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A Numerical Study for the Homogenization of

One-Dimensional Models describing

the Motion of Dislocations

A. Ghorbel∗, P. Hoch†, R. Monneau∗

Abstract

In this paper we are interested in the collective motion of dislocations defects in crystals.
Mathematically we study the homogenization of a non-local Hamilton-Jacobi equation. We
prove some qualitative properties on the effective hamiltonian. We also provide a numerical
scheme which is proved to be monotone under some suitable CFL conditions. Using this scheme,
we compute numerically the effective hamiltonian. Furthermore we also provide numerical
computations of the effective hamiltonian for several models corresponding to the dynamics of
dislocations where no theoretical analysis is available.
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1 Introduction

In this paper we study the homogenization of non-local Hamilton-Jacobi equations modelling dis-
locations dynamics, we propose a scheme and provide numerical simulations for several models.

1.1 Physical modelling of dislocations dynamics

In this work, we are interested in the collective behaviour of several dislocations moving in a crystal.
Dislocations are defects present in real crystals and are at the origin of the plastic behaviour of
metals. We refer to [11] for a physical description of dislocations.
In our work and in the simplest case, we consider a particular geometry of parallel dislocations
lines moving in the same plane. This particular geometry can be modeled by a 1D problem where
the position of the dislocations is given by the point x ∈ R where a function u(x, t) takes integer
values. In the simplest case, we assume that u satisfies the following non-local Hamilton-Jacobi
equation (see [9] and [12] for a study of a similar model)































∂u

∂t
(x, t) = c[u](x, t)
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∣

∣

∣
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∂x
(x, t)
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∣

∣

∣

in R× (0, +∞)

c[u](x, t) = A + c1(x) + cint[u](x, t)

cint[u](x, t) =

∫

R

c0(x′) u(x− x′, t) dx′

(1)
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with initial condition
u(x, 0) = u0(x) on R (2)

Here c[u] denotes the velocity of the dislocations. It is the sum of three terms: cint is the contribution
created by the interactions with all the dislocations, and is given by a convolution, c1 is a microscopic
field created by the other defects in the crystal and A ∈ R is the exterior applied stress.

We will study problem (1) and similar equations in the framework of viscosity solutions. Let us
recall that the notion of viscosity solution was first introduced by Crandall and Lions in [5] for first
order Hamilton-Jacobi equations. For an introduction to this notion, see in particular the books
of Barles [4], and of Bardi and Capuzzo-Dolcetta [3], and the User’s guide of Crandall, Ishii and
Lions [6].

We assume that the kernel c0 satisfies

c0(x) = c0(−x) and

∫

R

c0(x) dx = 0 . (3)

We also assume the periodicity and the regularity of the micro-stress c1

c1(x + 1) = c1(x) on R , and c1 is Lipschitz-continuous (4)

1.2 Goal of the paper

We want to understand the properties of the solutions of (1) for A = 0 at a large scale defining

uε(x, t) = ε u

(

x

ε
,
t

ε

)

where ε is the ratio between the mesoscopic scale and the microscopic scale associated to dislocations
(like distances between obstacles to the motion of dislocations).

Homogenization of Hamilton-Jacobi Equations was studied by Lions, Papanicoulaou and Varadhan
in [14] and this work was followed by a large literature on the subject, that would be difficult to
cite here.

For this equation (see [12]) and for a certain class of kernels c0, it is known that uε converges to
u0, solution of

∂u0

∂t
= H̄

(

I1u
0,

∂u0

∂x

)

where I1 is a non-local Levy operator, and H̄ is the effective hamiltonian given by the following
definition.

Definition 1.1 (Effective hamiltonian)
We assume (4). For (A, p) ∈ R× R, the effective hamiltonian H̄(A, p) is defined by

H̄(A, p) = lim
t→+∞

w(x, t)

t
(independent on x) (5)

where w solves the ”cell problem”, i.e. w solves (1) with w(x, 0) = px .

Then the goal of the present paper is to compute numerically H̄(A, p) for equation (1) for specific
kernels c0. In particular, we numerically check that the ergodicity property (5) holds for general
kernels c0 (like for instance for the Peierls-Nabarro model, see subsection 5.2), even in the case
where the equation has no comparison principle and it is even not clear if (5) holds theoretically.
We also do some simulations for some similar equations or systems of equations. To this end, we
implemented several numerical schemes.
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1.3 Brief presentation of our results

We present here properties of the effective hamiltonian and the scheme used to compute it numer-
ically. We prove the following qualitative result on the effective hamiltonian.

