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FINITE VOLUME METHOD FOR 2D LINEAR AND NONLINEAR

ELLIPTIC PROBLEMS WITH DISCONTINUITIES

FRANCK BOYER AND FLORENCE HUBERT∗

Abstract. In this paper we study the approximation of solutions to linear and nonlinear elliptic
problems with discontinuous coefficients in the Discrete Duality Finite Volume framework. This
family of schemes allows very general meshes and inherits the main properties of the continuous
problem.

In order to take into account the discontinuities and to prevent consistency defect in the scheme,
we propose to modify the definition of the numerical fluxes on the edges of the mesh where the
discontinuity occurs. We first illustrate our approach by the study of the 1D situation. Then, we
show how to design our new scheme, called m-DDFV, and we propose its analysis. We also describe
an iterative solver, whose convergence is proved, which can be used to solve the nonlinear discrete
equations defining the finite volume scheme.

Finally, we provide numerical results which confirm that the m-DDFV scheme significantly im-
proves the convergence rate of the usual DDFV method for both linear and nonlinear problems.

Key words. Finite Volume schemes, Discontinuous coefficients, Nonlinear elliptic problems.

AMS subject classifications. 35J65 - 65N15 - 74S10

1. Introduction. In this paper, we are concerned with the finite volume approx-
imation of solutions to the following nonlinear diffusion problem with homogeneous
Dirichlet boundary conditions:

{
−div(ϕ(z,∇ue(z))) = f(z), in Ω,

ue = 0, on ∂Ω,
(1.1)

where Ω is a given bounded polygonal domain in R
2. We first recall the classical

functional framework ensuring that the problem above is well-posed (see [16]). Let
p ∈]1,∞[ and p′ = p

p−1 . The flux ϕ : Ω × R
2 → R

2 in equation (1.1) is supposed to

be a Caratheodory function which is strictly monotonic with respect to ξ ∈ R
2:

(ϕ(z, ξ) − ϕ(z, η), ξ − η) > 0, for all ξ 6= η, for a.e. z ∈ Ω . (H1)

We also assume that there exist Cϕ > 0 such that

(ϕ(z, ξ), ξ) ≥
1

Cϕ

|ξ|p − Cϕ, for all ξ ∈ R
2, for a.e. z ∈ Ω, (H2)

|ϕ(z, ξ)| ≤ Cϕ(1 + |ξ|p−1), for all ξ ∈ R
2, for a.e. z ∈ Ω. (H3)

These assumptions ensure that u 7→ −div(ϕ( · ,∇u)) is a Leray-Lions operator, and
hence that Problem (1.1) has a unique solution in W 1,p

0 (Ω) for any f ∈ W−1,p′

(Ω).
Nevertheless, since we are particularly interested in proving error estimates for (piece-
wise) smooth enough solutions, we restrict our attention here to source terms f in
Lp′

(Ω).
In the present work, we concentrate on the case where the flux ϕ defining the

equation admits discontinuities with respect to the space variable z. This kind of
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transmission (or bimaterial) problems were, for instance, studied in the finite element
framework in [11, 20] for p = 2 and in [17, 18] for p 6= 2.

Finite volume approximation of such nonlinear elliptic problems is a current re-
search topic. We refer for instance to [3, 4, 8] for the description and the analysis of
the main available schemes up to now. More precisely, we proposed in [3] to approach
the solution to (1.1) by using a Discrete Duality Finite Volume method (DDFV for
short). This method (previously studied in [7, 14, 15]), can be applied to a wide class
of 2D meshes (note that 3D cases can also be treated, see [5, 19]) and inherits the
main qualitative properties of the continuous problem. Hence, we succeeded in show-
ing the convergence of such schemes and error estimates in the case where the flux ϕ
and the exact solution ue are assumed to be smooth enough. In the case where ϕ has
discontinuous coefficients, our results in [3] show that the scheme is still convergent
but the error analysis is no more valid.

Actually, it is known (even for a 1D linear equation) that such discontinuities
in the coefficients imply a consistency defect in the numerical fluxes of usual finite
volume schemes. In the linear case, this leads to a 1

2 convergence rate in the discrete
H1 norm instead of the first order we may expect. The situation is the same for
DDFV schemes and it is needed to modify the scheme in order to take into account
the jumps of the coefficients of the problem and then to recover a better convergence
rate.

The aim of this work it is to present a modified DDFV scheme in this framework
- that we called m-DDFV- which enjoys a better convergence rate than the usual
DDFV method. Then we provide the error analysis of this scheme. In particular, in
the linear case, we prove the first order convergence of the m-DDFV scheme. Hence,
our analysis provides a theoretical confirmation of the behavior numerically observed
in a particular case in [15].

Outline. In Section 2, we propose to study a simple 1D problem where the flux
ϕ has only one point of discontinuity. This section will let us introduce the main
ideas of the method we propose and illustrate the way one can obtain the consistency
estimate for the scheme under study.

In Section 3, we recall the DDFV framework for the finite volume approximation
of nonlinear elliptic problems on unstructured grids. We also recall the scheme in-
troduced and analyzed in [3]. In Section 4, we describe the m-DDFV scheme and its
first properties.

Section 5 is devoted to the error analysis of this method in the case where the
exact solution is assumed to be piecewise smooth enough. The main new difficulty
in the analysis, compared to the ones already encountered in [3], is contained in the
consistency estimate of the new discrete gradient operator introduced in Section 4. As
an illustration, we give some explicit examples of the schemes under study in Section
6. Nevertheless, in general, the method is not explicit and then seems to be difficult to
solve. That is the reason why in Section 7 we propose an iterative explicit algorithm
to compute the approximate solution for any given data and we prove its convergence.

Notice that we also introduce a so-called hybrid DDFV scheme, called h-DDFV,
for which a better error estimate can be obtained in the very common case where the
flux is in fact smooth enough on a finite number of subdomains covering the whole
domain Ω.

We finally conclude this paper by showing, in Section 8, some numerical results
illustrating both the efficiency of the finite volume scheme and of the iterative solver.
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2. A 1D finite volume method for a model problem.

2.1. The toy system. Let us consider in this section a model problem in 1D of
the form (1.1) in order to illustrate the main steps we will follow in the sequel of this
paper for 2D problems. We take Ω =] − 1, 1[ (denoting here by x the space variable)
and we define ϕ(x, ξ) = ϕ−(ξ) for x < 0 and ϕ(x, ξ) = ϕ+(ξ) for x > 0. We suppose
that ϕ− and ϕ+ are two strictly monotonic maps from R to R such that (H2) and
(H3) hold.

Problem (1.1) reads in this setting




−∂x

(
ϕ−(∂xue)

)
= f(x), for x < 0,

−∂x

(
ϕ+(∂xue)

)
= f(x), for x > 0,

ue(−1) = ue(1) = 0,

ϕ−(∂xue(0
−)) = ϕ+(∂xue(0

+)).

(2.1)

2.2. The 1D finite volume scheme. Suppose now that we are given a finite
volume mesh T of the domain Ω compatible with the discontinuity point. More
precisely, let x0 = −1 < . . . < xN = 0 < . . . < xN+M = 1 a subdivision of [−1, 1].
We denote by Ki+ 1

2
= [xi, xi+1], i ∈ {0, N + M − 1} the control volumes of this

discretization and by xi+ 1
2

their centers. The finite volume method associates to each
center xi+ 1

2
an unknown value ui+1

2
. We denote by uT = (ui+ 1

2
)0≤i≤N+M−1 the whole

approximate solution and we define the usual difference quotients

∇iu
T =

ui+1
2
− ui− 1

2

xi+ 1
2
− xi− 1

2

, i ∈ {0, N + M},

where, conventionally, we set x− 1
2

= x0 = −1, xN+M+1
2

= xN+M = 1 and u− 1
2

=
uN+M+1

2
= 0. To obtain the finite volume scheme, we integrate the problem (2.1) on

each control volume

−

∫

K
i+ 1

2

∂x

(
ϕ(x, ∂xue)

)
dx =

∫

K
i+ 1

2

f(x) dx, ∀i ∈ {1, . . . , N + M − 1}.

Integrating the first term by parts, the scheme reads

−Fi+1 + Fi =

∫

K
i+1

2

f(x) dx, ∀i ∈ {0, N + M − 1}, (2.2)

where Fi, i ∈ {0, N + M} is an approximation of the flux ϕ(xi, ∂xue(xi)). This
approximation can easily be obtained away from the discontinuity in the usual way:

{
Fi = ϕ− (∇iu

T ) , ∀i ∈ {0, N − 1},

Fi = ϕ+ (∇iu
T ) , ∀i ∈ {N + 1, N + M}.

(2.3)

The problem is: how do we choose the numerical flux FN at the point xN = 0 where
the discontinuity occurs? One may imagine many naive ways to treat this problem.
For instance one can define FN by:

FNϕ− (∇NuT ) , or FN = ϕ+ (∇NuT ) , or FN =
1

2
(ϕ− (∇NuT ) + ϕ+ (∇NuT )).

