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On the Product of Functions in

BMO and H
1

Aline Bonami Tadeusz Iwaniec
Peter Jones Michel Zinsmeister

Abstract

The point-wise product b · h of functions b ∈ BMO(Rn) and
h ∈ H

1(Rn) need not be locally integrable. However, in view of the
duality between BMO and H

1, we are able to give a meaning to b ·h
as a Schwartz distribution, denoted by b × h ∈ D ′(Rn). The central
theme running through this paper is a decomposition:

(0.1) b × h = α + β ,

where α ∈ L
1(Rn) while the distribution β lies in a Hardy-Orlicz

space H
℘(Rn, dµ) . We give two different approaches for this. The

key prerequisite to the first one is a decomposition of h into an infinite
series of so-called div-curl atoms,

(0.2) h =
∞

∑

ν=1

aν =
∞

∑

ν=1

Eν · Bν ,

converging absolutely in H
1(Rn). Each div-curl atom aν = Eν ·Bν is

the inner product of a divergence free vector field Eν ∈ C∞
0 (Rn, Rn)

and a curl free vector field Bν ∈ C∞
0 (Rn, Rn). The peculiar signifi-

cance of the div-curl atoms is due to their product structure. There
are no div-curl atoms in one dimension. To treat the case n = 1,
we move to the realm of the Hardy space of analytic functions in the
unit disk and the associated analytic BMO-space. Here too a product
structure of functions in the analytic Hardy space comes to a play, and
we have a factorization theorem in terms of analytic BMO and H1

functions.
Our second approach uses atomic decomposition, which allows gen-

eralizations in different contexts.
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1 Introduction and Overview

The BMO−H1 Pairing

This paper is largely concerned with the Hardy space H
1(Rn) and its dual

BMO(Rn), n > 2. An excellent general reference for these spaces is [S2].
Viewing b ∈ BMO(Rn) as a continuous linear functional on H

1(Rn), see
the seminal work of C. Fefferman [F], we shall denote its value at h ∈ H

1(Rn)
by

(1.1)

∫ ∗

Rn

b(x)h(x) dx 4 ||b ||BMO · ||h ||H1 . 1

There are at least two possible rigorous definitions of (1.1). Denote by
C ∞

• (Rn) the space of smooth functions with compact support whose inte-
gral mean equals zero. This is a dense subspace of H

1(Rn). We set out the
following definition

(1.2)

∫ ∗

Rn

b(x)h(x) dx
def
== lim

j→∞

∫

Rn

b(x)hj(x) dx

where the limit exists for every sequence of functions hj ∈ C ∞
• (Rn) converg-

ing to h in the norm topology of H
1(Rn). An equivalent and very useful

way of defining (1.1) is through the almost everywhere approximation of the
factor b ∈ BMO(Rn) ,

(1.3)

∫ ∗

Rn

b(x)h(x) dx = lim
k→∞

∫

Rn

bk(x)h(x) dx .

The limit exists and coincides with that in (1.2) for every sequence {bk } ⊂
L

∞(Rn) converging to b almost everywhere, provided it is bounded in the
space BMO(Rn) . For example,

bk(x) =







k if k 6 b(x)
b(x) if −k 6 b(x) 6 k
−k if b(x) 6 −k

or bk =
k b

k + b
, k = 1, 2, ...

1 Hereafter we propose the following abbreviation A 4 B for inequalities of the form
|A| 6 C · B , where the constant C > 0 (called implied constant) depends on parameters
insignificant to us, such as the dimension n and so forth. One shall easily recognize those
parameters from the context.
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One should be warned, however, that the sequence {bk} need not converge
to b in the BMO-norm. The celebrated H1−BMO inequality gives us the
uniform estimate

∫

Rn

k b · h
k + b

4 || k b

k + b
||

BMO
· ||h ||H1 6 2 ||b ||BMO · ||h ||H1 .

An especially interesting case occurs when the point-wise product b · h is
either integrable or a nonnegative function. In view of the equivalence of the
limits at (1.2) and (1.3) , we obtain

(1.4)

∫ ∗

Rn

b(x)h(x) dx =

∫

Rn

b(x)h(x) dx , whenever

{

b · h ∈ L
1(Rn)

or b · h > 0

by the dominated and monotone convergence theorems, respectively.
Although in general the point-wise product b · h need not be integrable

we are able to give meaning to it as a Schwartz distribution. In what follows,
when it is important to emphasize this new meaning, we will use the notation
b× h ∈ D ′(Rn). For the definition of the distribution b× h , we look at the
test functions ϕ ∈ C ∞

0 (Rn) as multipliers for BMO -spaces.2 First notice the
inequality

(1.5) ||ϕb ||
BMO

4 ||∇ϕ ||∞ ( || b ||
BMO

+ | bQ| )

where bQ stands for the average of b over the unit cube Q = [0, 1]n ⊂ Rn .
We reserve the following notation,

|| b ||
BMO+

def
== || b ||

BMO
+ | bQ| ,

for the quantity that appears in the right hand side. Now the distribution
b × h operates on a test function ϕ ∈ C ∞

0 (Rn) by the rule

〈b × h |ϕ〉 def
==

∫ ∗

Rn

[ϕ(x)b(x)] h(x) dx =

lim
j→∞

∫

Rn

ϕ(x)b(x)hj(x) dx = lim
k→∞

∫

Rn

ϕ(x)bk(x)h(x) dx

4 ||ϕb ||
BMO

|| h ||
H1 4 ||∇ϕ ||∞ .

2 A study of multipliers for BMO -spaces originated in 1976 by the paper of S. Janson
[J1] and developed by Y. Gotoh [G1, G2], E. Nakai and K. Yabuta [NY, N].

3



The latter means precisely that the distribution b×h ∈ D ′(Rn) has order at
most 1. Obviously, the class C ∞

0 (Rn) of test functions for the distribution
b × h ∈ D ′(Rn) can be extended to include all multipliers for BMO(Rn).
But we do not pursue this extension here as the need will not arise. It is
both illuminating and rewarding to realize, by reasoning as before, that in
case when b ·h happens to be locally integrable or nonnegative on some open
set Ω ⊂ Rn , then b × h is a regular distribution on Ω ; its action on a test
function ϕ ∈ C ∞

0 (Ω) reduces to the integral formula

(1.6) 〈b × h |ϕ〉 =

∫

Ω

b(x) · h(x) ϕ(x) dx , whenever b · h ∈ L
1
loc (Ω).

The previous discussion on the product distribution b × h can be sum-
marized in the following lemma.

Lemma 1.1. For b a fixed function in BMO(Rn), the mapping h 7→ b h,
which is a priori defined on C ∞

• (Rn) with values in D ′(Rn), extends contin-
uously into a mapping from H

1(Rn) into D ′(Rn), and this new mapping is
denoted by h 7→ b × h. Moreover, for bk tending to b as above, the sequence
bk × h tends to b × h (in the weak topology of D ′(Rn)).

Remark that adding a constant to b, which does not change its BMO
norm, translates into adding a multiple of h to the product b × h. So, we
can restrict to functions b such that bQ = 0, for instance. If bk and b satisfy
this property, it is sufficient for the conclusion of the last lemma to assume
that the sequence bk tends to b in the weak∗ topology of BMO(Rn). This is
a direct consequence of the fact that, while ϕ ∈ C ∞

0 (Ω) is not a multiplier
of H

1(Rn), nevertheless for h ∈ H
1(Rn),

ϕh −
(∫

ϕhdx

)

χQ

is also in H
1(Rn). One sees already in this elementary case how the product

with a function in H
1(Rn) splits naturally into two parts, the one with can-

cellations (here the part in H
1(Rn)) and the L1 part (here the characteristic

function).

Weak Jacobian
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Recent developments in the geometric function theory [AIKM, IKMS, IM]
and nonlinear elasticity [B1, Mü2, Sv, Z] clearly motivated our investigation
of the distribution b×h. These theories are largely concerned with mappings
F = (f 1, f 2, ..., fn) : Ω → Rn (elastic deformations) in the Sobolev class

W
1, p(Ω, Rn) , and its Jacobian determinant J (x, F ) = det

[

∂f i

∂xj

]

. A brief

mention of the concept of the weak Jacobian [B1] is in order. For p = n one
may integrate by parts to obtain
∫

Ω

φ(x)J (x, F ) dx =

∫

Ω

φ df1 ∧ df2 ∧ ...∧ dfn = −
∫

Ω

f1 dφ∧ df2 ∧ ...∧ dfn

for all φ ∈ C ∞
0 (Ω) . Now this latter integral gives rise to a distribution

of order 1, whenever |F | · |DF |n−1 ∈ L
1
loc(Ω). By the Sobolev imbedding

theorem this is certainly the case when F ∈ W
1, p
loc (Ω, Rn), with p = n2

n+1
.