Theorem 1.1 (Monotonicity of the effective hamiltonian)
For the choice c0 = −δ0 + J with δ0 is a Dirac mass and J ∈ C∞(R) is such that















J(−x) = J(x) ≥ 0 ;

∫

R

J(x) dx = 1 and

∫

R

|x|J(x) dx < +∞

c2 := inf
δ∈[0,1)

∫

R

min (J(z), J(z + δ)) dz > 0

(6)

Then the effective hamiltonian given in Definition 1.1 satisfies

1. H̄(A, p) is non-decreasing in A.

2. If

∫

R

c1(x) dx = 0 then H̄(0, p) = 0 and AH̄(A, p) is non-decreasing in |p| and satisfies

sgn(A)

(

|A|+ 1 +
2

c2

)

≥ sgn(A)
∂H̄

∂|p|(A, p) ≥ 0 .

We build a finite difference scheme of order one in space and time using an explicit Euler
scheme in time and an upwind scheme in space. Given a mesh size ∆x, ∆t and a lattice
Id = {(i∆x, n∆t); i ∈ Z, n ∈ N}, (xi, tn) denotes the node (i∆x, n∆t) and vn = (vn

i )i the values of
the numerical approximation of the continuous solution u(xi, tn). We then consider the following
numerical scheme:

v0
i = u0(xi), vn+1

i = vn
i + ∆t ci(v

n)×
{

D+
x vn

i if ci(v
n) ≥ 0

D−
x vn

i if ci(v
n) < 0

(7)

with D−
x vn

i =
vn
i − vn

i−1

∆x
and D+

x vn
i =

vn
i+1 − vn

i

∆x
. The discrete velocity is

ci(v
n) = A + c1(xi) + cint

i (vn) (8)

We approximate the non-local term c0 ? u by


















cint
i (vn) = −vn

i +
∑

l∈Z

Jl v
n
i−l ∆x

Ji =
1

∆x

∫

Ii

J(x) dx and Ii =

[

xi −
∆x

2
, xi +

∆x

2

]

.

(9)

Several works have been done for the discretization of more general first order Hamilton-Jacobi
equations (even with boundary conditions). We refer in particular to the work of Abgrall [1].
Then we have the following result about monotonicity of the scheme (7) for the special kernel
c0 = −δ0 + J .

Theorem 1.2 (Monotonicity of the scheme)
We assume that

v0
i+1 ≥ v0

i , ∀ i ∈ Z (10)

(respectively w0
i+1 ≥ w0

i , ∀ i ∈ Z) (11)
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If the time step ∆t satisfies

∆t ≤
(

sup
j∈Z

|cj+1(vk)− cj(v
k)|

∆x

)−1

, for 0 ≤ k ≤ n (12)

(respectively ∆t ≤
(

sup
j∈Z

|cj+1(wk)− cj(w
k)|

∆x

)−1

, for 0 ≤ k ≤ n) (13)

Then we have the monotonicity preservation:

vk
i+1 ≥ vk

i , ∀ i ∈ Z , ∀ 0 ≤ k ≤ n + 1 (14)

(respectively wk
i+1 ≥ wk

i , ∀ i ∈ Z , ∀ 0 ≤ k ≤ n + 1 (15)

Assume moreover that

v0
i ≥ w0

i , ∀ i ∈ Z . (16)

If the time step ∆t satisfies moreover

∆t sup
j∈Z

{

max

(

vk
j+1 − vk

j

∆x
,
wk

j+1 − wk
j

∆x

)}

≤ 1

2
for 0 ≤ k ≤ n (17)

and

∆t

∆x
≤ 1

2

(

sup
j∈Z

{

max
(∣

∣

∣cj(v
k)
∣

∣

∣ ,
∣

∣

∣cj(w
k)
∣

∣

∣

)}

)−1

for 0 ≤ k ≤ n (18)

Then

vk
i ≥ wk

i , ∀ i ∈ Z for 0 ≤ k ≤ n + 1 . (19)

Remark 1.1 There would be no monotonicity of the scheme if J would be negative.

We use this scheme to compute numerically an approximation H̄num(A, p) of H̄(A, p). We nu-
merically check that H̄num(A, p) satisfies the monotonicity properties given in Theorem 1.1. We
also compute the effective hamiltonian for other similar equations (like for instance the case with
Peierls-Nabarro kernel, see subsection 5.2), and for some systems of equations (see Section 6).

There are very few works on numerics for homogenization. Up to our knowledge, let us mention
for convex first order hamiltonians the work of Gomes and Oberman [10] computing the effective
hamiltonian using a variational approach and the work of Rorro [15] using semi-Lagrangian schemes.