In fact, it can be shown that all these choices lead, in general, to a non consistent
approximation of the flux at xN . This fact is well known even in the linear case
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ū

h+
N

h−
N

xN = 0

ũ

δ

u
N− 1

2

u
N+1

2

Fig. 2.1. Illustration of the 1D case

(see e.g. [9]). The good way to find out a consistent approximation of the flux is to
introduce a new artificial unknown ũ at the point of the discontinuity xN so that we
can define two different approximate gradients on both sides of the discontinuity

∇+

N
uT =

uN+1
2
− ũ

h+
N

, and ∇−

N
uT =

ũ − uN− 1
2

h−
N

, (2.4)

where we set h+
N

= xN+1
2
− xN and h−

N
= xN − xN− 1

2
. In fact, it is convenient (see

Figure 2.1 and the discussion below) to look for ũ under the form

ũ = ū + δ, with ū =
h−

N
uN+1

2
+ h+

N
uN−1

2

h−
N + h+

N

.

The value ū is the value at the point 0 of the affine interpolation between (xN− 1
2
, uN−1

2
)

and (xN+1
2
, uN+1

2
). From now on, δ is the new artificial unknown to be determined.

It follows that

∇+

N
uT = ∇NuT −

δ

h+
N

, and ∇−

N
uT = ∇NuT +

δ

h−
N

.

Notice that we have

∇NuT =
1

h−
N + h+

N

(h−

N
∇−

N
uT + h+

N
∇+

N
uT ) . (2.5)

It is now necessary to eliminate the new unknown δ. This is done by imposing a
discrete equivalent of the transmission condition in (2.1) which reads

ϕ−(∇−

N
uT ) = ϕ+(∇+

N
uT ). (2.6)

This equation uniquely defines δ as a function δ = δN(∇NuT ) of the usual difference
quotient ∇NuT since the map δ 7→ ϕ−(∇−

N
uT )− ϕ+(∇+

N
uT ) is strictly monotonic and

tends to infinity at infinity. Notice that δN(0) is always 0. In the particular case
where ϕ− = ϕ+ then δN is then identically zero and then ∇+

N
uT = ∇−

N
uT = ∇NuT .

Hence, we recover the generic situation without discontinuities in the coefficients of
the equation. We can eventually define the approximate flux at the discontinuity by

FN = ϕ−

(
∇NuT +

δN(∇NuT )

h−
N

)
= ϕ+

(
∇NuT −

δN(∇NuT )

h+
N

)
,

the last equality being true by definition of δN(∇NuT ). In a more symmetric way we
also have

FN =
h−

N
ϕ−

(
∇NuT + δN (∇N uT )

h−
N

)
+ h+

N
ϕ+

(
∇NuT − δN (∇N uT )

h+
N

)

h−
N + h+

N

. (2.7)
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Example 2.1. Let us consider the case where ϕ− and ϕ+ are two p-laplacian like
fluxes given by

ϕ−(ξ) = k−|ξ + G−|
p−2(ξ + G−), ∀ξ ∈ R,

ϕ+(ξ) = k+|ξ + G+|
p−2(ξ + G+), ∀ξ ∈ R,

where k−, k+ ∈ R
+ and G−, G+ ∈ R

2. In this situation, all the computations can be
made by hand. In particular, equation (2.6) can be solved and finally, the numerical
flux at the discontinuity is found to be

FN =



k
1

p−1
− k

1
p−1
+ (h−

N
+ h+

N
)

h+
Nk

1
p−1
− + h−

Nk
1

p−1
+




p−1

∣∣∇NuT + G
∣∣p−2 (

∇NuT + G
)
,

where G is the arithmetic mean-value between G− and G+ defined by

G =
h−

N
G− + h+

N
G+

h−
N + h+

N

.

Notice that the map ∇NuT 7→ FN is monotonic and coercive. In the linear case
(i.e. p = 2) we recover the well-known harmonic mean-value formula between the two
diffusion coefficients k− and k+ (see for instance [9]):

FN =
k−k+(h−

N
+ h+

N
)

h+
Nk− + h−

Nk+

(
∇NuT + G

)
.

Let us sum up the previous study: we defined a monotonic map ∇NuT 7→
δN(∇NuT ) and a numerical flux FN at the discontinuity which is also a monotonic
map with respect to ∇NuT . The finite volume scheme is then given by (2.2) with
(2.3) and (2.7).

A very important remark is that the map δN is defined through the implicit
relation (2.6) and hence, in general, can not be computed explicitly like in Example
2.1. At a first sight, it can be considered as a major drawback of our approach.
Nevertheless, we will propose in Section 7 a fully practical solver for this nonlinear
scheme whose convergence is proved and whose computational cost is of the same
order as in the case of continuous coefficient equations.

2.3. Consistency analysis. Let us analyse the consistency property of the flux
FN defined above. The following computations give the main ideas used in the analysis
of the 2D scheme presented in the sequel of this paper. For simplicity we assume in
this section that p > 2 and we suppose that ϕ− and ϕ+ satisfy the strong monotonicity
assumption (H1′b) and the Hölder regularity assumption (H4b) described in Section
4.1.

Finally we suppose that the exact solution ue of (2.1) is continuous on Ω and
smooth on the two sides of the discontinuity point xN = 0. In order to simplify the
notations, assume that h−

N
= h+

N
and denote this common value by h. Our goal is to

estimate the consistency error of the flux FN which amounts (by (H4b)) to estimate
quantities like

R =
1

h

∫ 0

−h

|∂xue −∇+

N
P

T ue|
p dx,
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where P
T ue = (ue(xi+ 1

2
))0≤i≤N+M−1. Since ue is smooth on [−h, 0] we have

R ≤ C‖∂2
xue‖∞hp +

1

h

∫ 0

−h

∣∣∣∣
ue(xN) − ue(xN− 1

2
)

h
−

ū − ue(xN− 1
2
)

h

∣∣∣∣
p

dx

= C‖∂2
xue‖∞hp +

∣∣∣∣
ue(xN) − ū

h

∣∣∣∣
p

,

(2.8)

where ū is the artifical unknown defined in (2.6), that is through the equation

ϕ−

(
ū − ue(xN− 1

2
)

h

)
= ϕ+

(
ue(xN+1

2
) − ū

h

)
. (2.9)

Furthermore, since ue is piecewise smooth, Taylor expansions yield

ue(xN) − ue(xN− 1
2
)

h
= ∂xue(0

−) + T1h,

ue(xN+ 1
2
) − ue(xN)

h
= ∂xue(0

+) + T2h,

where T1 and T2 are bounded with respect to h. Then, we use the transmission
condition in (2.1) which gives

ϕ−

(
ue(xN) − ue(xN− 1

2
)

h
− T1h

)
= ϕ+

(
ue(xN+1

2
) − ue(xN)

h
− T2h

)
. (2.10)

Finally, we estimate the second term in the right-hand side of (2.8) by using (2.9)

and (2.10). To this end, we subtract (2.10) from (2.9) and we multiply by ue(xN )−ū

h
.

It follows

 

ϕ−

 

ue(xN)− ue(xN− 1
2
)

h
− T1h

!

− ϕ−

 

ū− ue(xN−1
2
)

h

!!

ue(xN)− ū

h

+

 

ϕ+

 

ue(xN+1
2
)− ū

h

!

− ϕ+

 

ue(xN+1
2
)− ue(xN)

h
− T2h

!!

ue(xN)− ū

h
= 0.

We add and subtract now the terms T1h and T2h in order to make appear expressions
under the form (ϕ±(ξ) − ϕ±(η))(ξ − η). We get

 

ϕ−

 

ue(xN)− ue(xN− 1
2
)

h
− T1h

!

− ϕ−

 

ū− ue(xN−1
2
)

h

!!

„

ue(xN)− ū

h
− T1h

«

+

 

ϕ+

 

ue(xN+1
2
)− ū

h

!

− ϕ+

 

ue(xN+1
2
)− ue(xN)

h
− T2h

!!

„

ue(xN)− ū

h
+ T2h

«

= −T1h

 

ϕ−

 

ue(xN)− ue(xN−1
2
)

h
− T1h

!

− ϕ−

 

ū− ue(xN− 1
2
)

h

!!

+ T2h

 

ϕ+

 

ue(xN+1
2
)− ū

h

!

− ϕ+

 

ue(xN+1
2
)− ue(xN)

h
− T2h

!!