As is customary, we define the distribution ℑF ∈ D ′(Ω) by the rule

(1.7) 〈ℑF | φ 〉 = −
∫

Ω

f 1 dφ ∧ df2 ∧ ... ∧ dfn , for all φ ∈ C
∞
0 (Ω)

and call it the weak (or distributional) Jacobian.
With the concept of the product b×h ∈ D ′(Ω) we may proceed further in

this direction. Consider a mapping F ∈ BMO∩W
1, n−1. Its first coordinate

function b
def
== −f 1 lies in BMO, while the wedge product h(x) dx

def
==

dφ ∧ df 2 ∧ ... ∧ dfn belongs to the Hardy space H
1. Hence

(1.8) 〈ℑF | φ 〉 =

∫ ∗

Ω

[−f1] [dφ ∧ df2 ∧ ... ∧ dfn] , for all φ ∈ C
∞
0 (Ω) .

Most probably, such an extension of the domain of definition of the Jacobian
operator ℑ : BMO ∩W

1, n−1 → D ′ will prove useful in full development of
the aforementioned theories. However, to go into this in detail would take us
too far afield.

Hardy-Orlicz Spaces

Analysis of the relationship between the distribution b×h and the point-wise
product b · h brings us to the Hardy-Orlicz spaces. Let us take and use it as
a definition the following maximal characterization of H

1(Ω) on a domain
Ω ⊂ Rn, see for instance [Mi]. For this we fix a nonnegative Φ ∈ C ∞

0 (B)
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supported in the unit ball B = {x ∈ Rn; |x| < 1} and having integral 1. 3

The one parameter family of the mollifiers

Φε(x) = ε−nΦ
(x

ε

)

, ε > 0

gives rise to a maximal operator defined on D ′(Ω). For a given distribution
f ∈ D ′(Ω), we may consider smooth functions defined on the level sets
Ωε = {x ∈ Ω; dist (x, ∂Ω) > ε},

(1.9) fε(x) = (f ∗ Φε) (x)
def
== 〈f |Φε(x − ·)〉 .

This latter notation stands for the action of f on the test function y 7→
Φε(x − y) in y-variable. It is well known that fε → f in D ′(Ω) as ε → 0.
For a regular distribution f ∈ L

1
loc (Ω) the above convolution formula takes

the integral form,

(1.10) fε(x) =

∫

Ω

f(y)Φε(x − y) dy → f(x) , as ε goes to zero

whenever x ∈ Ω is a Lebesgue point of f .
As a matter of fact such point-wise limits exist almost everywhere for all

distributions f ∈ D ′(Ω) of order zero (signed Radon measures). The point-
wise limit is none other than the Radon-Nikodym derivative of the measure.
Call it the regular (or absolutely continuous) part of f ,

(1.11) lim
ε→0

fε(x) = freg (x) almost everywhere .

The Lebesgue decomposition of measures tells us that freg ∈ L
1
loc (Ω). If f is

a nonnegative distribution, meaning that 〈f |ϕ〉 > 0 for all nonnegative test
functions ϕ ∈ C∞

0 (Ω), then f is a Borel measure. Thus

(1.12) lim
ε→0

fε = freg ∈ L
1
loc (Ω) when f is a nonnegative distribution.

Next, the maximal operator M is defined on D ′(Ω) by the rule

(1.13) Mf(x) = sup {|fε(x)| ; 0 < ε < dist (x, ∂Ω)} .

3 For convenience of the subsequent discussion we actually assume that Φ is supported
in a cube centered at the origin and contained in B.
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Definition 1. A distribution f ∈ D ′(Ω) is said to belong to the Hardy space
H

1(Ω) if Mf ∈ L
1(Ω).

Naturally, H
1(Ω) is a Banach space with respect to the norm

(1.14) ||f ||H1(Ω) =

∫

Ω

Mf(x) dx.

An account and subtlety concerning weak convergence in H
1(Rn) is given

in [JoJ] and [D1]. Although it is not immediate from this definition, for
sufficiently regular domains, the Hardy space H

1(Ω) consists of restrictions
to Ω of functions in H

1(Rn) [Mi], see also [CKS, LM] for Lipschitz domains.
Obviously, these are regular distributions; actually we have the inclusion
H

1(Ω) ⊂ L
1(Ω).

Next we recall a general concept of Orlicz spaces. Given a sigma-finite
measure space (Ω, µ) and given a continuous function P : [0,∞) → [0,∞)
increasing from zero to infinity (but not necessarily convex), the Orlicz space
L

P(Ω, µ) consists of µ-measurable functions f : Ω → R such that

(1.15) |⌈ f ⌉|P = |⌈ f ⌉|LP (Ω, µ)
def
== inf

{

k > 0 ;

∫

Ω

P
(

k−1| f |
)

dµ 6 1

}

< ∞ .

In general, the nonlinear functional |⌈ ⌉|P need not satisfy the triangle in-
equality. However, it does when P is convex and in this case L

P(Ω, µ) be-

comes a Banach space with respect to the norm || ||P def
== |⌈ ⌉|P . In either

case L
P(Ω, µ) is a complete linear metric space, see [RR]. The L

P-distance
between f and g is given by

(1.16) distP [f, g]
def
== inf

{

ρ > 0 ;

∫

Ω

P
(

ρ−1 |f − g|
)

dµ 6 ρ

}

< ∞ .

Remark 1.1. It is true that |⌈f − g⌉|P 6 distP [f, g] 6 1 , provided the
rightmost inequality holds. Thus fj → f in L

P(Ω, µ) implies that |⌈fj −
f⌉|P → 0 . For the converse implication it is required that the Orlicz function
satisfies:

lim
ε→0

sup
t>0

P(εt)

P(t)
= 0 .

This is the case when P(t) = t
log(e+t)

, which we shall repeatedly exploit in
the sequel, see for instance the proof of Theorem 1.

7



We are largely concerned with Ω = Rn for which it is necessary to work
with weighted Orlicz spaces. These weights will be inessential in case of
bounded domains. Here are two examples of weighted Orlicz-spaces of inter-
est to us.
The exponential class

• Exp L = LΞ(Rn, σ), dσ =
dx

(1 + |x|)2n
, Ξ(t) = et − 1.

The Zygmund class

• L
℘ = L

℘(Rn, µ) , dµ =
dx

log(e + |x| ) , ℘(t) =
t

log(e + t)
.

Let us explicitly emphasize that L
℘, often denoted by L log−1

L, is lacking
a norm.

The Hardy-Orlicz space H
P(Ω, µ) consists of distributions f ∈ D ′(Ω)

such that Mf ∈ L
P(Ω, µ). We supply H

P(Ω, µ) with the nonlinear func-
tional

(1.17) |⌈ f ⌉|HP = |⌈ f ⌉|HP (Ω, µ)
def
== |⌈Mf ⌉|LP (Ω, µ) < ∞.

Thus H
P(Ω, µ) is a complete linear metric space, a Banach space when P is

convex. These spaces have previously been dealt with by many authors, see
[BoM, Ja2, St] and further references given there.

We shall make substantial use of the following weighted Hardy-Orlicz
space:

(1.18) H
℘ = H

℘(Rn, µ), ℘(t) =
t

log(e + t)
, dµ =

dx

log(e + |x|) .

At this point, let us remark that the space H
1(Rn) is contained in H

℘(Rn, µ).
The two spaces have common “cancellation” properties, such as the following
one.

Lemma 1.2. A compactly supported integrable function in H
℘(Rn, µ) has

necessarily zero mean.
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Indeed, for such a function f , it is well known that M f(x) ≥ c|x|−n, a
behavior that is forbidden in H

℘(Rn, µ).

Next we take on stage a definition of the BMO -norm on a domain Ω ⊂ Rn,
as proposed and developed in [J1];

||b ||BMO(Ω) = sup







∫

�

Q

| b − bQ | ; Q is a cube in Ω







, bQ =

∫

�

Q

b .

Functions which differ by a constant are indistinguishable in BMO(Ω). For
the space BMO(Rn) it is sometimes desirable to add |bQ| to this norm, as
we have done when defining || b ||

BMO+ . For Ω a bounded domain we shall
define

|| b ||
BMO+(Ω)

def
== || b ||

BMO(Ω)
+ || b ||

L1(Ω)
.

