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Abstract. We report about the reachability analysis of fully parametrized models of the
IEEE 1394 root contention protocol. This protocol uses timing constraints in order to elect a
leader. The interesting point is that the timing constraints involve some parameters (trans-
mission delay, bounds of waiting intervals), and the behavior of the protocol strongly depends
on the relation between these parameters. In order to synthesize the relation ensuring the cor-
rect behavior of the protocol, we apply the symbolic reachability techniques implemented in
the TREX tool. We take the unparameterized model of Root Contention protocol proposed
in [24] and study different parametrized versions of this model. We are able to synthesize
automatically all the relations already found by proof or experiments on the unparameter-
ized versions. We compare our results with those reported or obtained using other tools for
parametrized systems.

1 Introduction

Due to the progress done in the area of classical timed model checking, tools like KRONOS [28]
and UPPAAL [20] are routinely used for the verification of industrial case studies. Now, impor-
tant research effort is concentrated on the extension of this classical framework with other kind
of infinite-domain variables (e.g., counters, queues) or with parameters (i.e., uninstantiated con-
stants). In this way, the models verified are closer to the real implementations and it is possible
to synthesize the constraints on parameters such that some properties are verified. Indeed, in
the classical framework, the synthesis of constraints on parameters is done (e.g., [24]) by giving
(manually) concrete values to parameters and then, extrapolate the results obtained. This manual
process is very time consuming and error prone. Therefore, tool support for deriving the con-
straints automatically is very important. There are currently several tools that can do analysis of
parametrized timed systems: HYTECH [15], LPMC [17], TREX [7], and a prototype extension of
UpPAAL [16]. Now, these tools has to be confronted to realistic case studies in order to guide the
research effort.

The IEEE 1394 root contention protocol [1] is a such case study. It is a real-time leader
election protocol for two processes, used by the the physical level of the IEEE 1394 bus in order
to determine the topology of the network. In this protocol, timing parameters like transmission
delay and waiting intervals play an essential role. For some values of parameters, the protocol is
correct and for others it fails either by electing two leaders or by infinite running. We are interested
in synthesizing automatically the constraints that ensure the correctness of the protocol. This is
interesting since it has been shown by experiments [24] that the values for waiting intervals given
in the standard [1] do not support the increase of the transmission delay, i.e., the length of the
cable.

In order to synthesize the constraints, we use the TREX [7] tool on the different models of
the protocol. TREX is a tool for automatic analysis of automata-based models equipped with
variables belonging to different infinite/finite domains and with parameters. These models are,
at the present time, timed automata extended with counters and parameters and communicating
through unbounded lossy FIFO channels and shared variables. The techniques used in TREX are
based on symbolic reachability analysis. Symbolic representation structures are used to represent
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infinite sets of configurations for the variables. Forward /backward exploration procedures are used
to generate a finite abstraction of the input model representing the graph of reachable symbolic
configurations. The termination is not guaranteed, but efficient extrapolation techniques [2,4] are
used to help it. These techniques are based on computing the (exact) effect of iterating control
loops detected automatically during the exploration.

For timed automata, the symbolic representation structure used by TREX is an extension
of classical DBM [11], Constrained Parametric DBM [4]. They allow to deal in a uniform way
with counter/clock automata, parametric/non-parametric models, and systems generating linear
or nonlinear arithmetical constraints between parameters.

Related work. The work on the verification of the IEEE 1394 standard is concentrated on the
lower levels of the protocol: [18,23] focus on the link layer, and [10,22,25,27,21,24,5,16] study
protocols used by the physical level. For this last level, except [24,5,16], the verification is done
by manual proof, or using theorem proving tools like PVS. These proof approaches focus on the
whole physical layer protocol and show its correction under several assumptions on the topology
of the network. [21] provides a detailed overview of each approach.

The first attempt [24] to verify mechanically the root contention protocol uses UPPAAL. By
(manual) analysis of some scenarios of the protocol, they obtain two constraints on parameters: the
first is necessary and sufficient to elect an unique leader (safety property), the second is sufficient
for termination (liveness property). These constraints are shown to be correct by instantiating
the parameters with values satisfying the constraints and then model-checking the models using
UppAAL. We consider the same models for the protocol, but fully parameterized and slightly
modified in order to easily verify the properties of the protocol. Although in [24] are not given
execution performances, we think that due to the absence of parameters, their performances may
be better than ours.