.
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Hence, using assumptions (H1′b) and (H4b) we deduce that

∣∣∣∣
ue(xN) − ū

h
− T1h

∣∣∣∣
p

+

∣∣∣∣
ue(xN) − ū

h
+ T2h

∣∣∣∣
p

≤ Ch

(
1 +

∣∣∣∣
ue(xN) − ū

h

∣∣∣∣
p−2
)(

Ch +

∣∣∣∣
ue(xN) − ū

h

∣∣∣∣
)

,

and finally we have

∣∣∣∣
ue(xN) − ū

h

∣∣∣∣
p

≤ Ch
p

p−1 ,

so that the consistency term R is finally bounded by

R ≤ Ch
p

p−1 .

When p → 2 we recover the usual first order estimate (that is R = O(h2)) whereas
when p increases, this consistency order decreases.

3. The discrete duality finite volume framework.

3.1. Definition of the mesh. We recall the notations used in [3]. Let T be a
triple (M, M∗, D) of meshes on Ω as follows. The set M is a set of disjoint open

xL∗

mesh M

xK∗

mesh M
∗

K∗

L∗

K

xL

xK

L

xK∗ ∈ P∗
ext

xσ ∈ Pext

mesh D

Fig. 3.1. Example of a DDFV mesh

polygonal convex control volumes K ∈ Ω such that ∪K̄ = Ω̄. For all adjacent volume
K and L, we assume that ∂K ∩ ∂L is a segment that we call an edge of the mesh
and that we denote by σ = K|L. Let Eint denotes the set of such edges. The set
Eext denotes the set of edges σ = ∂K ∩ ∂Ω and E = Eint ∪ Eext. We associate to M

a family Pint of points xK such that xK ∈ K and to the set Eext a family Pext of
points xσ where xσ is a point of σ ∈ Eext. Let P∗ be the set of vertices of the mesh
M. The set P∗ can be decomposed into P∗ = P∗

int ∪ P∗
ext, where P∗

ext ⊂ ∂Ω and
P∗

int ∩ ∂Ω = ∅. To any point xK∗ ∈ P∗
int, we associate a polygon K∗ ∈ M

∗ whose
vertices are {xK ∈ P/xK∗ ∈ K̄, K ∈ M} sorted with respect to the clockwise order of
the corresponding primal control volumes. The set E∗ denotes the set the edges of
the mesh M

∗.
For each σ = K|L ∈ Eint, we can associate a diamond cell D where D is the

quadrangle whose diagonals are σ = (xK∗ , xL∗) and σ∗ = K∗|L∗ = (xK, xL) if σ ∈ Eint

and if σ = (xK∗ , xL∗) ∈ Eext ∩ ∂K̄, D is the triangle defined by the points xK, xK∗ , xL∗ .
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The set of all diamond cell is noted D = Dint∪Dext. Remark that D form a partition
of Ω.

In this work, we assume that the diamond cells are all convex. Notice that this
assumption is not necessary, in general, in order to define and analyse DDFV methods
(see [3],[7]).

3.2. Notations. For any one (resp. two) dimensional set V , we denote by |V|
its one-dimensional (resp. two-dimensional) Lebesgue measure.

For any control volume K ∈ M, we define
• DK = {D ∈ D/K ∩ D 6= ∅}.
• νK, the outward unit normal vector to ∂K.
• dK, the diameter of K.

In the same way, for a dual control volume K∗ ∈ M
∗, we set

• DK∗ = {D ∈ D/K∗ ∩D 6= ∅}.
• νK∗ , the outward unit normal vector to ∂K∗.
• dK∗ , the diameter of K∗.

For a diamond cell D ∈ Dint (resp. D ∈ Dext), recall that (xK, xK∗ , xL, xL∗) are the
vertices of D (resp. (xK, xK∗ , xL∗) are vertices of D and xσ ∈ ∂D) and note :

• τ , the unit vector parallel to σ, oriented from xK∗ to xL∗ .
• ν, the unit vector normal to σ, oriented from xK to xL (resp. from xK to xσ).
• τ

∗, the unit vector parallel to σ∗, oriented from xK to xL (resp. from xK to
xσ).

• ν
∗, the unit vector normal to σ∗, oriented from xK∗ to xL∗ .

• αD, the angle between τ and τ
∗.

• dD, the diameter of D.
• xD the intersection of (xK, xL) and (xK∗ , xL∗) (resp. xD = xσ).

Each diamond cell D ∈ Dint (resp. D ∈ Dext) can naturally be split into four triangles
(resp. two triangles) Q ∈ QD as shown in Figure 3.2

D = QK,K∗ ∪ QK,L∗ ∪ QL,K∗ ∪ QL,L∗ , if D ∈ Dint, D = QK,K∗ ∪ QK,L∗ , if D ∈ Dext.

|σL∗ |

|σK∗ |

xK∗

xK

|σK|

αD

ν
∗

τ
∗

τ

xL

xK

xK∗

xL
QL,L∗

QK,L∗
xD

QL,K∗

QK,K∗

xL∗xL∗

|σL|

ν

Fig. 3.2. Notations in a diamond cell; quarter diamonds

We denote by σK, σL, σK∗ , σL∗ the segments (xK, xD), (xL, xD), (xK∗ , xD), (xL∗ , xD),
so that σ = σK∗ ∪σL∗ and σ∗ = σK∪σL for D ∈ Dint. For D ∈ Dext we note abusively
σ∗ = σK.We note EQ the set of such segments included in ∂Q.
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3.3. Regularity assumptions for the meshes. We note size(T ) the maxi-
mum of the diameters of the diamond cells in D. The following bounds follow:

|σ| ≤ size(T ), ∀σ ∈ E ; |σ∗| ≤ size(T ), ∀σ∗ ∈ E∗;

|K| ≤ π size(T )2, ∀K ∈ M; |K∗| ≤ π size(T )2, ∀K∗ ∈ M
∗;

|Q| ≤
1

2
size(T )2, ∀Q ∈ Q.

To measure how flat the diamond cells are, we introduce αT the unique real in

]0, π
2 ] such that sinαT

def
= minD∈D | sin αD|. We also need to control the ratio between

the sizes of the quarter diamond cells inside each diamond D. As a consequence, we
will measure the regularity of the DDFV mesh by the following quantity

reg(T )
def
= max

(
1

αT
, max
D∈D

max
Q∈QD

dD√
|Q|

max
K∈M

D∈DK

dK

dD

, max
K∗∈M∗

D∈DK∗

dK∗

dD

)
.

In particular, there exists two constants C1 and C2 depending on reg(T ) such that
for any K ∈ M, K∗ ∈ M

∗ and D ∈ D such that D ∩ K 6= ∅ and D ∩ K∗ 6= ∅ we have

C1|K| ≤ |D| ≤ C2|K|, C1|K
∗| ≤ |D| ≤ C2|K

∗|.

3.4. Original DDFV approach for linear problems. The DDFV finite vol-
ume method associates to all primal control volume K ∈ M an unknown value uK

and to all dual control volume K∗ ∈ M
∗ an unknown value uK∗ . The approximate

solution uT is denoted by

uT = ((uK)K∈M, (uK∗)K∗∈M∗) .

The set of such unknowns uT is denoted by R
T .

The method consists in introducing a discrete gradient operator ∇T defined to be
constant on each diamond cell

∇T

DuT =
1

sin αD

(
uL − uK

|σ∗|
ν +

uL∗ − uK∗

|σ|
ν
∗
)

where uK∗ = 0 (resp. uL∗ = 0) if xK∗ ∈ P∗
ext (resp. if xL∗ ∈ P∗

ext) and uL = 0 if
D ∈ Dext. Then the discrete divergence operator is defined to be the adjoint of ∇T , so
that for linear equations (in particular the Laplace equation), we obtain a well-posed
finite volume scheme which is for instance studied in [7, 14]. Notice that the discrete
gradient operator ∇T was already used e.g. in [1, 2, 6], but in these references the
values uK∗ and uL∗ on the dual mesh were not considered as unknowns of the problem
but were built via interpolation formulas between the values of the solution on the
primal mesh. In this last approach, there are less unknowns but the structure of
the original equation (in particular the symmetry) is lost. The main advantage of
the DDFV method is that the discrete equations inherits from the properties of the
continuous one, which is crucial in particular in the nonlinear setting.

3.5. The DDFV method for nonlinear elliptic problems. In [3], we have
studied the generalization of the DDFV method to the nonlinear equation (1.1). We
proved that all the tools used in the study of this equation (monotonicity, compactness,
etc...) can be translated to the discrete level. The scheme we proposed consists in
integrating the equation (1.1) on each K ∈ M and each K∗ ∈ M

∗ and then to
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approximate fluxes
∫

σ
(ϕ(s,∇ue(s)), ν) ds or

∫
σ∗ (ϕ(s,∇ue(s)), ν

∗) ds by using the
discrete gradient ∇T operator defined above. The scheme now writes:





−
∑

D∈DK

|σ| (ϕD(∇T

D
uT ), νK) = |K|fK, ∀K ∈ M,

−
∑

D∈DK∗

|σ∗| (ϕD(∇T

DuT ), νK∗) = |K∗|fK∗ , ∀K∗ ∈ M
∗,

(3.1)

where fK and fK∗ denotes the mean value of f over K and K∗ respectively, and ϕD is
the mean-value of ϕ over D, that is

ϕD(ξ) =
1

|D|

∫

D

ϕ(z, ξ) dz. (3.2)

We proved in [3] that this scheme is convergent for any ϕ satisfying assumptions (H1)-
(H3) and any source term f ∈ Lp′

(Ω), and that we can adapt the scheme for source
terms in W−1,p′

(Ω) which is the natural space in which source terms can be taken.