1.4 Organization of the paper

In Section 2, we give the proof of Theorem 1.1. In Section 3, we study the numerical scheme and
prove Theorem 1.2. In Section 4, we give numerical simulations corresponding to the scheme of
Theorem 1.2. In Section 5, we present numerical simulations for similar equations with for instance
the Peierls-Nabarro kernel. In Section 6, we present numerical simulations for systems of equations
for two types of dislocations. Finally in the Appendix we provide the proof of a technical Lemma
(Lemma 2.1) and give a brief derivation of the kernel for walls of dislocations.
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2 Qualitative properties of the effective hamiltonian

Before to prove Theorem 1.1, we need the following lemma with the proof given in the Appendix.

Lemma 2.1 (Coercivity of the convolution)
Assume J satisfies (6) and c0 = −δ0 +J . If u ∈ C0

b (R) is maximal at Y ∈ R and minimal at y ∈ R

and |Y − y| < 1 then
(

c0 ? u
)

(Y )−
(

c0 ? u
)

(y) ≤ −c2 (u(Y )− u(y))

To keep light notation, we denote in this section by M the operator such that

(Mv)(x) =
(

c0 ? v
)

(x) = −v(x) +

∫

R

J(z)v(x− z) dz. (20)

We will also need the following result.

Lemma 2.2 (Existence of sub and supercorrectors)
For any p ∈ R and A ∈ R, there exist λ ∈ R, a subcorrector v(x) and a supercorrector v(x) which
are 1-periodic in x and satisfy

λ ≤ |p + ∂xv|
(

c1 + A + Mv
)

, with p(p + ∂xv) ≥ 0 on R

λ ≥ |p + ∂xv|
(

c1 + A + Mv
)

, with p(p + ∂xv) ≥ 0 on R

with

max v −min v ≤ 2

c2

∣

∣c1
∣

∣

L∞(R)
and max v −min v ≤ 2

c2

∣

∣c1
∣

∣

L∞(R)

where c2 given in (6).

The proof of Lemma 2.2 is a slight adaptation of the work [12]. We give below a quick proof of this
fact.

Skech of the proof of Lemma 2.2

Let us work in the case p > 0 (the case p < 0 is similar, and for the case p = 0, we have λ = 0 with
a corrector equal to zero).
Step 1

Using the theory developed in [12], let us start to consider (using the fact that

∫

R

|x| J(x) dx < +∞),

for p > 0, the solution u of

{

ut = |∂xu|(c1 + A + M(u− p ·))
u(x, t = 0) = px

then ω̄(t) = inf
x

∂xu(t, x) formally satisfies

ω̄t ≥ |ω̄|(∂xc1 + Mω̄) ≥ |ω̄|(∂xc1) with ω̄(0) = p > 0

and therefore the bound from below on the possible exponential decay of ω̄ implies that

∂xu ≥ 0

This result can be justified rigorously using some classical viscosity arguments (as in [12]). We also
know that u(t, x)− px is 1-periodic in x. We already know by [12] that there exists a unique λ ∈ R

such that v(t, x) = u(t, x)− px− λt is bounded. Moreover λ = H̄(A, p). Let us now define Yt and
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yt such that M(t) := max
x

v(t, x) = v(t, Yt) and m(t) := min
x

v(t, x) = v(t, yt) and |Yt − yt| < 1, we

get formally
λ + M ′(t) ≤ |p|

(

c1(Yt) + A + (Mv)(Yt)
)

λ + m′(t) ≥ |p|
(

c1(yt) + A + (Mv)(yt)
)

which implies for p 6= 0 that ω(t) = M(t)−m(t) satisfies

ω′(t)/|p| − ((Mv)(Yt)− (Mv)(yt)) ≤ c1(Yt)− c1(yt)

And then by Lemma 2.1, we get that

ω′(t)/|p|+ c2ω(t) ≤ c1(Yt)− c1(yt) with ω(0) = 0 .

This inequality can be justified rigorously by routine viscosity arguments. We deduce that for every
t ≥ 0

ω(t) = max
x

v(t, x)−min
x

v(t, x) ≤ 2

c2
|c1|L∞(R)

Step 2
Considering the semi-relaxed limits of u(t, x) − px − λt with the suppremum (resp. the infimum)
in time, we build a subsolution v (resp. a supersolution v) of the following equation

λ = |p + ∂xv|
(

c1 + A + Mv
)

which satisfies the expected properties.
This ends the proof of the Lemma.

2

Proof of Theorem 1.1

1) We first prove the monotonicity of H̄(A, p) in A. Let us consider A2 > A1, λi = H̄(Ai, p),
i = 1, 2 and a subcorrector v1 for (A, p) then we have

λ1 ≤ |p + ∂xv1|
(

c1 + A1 + Mv1

)

≤ |p + ∂xv1|
(

c1 + A2 + Mv1

)

This shows v1(x) + px + λ1t is a subsolution to the cell problem which implies that λ2 ≥ λ1

i.e. H̄(A2, p) ≥ H̄(A1, p).