The well-developed study of the Jacobian determinants is concerned with
the grand Hardy space H

1)(Ω), see [IV, IS2, IS4]. Let Ω ⊂ Rn be a bounded
domain.

Definition 2. A distribution f ∈ D ′(Ω) belongs to H
1)(Ω) if

(1.19) || f ||H1)(Ω) = sup
0<p<1



(1 − p)

∫

�

Ω

|Mf(x)|p dx





1
p

< ∞.

We emphasize that L
1(Ω) ⊂ H

1)(Ω), where L
1(Ω) is a Banach space but

H
1)(Ω) is not. In this connection it is worth recalling the Hardy-Littlewood

maximal function of f ∈ L
1(Ω) 4

Mf(x)
def
== sup







∫

�

Q

|f(y)| dy ; x ∈ Q ⊂ Ω







.

In general the maximal function M(x) = Mf(x) is not integrable but it
belongs to the Marcinkiewicz class L

1
weak(Ω), which is understood to mean

that
∣

∣{x ∈ Ω; M(x) > t}
∣

∣ 6
A

t
, for some A > 0 and all t > 0.

4 With obvious modification the Hardy-Littlewood maximal operator can be defined
on Borel measures.
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An elementary computation then reveals that for each M ∈ L
1
weak(Ω) we

have

(1.20)



(1 − p)

∫

�

Ω

|M(x)|p dx





1
p

6
A

|Ω| .

For M = Mf, with f ∈ L
1(Rn), the growth of its p-norms is reflected in

the following equation

(1.21) lim
p→1

(1 − p)

∫

Ω

|M(x)|p dx = 0 .

This is definitely false for arbitrary M ∈ L
1
weak(Ω), as an inspection of the

Dirac mass in place of f shows.

Statement of the Results

Our main result is a detailed form of the decomposition at (0.1). 5

Theorem 1 (Decomposition Theorem). To every h ∈ H
1(Rn) there

correspond two bounded linear operators

(1.22) Lh : BMO(Rn) −→ L
1(Rn)

(1.23) Hh : BMO(Rn) −→ H
℘(Rn, µ)

such that for every b ∈ BMO(Rn) we have a decomposition

(1.24) b × h = Lh b + Hh b

and the uniform bound

(1.25) ‖Lh b‖
L1 + ‖Hh b‖

H℘ 4 || h ||H1 || b ||BMO+ .

Lh and Hh will be referred to as decomposition operators. There is
clearly not uniqueness of such operators, and we will give different such

5 This has been announced in earlier unpublished documents, and recently in [IS4]
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decompositions. Each of them will have the supplementary property that,
for b ∈ BMO(Rn), one has the equality

(1.26)

∫ ∗

Rn

b(x)h(x) dx =

∫

Rn

Lh b(x) dx .

So, Hh b can be thought as having zero mean, which is the case when b · h

is integrable (see also Lemma 1.2). In other words, Hh b inherits the cancel-
lation properties of h.

Remark that when b is constant, then b h belongs to both spaces, L
1(Rn)

and H
℘(Rn, µ). So we can choose to fix Lhh = h, and restrict to define the

decomposition operators on functions b such that bQ = 0. With this choice,
the L1-component enjoys a slightly better estimate,

(1.27) ‖Lh b‖1 4 || h ||1 · |bQ| + || h ||H 1 · || b ||BMO ,

as well as the other component, which satisfies

(1.28) ‖Hh b‖
H℘ 4 || h ||H1 || b ||BMO .

The question as to whether such operators can depend linearly on h

remains open. We believe in the affirmative answer.

Conjecture 1. There exist bilinear operators

L : BMO(Rn) × H
1(Rn) −→ L

1(Rn)

H : BMO(Rn) × H
1(Rn) −→ H

℘(Rn, µ)

such that for every b ∈ BMO(Rn) and h ∈ H
1(Rn) it holds

b × h = L (b , h) + H (b , h)

and
‖L (b , h)‖L1 + ‖H (b , h)‖H℘ 4 || h ||H1 || b ||BMO+ .

In applications to nonlinear PDEs, the distribution b × h ∈ D ′(Rn) is
used to justify weak continuity properties of the point-wise product b · h. It
is therefore important to recover b ·h from the action of the distribution b×h

on the test functions. An idea that naturally comes to mind is to look at the
mollified distributions

(b × h)ε = (b × h) ∗ Φε , and let ε → 0.

As a consequence of Theorem 1, we will see that the limit exists and equals
b · h almost everywhere.
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Theorem 2. Let b ∈ BMO(Rn) and h ∈ H
1(Rn). For almost every x ∈ Rn

it holds

(1.29) lim
ε→0

(b × h)ε(x) = b(x) · h(x) .

Here is another interesting fact. Suppose that b ·h is nonnegative almost
everywhere in an open set Ω ⊂ Rn. Then, as we have already mentioned,
b · h lies in L

1
loc(Ω) ⊂ D ′(Ω) and coincides with the distribution b × h ∈

D ′(Ω). The reader is urged to distinguish between the hypothesis b(x) ·
h(x) > 0, for almost every x ∈ Ω , and that of b × h being a nonnegative
distribution on Ω. This latter hypothesis precisely means that b × h is
a Borel measure on Ω (which is practically impossible to verify without
understanding the regularity properties of the point-wise product). That in
this case the measure b×h contains no singular part is not entirely obvious;
it is indeed a consequence of the point-wise approximation at (1.29).

Corollary 1. Let b ∈ BMO(Rn) and h ∈ H
1(Rn) and let Ω be an open

subset of Rn. The following conditions are equivalent

i) 〈 b × h |ϕ 〉 > 0 , for all nonnegative ϕ ∈ C ∞
0 (Ω)

ii) b(x) · h(x) > 0 , for almost every x ∈ Ω .

In either case the point-wise product b · h is locally integrable on Ω and, as
a distribution, coincides with b × h ∈ D ′(Ω).

If b × h ∈ D ′(Rn) is subjected to no restriction concerning the sign, we
still observe an improved regularity phenomenon.

Theorem 3. Let b ∈ BMO(Rn) and h ∈ H
1(Rn). Then the distribution

b× h ∈ D ′(Rn) belongs to the grand Hardy space H
1)
loc

(Rn), and we have the
estimate

(1.30) || b × h ||H1)(Ω) 4 || h ||H1(Rn) · || b ||BMO+(Rn) .

for every bounded open subset Ω ⊂ Rn ,

In symbols,

(1.31) BMO(Rn) × H
1(Rn) ⊂ L

1(Rn) + H
℘(Rn) ⊂ H

1)
loc(R

n) .

12



Next recall that L
1
weak(Ω) ⊂ L

1)(Ω). Hence it is entirely natural to ask
whether b×h lies in the weak Hardy space H

1
weak(Ω), meaning that M(b×h)

belongs to the Marcinkiewicz class L
1
weak(Ω). While this is obviously the case

for Lh b in (1.24), the Hh b -component need not be so nice. Nevertheless,
M(b×h) has properties reminiscent of Mf , where f ∈ L

1(Rn) . For example,
the limit at (1.21) continues to be equal to zero if M = M (b×h) /∈ L

1
weak(Ω) .

That is:

(1.32) lim
p ր 1

(1 − p)

∫

Ω

|M (b × h)|p = 0 .

This additional regularity of M(b × h) follows immediately from The-
orem 1 once we observe a general fact that (1.21) is true for arbitrary
M ∈ L log−1

L(Ω).
We shall give two proofs of Theorem 1, the first one based on div-curl

atoms, the second one on the atomic decomposition of H
1(Rn). This last

one generalizes in different contexts, such as the dyadic one, or Hardy spaces
on the boundary of the complex unit ball.

The first proof is not valid in the case n = 1, which is rather special, but
another proof, based on complex analysis, is available. For simplicity we shall
then skip to the periodic setting and work with the Hardy space H

1(D) of
analytic functions in the unit disk D ⊂ R2 ∼= C and the associated analytic
BMO-space, denoted by BMO(D), see [G, Zi]. Rather unexpectedly, in this
context the analogue of Theorem 1 is more precise and elegant.

Theorem 4. Product of functions in BMO(D) and H
1(D) lies in H

℘(D),
with ℘(t) = t

log(e+t)
. Moreover, we have the equality

(1.33) BMO(D) · H 1(D) = H
℘(D).