We also proved error estimates for the scheme above in the case where the flux ϕ
is assumed to be smooth enough with respect to ξ and to z on the whole domain Ω,
and ue is assumed to belong to W 2,p(Ω).

4. Taking into account discontinuities in the DDFV framework. The
point we are concerned with in this paper is that the scheme (3.1) (even though we
know that it is convergent) suffers from a lost of consistency in the case where ϕ
presents discontinuities in the space variable z. This behavior is illustrated in Section
8 in comparison with the one of the new scheme we propose in the present section.
More precisely, we present a way to recover the consistency of the fluxes even when ϕ
presents jumps. The method essentially follows the line described for the very simple
toy 1D problem studied in Section 2.

4.1. Assumptions on the flux ϕ. We first give the precise assumptions we
need on the flux ϕ. First of all, we reinforce the monotonicity assumption (H1) in the
following way:

• If 1 < p ≤ 2: for all (ξ, η) ∈ R
2 × R

2 and almost every z ∈ Ω,

(ϕ(z, ξ) − ϕ(z, η), ξ − η) ≥
1

Cϕ

|ξ − η|2(1 + |ξ|p + |η|p)
p−2

p . (H1′a)

• If p > 2: for all (ξ, η) ∈ R
2 × R

2 and almost every z ∈ Ω,

(ϕ(z, ξ) − ϕ(z, η), ξ − η) ≥
1

Cϕ

|ξ − η|p. (H1′b)

We also assume that the flux ϕ is Hölder continuous with respect to ξ:

• If 1 < p ≤ 2: for all (ξ, η) ∈ R
2 × R

2 and almost every z ∈ Ω,

|ϕ(z, ξ) − ϕ(z, η)| ≤ Cϕ|ξ − η|p−1. (H4a)

• If p > 2: for all (ξ, η) ∈ R
2 × R

2, and almost every z ∈ Ω,

|ϕ(z, ξ) − ϕ(z, η)| ≤ Cϕ

(
1 + |ξ|p−2 + |η|p−2

)
|ξ − η|. (H4b)



FV schemes for elliptic pbs with discontinuities 11

The four assumptions above are classical in the error analysis of numerical methods for
nonlinear problems and are satisfied by many usual nonlinear operators. We can think

for instance to p-laplacian-like operators ϕ(z, ξ) = k(z)(A(z)ξ, ξ)
p−2
2 A(z)ξ, where k

(resp. A) is a real-valued (resp. symmetric matrix-valued) bounded map satisfying a
uniform coercivity assumption. We also refer to [3] for other examples.

Finally, as we have seen above we want to consider a flux ϕ which is piecewise
smooth with respect to the space variable. The precise meaning of this statement is
the following:

• If 1 < p ≤ 2: for all ξ ∈ R
2, for all Q ∈ Q and almost every (z, z′) ∈ Q2,

|ϕ(z, ξ) − ϕ(z′, ξ)| ≤ Cϕ(1 + |ξ|p−1)|z − z′|p−1. (H5a)

• If p > 2: ϕ is Lipschitz on any Q ∈ Q, and for all ξ ∈ R
2 and almost every

z ∈ Q we have
∣∣∣∣
∂ϕ

∂z
(z, ξ)

∣∣∣∣ ≤ Cϕ

(
1 + |ξ|p−1

)
. (H5b)

Contrarily to the assumptions we considered in [3], the above hypothesis are localized
on each quarter diamond. From a practical point of view, this means that the mesh is
built is such a way that the discontinuities with respect to the space variable z of the
flux ϕ are only allowed across edges of the primal mesh and edges of the dual mesh.

4.2. Approximate fluxes on the quarter diamond. From now on, we as-
sume that ϕ is a given flux satisfying (H2),(H3) and either (H1′a), (H4a), (H5a) if
p ≤ 2, either (H1′b), (H4b), (H5b) if p > 2.

Then, we suppose given for each quarter-diamond Q ∈ Q a probability measure
dµQ on Q, so that we can define an approximation ϕQ( · ) of ϕ on Q by

ϕQ( · ) =

∫

Q

ϕ(z, · ) dµQ(z). (4.1)

This makes sense since ϕ is supposed to be Hölder continuous on Q (see assumptions
(H5a)-(H5b) above) and hence can be extended to a continuous map on Q. This quite
general framework includes the case where ϕQ is the usual mean-value of ϕ on Q for
the Lebesgue measure but also the case where ϕQ is chosen to be the value of ϕ at a
given point in Q or more generally an approximation of the mean-value of ϕ through a
quadrature formula. These situations are the usual ones that we may use in practice.

Remark now that ϕQ inherits the monotonicity, coercivity and regularity proper-
ties of the initial flux ϕ, that is for any Q ∈ Q:

(ϕQ(ξ), ξ) ≥
1

Cϕ

|ξ|p − Cϕ, ∀ξ ∈ R
2, (HT

2 )

|ϕQ(ξ)| ≤ Cϕ(1 + |ξ|p−1), ∀ξ ∈ R
2. (HT

3 )

• If 1 < p ≤ 2:

(ϕQ(ξ) − ϕQ(η), ξ − η) ≥
1

Cϕ

|ξ − η|2(1 + |ξ|p + |η|p)
p−2

p , ∀ξ, η ∈ R
2, (HT

1′a)

|ϕQ(ξ) − ϕQ(η)| ≤ Cϕ|ξ − η|p−1, ∀ξ, η ∈ R
2. (HT

4a)
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• If p > 2:

(ϕQ(ξ) − ϕQ(η), ξ − η) ≥
1

Cϕ

|ξ − η|p, ∀ξ, η ∈ R
2, (HT

1′b)

|ϕQ(ξ) − ϕQ(η)| ≤ Cϕ

(
1 + |ξ|p−2 + |η|p−2

)
|ξ − η|, ∀ξ, η ∈ R

2. (HT

4b)

4.3. Local modification of the discrete gradient operator. As we saw
in the 1D case (see Section 2), we need to introduce new gradient operators near
the discontinuities of the flux and finally define a new approximate flux ϕN

D
on each

diamond cell.
The new gradient operator ∇N we propose to consider is built upon the usual

DDFV gradient ∇T . It is chosen to be constant on all the quarter diamonds Q ∈ Q.
This new operator has to be thought as the 2D generalization of the definitions of ∇+

N

and ∇−
N

in (2.4). In this 1D situation, the place where the artificial unknown ũ (or
δ = ũ− ū) must be chosen is clear: it is the point of the mesh where the discontinuity
takes place, that is xN = 0 in the framework of Section 2.

In the 2D setting the situation is less straightforward. In order to make the good
choice it is useful to remember that the usual DDFV gradient ∇T

DuT on a diamond
cell D can be understood (it is an easy computation) as the gradient of the unique
affine function ΠDuT whose value at the middle of each side of the diamond D is
the mean-value between the two unknowns associated to the two extremities of this
segment. This situation is summed up in Figure 4.1 for a given interior diamond cell
D ∈ Dint. In this figure, we introduce xσ to be the middle of the segment σ for each
σ ∈ {σK, σL, σK∗ , σL∗}.

xK∗

uL+uK∗

2

xL

uL+uL∗

2

uK+uL∗

2

xK

xL∗

xσK∗

xσK

xσL∗

uK+uK∗

2

xσL

Fig. 4.1. Affine function whose gradient is ∇T
DuT

It seems now natural to define the new discrete gradient operator ∇N
Q

uT on each

quarter diamond as the gradient of a function Π̃DuT which coincides with ΠDuT in
the middle of each side of D and which is continuous at each point xσK , xσL , xσK∗

and xσL∗ but which is not necessarily continuous on the whole diamond D.

This new function Π̃DuT is then entirely defined, for a given uT , by its four values
Π̃DuT (xσ) at each of these four points xσ. These four values are the artificial unknowns
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in our problem. Like in the 1D case, it is equivalent and more suitable to work with
the new unknowns δD

K , δD
L , δD

K∗ , δD
L∗ defined to be the differences Π̃DuT (xσ) − ΠD(xσ)

for each σ ∈ {σK, σL, σK∗ , σL∗}. Notice that each ΠD(xσ) can be computed as an
explicit function of uK, uL, uK∗ and uL∗ .