2) We now prove that H̄(0, p) = 0 in the case

∫

(0,1)
c1 = 0 . Let us define v0 as the periodic

solution of
Mv0 = −c1 on R (21)

such that

∫

(0,1)
v0 = 0. We see that v0 is a corrector for the cell problem with λ = 0 = H̄(0, p).

3) Let us now show the monotonicity in |p| in the case

∫

(0,1)
c1 = 0. For p2 > p1 > 0 and A > 0

such that λ1 > 0 with λi = H̄(A, pi), i = 1, 2 (the other cases are similar), let us consider a
subcorrector v1 satisfying

0 < λ1 ≤ (p1 + ∂xv1)
(

c1 + A + Mv1

)

with p1 + ∂xv1 ≥ 0
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and a supercorrector v1 satisfying

λ1 ≥ (p1 + ∂xv1)
(

c1 + A + Mv1

)

with p1 + ∂xv1 ≥ 0

From Lemma 2.2, we also know that we can bound these sub/supercorrectors by
2

c2
|c1|L∞(R).

Therefore

0 ≤ c1 + A + Mv1 and

(

1 +
2

c2

)

|c1|L∞(R) ≥ c1 + Mv1 .

And then

λ1 ≤ λ1 + (p2 − p1)
(

c1 + A + Mv1

)

≤ (p2 + ∂xv1)
(

c1 + A + Mv1

)

which implies λ2 ≥ λ1 > 0 .

Similarly, we have

λ1 +

((

1 +
2

c2

)

|c1|L∞(R) + A

)

(p2 − p1) ≥ λ1 + (p2 − p1)
(

c1 + A + Mv1

)

≥ (p2 + ∂xv1)
(

c1 + A + Mv1

)

which implies λ2 ≤ λ1 +

((

1 +
2

c2

)

|c1|L∞(R) + A

)

(p2 − p1) and gives the result.

2

3 Monotonicity of the scheme

In this section we prove Theorem 1.2 . We will use the following result (consequence of Lemma
2.5.2 in [9])

Lemma 3.1 (A monotonicity preserving scheme for prescribed velocity)
We assume that

vn+1
i = vn

i +
∆t

∆x
cn
i ×

{

vn
i+1 − vn

i if cn
i ≥ 0

vn
i − vn

i−1 if cn
i < 0

and

∆t ≤ 1

2



sup
j∈Z

∣

∣

∣
ck
j+1 − ck

j

∣

∣

∣

∆x





−1

for 0 ≤ k ≤ n (22)

If
v0
i+1 ≥ v0

i , ∀ i ∈ Z

then
vk
i+1 ≥ vk

i , ∀ i ∈ Z , for 0 ≤ k ≤ n + 1 .

Proof of Theorem 1.2

Let (vn
i )i∈Z,n∈N and (wn

i )i∈Z,n∈N two discrete solutions, such that v0
i and w0

i are non-decreasing in

i ∈ Z. We set Mn(v) := sup
i∈Z

vn
i+1 − vn

i

∆x
and Mn(w) := sup

i∈Z

wn
i+1 − wn

i

∆x
. One write the numerical
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scheme for v (and the same for w)

vn+1
i = vn

i +
∆t

∆x
ci(v

n)×
{

vn
i+1 − vn

i if ci(v
n) ≥ 0

vn
i − vn

i−1 if ci(v
n) < 0

(23)

with ci(v
n) defined in (8)-(9). Let us assume that vk

i ≥ wk
i , ∀ i ∈ Z, ∀ 0 ≤ k ≤ n. Let us prove

that it is still true for k = n + 1.

Case 1: We assume that ci(v
n) ≥ 0 and ci(w

n) ≥ 0 .
We have

vn+1
i − wn+1

i = vn
i − wn

i +
∆t

∆x

(

ci(v
n)
(

vn
i+1 − vn

i

)

− ci(w
n)
(

wn
i+1 − wn

i

))

.

One can add and substract
∆t

∆x
ci(w

n)
(

vn
i+1 − vn

i

)

, and one obtains

vn+1
i − wn+1

i = (vn
i − wn

i )

(

1− ∆t

∆x
ci(w

n)

)

+
∆t

∆x
ci(w

n)
(

vn
i+1 − wn

i+1

)

+
∆t

∆x
(ci(v

n)− ci(w
n))
(

vn
i+1 − vn

i

)

≥ (vn
i − wn

i )

(

1− ∆t

∆x
ci(w

n)

)

+
∆t

∆x
(ci(v

n)− ci(w
n))
(

vn
i+1 − vn

i

)

where we have used the fact that vn
i+1 ≥ wn

i+1. Since

ci(v
n) = A + c1(xi)− vn

i +
∑

j∈Z

Jjv
n
i−j ∆x (24)

the difference between the discrete velocities can be written as

ci(v
n)− ci(w

n) = − (vn
i − wn

i ) +
∑

j∈Z

Jj

(

vn
i−j − wn

i−j

)