A first step to the automatic verification of the parametrized version of the protocol is made
in [5]. They uses LPMC [17], an extension of the PMC model-checker for parameterized timed
systems. LPMC uses partition refinement techniques and deals only with linear constraints between
parameters. This seems to be sufficient for the root contention protocol. The model chosen is
inspired by [27] and it is more complex than [24] because it models the probabilistic aspects
of the protocol. However, they consider a wrong model for communications w.r.t. the IEEE 1394
standard [24]. In the experiments done with LPMC, not all the five timing constants of the protocol
have been considered as parameters, but only one or two of them. For example, for the model with
only one parameter, the verification of a safety property takes 60s and 45MB with LPMC. This
result is comparable with the one we obtain for the good model (i.e., 3min and 15MB). However,
we didn’t try to apply LPMC on our model because of lack of time and expertise.

[16] is the first attempt to do fully parametrized model-checking of this protocol. They use the
models given in [24] and apply a prototype extension of UPPAAL for linear parameterized model
checking. This tool, although less general in the input model than TREX, uses the same symbolic
representation structures for valuations of clocks, the Constrained Parametric DBM introduced
in [4]. They limit the analysis to linear constraints, which is a restriction compared with TREX,
but gives better performances in some cases. Also, they identify a subclass of parameterized timed
automata (lower/upper bound) for which the symbolic reachability algorithm always terminates.
The root contention protocol belongs to this class of automata. However, for more general classes
of timed automata, they do not propose techniques to help termination. TREX is more general
in this point, since it uses extrapolation techniques. For this case study, they model-check that, in
the presence of the constraints proposed in [27,24], the protocol satisfies the safety and liveness
properties. We apply TREX on the same model and obtain greater values for execution time and
memory consumption. We think that these bad performances of TREX are fully explained by the
limitations of the input model of TREX (the rendez-vous must be modeled by shared variables)
and by the use of a more general (non-linear) external constraint solving procedure. The positive
point for TREX is that we are able to synthesize the safety constraints directly, without the use of
additional lemma, or the instantiation of parameters. Also, we are able to synthesize the constraints
for the liveness properties and to model-check more complex properties.



To our knowledge, HYTECH [15] has not been used until now for the verification of the root
contention protocol. HYTECH model-checks hybrid automata, a more general timed model than the
one used by TREX and UpPPAAL. It also uses the symbolic reachability analysis, but on different
symbolic representations for variables, i.e. polyhedra. The constraints considered are linear. In
this paper, we apply successfully HYTECH on the parametrized models provided in [24] and we
compare the results (when possible) with TREX and PUpPPAAL.

Owverview of the paper. We begin by giving a short presentation of the TREX tool, where we explain
mainly the techniques used by this particular case study. Then, Section 3 describes informally the
IEEE 1394 root contention protocol and gives its specification. Section 4 presents five models
considered for analysis with TREX and reports, for each model, the experimental results. Also,
we compare, when possible, our results with those reported in [16] or obtained with HYTECH.
Finally, we give our concluding remarks.

2 Symbolic Reachability Analysis with TReX

Figure 1 shows the overall environment and architecture of TREX.
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Fig. 1. Overview of the TREX architecture and environment.

The input model of TREX is given by a textual IF [8] file. This file can be obtained by
translation (using IF tools) of a graphical SDL specification, or of a textual LOTOS one. Also, the
IF file can be used (after instantiation of parameters) to do finite model-checking with the CADP
toolbox [13] or KRONOS. The input model is the only mandatory input of TREX. Additionally, the
user can specify initial constraints on the parameters occurring in the model. These constraints
play the role of an invariant: they are true in each reachable configuration explored by TREX.
The reachability analysis can begin either from the initial state of the model or from a symbolic
initial configuration (i.e., control state and symbolic valuation of variables) specified by the user.

TREX can check on-the-fly safety properties on the transitions of the input model. The prop-
erty should be given as an observer written in IF. The observer is an extended automaton sharing
transition labels with the input model. TREX does on-the-fly the product of the observer with
the input model and synchronizes transitions having the same labels. If the synchronization is not
possible, it means that the input model does not satisfy the property. Moreover, the sequence of
transitions from the initial state of the input model to the state where the synchronization fails
represents a diagnosis (counterexample). Indeed, the symbolic configuration where the synchro-
nization fails gives a necessary (super-approximation) set of constraints ¢ for which the property is
not satisfied. This set can be reduced by verifying the same property with an initial constraint in-
cluding the negation of a subset of ¢. The minimal set of constraints needed to satisfy the property



can be obtained by iterating this procedure. We use intensively this technique for the synthesis of
constraints during the verification of safety properties for the root contention protocol.

