close to the outlet channel: the tips in the simulasbviously decreases with increasing capillary number; in re-
tions situations are very close to this boundary along whicHation to this, the speed of the most advanced fingertjp,

the pressure is fixetsee Fig. 2, while in the situations cor- increases with the capillary number, and there is a systematic
responding to the measurementgat0 plotted in Fig. 7, the trend for fingers to become thinner as capillary number in-
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Q
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B. Capillary-number-dependent features
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FIG. 9. Double logarithmic plots af) the saturated mass density and(b) of the speed of the most advanced finggg, as a function
of the capillary number, for the two sets of experiments. Both plots are consistent with a scaling in the, fo@a /v, Ca®, with «
~0.65.

creases. In the following we first present results relative tdion of the structures. However, as a result of the small dif-
the “mass density” in the stagnant zomg, and to the ve- ference in fractal dimension between the two regimes,
locity of the most advanced finger tipy,. In the end we 1.83+0.01[6,30 for capillary fingering and 1.62+0.04
discuss the results relative to measurements of the charactdés1,3§ for viscous fingering, larger systems would be nec-
istic width of the fingerlike structures, the definition of which essary for this method to be accurate enough. An experimen-
is not as straightforward and clear as thosew.pfind Vtip- tal determination of the characteristic widihy for viscous
The evolution of the average mass density in the stagnaritngers was previously obtained fambibition experiments
zonen,, as a function of the Capi”ary number is presented |n[32], for which the characteristic finger width can be defined
Fig. Aa) on a double-logarithmic scale. The data are consisand found in a more straightforward manner. The obtained
tent with a scaling law in the form,,=Ca®, with a scaling  Scaling waswiCa®®. In those imbibition experiments, the
exponenta=~0.65 for both the wide and narrow models. finger widthw; was measured as the average length of cut
Here n,. has been measured by fitting the functiop(1 segments perpendicular to the flow direction. This method
—exp(-z/\)] with both parameters free to our measungéz) ~ Can also be applied in our.expe_riments, but dge to the s_mall
data. As a result of the dependence of the mass of the invgc@le fractal nature of the invasion front, trapping of wetting
sion cluster on the capillary numbgFig. 9(a)], the speed of fluid inside the fingers and capillary fingering on small
the most advanced finger tip,,, is expected to depend on length scales, it is not obvious which length scales are being
the filtration speed or capillary number in a nonlinear way.Probed with this method. The results that we obtain are plot-
The saturated mass density and the speed of the most a§d as a function of the capillary number in Fig. 10. Clusters

cording to been removed from the picture prior to analysis. We then

define the front widthw; as the average overand time of

Viip & Ei. (23 22— ' ' L S

o B narrow model | |

Based on that argument, Gagj should therefore scale in the 2

same way a8, with respect to the capillary number. In Fig. 18k i

9(b), the quantityk- Caky, is plotted as a function of Ca on s |

a double-logarithmic scale, wheke1 m/s. The plot is con- 2 16k

sistent with the expected scaliri@3) and the result for the @ | Slope =-0.75

mass density presented above. = 14 = |

The study of the dependence of the finger width on the
capillary number is somewhat less straightforward, because 12F -

our invading clusters structures exhibit extensive branching
H [{¥ H ” 3 H . - L | L | L L N L L | L 1
and fllsplay fingers” both aE s_maII sc.ales a.?: capillary fln_ I T - T L o5 s
gers” and at large scales as “viscous fingers.” Thus, a precise log (Ca)
definition of a finger, and furthermore a finger width, is not
an easy task for those structures. A possible method to deter- FiG. 10. Double-logarithmic plot of the measured characteristic
mine the viscous finger width would consist in finding the width of the fingerlike structures as a function of the capillary num-
characteristic crossover length between geometric featuraser, for both the wide and narrow models. The data are consistent
characteristic of viscous fingering and those characteristic ofith a scaling of the finger width in the forw;<Ca®?, with 8
capillary fingering from the density-density correlation func- =0.75.
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the length of the intersects between the invasion cluster emp- 3‘ T T T C' 00'58 r ]
- — Ca=0. |

tied from these trapped regions and cuts perpendicular to the - Ca=022

flow direction. I ---- normalized square function |
The measurements are consistent with a scaling law in the 2'5_ P == TR T

form w; < Ca’®, with 8~0.75. This is significantly different ~ 2k : PN ARy

from what was measured for imbibition. It also differs sig- % - ¥ '\\ A

nificantly from the scaling law expected from theoretical ar- 7 1.5 : Ah;"

guments for percolation in a destabilizing gradi¢d®,4q
for two-dimensional systemsy; « Ca# with 8=0.57. In our 1=
experiments, the destabilizing fiejdressurgis highly inho- I

mogeneous, which may explain why the behavior expected 0'5_
from the percolation in a gradient theory is not really 0 L . L
observed. 0 0.4 W 0.6