The situation is simpler in the case of exterior diamond cells D ∈ Dext, in which
case we only need one artificial unknown, that is δD

K
. Hence, we define nD to be the

number of artificial unknowns needed on the diamond cell D. From the discussion
above we have nD = 4 if D ∈ Dint and nD = 1 if D ∈ Dext.

By straightforward computations, the above discussion can be summed up as
follows: we define the new discrete gradient operator on each quarter diamond Q ∈
QD, to be the gradient of Π̃DuT , which reads

∇N

QuT = ∇T

DuT + BQδD,

where δD ∈ R
nD is an artificial set of unknowns introduced above and (BQ)Q∈QD is

a set of 2 × nD matrices defined as follows:
In the case where D ∈ Dint, we take the four matrices BQ:

BQK,K∗ =
2

sin αD

(
ν
∗

|σK∗ |
, 0,

ν

|σK|
, 0

)
=

1

|QK,K∗ |
(|σK|ν

∗, 0, |σK∗ |ν, 0) , (4.2)

BQK,L∗ =
2

sin αD

(
−

ν
∗

|σL∗ |
, 0, 0,

ν

|σK|

)
=

1

|QK,L∗ |
(−|σK|ν

∗, 0, 0, |σL∗ |ν) , (4.3)

BQL,L∗ =
2

sin αD

(
0,−

ν
∗

|σL∗ |
, 0,−

ν

|σL|

)
=

1

|QL,L∗ |
(0,−|σL|ν

∗, 0,−|σL∗ |ν) , (4.4)

BQL,K∗ =
2

sin αD

(
0,

ν
∗

|σK∗ |
,−

ν

|σL|
, 0

)
=

1

|QL,K∗ |
(0, |σL|ν

∗,−|σK∗ |ν, 0) . (4.5)

In the case where D ∈ Dext, there is only two non-degenerate quarter-diamonds
in Q and the two corresponding matrices BQ are given by

BQK,K∗ =
2

sin αD

(
ν
∗

|σK∗ |

)
=

1

|QK,K∗ |
(|σK|ν

∗) , (4.6)

BQK,L∗ =
2

sin αD

(
−

ν
∗

|σL∗ |

)
=

1

|QK,L∗ |
(−|σK|ν

∗) . (4.7)

Notice that these matrices only depend on the geometry of the diamond cell D.
Furthermore we easily see from the formulas above that

∑
Q∈QD

|Q|BQ = 0 for any
diamond cell D. Hence, the following straightforward result holds

Lemma 4.1. For all ξ ∈ R
2, for all D ∈ D, for all δ ∈ R

nD , we have

ξ =
1

|D|

∑

Q∈QD

|Q| (ξ + BQδ) . (4.8)

This Lemma implies that the new gradient has a mean value over D which equals
the usual DDFV gradient ∇T

DuT , that is

∇T

DuT =
1

|D|

∑

Q∈QD

|Q|∇N

QuT ,

which is the 2D equivalent to formula (2.5).
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Like in the monodimensional case presented in Section 2, we want to eliminate
the additional unknowns δD on each D in such a way that the conservativity of the
numerical fluxes on all edges σ ∈ ED is ensured. More precisely, we want to choose δD

such that, setting ξ = ∇T
DuT , we have





(
ϕQK,K∗ (ξ + BQK,K∗ δD), ν∗) =

(
ϕQK,L∗ (ξ + BQK,L∗ δD), ν∗) ,

(
ϕQL,K∗ (ξ + BQL,K∗ δD), ν∗) =

(
ϕQL,L∗ (ξ + BQL,L∗ δD), ν∗) ,

(
ϕQK,K∗ (ξ + BQK,K∗ δD), ν

)
=
(
ϕQL,K∗ (ξ + BQL,K∗ δD), ν

)
,

(
ϕQK,L∗ (ξ + BQK,L∗ δD), ν

)
=
(
ϕQL,L∗ (ξ + BQL,L∗ δD), ν

)
,

(4.9)

in the case where D ∈ Dint. If D ∈ Dext, the conditions on δD takes the simpler form

(
ϕQK,K∗ (ξ + BQK,K∗ δD), ν∗) =

(
ϕQK,L∗ (ξ + BQK,L∗ δD), ν∗) . (4.10)

We are now going to show that the equations (4.9) or (4.10) uniquely defines
δD ∈ R

D as a function of ξ.
Proposition 4.2. For all D ∈ D and all ξ ∈ R

2, there exists a unique δD(ξ) ∈
R

nD such that (4.9) (resp. (4.10)) holds if D ∈ Dint (resp. if D ∈ Dext).
Proof. We only give the proof for D ∈ Dint, since the case of boundary diamond

cells can be treated in the same way. Let ξ ∈ R
2 given and define Fξ : R

4 7→ R
4 by

Fξ(δ) =
∑

Q∈QD

|Q|tBQ.ϕQ(ξ + BQδ).

By using (4.2)-(4.5), we easily see that the conditions (4.9) are equivalent to the
equation Fξ(δ

D) = 0. Hence, the claim will be proved if we show that this nonlinear

equation has a unique solution. To this end, we remark that for any δ̃ ∈ R
4, we have

(
Fξ(δ), δ̃

)
=
∑

Q∈QD

|Q|
(
ϕQ(ξ + BQδ), BQδ̃

)
. (4.11)

Hence, we deduce using assumptions (HT
2 ) and (HT

3 ) that there exists C depending
only on p and Cϕ such that

(Fξ(δ), δ) ≥
1

C

(
∑

Q∈QD

|Q| |ξ + BQδ|p

)
− C|D|(1 + |ξ|p). (4.12)

Finally, we deduce

(Fξ(δ), δ) ≥
1

C

(
∑

Q∈QD

|Q| |BQδ|p

)
− C|D|(1 + |ξ|p),

for another constant C. Since,
∑

Q∈QD
|Q||BQδ|p −→

|δ|→∞
∞, we deduce that Fξ is

coercive. By the Brouwer theorem (Fξ is continuous since each ϕQ is continuous) we
obtain the existence of at least one solution to the problem Fξ(δ) = 0.

Notice now that if BQδ = BQδ̃, ∀Q ∈ QD then δ = δ̃. Hence, we deduce from
(4.11) that for all δ 6= δ̃

(
Fξ(δ) − Fξ(δ̃), δ − δ̃

)
=
∑

Q∈QD

|Q|
(
ϕQ(ξ + BQδ) − ϕQ(ξ + BQδ̃), BQδ − BQδ̃

)
> 0,
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using assumption (HT

1′a) or (HT

1′b). This gives the uniqueness of the solution to
Fξ(δ) = 0 and the claim is proved.

Example 4.3. In many situations, it can happen that ϕ is smooth for instance in
each primal control volume. In that case, it is possible to choose the approximations
ϕQ in such a way that for each D ∈ Dint we have

ϕQK,K∗ = ϕQK,L∗ , and ϕQL,K∗ = ϕQL,L∗ .

In that case, one can easily show that the solution δD(ξ) of the equations (4.9) appears
to satisfy

δD

K = 0, δD

L = 0, and δD

K∗ = δD

L∗ .

Hence, everything happens like in the 1D case and there is in fact only one artificial
unknown (δD

K∗ for instance) to determine.
A symmetric situation holds if we assume that ϕ is smooth in each dual control

volume and that ϕQK,K∗ = ϕQL,K∗ , ϕQK,L∗ = ϕQL,L∗ .
Finally, notice that if we only assume that ϕQK,K∗ = ϕQK,L∗ for instance, then in

the general nonlinear case there is no reason why δD
K

should be 0.
From now on, the new discrete gradient operator ∇N is completely determined by

∇N

Q
uT = ∇T

D
uT + BQδD(∇T

D
uT ), for any D ∈ D and Q ∈ QD, (4.13)

where the map ξ 7→ δD(ξ) is defined in Proposition 4.2. Notice that, in general, this
new gradient operator ∇N

Q is nonlinear contrarily to the operator ∇T
D and depends on

the flux ϕ defining the equation (and more precisely to its approximations ϕQ).
Furthermore, let us emphasize the fact that the nonlinear map ξ 7→ δD(ξ) is only

defined implicitely through the equations (4.9) or (4.10) (see also the 1D discussion
in Section 2), which seems to make the new discrete gradient ∇N quite difficult to
compute. We postpone to Section 7 the discussion on the practical way to solve this
finite volume scheme.

4.4. Some useful inequalities. The usual DDFV discrete gradient and the
modified one can be compared as follows.

Lemma 4.4. There exists a constant C that depends only on Cϕ and p such that
for all D ∈ D, and all uT ∈ R

T , we have
∫

D

|∇T uT (z)|p dz ≤

∫

D

|∇NuT (z)|p dz ≤ C

∫

D

(1 + |∇T uT (z)|p) dz.