Also, TREX can generate the (finite) graph of reachable configurations. It is a finite abstraction
of the analyzed model, which can be used for finite-state model checking.

The core of TREX are a forward /backward exploration algorithm and the symbolic representa-
tion structures for infinite sets of valuations for variables. The exploration algorithm is generic and
can be used for any kind of symbolic representation providing a data structure, basic operations
(U, N, G, ...), symbolic successor /predecessor operations, and an extrapolation procedure.

In the current version, TREX provides three packages for symbolic representation of config-
urations: SRE (Simple Regular Expressions) [3] package for lossy FIFO channels, Constrained
Parametric DBMs [4] for parameterized counter and timed automata, and FOAF (First Order
Arithmetical Formulas) for linear and nonlinear constraints on parameters. Since the models used
for this case study are parametric timed automata, we present shortly the last two data structures
above.

Parametric DBMs (PDBMs) are extension of DBMs [11], which are used (e.g., in KRONOS)
in order to represent clock valuation sets (zones). A PDBM is a square matrix, which elements
are pairs of the form (comparison operator, arithmetical term on parameters). In Constrained
PDBMs, the PDBM is associated with a first order formula on the parameters occurring in the
matrix. All operations on DBMs (emptiness, intersection, and inclusion tests) can be adapted for
Constrained PDBMs [4]. These operations use a canonical form for Constrained PDBM, which is
computed by a symbolic Floyd-Warshall algorithm. Since this algorithm is very time consuming,
TREX does the hashing of all new computations. In practice, this optimization gives good results,
reducing by 2 to 10 times the number of computations of the canonical form.

The FOAF package provides a compact representation (including simplifications according to
the arithmetical rules) for terms and formulas used in Constrained PDBMs. It provides methods to
give for each term/formula its kind (linear or non-linear). This is particularly useful to know which
decision procedure can be applied for the test of satisfiability of formulas. Moreover, FOAF provides
the Fourier-Motzkin procedure [12] for elimination of quantifiers over real variables. In order to
test the satisfaction of formulas, TREX uses also external decision procedures like: OMEGA [19]
for linear constraints on integers, and REDUCE [14] for linear and non-linear constraints on reals.

TREX has been used to analyze several nontrivial protocols in their parametric versions, such
as the Bounded Retransmission Protocol (BRP) [9]. This particular example requires the full
power of TREX since it is a parametric heterogeneous model involving clocks, counters, and lossy
channels. Moreover, the constraints manipulated in this model are nonlinear (contain products
between variables). As far as we know, TREX is the only existing tool which allows to deal fully
automatically with such a complex model.

3 Root Contention Protocol

The IEEE’s Microcomputer Standards Committee started to work in 1986 on the unification of
several serial buses such as VME, MuLTIiBUS 11, and FuTURE BUs. The goal was to provide easy
to use, low cost, high speed communications. This effort led to a new serial bus protocol defined
in the IEEE 1394 Standard [1], which supports transfer rates of 100, 200, and 400Mps. Although
the standard has been finalized, the architecture is still being refined and adapted to provide
additional data rates of 800, 1,600, and 3,200Mbps. Part of this ongoing work is reflected in the
proposals IEEE 1394a [26] and 1394b.

The TEEE 1394 standard specifies a serial bus that supports peer-to-peer, isochronous and
asynchronous data transfers among up to 64 devices. Also, the bus is hot-plug-and-play since its
reconfiguration occurs automatically whenever a new device is added. The IEEE 1394 architecture
involves nodes (addressable entities that run their own part of the protocol) connected by serial
cables or backplane. On each node, the protocol consists of four layers: the physical layer, the link
layer, the transaction layer, and the serial bus management layer. We restrict our attention to the
protocol of the physical layer executed on nodes linked by cables.



The physical layer includes electrical signaling, mechanical interface, data transmission, bus
configuration and arbitration. At this level, each node has several ports which may be connected
by cables to other nodes. The configuration task of the physical level consists of tacking the
relatively flat physical topology of the bus and turning it into a logical tree structure with a root
node. Configuration consists of three phases: (1) the bus initialization, (2) the tree identification,
where it is checked whether the bus topology is a tree and, if so, a root is elected, and (3) the self
identification where each node selects a unique physical identifier and sends it to other nodes.