∆x (25)

and then we get (using Jj ≥ 0 and vn
i−j − wn

i−j ≥ 0)

vn+1
i − wn+1

i ≥ (vn
i − wn

i )

(

1− ∆t

∆x
ci(w

n)

)

− ∆t

∆x
(vn

i − wn
i ) (vn

i+1 − vn
i )

≥ (vn
i − wn

i )

(

1− ∆t

∆x
ci(w

n)−Mn(u)∆t

) (26)

Therefore we have

vn+1
i − wn+1

i ≥ (vn
i − wn

i )

(

1− ∆t

∆x
ci(w

n)−Mn(u)∆t

)

. (27)

It is then sufficient to have the following two restrictions on the time step

∆t

∆x
≤
(

2 sup
j∈Z

|cj(v
n)|
)−1

and Mn(u)∆t ≤ 1

2

to deduce that the scheme is monotone in this case.
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Case 2: We assume that ci(v
n) ≤ 0 and ci(w

n) ≤ 0 .
We compute

vn+1
i − wn+1

i = vn
i − wn

i +
∆t

∆x
ci(v

n)(vn
i − vn

i−1)− ∆t

∆x
ci(w

n)(wn
i − wn

i−1).

One can add and substract
∆t

∆x
ci(v

n)
(

wn
i − wn

i−1

)

, one obtains

vn+1
i − wn+1

i = (vn
i − wn

i )

(

1 +
∆t

∆x
ci(v

n)

)

+
∆t

∆x
(ci(v

n)− ci(w
n)) (wn

i − wn
i−1)

−∆t

∆x
ci(v

n)(vn
i−1 − wn

i−1)

Since ci(v
n) < 0 and vn

i−1 ≥ wn
i−1, we get

vn+1
i − wn+1

i ≥ (vn
i − wn

i )

(

1 +
∆t

∆x
ci(v

n)

)

+
∆t

∆x
(ci(v

n)− ci(w
n)) (wn

i − wn
i−1)

≥ (vn
i − wn

i )

(

1 +
∆t

∆x
ci(v

n)−Mn(w)∆t

)

≥ 0

if
∆t

∆x
≤
(

2 sup
j∈Z

|cj(u
n)|
)−1

and Mn(v)∆t ≤ 1

2
.

Case 3: We assume that ci(v
n) ≥ 0 and ci(w

n) < 0 .
We compute

vn+1
i − wn+1

i = vn
i − wn

i +
∆t

∆x
ci(v

n)(vn
i+1 − vn

i )− ∆t

∆x
ci(w

n)(wn
i − wn

i−1)

≥ vn
i − wn

i

because vn
i+1 − vn

i ≥ 0 and wn
i − wn

i−1 ≥ 0. It is then sufficient to assume that

∆t ≤
(

sup
j∈Z

|cj+1(vk)− cj(v
k)|

∆x

)−1

for 0 ≤ k ≤ n (28)

and ∆t ≤
(

sup
j∈Z

|cj+1(wk)− cj(w
k)|

∆x

)−1

for 0 ≤ k ≤ n (29)

to guarantee the monotonicity of v and the monotonicity of w using Lemma 3.1.

Case 4: We assume that ci(v
n) < 0 and ci(w

n) ≥ 0 .
We compute

vn+1
i − wn+1

i = vn
i − wn

i +
∆t

∆x
ci(v

n)(vn
i − vn

i−1)− ∆t

∆x
ci(w

n)(wn
i − wn

i−1).

But
0 > ci(v

n)− ci(w
n)

= −(vn
i − wn

i ) +
∑

l

Jl(v
n
i−l − wn

i−l)

≥ −(vn
i − wn

i )

9



and for general c+ ≥ 0, c− ≤ 0 and a, b ≥ 0 we have

|c−a− c+b| ≤ max(a, b) |c+ − c−|
and then
∣

∣ci(v
n)(vn

i − vn
i−1)− ci(w

n)(wn
i+1 − wn

i+1)
∣

∣ ≤ ∆x max(Mn(v), Mn(w)) |ci(v
n)− ci(w

n)|
≤ ∆x max(Mn(v), Mn(w))(vn

i − wn
i )

Therefore
vn+1
i − wn

i ≥ (vn
i − wn

i )(1−∆t max(Mn(v), Mn(w)))

≥ 0

if we assume ∆t max(Mn(v), Mn(w)) ≤ 1 and (28)-(29).

2

4 Computation of the effective hamiltonian for equation (1)

We recall here that the effective hamiltonian is given in Definition 1.1. Numerically we compute
H̄(A, p) for

p =
P

Q
for a fixed Q ∈ N \ {0} and P ∈ Z (30)

Because p is given by (30), we know that the solution w to (1) with initial value given by w(x, 0) = px
satisfies

w(x + Q, t) = w(x, t) + P .