Proof. Thanks to Lemma 4.1, we have

|D||∇T

DuT |p = |D|

∣∣∣∣∣
1

|D|

∑

Q∈QD

|Q|∇N

QuT

∣∣∣∣∣

p

= |D|

∣∣∣∣
1

|D|

∫

D

∇NuT (z) dz

∣∣∣∣
p

.

Using the Jensen inequality, we deduce the first inequality.
The second one is a consequence of (4.12) applied to ξ = ∇T

D
uT , δ = δD(∇T

D
uT )

using that F∇T
DuT (δD(∇T

D
uT )) = 0 by definition of δD.

Finally we can state the following discrete Poincaré inequality. Its proof is
sketched in [3] and uses an argument given in [4] (see also [9]).

Proposition 4.5 (Discrete Poincaré inequality). Let T be a DDFV mesh on Ω.
There exists a constant C depending on p, Ω and reg(T ) such that

‖uM‖Lp + ‖uM
∗
‖Lp ≤ C‖∇T uT ‖Lp ≤ C‖∇NuT ‖Lp , ∀uT ∈ R

T .

In particular, if ∇N
Q

uT = 0 for all Q ∈ Q then uT = 0.
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4.5. The m-DDFV scheme for discontinuous fluxes. We can finally in-
troduce the new approximate flux ϕN

D on each diamond cell to be used in the finite
volume scheme instead of (3.2). For any diamond cell D ∈ D, we set

ϕN

D
(ξ) =

1

|D|

∑

Q∈QD

|Q|ϕQ(ξ + BQδD(ξ)), ∀ξ ∈ R
2. (4.14)

This definition is nothing but the adaptation to the 2D case of the corresponding
formula in the 1D case (see (2.7)).

Applying definition (4.14) to ξ = ∇T
D
uT for a given uT ∈ R

T , we find that

ϕN

D (∇T

DuT ) =
1

|D|

∑

Q∈QD

|Q|ϕQ(∇N

QuT ). (4.15)

The m-DDFV scheme that we will study in the sequel of the paper can now be
defined by the set of equations






aN
K (uT )

def
= −

∑

D∈DK

|σ| (ϕN

D (∇T

DuT ), νK) = |K|fK, ∀K ∈ M,

aN
K∗(uT )

def
= −

∑

D∈DK∗

|σ∗| (ϕN

D
(∇T

D
uT ), νK∗) = |K∗|fK∗ , ∀K∗ ∈ M

∗,
(4.16)

that we write under the short form aN (uT ) = ((|K|fK)K, (|K∗|fK∗)K∗), with aN ( · )
def
=

((aN
K

( · ))K, (aN
K∗( · ))K∗). Note that the only difference between this scheme (4.16) and

the previous one (3.1) is the fact that we replaced the previous mean-value approxi-
mation ϕD of ϕ over D by the map ϕN

D defined by (4.14).

4.6. Basic properties of the scheme. Before proving existence and unique-
ness of the solution for the nonlinear system (4.16) we first give some properties of the
map aN . The first result is a summation by parts result showing that the m-DDFV
scheme we propose enjoys the same discrete duality property than the original DDFV
scheme.

Lemma 4.6. For any uT , vT in R
T we have

(aN (uT ), vT ) = 2
∑

D∈D

|D| (ϕN

D
(∇T

D
uT ),∇T

D
vT )

= 2
∑

Q∈Q

|Q| (ϕQ(∇N

QuT ),∇N

QvT ) .

Proof. The first equality can be proved in the same way than in [3] by reordering
the summation on the primal and dual control volumes as a summation over the
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diamond set
∑

K∈M

a
N

K (uT )vK +
∑

K∗∈M∗

a
N

K∗(uT )vK∗

= −
∑

K∈M

∑

D∈DK

|σ|(ϕN

D
(∇T

D
uT ), ν)vK −

∑

K∗∈M∗

∑

D∈DK∗

|σ∗|(ϕN

D
(∇T

D
uT ), ν∗)vK∗

=
∑

D∈Dint

|D|

(
ϕN

D (∇T

DuT ),
2

sin αD

(
vK − vL

|σ∗|
ν +

vK∗ − vL∗

|σ|
ν
∗
))

+
∑

D∈Dext

|D|

(
ϕN

D
(∇T

D
uT ),

2

sin αD

vK

|σ∗|
ν

)

= 2
∑

D∈D

|D| (ϕN

D
(∇T

D
uT ),∇T

D
vT ) .

To prove the second equality, we use (4.15) and (4.13) to write on each diamond
cell D ∈ D

|D| (ϕN

D (∇T

DuT ),∇T

DvT ) =
∑

Q∈QD

|Q| (ϕQ(∇N

QuT ),∇T

DvT )

=
∑

Q∈QD

|Q| (ϕQ(∇N

Q
uT ),∇N

Q
vT − BQδD(∇T

D
vT ))

=
∑

Q∈QD

|Q| (ϕQ(∇N

Q
uT ),∇N

Q
vT )

−
∑

Q∈QD

|Q|tBQϕQ(∇N

Q
uT ) · δD(∇T

D
vT ),

and this last term vanishes since, by definition of the map δD (see proposition 4.2),
we have

∑

Q∈QD

|Q|tBQϕQ(∇N

Q
uT ) · δD(∇T

D
vT ) = (F∇T

DuT (δD(∇T

D
uT )), δD(vT )) = 0.

Lemma 4.7. For any uT ∈ R
T we have

(aN (uT ), uT ) ≥
2

Cϕ

‖∇NuT ‖p
Lp − 2Cϕ|Ω| ≥

2

Cϕ

‖∇T uT ‖p
Lp − 2Cϕ|Ω|.

Proof. We derive from Lemma 4.6 and assumption (HT
2 ) that

(aN (uT ), uT ) = 2
∑

D∈D

∑

Q∈QD

|Q|
(
ϕQ(∇N

Q
uT ),∇N

D
uT
)

≥ 2
∑

D∈D

(∫

D

1

Cϕ

|∇NuT (z)|p dz − Cϕ|D|

)
.

We conclude using Lemma 4.4.
Lemma 4.8. We have

(aN (uT ) − a
N (vT ), uT − vT ) > 0, ∀uT , vT ∈ R

T , uT 6= vT .
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Proof. From Lemma 4.6, we have

(aN (uT ) − a
N (vT ), uT − vT )

= 2
∑

Q∈Q

|Q| (ϕQ(∇N

Q
uT ) − ϕQ(∇N

Q
vT ),∇N

Q
uT −∇N

Q
vT ) . (4.17)

By using the monotonicity properties of the nonlinearity ϕQ, that is assumption (HT

1′a)
and (HT

1′b), we deduce that the left hand side of (4.17) is non negative and vanishes
if and only if uT = vT (by Proposition 4.5).

Theorem 4.9. The scheme (4.16) admits a unique solution uT ∈ R
T . Further-

more, there exists a constant C depending only on Cϕ, reg(T ) and p such that this
solution uT satisfies

‖∇T uT ‖Lp + ‖∇NuT ‖Lp ≤ C

(
1 + ‖f‖

1
p−1

Lp′

)
. (4.18)

Proof. The map uT 7→ aN (uT )− fT is continuous and coercive thanks to Lemma
4.7. We deduce from the Brouwer theorem the existence of a solution to (4.16).
Uniqueness is a consequence of the monotonicity Lemma 4.8.

Estimate (4.18) comes directly from Lemmas 4.4 and 4.7.
We finally show that the numerical solution of the scheme (4.16) depends contin-

uously on the source term fT .
Theorem 4.10 (Stability). There exist a constant C > 0 depending only on Cϕ,

reg(T ) and p such that for any fT and gT in R
T , we have

‖∇NuT −∇NvT ‖Lp ≤

{
C (1 + ‖fT ‖Lp′ + ‖gT ‖Lp′ )

2−p

p−1 ‖fT − gT ‖Lp′ , if 1 < p ≤ 2

C‖fT − gT ‖
1

p−1

Lp′ , if p > 2,

where uT (resp. vT ) is the solution of the m-DDFV scheme (4.16) associated to the
data fT (resp. gT ).

Proof. We apply estimate (4.17) and obtain thanks to assumption (HT

1′b) for p > 2

(aN (uT ) − a
N (vT ), uT − vT ) ≥

1

C

∑

D∈D

∑

Q∈QD

|Q||∇N

Q
uT −∇N

Q
vT |p.

For 1 < p ≤ 2 assumption (HT

1′a) implies

(aN (uT ) − a
N (vT ), uT − vT ) ≥

1

C

∑

D∈D

∑

Q∈QD

|Q| (1 + |∇N

QuT |p + |∇N

QvT |p)
p−2

p |∇N

QuT −∇N

QvT |2.

Hence, if 1 < p ≤ 2 we have

‖∇NuT −∇NvT ‖2
Lp ≤ C

(
1 + ‖∇NuT ‖2−p + ‖∇NvT ‖2−p

)

× (aN (uT ) − a
N (vT ), uT − vT ) .