The root contention protocol occurs at the end of the second phase. In this second phase,
each node tries to assign to its connected ports a parent or a child flag. Leaf nodes (i.e., nodes
having only one connected port) start by outputting a Parent Notify signal to their nearest
neighbor node (with certain propagation delay). When a node receives a Parent Notify signal
on one of its ports, it marks that port as bound to a child and outputs a Child Notify signal
on the same port. Upon detecting this state, the leaf node marks this port as a parent port and
removes the signaling, thereby confirming that the leaf node has accepted the child designation. A
node with several connected ports waits until only one port remains unmarked and then it signals
Parent Notify on this port. The port on which it receives a Child Notify is marked as parent.
The node with all its connected ports marked child is chosen as the root of the tree. In the final
stage of the tree identification phase, it is possible that two neighboring nodes have marked all but
one port as being child and signal Parent Notify to each other. In this case, the root contention
protocol is initiated in order to elect one of the two nodes as the root of the tree.

If a node receives a Parent Notify signal on a port, while sending a Parent Notify signal
on that port, it knows, locally, that it is in root contention. Then, it removes the Parent Notify
signal and leaves the line in the Idle state. At the same time, it starts a timer and picks a random
bit. If the random bit is one, the node will wait for a long time (Root_Cont_Slow), else it will wait
for a short time (Root_Cont _Fast).

When the waiting timer expires, the node samples its contention port. If it sees Idle, it
starts sending Parent Notify anew and looks to see a Child Notify signal in return for ac-
knowledgement. When the timer expires and the node sees Parent Notify on its port, it sends a
Child Notify signal back as acknowledgement. Now, it knows that it has to take the root role.
However, the root contention may occur again if the nodes pick the same random bits (at the
same moment) or they pick different random bits within a time equal with the difference between
Root_Cont_Slow and Root_Cont _Fast. In this case, both nodes detect renewed root contention and
the whole process is repeated until one of them becomes root.

[1] specifies that 1590 ns < Root_Cont_Slow < 1670 ns and 760 ns < Root_Cont Fast < 850 ns
for a cable length of maximum 4.5 m (so the communication delay is also a bounded parameter).
Since the ongoing work on the standard converges to changes of the transfer speed and cable
length, it is interesting to have the relation between the parameters of the protocol such that its
properties are satisfied.

The following three properties are required for this protocol:

— Safetyl: A unique root is elected.

— Safety2: In a round of the protocol, a root is elected only on the request made during this
round. The rounds are delimited by Idle signals.

— Liveness: The protocol terminates under the assumption that the probability to pick different
bits is equal to one.

The first and third property are natural. The second property is stated in informal notes to the
IEEE 1394a Working Group (see [24] for more details). It says that the the decision of a node to
become root have to be made on the basis of the Parent Notify signal sent after the detection of
the contention, and not on an old signal. This means that the Idle state signaled by a node after
the detection of the root contention have to arrive to the node’s pair before the expiration of its
waiting interval.

In the remainder of the paper, we present the models we consider as input of TREX and the
results obtained for the verification of the properties above.



4 Models and Experimental Results

The concrete architecture of all models considered consists in two (symmetrical) automata mod-
eling the contention nodes and two automata implementing the cable, one wire for each direction
(see Figure 2).

| sndl2 revi2
> Wirel2 >
Node 1 Node 2
| | rev2l Wire2l e snd21 |
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rootl¢ \ childl . L rootz¢ ¢childz

root contention ports

Fig. 2. General architecture of the implementation models..

Depending on the semantics chosen for the communication between the nodes, the models
proposed for the root contention protocol fall into two classes. The first class [27] considers that the
communication is done by message passing, the messages being Parent Notify and Child Notify.
Also, the messages can be overwritten and lost. It is pointed out in [24] that this abstraction is
inappropriate, since IEEE 1394 standard specifies that, at this phase, the communication is done by
signaling states, not by transmitting packets. Indeed, the whole tree identification process occurs
in a matter of microseconds. The second class of models [24] implements the communications
by signals persisting at the input port of the receiving node, until the sending node changes its
output port signal. So, besides the Parent Notify and Child Notify signals, the wire can be left
undriven (Idle signal). We take this last model for communications.