In Section 8 we consider the product of functions in H
1(Ω) and BMO(Ω),

for Ω a bounded Lipschitz domain, and make some remarks on the definition
of H

1(Ω), which may be of independent interest, based on the developments
in [CDS, D2, JSW, LM, Mi, S].

Epilog

There are several natural reasons for investigating the distribution b×h .
First, in PDEs we find various nonlinear differential expressions identified by
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the theory of compensated compactness, see the seminal work of F. Murat
[M] and L. Tartar [T], and the subsequent developments [E, EM, H]. New
and unexpected phenomena concerning higher integrability of the Jacobian
determinants and other null Lagrangians have been discovered [Mü1, IS1, IV,
IO, GIOV] , and used in the geometric function theory [IM, IKMS, AIKM] ,
calculus of variations [Sv, IS2], and some areas of applied mathematics, [Mü2,
MQY, Z]. Recently a viable theory of existence and improved regularity for
solutions of PDEs where the uniform ellipticity is lost, has been built out of
the distributional div-curl products and null Lagrangians [H, IS3] .
Second, these investigations bring us to new classes of functions, distributions
and measures [IS4] , just to mention the grand L

p -spaces [IS1, GIS, Sb].
Subtle and clever ideas of convergence in these spaces have been adopted from
probability and measure theory, biting convergence for instance [BC, BM,
BZ, Z]. Recent investigations of so-called very weak solutions of nonlinear
PDEs [IS2, GIS] rely on these new classes of functions.
Third, it seems likely that these methods will shed new light on harmonic
analysis with more practical applications.

2 Div-Curl Atoms

A key to our first proof of Theorem 1 is the use of div-curl products as
generators of H

1(Rn). We shall draw on the seminal ideas in [CLMS]. Con-
sider vector fields E ∈ Lp(Rn, Rn) with div E = 0 and B ∈ Lq(Rn, Rn) with
curl B = 0, where 1 < p, q < ∞ is a fixed Hölder conjugate pair , p+ q = pq.
The inner product E · B lies in the Hardy space H

1(Rn) and we have a
uniform bound,

(2.1) ||E · B ||H1 4 ||E ||p · ||B ||q .

We shall, by convenient abuse of previous terminology, continue to call E ·B
the div-curl atom. In [CLMS] the authors conjecture that for every element
h ∈ H

1(Rn) , n > 2, the Jacobian Equation

J (x, F ) = h , has a solution F ∈ W
1,n(Rn, Rn) .

In particular, every h ∈ H
1(Rn) is a single div-curl atom; p = n , q = n

n−1
.

We are inclined to conjecture more specific way of solving this equation:

14



Conjecture 2 (Resolvent of the Jacobian operator). There exists a
continuous (nonlinear) operator F : H

1(Rn) → W
1,n(Rn, Rn) such that

J (x, Fh) = h , for every h ∈ H
1(Rn) , n > 2 .

The following result motivates our calling E · B a div-curl atom.

Proposition 1 (Div-Curl Decomposition). To every h ∈ H
1(Rn) there

correspond vector fields Eν , Bν ∈ C ∞
0 (Rn, Rn), ν = 1, 2, . . ., with div Eν = 0

and curl Bν = 0, such that

(2.2) h =
∞

∑

ν=1

Eν · Bν

(2.3) || h ||H1 4

∞
∑

ν=1

‖Eν‖p · ‖Bν‖q 4 || h ||H1 .

The proof is based upon the arguments for Theorem III.2 in [CLMS],
with one principal modification. First, the decomposition at (2.2) with
E ∈ L

p(Rn, Rn) and B ∈ L
q(Rn, Rn) , follows in much the same way as

demonstrated in [CLMS] for p = q = 2 . However, by an approximation
argument one can easily ensure an additional regularity that the vector fields
E and B actually lie in the space C ∞

0 (Rn, Rn). Details are left to the
reader.
In what follows we fix, largely for aesthetical reason, the following Hölder
conjugate exponents:

(2.4) p = n + 1 and q =
1

n
+ 1.

One major advantage of using the expressions Eν · Bν over the usual H 1-
atoms is their product structure. We will be able to apply singular integrals
and maximal operators in the spaces Lp(Rn, Rn) and Lq(Rn, Rn), where those
operators are bounded.

3 A Few Prerequisites

We note two elementary inequalities

(3.1) ab 6 a log(1 + a) + eb − 1
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(3.2)
ab

log(e + ab)
6 a + eb − 1

for a, b > 0. Of these, the first is the key to the duality between Exp L and
L log L. Indeed, we have the inequality

(3.3) ||fg ||L1 6 2 ||f ||L log L ||g ||Exp L

where the Orlicz functions defining L log L and Exp L are t log(e + t) and
et − 1, respectively.

Next we recall the space L log−1
L = L

℘, where ℘(t) = t log−1(e + t).
With the aid of (3.2) we obtain Hölder’s inequality

(3.4) |⌈fg⌉|℘ 6 4 ||f ||L1 ||g ||Exp L .

Although the functional |⌈ ⌉|℘ fails to be subadditive we still have a substitute
for the triangle inequality

(3.5) |⌈f + g⌉|℘ 6 4 |⌈f⌉|℘ + 4 |⌈g⌉|℘ .

There are no substitutes of subadditivity for infinite sums. In the above
inequalities we have understood that the underlying measure is the same
for each space. However, weighted exponential classes Exp L(Rn, σ) are
better suited for the study of functions with bounded mean oscillations.
In this connection we recall the familiar John-Nirenberg inequalities. Let
b ∈ BMO(Rn) be nonconstant and let Q be a cube in Rn. Then

(3.6)

∫

�

Q

exp

( |b(x) − bQ|
λ ||b ||BMO

)

dx 6 2 ,

where λ > 0 depends only on the dimension. It is apparent from these
inequalities that BMO(Rn) ⊂ Exp L(Rn, σ) for some weights σ , for instance
when

(3.7) dσ(x) =
dx

(1 + |x|)2n
.

Let us state, without proof, the following lemma.
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Lemma 3.1. Let const ≡/ b ∈ BMO(Rn) and bQ denote the integral mean
of b over the unit cube Q ⊂ Rn. Then

(3.8)

∫

Rn

(

e
|b(x)−bQ|

k − 1
)

dx

(1 + |x|)2n
6 1

where k = Cn ||b ||BMO. In other words, we have

(3.9) ||b − bQ ||Exp L(Rn,σ) 4 ||b ||BMO(Rn).

From now on we shall make use of the abbreviated notation

(3.10) L
Ξ = Exp L = Exp L(Rn, σ) .

We want to introduce a weight into the space L
℘(Rn) = L log−1

L(Rn)
so that Hölder’s inequality at (3.4) will hold with L

1 = L
1(Rn, dx) . This

weight has already been discussed in the introduction, i.e.

(3.11) dµ(x) =
dx

log (e + |x|) .

The notation for the space L log−1
L with respect to this weight is abbrevi-

ated to:

(3.12) L
℘ = L

℘(Rn) = L
℘(Rn, µ) = L log−1

L(Rn).

The following two Hölder type inequalities will be used in the proofs.

Lemma 3.2. Let b ∈ Exp L(Rn, σ) = L
Ξ. Then for each λ ∈ L

1(Rn) we
have λ · b ∈ L

℘(Rn, µ) and

(3.13) |⌈λ · b⌉|℘ 4 ||λ ||1 · ||b ||Ξ .

If, moreover, b ∈ BMO(Rn) ⊂ Exp L(Rn, σ) then

(3.14) |⌈λ · b⌉|℘ 4 ||λ ||1 · ||b ||BMO+ .

Proof. We will prove (3.13) with the constant 64n2. As both sides of (3.13)
have the same homogeneity with respect to λ and b, we may assume that
||λ ||1 = ||b ||Ξ = 1

8n
and prove the inequality

(3.15)

∫

Rn

|λ(x)b(x)| dx

log[ e + |λ(x)b(x)| ] log(e + |x|) 6 1.
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We use the two elementary inequalities:

2n log(e + |x|) > log(e + (1 + |x|2n),

and, for a, b > 0,

log(e + a) log(e + b) >
1

2
log(e + ab).

Combining the above inequalities with (3.2), we now estimate the integrand
at (3.15)

|λb|
log(e + |λb|) log(e + |x|) 6 4n|λ| + 4n

e|b| − 1

(1 + |x|)2n
.

It remains to observe that upon integration the right hand side will be
bounded by 1, because of our normalization ||λ ||1 = ||b ||Ξ = 1

8n
, the defini-

tion of the norm in Exp L(Rn, σ) and the elementary inequality 8n(ea−1) ≤
e8na − 1. This establishes the first inequality of the lemma.