From Figs. 9 and 10, the observed scalings appear to be
valid for a limited range of capillary numbers. For high cap-  FIG. 11. Normalized average saturated occupation density for
illary numbers the observed scaling breaks down for Cégive experiments in the thin model at two different capillary num-
~0.2, which corresponds to situations where the charactekers. Both functions present an effective width around\0.4
istic finger width has reached the one pore limit. At the other
limit, for small capillary numbers it is not clear if we reach when Ca>0.03. This is demonstrated in Fig. 11, where the
the lower limit in capillary number. But we expect that the normalized saturated occupancy function for the thin model,
observed scaling breaks down for capillary numbers smallep(x/W)=Wm(x)/ [ m(x)dx, is displayed for five experi-
than the criteria given in Eq10), Ca~1072 As a result of ments at Ca=0.058 and five experiments at Ca=0.22. The
this, it should be noted that the measured exponer#sd  characteristic width of this function is obtained by using two
only are meaningful for intermediate capillary numbers be-gefinitions introduced by Areodoet al. [19],
tween the crossovers to the high- and Iow-capillary-numbe![\év (X)AX/ ey OF (X =X7) where 7(x*) = m(X") = 0.5y
regimes and that the length scale for the low-capillary-goth definitions for both capillary numbers lead to a charac-
number crossover is system size_ dependent. Our measurgstistic width around OW (Fig. 11). The mean occupancy
values should therefore be considered as lower bounds qurof”e or average envelope, defined as the contour level
the exponents rather than correct values since inclusion of(x,z)=0.5r,,, presents some similarities to the shape of a
data points in the crossover regimes will lead tp UndereStiSaffman-Taonr finger corresponding to the same saturation
mated values for the exponents. For more precise measurgjigth [7]. Similar contour levels observed in off-lattice DLA
ments of these exponents experiments on larger systems afgnylations correspond to a characteristic selected width
needed. 0.62W [19,2Q and present some similarities with the corre-
sponding Saffman-Taylor finger, although the detailed shape
IV. DISCUSSION AND PROSPECTS differs [20]. The pressure field recorded at some distance
exceeding 0./ of the invader structur@1] is also consis-
tently comparable to the pressure field around such a
. . . X . i Saffman-Taylor finger, which arises from the fact that the
lattice DLA simulations in a linear channel, we mtroduce an Laplace equation controlling the pressure field is sensitive to
average occupancy map(x,2). Let g(x,2) be the invader o coarse external shape of the invader’s boundary, rather

occupation function equal to 1 when the local pore is aifhap {5 the details of the branched structure inside this aver-
filled or O when it is liquid filled. For any positiorix,z) age envelope.

(wherez s relative to the tip position 7(x,2) corresponds o~ nside the average envelopes, at intermediate scales the
the average over all times, of the invader occupation funcstryctures correspond to “DLA-like” viscous fingers. On
tion. Points closer thaklV from the inlet are excluded from tnese |ength scales the viscous pressure differences in the
this average, since the geometry of the invading structure igid are significant compared to the width of the capillary
expected to be strongly influenced by the central point injeCpressure thresholds distributiof,. The structure is fractal
tion technique in that zone. Similarly to the average DLA[41], with a fractal dimension identical to that previously
situation [19], this average occupancy map saturates t0 @neasured in viscous fingering experiments in random porous
maximum valuemy,, around the central ling=W/2, at dis-  media similar to ours 1.62+0.0431]. On length scales
tancesz larger thanW behind the tip position. Foz>W,  gmaller than characteristic finger width, the viscous pres-
m(x,2z) fluctuates around an average saturated occupanGy,re drops are small comparedwW). Inside the fingers the
m(x), which is independent af. This average saturated oc- structures correspond to capillary fingering with a fractal di-
cupancy is approximated for each experiment by averagingnension 1.83+0.0130]. The cutoff lengthw; between these
the invader occupation function over all times andzaW.  two regimes is about the same size as the trapped wetting
The quantitym(x) depends on the capillary number, as ex-clusters. The saturation level of the envelope width seems
pected since by definitiofi) 7(x)dx=a’nc, insensitive to Ca when Ca0.03[41]. This implies that the
However, the shape of this function, apart from a differentsaturated mass dependence Ca displayed in Fig. 9 results
Tmax S€EMS reasonably independent of the capillary numbefrom the decrease of the characteristic finger wiathwith

Following a procedure similar to that used by Arnealo
al. [19] to study the statistical average properties of off-
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the capillary numbe¢Fig. 10). The structures therefore look V. CONCLUSION
more branched and thin at higher capillary numlg&ig. 2),

even if they still occupy the same characteristic zone in the We have §tud|ed_the dynamlcs O.f the Invasion process
linear cells. observed during drainage in a two-dimensional porous me-