All models are parametrized by five parameters: the maximum delay for communication
and signal processing (delay), the minimum and maximum values for the long waiting interval
(re_slow_min resp. rc_slow_max), and the minimum and maximum values for the short waiting
interval (rc_fast_min resp. rc_fast_-maz). The initial constraint on these parameters, ¢q, says that
all the timers, including the communication delay cannot be 0, and that the values of the faster
interval of waiting are less than the values of the slower interval:

¢o = delay > 0 A0 < re_fast_min < rc_fast-max < rc_slow_min < rc_slow_max

In the remainder of this paper, we use the following shorter notations for the signals : req for
Parent Notify and ack for Child Notify. All experiments have been performed on a Pentium
IIT at 597TMHz and 256MB of memory.

4.1 Model I1: synchronous detection of the initial root contention

This model is inspired by the one proposed in [24] (see Figure 3). There are four timed, in-
put/output automata with urgent states (marked by U). We suppose that the reader is familiar
with the model of timed automata. Input/output automata have transitions labelled by a tuple
build from: the name of the port (e.g., snd and rcv), the operation on this port (? for input, !
for output), and the signals sent (e.g., req, idle or empty). The output operation is not blocking,
but the input operation is blocking until the input is available. We reduce the number of control
states of the automata proposed in [24] by using enumerated variables in order to stock signals
received. Also, we use guarded input operations in the generic wire automaton with the following
semantics: the input is taken only if the guard (boolean expression between square brackets) is
satisfied.
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Fig. 3. Generic node and wire automata for Model I1.

The generic automata of Figure 3 are substituted with the signals specific to each node. The

whole system is then described by the following CCS-like expression:
Nodel [rootl [root,child! [child,snd12 /snd,rcv21 [rcv)

|| Wire12 [snd12/snd,rcvl2/rcv] || Wire21 [snd21 /snd,rcv2l [rev] ||
Node2 [root2 [root,child2 [child,snd21 [snd,rcv12 [rcv)

The model supposes that initially, the nodes detect simultaneously the root contention. How-
ever, this is not true for the subsequent rounds. The modeling of wires as two place buffers is
correct if we suppose that the wires do not get more inputs than the nodes can handles, i.e., than
the receiving part can distinguish. So, until a new signal arrives, the old one continue to be driven
across the wire. From experimental results, [24] shows that the modeling of wires as two place
buffers is correct if delay < rc_fast_min, which is the case in IEEE 1394.

Since the input model of TREX allows only communications by shared variables and lossy
FIFO channels, we modeled the input/output communications by shared variables. This gives us
a model having four processes, five parameters, six clocks, and six enumerated variables. The same
model in HYTECH input format have four processes, five parameters, and six clocks.

Verification of Safetyl: The observer used to verify the property Safety! is given on Figure 4.
First, we apply TREX on the full parameterized version of the model, with ¢q as initial constraint.

Fig. 4. Observer for property Safetyl.



We obtain that the property is not satisfied. The performances are reported in Table 1. Note that
HyTECH fails to give this diagnosis by forward reachability because of lack of memory. This is due
to the fact that, in forward analysis, HYTECH does not check the property on-the-fly, but tries to
build the reachability graph. Using backward reachability, HY TECH succeeds to give a diagnosis,
but not to synthesize a symbolic constraint like TREX.

The symbolic configuration where synchronization fails include the following set of constraints
between parameters:

¢ i;l& o)

A A

do A 'rc_fast_min < dela;J A ’rc_fast_min < 2% delay‘ A Te_slow_min — re_fast_-max < 2 * delay‘ A
re_slow_min — rc_fast_mazx + 2 x rc_fast_min < 2 x delay A

re_slow_maz — rc_fast_maz < delay N 2 x rc_fast_min < delay A

re_slow_min — rc_fast_maz < delay A rc_slow_min — rc_fast_mazx + rc_fast_min < delay A
delay < rc_slow_maz A delay < rc_fast_max A delay < rc_slow_min — rc_fast_min A

2 x delay < re_slow_min A 2 x delay < rc_fast_maz A rc_fast_maz + rc_fast_min < rc_slow_min

The constraints ¢y, ¢~'17 and ¢,, are interesting since their strict negation has been found by
experiments in [24] to be sufficient conditions to satisfy properties Safety! and Safety2.