For this reason, numerically we restrict the computation on the interval

[

−Q

2
,
Q

2

]

with periodic

boundary conditions for w̄(x, t) = w(x, t) − px and we write the equation for w̄. In particular we

also choose ∆x such that
Q

∆x
∈ N \ {0}.

We then use the numerical scheme of Theorem 1.2 with ∆t satisfying the CFL conditions stated in
Theorem 1.2, which guarantees the monotonicity of the scheme.

4.1 The method to compute the effective hamiltonian

Here we describe two possible strategies to compute numerically the effective hamiltonian
H̄num(A, p).

Method 1: Using the numerical solution wn of (7), we take its values at two discrete times

t1 > 0 and t2 > 0 at a discrete point xref and we define H̄num(A, p) =
v(xref , t2)− v(xref , t1)

t2 − t1
for t2 − t1 large enough, which is difficult to fix in practice.

Method 2: We follow the position of a dislocation (as a marker) starting from a point xref at
time t1 and waiting until it passes a second time (in the ”periodic” interval [−Q/2, Q/2]) at

the same point at time t2, and we define H̄num(A, p) =
|P |

t2 − t1
with p =

P

Q
(see Figure 1).

Here
H̄num(A, p)

p
can be interpreted as an effective velocity.

In practice we prefer to use the Method 2 in general, because, given a time t1 large enough, it
provides naturally a time t2. On the contrary, the result given by the Method 1 can be more
sensitive to the choice of t2 with respect to t1.

10



xref
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t2

t1
x

t′
2

−
Q

2

Q

2

Figure 1: Tracking the trajectory of a dislocation until it comes back to the initial position

4.2 Results of the numerical simulations

Let us recall that the convolution is written as

c0 ?
R

w = c0 ?
R

(w − px)

= −w̄ + J ?
R

w̄

= −w̄ + J∗ ?
[−Q

2
,
Q

2 )
w̄

(31)

with
J∗(x) =

∑

k∈Z

J(x + kQ) . (32)

For the present simulations we choose

J∗(x) =
1

Q
for x ∈

[

−Q

2
,
Q

2

)

. (33)

We choose
c1(x) = B sin(2πkx) with k ∈ N \ {0}. (34)

For the simulations we have the following particular choices.

Figure 2 3 4 5 6 7 8

c0 −δ0 + J −δ0 + J −δ0 + J −δ0 + J −δ0 + J −δ0 + J −δ0 + J

p 0.3125 (0, 10) 2.5/k, k =
1, 2, 3, 4

(−10, 10) (−10, 10) 3 3

A (−10, 10) B/k, k =
1, 2, 3, 4

(0, 10) (−10, 10) (−10, 10) 2 2

B 1 1 1 1 1 0 2

k 1 1 1 1 1 2 2

Q 10 10 10 10 10 1 1

∆x 0.01 0.01 0.01 0.01 0.01 0.01 0.01

∆t < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 2.49 10−3 1.24 10−3

t1 10 10 10 10 10 - -

11



Figure 9 10 11 13 14 16

c0 −δ0 + J −δ0 + J (36) −δ0 + J (36) (39)

p 3 2.5/k, k =
1, 2, 3, 4

1, 2, 5, 10 (0.1, 2) 1, 2, 3, 4 0.2, 0.4, 0.7

A 2.5 (0, 10) (0, 10) (0, 10) (0, 10) (0, 10)

B 2 1 1 - - -

k 1 1 1 - - -

Q 1 10 10 10 10 10

∆x 0.01 0.01 0.01 0.01 0.01 0.01

∆t 1.11 10−3 < 10−3 < 10−3 < 10−4 < 10−4 < 10−4

t1 - 50 50 1000∆t 50 50

-3

-2

-1

 0

 1

 2

 3

-10 -5  0  5  10

E
ffe

ct
iv

e 
H

am
ilt

on
ia

n

A

Figure 2: H̄num(A, p) for p = 0.3125 and a monotone kernel c0 = −δ0 + J

In Figure 2, we present the numerical effective hamiltonian H̄num(A, p) which is monotone in A as
expected from the first property of Theorem 1.1. Moreover this reveals the existence of a threshold
effect, i.e. the effective hamiltonian is zero on a whole interval of the parameter A. In addition
H̄num(A, p) is antisymmetric in A because of the symmetries of c1. For |A| � B = 1, the effective
hamiltonian is linear and can be approximated here by Ap which is the classical Orowan law
(see [13]). In addition, we note that H̄num(A, p) behaves like the square-root function of A in a
neighborhood of the zero-plateau of H̄num.
In Figure 3, the effective hamiltonian H̄num(A, p) is represented as a function of p for some values
of A. We note here the monotonicity of H̄num with respect to p. For a large density of dislocations,
the effective hamiltonian H̄num is linear and can again be approximated by Ap.
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Figure 3: H̄num(A, p) as a function of the density p for a monotone kernel c0 = −δ0 + J
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Figure 4: H̄num(A, p) as a function of A and a monotone kernel c0 = −δ0 + J

In Figure 4, we present the effective hamiltonian H̄num(A, p) as a function of A for several densities
of dislocations p. Again we check numerically the qualitative properties of the effective hamiltonian.