The similarity between viscous fingering and DL&] Qium, for e>_(tracti_on speeds t_hat re_su_lt in an u_nstable finger-
was first proposed by Patersga5] and is based on the ing of the displacing nonwetting fluid into the displaced wet-
equivalence between the probability field for DLA and theting fluid. — _ _
pressure field in the viscous fingering case. They both seem Our main finding is that for a given porous medium, the
to obey Laplace’s equation with similar boundary condition,displacement is controlled by an invasion probability density
Egs.(1) and(2). However, the characteristic of the interme- that only depends on the distance of the point where it is
diate scales in our viscous fingering experiments displaymeasured to the tip of the most advanced finger tip and is
fundamental differences from DLA growth models: the ob-independent of the capillary number. The decay of this inva-
tained saturation width OW is significantly below the result sion probability densityg(z), defines an active zone for the
0.60N obtained from off-lattice DLA simulation$19,20 invasion process, outside of which the viscous pressure field
and also lower than the width 0Abobtained for on-lattice  can be considered to be screened by the invasion structure. In
DLA simulations [19] or for a Saffman-Taylor finger in a particular, parts of the invasion structure lying outside this
empty Hele-Shaw cell at high capillary numbgr$. Average  active zone are frozen and do not evolve in time any more.
widths higher than OW are reported in empty thin cells The gjze of the active zone, of characteristic screening

[%8]' dﬁpehndling on the Capé”ﬁfy r:]qrr;]be]rcfand orr: thelrati(; Ofength,\, was found to be independent of the capillary num-
the cell thickness over width, which affects the role of apq“tor 5 wide range of injection rates. In addition, experi-

wetting o!l film left behind the invasion front. The displace- ments carried out on models with two different widths sug-
ment regimes that we have studied correspond to what th

authors of Ref[18] would refer to with their notations as Sesf[ed that the invasion probqbility density appears to b?
1/B~1000—10 000 anav/b=200, for which their experi- Capillary number independent, its actual shape being possi-
ments would display selected widths larger thanV.&c- bly f'X_Ed by the system size. Wh'.le the invasion process 1S
cording to Fig. 3in their articlg18]. The observed fractal described by an invasion probability density that is indepen-
dimension of the viscous fingering structures in a randonfl€nt of the capillary number, the invasion speed and dis-
porous medium similar to ours, 1.62+0.G81], is also placed yolume in the stagnant zone were found to scale on
somewhat smaller than 1.7, the fractal dimension in radiathe capillary according to power laws, > Ca/v, > Ca %%,
viscous fingering in empty Hele-Shaw ce[ts7], in radial Current work[41] was also reported on the mean occu-
Laplacian growth[27], or in DLA [20,29. This shows ex- pancy density behind the most advanced tip, which also
perimentally that there are some fundamental differences beeems to be a function of shape independent of the capillary
tween these processes and viscous fingering in randomumber as soon as Ce0.03, although its average value is
porous media. Many works have recently focused on geneicapillary number dependent. The ratio of characteristic width
alizations of Laplacian growth processes and DLA and pubf such density map over the system width was found around
evidence on the fact that the fractal dimension or even th®.4, which is significantly below the result corresponding to
fractality of the grown structure depends on the preciséDLA simulations(0.6).
boundary condition, growth rate, fraction of the perimeter The link between the growth probability and the pressure
growing simultaneously, and shot noise at the interfacdield has been studied. An expression for the pressure bound-
boundary [22-28. The difference between these modelsary condition relating the pressure on the interface of the
shows the importance of the precise growth conditions alongnvader to the growth probability density function on the
the interface. In the present experiments, the disordered paluster,¢(z), has been calculated. The measured pressure has
rous material creates a nontrivial growth condition along thebeen compared to the corresponding simulated pressure by
interface, dependent on the local pressure level, pressure grselving the Laplace equation for the pressure field using this
dient, and of a quenched disorder in the capillary pressurexpression for the boundary condition on the cluster. Good
thresholds. agreement is found between the simulations and the experi-
The fact that in these experiments the width of the meaments.
occupancy profile and fractal dimension are below the DLA  System size dependences should be subject to further in-
case make it more similar to another type of generalizedestigations, both experimentally and by means of computer
DLA models—namely, dielectric breakdown models simulations.
(DBM’s). In the DBM the growth probability of the struc-
tures is propqrtional to a power higher than unity o_f the ACKNOWLEDGMENTS
pressure gradieri20,42. To better support the comparison
to these various models, the precise determination of the av- This work was supported by NFR, the Norwegian Re-
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