The second inequality is obvious when b is constant. To see the general
case we apply (3.13) to the function b − bQ in place of b , where Q is the
unit cube, to obtain

||λb ||℘ 6 4 || (b − bQ) λ ||℘ + 4 ||bQ λ ||℘
4 ||b − bQ ||Ξ ||λ ||1 + |bQ| ||λ ||1
4 ||b ||BMO ||λ ||1 + |bQ| ||λ ||1
4 ||λ ||1 ||b ||BMO+

as desired.

4 Construction of Operators Lh and Hh via

div-curl atoms

In this section and the following, the dimension n is larger than one. We
propose decomposition operators that are defined using a div-curl decompo-
sition. This makes particularly sense in view of Conjecture 2.

The familiar Helmholtz decomposition of a vector field V ∈ L
2(Rn, Rn),

also known as Hodge decomposition, asserts that

(4.1) V = ∇u + F

18



where ∇u ∈ L
2(Rn, Rn) and F is a divergence free vector field in L

2(Rn, Rn).
Integration by parts shows that F and ∇u are orthogonal. These orthogonal
components of V are unique and can be expressed explicitly in terms of V
by using Riesz transforms R = (R1, . . . , Rn) in Rn. Precisely we have

(4.2) −∇u = R(R · V)
def
== R

(

R1V
1 + . . . + RnV

n
)

= [R ⊗ R]V

where (V 1, . . . , V n) are the coordinate functions of V and the tensor product
R⊗R is the matrix of the second order Riesz transforms, R⊗R = [ Ri◦Rj ].
Thus the divergence free component takes the form

(4.3) F = (I + R ⊗ R)V , where I denotes the identity operator .

We introduce two singular integral operators

(4.4) A = I + R ⊗ R and B = −R ⊗ R .

These are none other than the orthogonal projections of L
2(Rn, Rn) onto

divergence free and curl free vector fields, respectively.
Of course these operators extend continuously to all Ls(Rn, Rn), with

1 < s < ∞. By the definition,

(4.5) A + B = I : L
s(Rn, Rn) → L

s(Rn, Rn).

An important point to emphasize is that A vanishes on the gradients (the
curl free vector fields), while B acts as identity on the gradients. This
observation is immediate from the uniqueness in the Hodge decomposition.

Next we recall Proposition 4.6. Accordingly, every function h ∈ H
1(Rn)

can be expressed as infinite sum of div-curl atoms,

(4.6) h =
∞

∑

ν=1

Eν · Bν ,

(

Eν ∈ C ∞
0 (Rn) , div Eν = 0

Bν ∈ C ∞
0 (Rn) , curl Bν = 0

)

where

(4.7)
∞

∑

ν=1

||Eν ||p · ||Bν ||q ≈ ||h ||H1 , p = 1 + n , q = 1 +
1

n
.

Now we define the decomposition operators at (1.24) and (1.25) by the
rules

(4.8) Lh b
def
== bQ · h +

∞
∑

ν=1

Eν · A (bBν)
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(4.9) Hh b
def
== −bQ · h +

∞
∑

ν=1

Eν · B(bBν)

for every b ∈ BMO(Rn). Both series converge in D ′(Rn) and absolutely
almost everywhere, which will easily be seen from the forthcoming estimates.
What we want to show is that the partial sums of (4.8) converge in L

1(Rn),
while the partial sums of (4.9) converge in H

℘(Rn, µ). Once such convergence
is established Lh and Hh become well defined bounded linear operators on
the space BMO(Rn).

5 Proof of Theorem 1 through div-curl atoms.

We aim to give an L1-bound for Lhb and H℘-bound for Hhb, where b is
an arbitrary function in BMO(Rn). As we remarked before, we can assume
that bQ = 0 without loss of generality, which we do in the sequel. As a
consequence, Formulas (4.8) and (4.9) have no first term.

Let us begin with the easy case.

Estimate of Lhb .

We have already mentioned that A vanishes on the curl free vector fields.
So

Lhb =
∞

∑

ν=1

Eν · (A b − bA ) Bν .

Here A b−bA denotes the commutator of A and the operator of multiplica-
tion by the function b ∈ BMO(Rn). At this point we recall the fundamental
estimate of R. Coifman, R. Rochberg and G. Weiss [CRW]

(5.1) ||(A b − bA )Bν ||q 4 ||b ||BMO ||Bν ||q .

We conclude with the estimate of Lhb claimed at (1.27), by using Hölder’s
Inequality.

Estimate of Hhb.

Recall that we assumed that bQ = 0, and Formula (4.9), in view of (4.6),
reduces to

(5.2) Hhb =
∞

∑

ν=1

Eν · B( bBν ) .
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This can be compared to the div-curl decomposition, except that the curl-free
parts, B( (bBν)) do not satisfy the same estimates in the L

q space.
Some explanation concerning convergence of this series is in order. First,

to make our arguments rigorous, we consider finite sums

S l
k =

∑ ♯

Eν · B( (bBν )
def
==

ν=l
∑

ν=k

Eν · B( (bBν ) , for k < l ,

which we shall use to verify the Cauchy condition for convergence of the
infinite series with respect to the metric in H

℘(Rn). In view of Remark 1.1,
this is equivalent to showing that

lim
k→∞

|⌈MS l
k ⌉|℘ = 0 .

Note that bBν ∈ L
s(Rn, Rn) for all 1 < s < ∞, because Bν ∈ C ∞

0 (Rn, Rn).
The same is valid for its component B( (bBν). At this point we need to recall
the Hardy-Littlewood maximal operator

M : Ls(Rn) −→ Ls(Rn), 1 < s < ∞ .

We then refer to the proof of the div-curl lemma given in [CLMS]. Their
fundamental estimate written in this context gives the inequality

(5.3) M (Eν · B( bBν)) 4 ( M|Eν |n )
1
n · M|B(bBν)| .

Let us first examine the term M|B(bBν)|, for which we have the inequality

M|B(bBν)| 6 M|bBν | + M| (A b − bA )Bν | .

We wish to move the factor b in M(bBν) outside the maximal operator. A
device for this procedure is the following commutator:

(5.4) M|b| − |b|M : L
s(Rn) −→ L

s(Rn), 1 < s < ∞.

The inequality now takes the form:

(5.5) M|B(bBν)| 6 |b| · M|Bν | + Xν ,

where
Xν =

(

M|b| − |b|M
)

|Bν | + M|(A b − bA )Bν | .
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A point to make here is that ||Xν ||q is controlled by ||Bν ||q and the
BMO-norm of b . Precise bounds are furnished by the inequality due to
M. Milman and T. Schonbek [MS]. It asserts that

(5.6)
∥

∥(M|b| − |b|M) f
∥

∥

s
4 ||b ||BMO ||f ||s for all 1 < s < ∞.

Similarly, we can use (5.1) for the commutator A b − bA .
These estimates, combined with the usual maximal inequalities, yield

(5.7) ||Xν ||q 4 ||Bν ||q · ||b ||BMO .

We can now return (5.3) to obtain the inequality

M (Eν · B( bBν)) 4 (M |Eν |n)
1
n · [ Xν + |b| M |Bν | ] ,

which upon substitution into (5.2) yields

(5.8) (MS l
k)(x) 4 λ(x) · |b(x)| + A(x) ,

where

(5.9) λ =
∑ ♯

(M |Eν |n)
1
n · M (Bν)

(5.10) A =
∑ ♯

(M |Eν |n)
1
n · Xν .

We approach the critical point of our computation. The goal is to show that
λ and A are integrable functions. Note explicitly that direct approach to
L℘-estimates of an infinite series (term by term estimates), or even its finite
partial sums such as (5.2), would fail. This failure is due to the lack of count-
able subadditivity of |⌈ ⌉|℘. Whereas, making the L1-estimates independently
of the number of terms poses no difficulty. It goes as follows:

||λ ||1 4
∑ ♯ || (M |Eν |n)

1
n ||p · ‖M (Bν)‖q 4

∑ ♯ ‖Eν‖p ‖Bν‖q

where we have used the maximal inequalities in the space L
q(Rn), with q =

n+1
n

> 1; recall that p = qn. In much the same way we estimate the L1-norm
of A by (5.7)

||A ||1 4
∑ ♯ ||Eν ||p ||Xν ||q 4

(

∑ ♯ ||Eν ||p ||Bν ||q
)

||b ||BMO .
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We are now in a position to estimate the maximal function of S l
k. First,

by (3.5), we can write

||MS l
k) ||℘ 6 4 ||λb ||℘ + 4 ||A ||℘ .