We conclude using the definition of fT and gT and the discrete Poincaré inequality
(Proposition 4.5).
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5. Error estimates. We first give some error estimates for the scheme (4.16) in
the case where the exact solution ue of the problem (1.1) is piecewise smooth. More
precisely let us introduce for any q ∈ [1, +∞] the space

W 2,q(Q) =
{
u ∈ W 1,p

0 (Ω), u|Q ∈ W 2,q(Q), ∀Q ∈ Q

}
,

endowed with the norm

‖u‖W 2,q(Q) = ‖u‖W
1,p

0 (Ω) +

(
∑

Q∈Q

‖D2u‖q

Lq(Q)

) 1
q

.

Our first result gives an error estimate for the solution of the m-DDFV scheme.
In this result the flux ϕ is allowed to have discontinuities across all the edges of the
primal and the dual meshes.

Theorem 5.1. Let T be a mesh on Ω. Let f ∈ Lp′

(Ω) and assume that the
solution ue to (1.1) belongs to W 2,p(Q).

There exists C > 0 depending on ‖ue‖W 2,p(Q), reg(T ), ‖f‖Lp′ , Cϕ and p such
that the solution uT ∈ R

T of the m-DDFV scheme (4.16) satisfies

‖ue − uM‖Lp + ‖ue − uM∗
‖Lp + ‖∇ue −∇NuT ‖Lp ≤

{
C size(T )(p−1)2 , if 1 < p ≤ 2,

C size(T )
1

(p−1)2 , if p > 2.

A typical case for which our method can be applied is the one where the domain
Ω can be divided into N disjoint subdomains (Ωi)1≤i≤N such that

ϕ is smooth over each subdomain Ωi. (5.1)

We assume that each domain Ωi is polygonal and that the mesh is compatible with
the subdomains in the sense that, for any i there exists a subset Ei of E such that
∂Ωi = ∪σ∈Ei

σ. More generally, we may assume that the discontinuities of the flux ϕ
only occur along a finite number of curves in Ω.

In that situation, the diamond cells naturally divide into two subsets defined by

Dcont = {D ∈ D, ∃i ∈ {1, . . . , N}, D ⊂ Ωi}, and Ddisc = D \ Dcont.

We propose to use in that case an hybrid DDFV scheme defined as follows:
Definition 5.2. Under assumption (5.1), we call h-DDFV scheme for the prob-

lem (1.1) the DDFV scheme still under the form (4.16), but where ϕN
D is defined as

follows:
• For the diamond cells D ∈ Ddisc, that is the ones where the discontinuities

of the flux occur we take ϕN
D

as defined in (4.15).
• For the diamond cells D ∈ Dcont, that is away from the discontinuities, we

take ϕN
D to be the usual mean-value ϕD of ϕ over D defined in (3.2).

Assuming that ue is slightly more regular than in the previous result, this ap-
proach let us recover the same convergence rate than in the usual continuous flux
case (see [3]).

Theorem 5.3. Consider the same assumptions than in Theorem 5.1 with the
additionnal assumption (5.1). Assume furthermore that the solution ue of (1.1) lies
in W 2,q(Q) for q = p(p − 1)2 if p ≥ 2 and q = p

(p−1)2 if p < 2. Then, there exists a
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constant C > 0 like in Theorem 5.1 such that the solution uT to the h-DDFV scheme
satisfies

‖ue − uM‖Lp + ‖ue − uM
∗
‖Lp + ‖∇ue −∇NuT ‖Lp ≤

{
C size(T )p−1, if 1 < p ≤ 2,

C size(T )
1

p−1 , if p > 2.

We are now going to prove these two results. The key ingredients in this analysis
are the consistency error estimates on the numerical fluxes across edges of the primal
and the dual control volumes.

5.1. Consistency error. In order to evaluate the error between ue and uT we
need to introduce a projection of the exact solution ue onto the space of discrete
functions R

T . Notice that any function v in W 2,p(Q) is continuous over Ω. Hence, it
makes sense to consider the center-value projection P

T defined as follows:
Definition 5.4. For any v ∈ C0(Ω), we define its center-value projection P

T v ∈
R

T as the vector

P
T v =

(
(v(xK))K∈M, (v(xK∗))K∗∈M∗

)
.

We refer to [3] for the proofs of the main properties of this projection operator.
As usual in finite volume methods, the error analysis is mainly based on estimates

of consistency errors for the fluxes as defined below.
Definition 5.5. Assume that ue ∈ W 2,p(Q). For any Q ∈ Q, z ∈ Q we define

RQ(z) = ϕ∣∣
Q

(z,∇ue
∣∣
Q

(z)) − ϕQ(∇N

QP
T ue)

= Rϕ
Q
(z) + Rgrad

Q
+ Rz

Q
,

with

Rϕ
Q
(z)

def
= ϕ∣∣

Q

(z,∇ue
∣∣
Q

(z)) −
1

|Q|

∫

Q

ϕ(z′,∇ue(z
′)) dz′

Rgrad
Q

def
=

1

|Q|

∫

Q

(ϕ(z′,∇ue(z
′)) − ϕ(z′,∇N

Q
P

T ue)) dz′,

Rz
Q

def
=

1

|Q|

∫

Q

ϕ(z′,∇N

QP
T ue) dz′ − ϕQ(∇N

QP
T ue).

Finally, for any Q ∈ Q and σ ∈ EQ, we note

Rϕ
Q,σ =

1

|σ|

∫

σ

(Rϕ
Q(z), νQ,σ) dz, Rgrad

Q,σ =
(
Rgrad

Q , νQ,σ

)
, Rz

Q,σ = (Rz
Q, νQ,σ) ,

and RQ,σ = Rgrad
Q,σ +Rϕ

Q,σ +Rz
Q,σ, where νQ,σ is the unit normal to σ pointing outward

Q.
It is fundamental to notice that, by definition of the new discrete gradient operator

∇N and since ue ∈ W 2,p(Q), we have the conservativity property

RQ,σ = −RQ′,σ, if σ = Q|Q′. (5.2)

The objective is now to estimate each of the three terms involved in this con-
sistency error. The terms Rϕ

Q and Rz
Q

can be easily controlled by using the same
techniques as in [3]. This is the aim of the following proposition.
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Proposition 5.6. Let T be a mesh on Ω and assume that the solution ue to
problem (1.1) lies in W 2,p(Q). There exists a constant C > 0 depending on p, reg(T )
and Cϕ such that

|Q| |Rϕ
Q,σ|

p

p−1 ≤ Cd
pαp

Q

∫

Q

(1 + |∇ue|
p + |D2ue|

p) dz, ∀Q ∈ Q, ∀σ ∈ EQ,

|Q| |Rz
Q|

p

p−1 ≤ Cd
pαp

Q |Q|(1 + |∇N

QP
T ue|

p), ∀Q ∈ Q,

where αp = 1 if 1 < p ≤ 2 and αp = 1
p−1 if p > 2.

Proof. The proof of the first point is the same as [3, Proposition 7.6].
Note that in the case where the approximate flux ϕQ is chosen to be the mean-

value of ϕ on Q, then Rz
Q

just vanishes. For other choices of ϕQ, we write that

|Rz
Q
| ≤

1

|Q|

∫

Q

∫

Q

|ϕ(z,∇N

Q
P

T ue) − ϕ(z′,∇N

Q
P

T ue)| dz dµQ(z′)

and we use assumption (H5a) or (H5b). The claim follows using Jensen’s inequality.

We can now proceed to the study of the consistency estimate for the new gradient
operator ∇N that we have introduced. This is the main difference between the present
study and our previous works since the definition of the new discrete gradient depends
on the jumps of ϕ in each diamond cell. Hence, the consistency estimate for this
operator can not be obtained as in the usual way, that is only by applying well
chosen Taylor formulas. The proof of the estimate is much more involved. We also
want to point out the fact that, when p 6= 2, we do not obtain the usual first order
consistency estimate as we obtained in [3] for the operator ∇T

D
. Indeed, due to the

degeneracy/singularity of the nonlinear operator near the origin, we only recover a
consistency property of order less than one.

Proposition 5.7. Let T be a mesh on Ω and assume that the solution ue to
problem (1.1) lies in W 2,p(Q). There exists a constant C > 0 depending on p, reg(T )
and Cϕ such that for any D ∈ D we have
∫

D

|∇ue(z) −∇N
P

T ue(z)|p dz ≤ Cd
p(p−1)α2

p

D

∑

Q∈QD

∫

Q

(
1 + |∇ue|

p + |D2ue|
p
)

dz.