Then, we introduce the strict part of the negation of each constraint above in the initial
constraint and we model-check the safety property. It results that only the constraint ¢; = delay <
rc_fast_min is needed to satisfy this property. This result has been obtained only with HYTECH
(see Table 1). The partial graph obtained with TREX satisfies the property.

Since the parameterized extension of UPPAAL [16] is not yet available, we only put in Table 1
the results reported in [16] (and obtained on a similar configuration). For this, we checked the
property for some instantiations of parameters. The case we consider is where each guard or
invariant for delay is strict, both rc_fast_maz and rc_slow_maz are infinite, and both delay and
rc_slow_min are equal to rc_fast_min. We have so a model with only one parameter. The safety
property is verified. The results we obtain are compared with those reported by [16] in Table 1.
The difference of performances in this case is in our disfavor. This can be explained by the more
complex model we considered (synchronizations done by shared variables) and the use of the heavy
decision procedures for non-linear constraints of REDUCE.

Table 1. Experimental results for Model I1 and property Safetyl.

model|property|no. param. constr. result TREX HyTECH PUPPAAL

5 ¢o false ||3:09:53 45MB||0:27:46|out of mem.|| not given

I1 | Safetyl 5 do N\ 1 true || > 67h|> 192MB||0:00:06 5MB|| not given
1 re_fast_min > 0| true |/0:03:09 15MB||0:00:01 5MB 0:00:08|11MB

Verification of Safety2: This property cannot be easily verified on this model, since for the initial
round no request is sent. In order to verify it, we will introduce the Model I2 (see section 4.2).

Verification of Liveness1: This cannot be done with this model, since we cannot model the proba-
bility to choose the random bits. This property will be considered for the Model I3 (see section 4.3).

4.2 Model I2: asynchronous detection of the initial root contention

We relax the hypothesis of Model I1 concerning the initial detection of the root contention, since
it cannot be satisfied in a distributed system. In fact, before detection of contention, each node
sends initially a req signal on the (unique) port which is not yet marked as child port, and then
waits for an acknowledgement or a request. Suppose that Node! (resp. Node2) sends req at the



(absolute) time t; (resp. t2). Then, —delta < t1 — t2 < delta. Indeed, if ¢t; — to > delta, Nodel
cannot send a req because it has already received a reg, the delay of communications being bound
by delta.

Using this observation, we modify the generic automaton of nodes for Model I1 as follows. The
rcont state is no more initial, and we add a new initial state named init. A node may wait in
the init state no more than delta (i.e., the invariant of state init is x < delta), then it sends a
request signal and moves to snt_req state. This model is particularly useful for the verification of
the property Safety2.

Verification of Safety2: The observer used to verify the property Safety2 for the Node 2 is given
on Figure 5. Like for the first property, we apply TREX on the full parameterized version of

start

end
revi27dle C rev12?req : root2! Q

rcvi2?req
Fig. 5. Observer for property Safety2 and the Node 2.

the model, with ¢ as initial constraint. We obtain that the property is not satisfied. The sym-
bolic configuration where synchronization fails include the following set of constraints between
parameters:

é1
do A ;'c_fast_min < delay‘ A delay < rc_fast_maz

This corresponds to the constraint synthesized for the property Safetyl. If we add to ¢o the strict
negation of the constraint ¢, ¢;, we obtain that the property is false, and the following constraint
is synthesized:

‘ i

do A rdelay < rc_fast_mir;/\ ;"c_fast_min < 2% delag} A 2% delay < rc_fast_max

The strict negation of ¢, has been found manually in [24] to be a sufficient condition to satisfy
property Safety2. Then, we introduce the strict part of the negation of this constraint in the initial
constraint and we model-check the safety property.

It follows that the property is not satisfied, and we obtain the constraint ¢o = re_slow_min —
re_fast_maz < 2 * delay and a diagnosis showing that the observer fails because the renewal of
the root contention. This is a liveness problem, and we show for Model I3 that ¢o = 2 x delay <
rc_slow_min — rc_fast_maz is the condition to solve in one pass the root contention if different bits
are picked.

The experimental results are in Table 2. For PUPPAAL, no results are reported in [16], for this
particular case.