Then, with the aid of (3.14), we arrive at the estimate
(5.11)

||S l
k ||H℘(Rn) 4 ||A ||1 + ||λ ||1 · ||b ||BMO 4

(

∑ ♯

||Eν ||p ||Bν ||q
)

||b ||BMO .

Recall that the right hand side stands for
(

∑ν=l

ν=k ||Eν ||p ||Bν ||q
)

||b ||BMO.

This estimate, in view of
∑ν=∞

ν=1 ||Eν ||p ||Bν ||q ≈ ||h ||H1 < ∞, ensures the
Cauchy condition for the convergence of the infinite series (5.2) in the metric
topology of the space H

℘(Rn) . Put k = 1 and let l go to infinity, to obtain
the desired inequality:

(5.12) ||Hhb ||H℘ 4 ||h ||H1 · ||b ||BMO+

completing the proof of Theorem 1.
Let us prove (1.26). By continuity of the linear functional associated to

b,
∫ ∗

Rn

b(x)h(x) dx =
∑

∫

Rn

b(x)Eν(x) · Bν(x) dx.

The integral of a div-curl atom is zero, so that
∫

Rn

bEν · Bν dx =

∫

Rn

Eν · A (bBν) dx,

from which we conclude.

6 Proof of Theorem 1 through classical atoms.

For Q a cube in Rn, recall that a Q-atom is a bounded function a that
vanishes outside Q, has mean zero and satisfies the inequality ‖a‖∞ ≤ |Q|−1.
The atomic decomposition goes as follows (see [S2] for instance):

Proposition 2 (Atomic Decomposition). To every h ∈ H
1(Rn) there

correspond scalars λν, cubes Qν and Qν-atoms aν, ν = 1, 2, . . ., such that

(6.1) h =
∞

∑

ν=1

λν aν
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(6.2)
∞

∑

ν=1

‖λν‖ ≈ || h ||H1 .

For h ∈ H
1(Rn) given as above, let us define new decomposition operators

as follows. For b ∈ BMO(Rn) with bQ = 0, we define

(6.3) Lh b
def
==

∞
∑

ν=1

λν(b − bQν
)aν

(6.4) Hh b
def
==

∞
∑

ν=1

λνbQν
aν .

Let us prove Theorem 1 for these decomposition operators. As in the previous
section, we want to show that the partial sums of (6.3) converge in L

1(Rn),
while the partial sums of (6.4) converge in H

℘(Rn, µ). Once such convergence
is established Lh and Hh become well defined bounded linear operators on
the space BMO(Rn).

The first assertion follows immediately from the fact that

‖b − bQν‖L1(Qν) ≤ ||b ||BMO|Qν | ,

which, combined with (6.2), implies the normal convergence of the series
appearing in (6.3).

Let us concentrate on (6.4). We have the inequality

(6.5) |M (bQν
aν)| ≤ |b − bQν

| |M (aν)| + |b||M (aν)| .

It is sufficient to prove the two following L1 inequalities for Q-atoms a:

(6.6) ‖(b − bQ) M (a)‖1 4 ||b ||BMO

(6.7) ‖M (a)‖1 4 1 ,

to be able to proceed as in Section 5. A linear change of variables allows us
to assume that Q is the unit cube Q. Then both inequalities are classical
and may be found in [S2]). For a Q-atom a one has the inequality

Ma(x) 4
1

(1 + |x|)n+1
,
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while
∫ |b(x) − bQ|

(1 + |x|)n+1
dx 4 ‖b‖BMO .

The conclusion follows at once.

Again, we prove (1.26) as in the previous section. By continuity of the
linear functional associated to b,

∫ ∗

Rn

b(x)h(x) dx =
∑

∫

Rn

b(x)aν(x) dx .

The integral of an atom is zero, so that
∫

Rn

baν dx =

∫

Rn

(b − bQ)aν dx ,

from which we conclude.

7 Proof of Theorem 2

Recall that the space C ∞
• (Rn) of smooth functions with compact support

whose integral mean equals zero is dense in H
1(Rn). We fix a sequence

{hj} ⊂ C ∞
• (Rn) converging to a given function h in H

1(Rn). We also fix a
function b ∈ BMO(Rn). Our proof is based upon the following observation.
There exists a subsequence, again denoted by {hj} , such that

(7.1) M [ b × (h − hj) ] −→ 0 , almost everywhere .

To see this we appeal to the decomposition in Theorem 1. Accordingly,

M [ b × (h − hj) ] 6 M [ Lh−hj
b ] + M [ Hh−hj

b ] .

It suffices to show that each term in the right hand side converges to zero
almost everywhere. For the first term we argue by using the inequality (1.25),

||Lh−hj
b ||

L1 4 || h − hj ||H1 || b ||BMO+ −→ 0 .

Hence M [ Lh−hj
b ] 6 M[ Lh−hj

b ] → 0 in L
1
weak(R

n) , thus almost every-
where for a suitable subsequence. Similarly, for the second term, we have

||M [ Hh−hj
b ] ||L℘ 4 || h − hj ||H1 || b ||BMO+ −→ 0 .
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Passing to a subsequence we conclude with 7.1.
We now define a set E ⊂ Rn of full measure by requiring that every

x ∈ E is a Lebesgue point of b and, in addition,

(7.2) M [ b × (h − hj) ] + | b · (h − hj) | → 0 on E

We shall show that

(7.3) lim
ε→0

(b × h)ε(x) = b(x) · .h(x) for x ∈ E

From now on the computation takes place at a given point x ∈ E . We begin
with a telescoping decomposition

(b × h)ε − b · h = [ b × (h − hj) ]ε + [ (b × hj)ε − b · hj ] + b · (hj − h) .

Hence

| (b×h)ε − b ·h | 6 M [ b× (h−hj) ] + | (b×hj)ε − b ·hj | + | b · (hj −h) | .

We choose j sufficiently large so that the first and the last terms are small.
With j fixed the middle term goes to zero as ε → 0 , because x was a
Lebesgue point of b. This completes the proof.

8 The case of dimension 1: classical Hardy

spaces

We include this section for different reasons. The first one is that the “div-
curl method” does not work, obviously, in dimension one. Secondly, we
have more accurate results, as well as a converse statement to Theorem 1,
which may be seen as a factorization theorem for analytic functions. Also
the proof is particularly simple and conceptual. We consider the case of
periodic functions for simplicity. A last point to mention is the fact that the
decomposition operators that we propose depend now linearly of h instead
of b. This deserves to be mentioned in view of Conjecture 1.

We first recall the definition of Hardy spaces of analytic functions in the
unit disk D ⊂ R2 ∼= C.
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Definition 3. The space H p(D) , p > 0 , consists of analytic functions
F : D → C such that

(8.1) ||F ||H p(D)
def
== sup

0<r<1

(∫ 2π

0

|F (reiθ)|p dθ

2π

)

1
p

< ∞ .

If p > 1 this formula defines a norm and H p(D) becomes a Banach
space. For 0 < p < 1, H p(D) is a complete linear metric space with respect

to the distance dist
H℘ [F,G]

def
== ||F−G ||pp . A fundamental theorem of Hardy

and Littlewood asserts that an analytic function F : D → C is in H p(D)
if and only if its non-tangential maximal function F > ∈ L

p(∂D) , where for
every ξ ∈ ∂D we define

F >(ξ)
def
== sup

z ∈Γ(ξ)

|F (z)| , and Γ(ξ) = {z ∈ D; |ξ − z| < 2(1 − |z|) } .

We shall also need the so-called analytic BMO-space, defined and de-
noted by

(8.2) BMO(D) = H
1(D) ∩ BMO(∂D) .

Perhaps this definition needs some explanation. It is known, see [G], that
every function F ∈ H p(D) has non-tangential limit f(ξ) = lim

Γ(ξ)�z→ξ
F (z)

almost everywhere on ∂D . The function f is usually called the boundary
value of F , and, by abuse of notation, we will write F (ξ) instead of f(ξ) most
of the time. Furthermore, if p > 1 , then we recover F from its boundary
values by Poisson integral, denoted by F = Pf . In other words, elements of
the Hardy space H p(D) , with p > 1 , may be viewed as functions on ∂D in
L

p(∂D). The same is valid for BMO(D), whose elements can as well be seen
as analytic functions inside the unit disc, or as functions at the boundary.