In Figure 5, is repesented the graph of the effective Hamiltonian H̄num. The X-axis (respectively
Y-axis and Z-axis) corresponds to the density of dislocations p (respectively the parameter A and
the effective Hamiltonian H̄num). The projection of this graph on the plane (A, p) gives Figure 6
where are represented the level sets of H̄num.
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Figure 5: Graph of H̄num(A, p) for monotone kernel c0 = −δ0 + J

In Figure 6, the central region is the set where there is a pinning of the dislocations on the defects
represented by the field c1, i.e. where the effective hamiltonian vanishes. Moreover the monotonicity
of H̄num in p reveals that in this model, the ability of the dislocations to pass the obstacles, is
increased when we increase the density of dislocations. This is typically a collective behaviour.

5 Computation of the effective hamiltonian for other equations

In this section we study numerically the effective hamiltonian for models where in equation (1) the
non-local velocity cint[u] is replaced by

cint[u] = c0 ? buc (35)

where b·c is the floor function.
Here the positions of dislocations are given by the jumps of buc (see [9]). Let us mention that
even for monotone kernel c0, the theoretical existence of an effective hamiltonian is not known,
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Figure 6: Level sets of the effective hamiltonian H̄num(A, p)

we numerically check that this effective hamiltonian exists in two cases: the monotone kernel
(Subsection 5.1) and the Peierls-Nabarro kernel (Subsection 5.2).

5.1 The monotone kernel with one type of dislocations

In this subsection we set c0 = −δ0 + J with J∗ =
1

Q
with the notation of Section 4. This case is

strongly related to the homogenization of a Slepčev formulation (see [7]).
First, we represent in Figure 7 the trajectories of 3 dislocations (initially located at x = −1/3, x = 0,
x = 1/3) in the case where there are no obstacles (i.e. c1 = 0). In this case the trajectories of
dislocations are straight lines. A different situation happens (see Figure 8), when we add sufficient
obstacles in order to obtain the pinning of dislocations (with B ≥ A). This case corresponds to the
situation where H̄num is equal to zero.
Now, if we increase the parameter A, without changing the obstacles, i.e. with the same c1,
we observe a persistent motion of dislocations (see Figure 9). Numerically, this motion becomes
periodic in time. Moreover, we also present in Figure 10 the effective hamiltonian whose behaviour
is similar to the case of Section 4.
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Figure 7: Linear trajectories
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Figure 8: Pinning of dislocations
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Figure 9: The motion of the dislocations becomes periodic in time

5.2 The Peierls-Nabarro kernel with one type of edge dislocations

In this subsection, we consider the Peierls-Nabarro kernel (see [11, 2]) given by

c0(x) =
−µ
∣

∣

∣

~b
∣

∣

∣

2

2π(1− ν)

x2 − ζ2

(x2 + ζ2)2
. (36)

where ν =
λ

2(λ + µ)
is the Poisson ratio and λ and µ > 0 are the Lamé coefficients for isotropic

elasticity and ~b is the Burgers vector. We choose
µ
∣

∣

∣

~b
∣

∣

∣

2

2π(1− ν)
= 1 and ζ = 0.01 for our simulations.

Again we compute the effective hamiltonian in Figure 11 which turns out to provide a behaviour
similar to the one of Section 4.
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Figure 10: Effective hamiltonian H̄num(A, p) as a function of A for c0 ? buc, c0 = −δ0 + J
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Figure 11: Graph of H̄num(A, p) for Peierls-Nabarro model with one type of edge dislocations

6 Computation of the effective hamiltonian for systems of equa-
tions

In this section, we consider systems of equations describing the motion of dislocations of opposite
Burgers vector (+~b ) and (−~b ). More precisely we study numerically the following system











































∂u+

∂t
(x, t) = −c[u+, u−](x, t)

∣

∣

∣

∣

∂u+

∂x
(x, t)

∣

∣

∣

∣

in R× (0, +∞)

∂u−

∂t
(x, t) = c[u+, u−](x, t)

∣

∣

∣

∣

∂u−

∂x
(x, t)

∣

∣

∣

∣

in R× (0, +∞)

u+(x, 0) = p+x on R

u−(x, 0) = p−x on R

(37)

where
c[u+, u−](x, t) = A + c0 ?