Table 2. Experimental results for Model 12 and property Safety2.

model|property|no. param.| constr. |result TREX HyTEcH
5 bo false ||0:00:50|14MB||0:00:50{29MB
5 ¢o A1 | false ||0:05:57| 9MB||0:00:08] 5MB
12 | Safety2 5 do AN ¢, | false ||0:01:41{17MBI[0:00:08] 8MB
5 do A\ & A 2| false [|0:03:13[20MB|[0:00:07| 4MB




4.3 Model 1I3: centralized, boolean fairness for Model I1

The models above do not include the hypothesis that the probability to pick different bits is equal
to one. Since the input model of TREX does not include probabilistic aspects, we simplify this
hypothesis by adding to the Model I1 a centralized generator of bits which always gives different
values for any two successive calls. Therefore, it is essential that root contention is resolved within
the same round if both nodes pick different random bits. Since the probability to pick different
random bits is strictly greater than zero in each pass, the nodes will eventually pick different bits
and thus elect a root, with probability one.

We add to the Model I1 a boolean variable shared by the two nodes, which implement the fair
generator. Also, we add labels retryl! resp. retry2! to the transitions from the state snt_req
to the state rcont in order to observe the renewal of the protocol. We use the same observer as
for the property Safetyl, but the set of observed labels is now updated with the retry1! and
retry2!. This means that the observer does not accept synchronization with any retry transition.

By applying TREX on the full parameterized version of the model, with ¢¢ as initial constraint,
we obtain that the property is not satisfied. The set of constraints synthesized is:

1 A
do A ;‘c_fast_min < delag; A ;"c_fast_min < 2% delag; A
re_slow_max < 2 x delay N rc_slow_max — rc_fast_min < delay A delay < rc_fast_max

The constraints synthesized are those needed for the satisfaction of the safety properties. So, we
repeat the experiment by tacking ¢o A ¢1 resp. ¢g A ¢} as initial constraints. In both cases, we
obtain that the property is not satisfied. The following constraint appears in the fail state of both
counterexamples: ~

@2 = re_slow_min — rc_fast_max < 2 x delay

By tacking now the strict negation of this constraint, we obtain that the property is satisfied. This
has been also proved by experiments in [24]. The performances are given in Table 3.

Table 3. Experimental results for Model 13.

model| property |no. param.| constr. |result TREX HYTECH
5 bo false ||1:05:58|28 MB||0:00:04|3MB
13 |Liveness 5 do A 1 false [{0:02:54| 9MB|[0:00:03|2MB
5 ¢o A ¢} | false [[0:02:51] 9MB]|0:00:03[2MB
5 B0 A B, A b2 true ||0:02:00] 8MB|[0:00:01|4MB

4.4 Model Al: abstraction of communications

The timed, input/output automaton Al of Figure 6 taken from [27,24] abstracts the communica-
tions between the nodes and records the status of each of the two nodes. They prove that if the
parameters satisfy the additional constraint:

# b

A

2% delay < rc_fast_mir; A 2% delay < rc_slow_min — rc_fast_maa;

this abstraction is correct, in the sense that all execution paths of I1 are included in Al. For
this model, we compute the symbolic graph using TREX and HYTECH. The two symbolic graphs
obtained are equivalent. The performances are given in Table 4. Then, we consider A1l as being
an observer for the Model I1 in the presence of the initial constraint ¢g A ¢} A ¢o. This property
is verified, so we are able to verify mechanically the results given in [27,24].
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~

x>=rc_fast_min x>=rc_slow_min

sow_slow
X<=rc_slow_max
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root1! done root1!

Fig. 6. Model Al: abstraction of communications.

Table 4. Experimental results for Model Al.

model|property|no. param.| constr. |result TREX HyTEcH
Al true 5 bo false [|0:00:02| 0.1MB||0:00:01 0.1MB
il Al 5 o A P A b false ||7:24:30[190MB|[0:31:17|out of mem.

5 Conclusion

This paper reports about the fully automatic verification of the IEEE 1394 root contention protocol
using TREX and HYTECH tools. This is an industrial protocol in which timing parameters play
an essential role.

We consider the models proposed in [24] and improve them in order to verify easily the safety
and liveness properties of the protocol. This verification allows us to synthesize automatically the
constraints derived by experimental results in [24]. Although in some cases the performances of
TREX are not so good as those obtained with the prototype extension of UPPAAL [16], we are able
to deal with more complex properties and to directly synthesize the constraints. Compared with
HyTecH, TREX is slower, but it provides symbolic diagnosis while a safety property is checked.
This is very useful for constraint synthesis.

The relatively bad timing performances obtained motivate us to connect TREX to a tool for
linear constraints solving and to improve its input model with communication by synchronization
on actions.
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