Now, the connection between H 1(D) , viewed as a space of functions on
∂D , and the real Hardy space H

1(∂D) (also generated by the atoms and
the constants) is rather simple :

H
1(∂D) = {u + iv ; u, v ∈ ℜe H

1(D) } .

It turns out, see [G], that H
1(∂D) consists precisely of those f ∈ L

1(∂D) for
which the non-tangential maximal function (Pf)> of the Poisson extension
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Pf : D → C lies in L
1(∂D) . As a corollary, the Hilbert transform H is a

bounded operator of H
1(∂D) into itself. We then have

H
1(D) |∂D = {u + iHu ; u ∈ H

1(∂D) } .

We now want to introduce in a similar fashion the Hardy-Orlicz space
H ℘(D) , with ℘(t) = t

log(e+t)
. By definition, it consists of analytic functions

F : D → C such that

sup
0<r<1

∫ 2π

0

|F (reiθ)| dθ

log(e + |F (reiθ)|) < ∞ .

Thus we may define

|||F |||℘ def
== sup

0<r<1
|⌈Fr⌉|L℘(∂D)

, Fr(ξ) = F (rξ) , for ξ ∈ ∂D .

This space contains H 1(D) , and is contained in H p(D) , for p < 1. As for
H p(D) spaces, we have the following, which will be useful later,

Proposition 3. An analytic function F : D → C belongs to H ℘(D) if
and only if its non-tangential maximal function F > lies in the Orlicz space
L

℘(∂D).

Proof. The “if” part is obvious. To prove the converse, we mimic the well
known arguments used for H p(D) spaces. First of all, every function F ∈
H ℘(D) belongs to H

1
2 (D) and thus admits a decomposition F = B G ,

where B is a Blaschke product and G is non-vanishing in D. The argument
used on page 56 in [G] works mutatis mutandis to show that G ∈ H ℘(D) ,
because of the convexity of the function s −→ es log−1(e + es) . As a con-
sequence,

√
G belongs to the space L

2log−2
L(∂D). By an easy variant of

Hardy-Littlewood maximal inequality,the same is valid for
√

G
>
. To con-

clude, we have a point-wise inequality between the non-tangential maximal

functions F > 6 G> = [
√

G
>
]2 . The reader may wish to recall that

F > 4 Mf on ∂D , where f is the boundary value of F ∈ H ℘(D) and
M stands for the Hardy-Littlewood maximal operator on ∂D, see [G].

Let us go back to products of functions in H 1(D) and BMO(D) , which
are contained in all H p(D) spaces for p < 1. We are now ready to prove
Theorem 4, which has already been stated in the introduction and is repeated
here for convenience.
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Theorem 4. The product of G ∈ BMO(D) and H ∈ H 1(D) belongs
to H ℘(D). Moreover, every function in H ℘(D) can be written as such a
product. In other words,

H
1(D) · BMO(D) = H

℘(D).

Proof. Let us prove the first assertion. We only need to bound the integrals

Ir =

∫ 2π

0

|G(reiθ)| · |H(reiθ)| dθ

log [ e + |G(reiθ)| · |H(reiθ)|| ] ,

independently of 0 < r < 1 . This is given by (3.14), using the fact that Gr

have norms in BMO(D) that are uniformly bounded.
For the converse, let F ∈ H ℘(D). We want to find G and H such

that F = GH. By Proposition 3, we know that its non-tangential maximal
function F > is such that F >log−1(e+F >) ∈ L

1(∂D) . At this point we need
a BMO-majorant of log (e + F >).

Lemma 8.1. There exists G ∈ BMO(D) such that log (e + F >) 6 |G| on
∂D.

To see this, we factor F as before, F = B · F0 , where B is a Blaschke
product and F0 does not vanish in D. Then F > 6 GF >

0 = [
√

F0
>
]2 4

[ M
√

F0 ]2. Thus

log (e + F >) 6 C + 2 log
(

M
√

F0

)

def
== b ∈ BMO(∂D)

by a famous theorem of Coifman-Rochberg-Weiss [CRW]. Define G as the
Poisson integral of b + iHb. Then G is in BMO(D) and has the required
properties.

To conclude for the proof of Theorem 4, we need only show that H = F/G
belongs to H 1(D) . We already know that H belongs to H p(D) for p < 1,
since the function G is bounded below. The last stage consists in proving
that the boundary values of H are given by an integrable function on ∂D

(recall that the boundary values of a non zero function in H p(D) cannot
vanish almost everywhere). This last fact is obvious:
∫ 2π

0

|H(eiθ)| dθ =

∫ 2π

0

|F (eiθ)|
|G(eiθ)| dθ 6

∫ 2π

0

F >(eiθ)

log[ e + F >(eiθ) ]
dθ < ∞ ,

which completes the proof of Theorem 4.
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Let us turn to the so-called “real” Hardy spaces. We define H ℘(∂D)
as the space of distributions f on ∂D such that (Pf)> ∈ L

℘(∂D) . An
equivalent definition, as for H p spaces, is the following:

(8.3) H
℘(∂D) = {u + iv ; u, v ∈ ℜe H

℘(D) } .

Here, in the right hand side, the space H ℘(D) is identified with the space
of corresponding boundary values in the sense of distributions.The fact that
H ℘(D) is contained in H ℘(∂D) follows from proposition 3. Let us just sketch
the proof of the converse. It is sufficient to consider a real distribution f , such
that Pf = ℜh, with h ∈ H p(D). To conclude, it is sufficient to recall that
the area functions of f and h coincide, and that the area function may be
equivalently used in the definition of H ℘(∂D) instead of the non tangential
maximal function. We refer to [G] for this.

Theorem 5. The product of functions in H
1(∂D)and BMO(∂D) is a dis-

tribution in L
1(∂D) + H

℘(∂D). In other words,

H
1(∂D) × BMO(∂D) ⊂ L

1(∂D) + H
℘(∂D) .

Before embarking into the proof, the statement has to be given some
explanation, as in Rn. Namely, we must give a meaning to the product
of h ∈ H

1(∂D) and b ∈ BMO(∂D) as a distribution, since one cannot
in general multiply distributions. But, as in dimension n > 2 , it follows
from a result of Stegenga [St] that φb ∈ BMO(∂D) for every test function
φ ∈ C ∞(∂D) . We may, therefore, define the distribution b × h ∈ D ′(∂D)
by the rule,

〈h × b , φ〉 def
== 〈h , φb〉

H1−BMO
.

Proof. By Theorem 4 we know that (h + iHh) · (b + iHb) ∈ H ℘(D)
and thus the imaginary part of this function, h · Hb + b · Hh ∈ H

℘(∂D) .
To conclude with the decomposition of b × h we recall the well known fact
(following from the H1−BMO duality) that every b ∈ BMO(∂D) can be
expressed as b = b1 + Hb2 , where both functions b1 and b2 lie in L

∞(∂D)
[J3, FS]. Hence we obtain the desired decomposition

h × b = α + β , where

{

α = h b1 − b2 Hh ∈ L
1(∂D)

β = h Hb2 + b2 Hh ∈ H
℘(∂D)

by what we have just seen with b2 in place of b.
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Remark that we could also have used the method of Section 6. Here we
have a more explicit decomposition, which depends linearly on h instead of
b. Moreover, we have a converse, even if it is not as neat as for analytic
functions.

Proposition 4. Any distribution in L
1(∂D) + H

℘(∂D) can be written as a
sum of no more than two distributions in H

1(∂D) · BMO(∂D).

Proof. Using the alternative definition of H
℘(∂D) through real parts of holo-

morphic functions in H
℘(D) as well as Theorem 4, we can consider a function

that may be written as f + b1h1 + b2h2, with f ∈ L
1(∂D) with b1, b2 in

BMO(D) and h1, h2 in H 1(D). We claim that f +b1h1 can be written as bh,
with b2 in BMO(∂D) and h in H 1(D). Indeed, put g = |f |+ |h1|+ e . Then
log g is integrable and there is a function h ∈ H 1(D) such that |h|∂D = g :
it suffices to take F = exp(u + iv) , where u is the Poisson integral of log g
and v is the harmonic conjugate of u. To conclude, it remains to remark
that f

h
+ b1

h1

h
is in BMO(∂D). The first term is clearly bounded, while the

second term is in BMO(D) as the product of a function in BMO(D) and a
function in H ∞(D). This concludes for the proof.

There remains still an interesting question which we leave unanswered:

Question. Is H
1(∂D) · BMO(∂D) a vector space?