(

bu+(·, t)c − bu−(·, t)c
)

. (38)

Here the positions of dislocations of Burgers vector (+~b ) (respectively (−~b )) are represented by the
jumps of bu+(·, t)c (respectively bu+(·, t)c). The motion is schematically represented on Figure 12.
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x

+ + + + + + + + +

− − − − − − − − −

motion of dislocation +

motion of dislocation −

Figure 12: Opposite motion of dislocations + and −

In the following three subsections we will compute the numerical effective hamiltonian for the two

types of dislocations H̄num(A, p) with the same densities p = p+ = p− (or the velocity
H̄num(A, p)

p
)

using a numerical method similar to the one used in Sections 4 and 5. We present successively our
result in the case of monotone kernel, Peierls-Nabarro kernel for edge dislocations, and the kernel
describing the motion of walls of dislocations.

6.1 Monotone kernel

Here we take c0 = −δ0 + J with J∗ =
1

Q
with the notation of Section 4. We present in Figure 13

the effective hamiltonian H̄num(A, p). We observe a threshold phenomenon, similar to the one of
Section 4. Here the dislocations of type − can be seen as obstacles to the motion of the dislocations
of type + and vice-versa.
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Figure 13: Graph of H̄num(A, p) as a function of A for p = p+ = p− with the monotone kernel
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6.2 Peierls-Nabarro kernel for edge dislocations

In this case we take the kernel c0 given in (36) and the numerical values of Subsection 5.2. We
observe in Figure 14 the mean velocity and a threshold effect which increases (apparently linearly)
where we increase the density p = p+ = p− of dislocations, as physically expected.
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Figure 14: Effective velocity
H̄num(A, p)

p
as a function of A for p = p+ = p− in the case of

Peierls-Nabarro kernel

6.3 Kernel for walls of dislocations

Here we take

c0(x) =
∂σ̄

∂x
(x) with σ̄(x) =

µ
∣

∣

∣

~b
∣

∣

∣

2
π

1− ν

x
ε

(

cosh(2π
x

ε
)− 1

) (39)

with µ is a Lamé coefficient, ν is the Poisson ratio, ~b is the Burgers vector and ε is the distance
between dislocations along the y direction (see Figure 15 and the Appendix 7.2).

y

x

ε

+ + +

− − −

− − −

− − −

+ + +

+ + +

+ + +

− − −

+ + +

− − −

motion of wall +

motion of wall −

Figure 15: Walls of dislocations + and walls of dislocations −
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Here we take
µb2π

1− ν
= 1 and ε = 1. We present the effective velocity

H̄num(A, p)

p
in Figure 16, and

get similar result as in Subsection 6.2 and in [8].
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Figure 16: Effective velocity
H̄num(A, p)

p
as a function of A for p = p+ = p− with the kernel for

walls of dislocations

7 Appendix

7.1 Proof of Lemma 2.1

With the notation of Lemma 2.1, we set c =
Y + y

2
and δ =

Y − y

2
∈
]

−1

2
,
1

2

[

. Then we compute

(c0 ? u)(Y )− (c0 ? u)(Y ) =

∫

dz J(z) (u(Y + z)− u(Y ))−
∫

dz J(z) (u(y + z)− u(y))

=

∫

dz̄ J(z̄ − δ) (u(c + z̄)− u(Y ))−
∫

dz̃ J(z̃ + δ) (u(c + z̃)− u(y))

≤ −
∫

dz inf (J(z − δ), J(z + δ)) (u(Y )− u(c + z) + u(c + z)− u(y))

≤ − (u(Y )− u(y)) c2

where whe have used the change of variables z̄ = z + δ, z̃ = z − δ in the second line and used the
fact that u(c + z̄)− u(Y ) ≤ 0 and u(c + z̃)− u(y) ≥ 0 to get the third line.

7.2 Computation of the kernel for walls of dislocations

We recall (see [11]) the stress created by one dislocation at the origin

σ0
xy(x, y) =

µb

2π(1− ν)

x(x2 − y2)

(x2 + y2)2
. (40)

Now the stress created by a wall of dislocations at the positions x = 0, y = kε for k ∈ Z is given by

σxy(x, y) =
∑

k∈Z

σ0
xy(x, y − kε)

=
µbπ

1− ν

x
ε

(

cosh(2π x
ε
) cos(2π y

ε
)− 1

)

(

cosh(2π
x

ε
)− cos(2π

y

ε
)
)2 .

(41)
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(see [11] page 733, formula (19-73)). Then

c0(x) = b
∂σxy

∂x
(x, 0) =

∂σ̄

∂x
(x) (42)

with σ̄(x) = b σxy(x, 0).
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