9 Variants on domains in Rn

We first generalize Theorem 1 in the context of bounded Lipschitz domains.
We claim that, again, the product b × h can be defined in the distribution
sense for b ∈ BMO(Ω) and h ∈ H

1(Ω). Recall that this BMO space is
larger than the dual space of H

1(Ω), which coincides with the subspace of
BMO(Rn) consisting in functions that vanish outside Ω (see [CDS]). This
allows us to define, for ϕ ∈ C ∞

0 (Ω),

〈b × h |ϕ〉 def
==

∫ ∗

Ω

[ϕ(x)b(x)] h(x) dx =

∫ ∗

Rn

[ϕ(x)b(x)] h̃(x) dx

4 ||ϕb ||
BMO

|| h ||
H1(Ω)

4 ||∇ϕ ||∞ .

Here h̃ is the extension of h in H
1(Rn) given in the next proposition.
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Proposition 5 (Extension). Let Ω be a bounded Lipschitz domain in Rn.
There exist linear operators HΩ : H

1(Ω) → H
1
F (Rn) and BΩ : BMO(Ω) →

BMO(Rn) such that

{

HΩh = h on Ω
||HΩh ||

H1
F

(Rn)
4 ||h ||

H1
F

(Ω)

and

{

BΩb = b on Ω
||BΩb ||

BMO(Rn)
4 ||b ||

BMO(Ω)

.

For BMO -extension see [J1], while an up-to-date connected account of
H1 -extensions appears in [Mi].

Using these extensions, we get

Corollary 2. Theorem 1 holds with Rn replaced by any bounded Lipschitz
domain.

As a final remark, we discuss some maximal operators best suited to PDEs
and, in particular, to the use of Jacobian determinants or div-curl atoms
as generators of H

1(Ω). There is quite an extensive literature concerning
definitions of the Hardy spaces in a domain Ω ⊂ Rn, [CKS, CDS, D1, D2,
Ja2, JSW, LM, Mi]. Let us briefly outline the general concept of a maximal
function of a distribution f ∈ D ′(Ω). Suppose that for each point x ∈ Ω, we
are given a class Fx of test functions ϕ ∈ C ∞

0 (Q), where Q ⊂ Ω are cubes
containing x. Denote by F =

⋃

x∈Ω Fx . The maximal function MFf of a
distribution f ∈ D ′(Ω) is defined by the rule

(9.1) MFf(x) = sup {〈f, ϕ〉 ; ϕ ∈ Fx } .

Note that Definition 1 is dealt with the test functions of the form ϕ(y) =
Φε(x − y) , 0 < ε < dist(x, ∂Ω).

Definition 4. A distribution f ∈ D ′(Ω) is in the Hardy space H
1
F (Ω) if

(9.2) ||f ||H1
F

(Ω) =

∫

Ω

MFf(x) dx < ∞ .

It is perhaps worth considering the class Fx of all test functions such
that

(9.3) ||∇ϕ ||∞ 6
1

(diam Q)n+1
, x ∈ Q ⊂ Ω , ϕ ∈ C

∞
0 (Q) .
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This seemingly modest generalization is a great convenience to PDEs. It
is easily seen that the restriction of f ∈ H

1
F (Rn) to any domain Ω ⊂ Rn

lies in H
1
F (Ω). We also have the inclusion H

1
F (Ω) ⊂ H

1(Ω), since the
class Fx contains all test functions of the form ϕ(y) = Φε(x − y) , with
0 < ε < dist(x, ∂Ω). See footnote 3.

Proceeding further in our attempts to generalize the maximal operator,
we still weaken regularity of the test functions in the class Fx . Instead of
the gradient condition at (9.3) we shall impose only Hölder’s condition

(9.4) ||ϕ ||Cγ(Q)
def
== sup

a, b∈Q

|ϕ(a) − ϕ(b)|
|a − b|γ 6

1

( diam Q)n+γ
.

From now on, our class Fx , consists of test functions ϕ ∈ C ∞
0 (Q) that

verify (9.4), where Q ⊂ Ω can be arbitrary cube containing x ∈ Ω , whereas
the exponent 0 < γ 6 1 is fixed.

Our detailed account will be confined to the case in which the underlying
domain Ω is either a cube or the entire space Rn for simplification.

We are going to prove the following

Theorem 6. Let Ω be a cube or the entire space Rn . The following Hardy
spaces are the same,

(9.5) H
1
F (Ω) = H

1(Ω) = H
1(Rn)|Ω .

Moreover, for each h ∈ H
1(Rn)|Ω , it holds:

(9.6) ||h ||H1
F

(Ω) ≈ ||h ||H1(Ω) .

A generalization of the fundamental lemma of [CLMS] on div-curl atoms
supplies the key to the proof of Theorem 6.

Lemma 9.1. Given a div-curl couple E ∈ L
p(Q, Rn) and B ∈ L

q(Q, Rn)
in a cube Q ⊂ Rn , where p + q = p · q for some p, q > 1. Then for each
test function ϕ ∈ C ∞

0 (Q) we have the inequality:

∫

Q

[ E(x) · B(x) ] ϕ(x) dx

4 (diam Q)n+γ ||ϕ ||
Cγ(Q)





∫

�

Q

|E|p′




1
p′





∫

�

Q

|B|q′




1
q′

(9.7)
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with the exponents satisfying:

(9.8)
1

p′
+

1

q′
= 1 +

γ

n
, where

{

1 6 p′ = n p

n+γp−γ
< p

1 6 q′ = n q

n+γq−γ
< q

.

Proof. As a first step we extend E and B as a div-curl couple in the entire
space Rn , again denoted by E and B . We shall also need to keep track of
how their norms increase. Precisely,

(9.9) ||E ||
L

p′
(Rn)

4 ||E ||
L

p′
(Q)

and ||B ||
L

p′
(Rn)

4 ||B ||
L

p′
(Q)

for all 1 6 p′ 6 p and 1 6 q′ 6 q . Such extensions are straightforward once
we view the vector fields E and B as exact and coexact differential forms
on the cube Q , by virtue of Poincaré Lemma. In this view E and B are the
first order differentials of certain Sobolev functions in Q . These functions
can routinely be extended to Rn with uniform bound of their Sobolev norms.
We now appeal to the Hodge decomposition operators A and B at (4.4)
and (4.5). Accordingly,

ϕE = A (ϕE) + B(ϕE)

where we shall take into account that A (ϕE) is divergence free (thus or-
thogonal to B ), whereas the operator B vanishes on E . Hence, by Hölder’s
inequality

∫

ϕ [ B · E ] = 0 +

∫

B · (Bϕ − ϕB)E

4 ||B ||
Lq′ (Rn)

· ||(Bϕ − ϕB)E ||
L

np
n−γ (Rn)

.(9.10)

Here the commutator of the singular integral operator B with the multipli-
cation by ϕ is controlled by means of the fractional integral,

(Bϕ−ϕB)E(x) 4

∫ |ϕ(x) − ϕ(y)|
|x − y|n |E(y)| dy 6 ||ϕ ||

Cγ(Rn)

∫ |E(y)| dy

|x − y|n−γ

Hardy-Littlewood-Sobolev inequality yields

||(Bϕ−ϕB)E ||
L

np
n−γ (Rn)

4 ||ϕ ||
Cγ(Rn)

· ||E ||
Lp′ (Rn)

, as
n − γ

np
=

1

p ′
− γ

n
.

This gives (9.7) when substituted into (9.10), the last step being justified by
(9.9) and (9.8). This completes the proof of Lemma 9.1.
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To conclude for the proof of the theorem it is sufficient to use the Div-
Curl Decomposition (see Proposition 1) when Ω is the entire space, and the
extension of a function to the entire space otherwise (see Proposition 5),
which allows to restrict to div-curl atoms E ·B. For these last ones, the key
inequality (9.7) is used to obtain that

(9.11) MF (E · B) 4 Mp′(E) · Mq′(B),

Here we remind that the Hardy-Littlewood maximal operator

(Msh) (x) = sup
x∈Q⊂Ω





∫

�

Q

|h|s




1
s

is bounded in all spaces L
r(Ω), with r > s. Thus by Hölder’s inequality we

obtain

(9.12)

∫

Ω
MF (E · B) 4 ||Mp′(E) ||Lp(Ω) · ||Mq′(B) ||Lq(Ω)

4 ||E ||Lp(Ω) · ||B ||Lq(Ω)

which allows to conclude for the theorem.
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