Proof.
Let us give the proof in the case where D is an interior diamond cell. The case

D ∈ Dext can be treated in a similar, and in fact simpler, way.
Let us define the projection P

Que of ue on the set of quarter diamonds as follows.
For each quarter diamond Q ∈ Q, the restriction of P

Que to the triangle Q is the
unique affine function P

Q

Q
ue which coincides with ue at the middle of the semi-edges

σ ∈ EQ and whose value at the middle of the third side of Q is the mean-value of the
values of ue at the extremities of this side. Notice that this definition makes sense
since ue

∣∣
Q

∈ W 2,p(Q) ⊂ C0(Q). As an example, in the case of the quarter diamond

Q = QK,K∗ (see Figure 5.1), this definition reads

P
Q

QK,K∗
ue(xσK) = ue(xσK),

P
Q

QK,K∗ ue(xσK∗ ) = ue(xσK∗ ),

P
Q

QK,K∗ ue

(
xK + xK∗

2

)
=

ue(xK) + ue(xK∗)

2
.
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xK

xK∗

xσK

xσK∗

ue(xσK )

1
2 (ue(xK) + ue(xK∗))

QK,K∗

ue(xσK∗ )

xD

Fig. 5.1. The affine interpolation P
Q

QK,K∗ on the quarter diamond QK,K∗

The gradient of P
Q

QK,K∗
ue is then given by

∇P
Q

QK,K∗ ue =
2

sin αD

(
ue(xσK∗ ) − ue(xK)+ue(xK∗ )

2

|σK|
ν +

ue(xσK) − ue(xK)+ue(xK∗ )
2

|σK∗ |
ν
∗
)

.

Let us now define the consistency error for this projection P
Q as follows

TQ(z) = ∇ue(z) −∇P
Q

Q
ue, ∀z ∈ Q, ∀Q ∈ Q. (5.3)

By usual Taylor expansions inside each quarter diamond Q (see [3] for instance) we
can easily show that there exists a constant C > 0 as in the claim on the proposition
such that

∫

Q
|TQ(z)|p dz ≤ Cdp

Q

∫

Q
|D2ue(z)|p dz, ∀Q ∈ Q. (5.4)

By the discussion of Section 4.3 we remark that, D being an interior diamond cell,
there exists δ̃D ∈ R

4 such that

∇P
Q

Q
ue −∇T

D
P

T ue = BQδ̃D, ∀Q ∈ QD,

and then, by the definition (4.13) of ∇N
Q , we deduce that there exists δD ∈ R

4 such
that

∇P
Q

Q
ue −∇N

Q
P

T ue = BQδD, ∀Q ∈ QD. (5.5)

Since ue solves (1.1) with f ∈ Lp′

(Ω), we know that the following transmission
property holds

∫

σK

ϕ∣∣
QK,K∗

(z,∇ue
∣∣
QK,K∗

(s)) · ν∗ ds =

∫

σK

ϕ∣∣
QK,L∗

(z,∇ue
∣∣
QK,L∗

(s)) · ν∗ ds.

Recall that the gradient operator ∇N is built to ensure that the discrete equivalent of
this property, that is the first equation of (4.9), holds. It follows that

(
1

|σK|

∫

σK

ϕ∣∣
QK,K∗

(s,∇ue
∣∣
QK,K∗

(s)) ds − ϕQK,K∗ (∇N

QK,K∗ P
T ue), ν

∗
)

−

(
1

|σK|

∫

σK

ϕ∣∣
QK,L∗

(s,∇ue
∣∣
QK,L∗

(s)) ds − ϕQK,L∗ (∇N

QK,L∗
P

T ue), ν
∗
)

= 0.
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By using Definition 5.5, we get

(
1

|QK,K∗ |

∫

QK,K∗

(
ϕ(z,∇ue(z)) − ϕ(z,∇N

QK,K∗ P
T ue)

)
dz, ν∗

)

−

(
1

|QK,L∗ |

∫

QK,L∗

(
ϕ(z,∇ue(z)) − ϕ(z,∇N

QK,L∗
P

T ue)
)

dz, ν∗
)

= Rϕ
QK,K∗ ,σK

− Rz
QK,K∗ ,σK

− Rϕ
QK,L∗ ,σK

+ Rz
QK,L∗ ,σK

.

Similarly we obtain for the other three semi-edges in the diamond under study the
following relations

(
1

|QL,K∗ |

∫

QL,K∗

(
ϕ(z,∇ue(z)) − ϕ(z,∇N

QL,K∗ P
T ue)

)
dz, ν∗

)

−

(
1

|QL,L∗ |

∫

QL,L∗

(
ϕ(z,∇ue(z)) dz − ϕ(z,∇N

QL,L∗
P

T ue)
)

dz, ν∗
)

= Rϕ
QL,K∗ ,σL

− Rz
QL,K∗ ,σL

− Rϕ
QL,L∗ ,σL

+ Rz
QL,L∗ ,σL

.

(
1

|QK,K∗ |

∫

QK,K∗

(
ϕ(z,∇ue(z)) − ϕ(z,∇N

QK,K∗ P
T ue)

)
dz, ν

)

−

(
1

|QL,K∗ |

∫

QL,K∗

(
ϕ(z,∇ue(z)) − ϕ(z,∇N

QL,K∗
P

T ue)
)

dz, ν

)

= Rϕ
QK,K∗ ,σK∗ − Rz

QK,K∗ ,σK∗ − Rϕ
QL,K∗ ,σK∗ + Rz

QL,K∗ ,σK∗ .

(
1

|QK,L∗ |

∫

QK,L∗

(
ϕ(z,∇ue(z)) − ϕ(z,∇N

QK,L∗ P
T ue)

)
dz, ν

)

−

(
1

|QL,L∗ |

∫

QL,L∗

(
ϕ(z,∇ue(z)) − ϕ(z,∇N

QL,L∗ P
T ue)

)
dz, ν

)

= Rϕ
QK,L∗ ,σL∗ − Rz

QK,L∗ ,σL∗ − Rϕ
QL,L∗ ,σL∗ + Rz

QL,L∗ ,σL∗ .

Multiplying these equations respectively by |σK|δK, |σL|δL, |σK∗ |δK∗ , and |σL∗ |δL∗ and
summing, we obtain

∑

Q∈QD

∫

Q

(
ϕ(z,∇ue(z)) − ϕ(z,∇N

Q
P

T ue), BQδD
)

dz

≤
∑

Q∈QD

|Q||BQδD|
∑

σ∈EQ

(|Rϕ
Q,σ| + |Rz

Q,σ|),
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where we used the definitions (4.2)-(4.5). Using (5.3) and (5.5) we finally deduce

∑

Q∈QD

∫

Q

(ϕ(z,∇ue(z)) − ϕ(z,∇N

Q
P

T ue),∇ue(z) −∇N

Q
P

T ue) dz

≤
∑

Q∈QD

(∫

Q

|∇ue(z) −∇N

Q
P

T ue(z)| dz +

∫

Q

|TQ(z)| dz

) ∑

σ∈EQ

(|Rϕ
Q,σ| + |Rz

Q,σ|)

+
∑

Q∈QD

∫

Q

(ϕ(z,∇ue(z)) − ϕ(z,∇N

QP
T ue), TQ(z)) dz. (5.6)

In the case p > 2, using assumptions (H1′b) and (H4b) and Young’s inequality,
we deduce from formula (5.6) that

∑

Q∈QD

∫

Q

|∇ue(z) −∇N

QP
T ue|

p dz

≤ C
∑

Q∈QD

∑

σ∈EQ

|Q|
(
|Rϕ

Q,σ|
p

p−1 + |Rz
Q,σ|

p

p−1

)
+ C

∑

Q∈QD

∫

Q
|TQ(z)|p dz

+ C

(
∑

Q∈QD

∫

Q
|TQ(z)|p dz

) 1
p−1 (∫

D

(1 + |∇ue(z)|p) dz

) p−2
p−1

.

From (5.4) and the estimates in Proposition 5.6, it follows that

∑

Q∈QD

∫

Q

|∇ue(z) −∇N

Q
P

T ue|
p dz ≤ Cd

p

p−1
D

∑

Q∈QD

∫

Q

(1 + |∇ue|
p + |D2ue|

p) dz,

and the claim is proved.

In the case 1 < p ≤ 2, using assumptions (H1′a) and (H4a), we deduce from



FV schemes for elliptic pbs with discontinuities 25

formula (5.6) that

∑

Q∈QD

∫

Q

|∇ue(z) −∇N

QP
T ue|

p dz

≤

[ ∑

Q∈QD

(∫

Q

|∇ue(z) −∇N

QP
T ue(z)| dz +

∫

Q

|TQ(z)| dz

) ∑

σ∈EQ

(|Rϕ
Q,σ| + |Rz

Q,σ|)

+
∑

Q∈QD

∫

Q

(ϕ(z,∇ue(z)) − ϕ(z,∇N

Q
P

T ue), TQ(z)) dz

]p

2

×

(
∑

Q∈QD

∫

Q

(1 + |∇ue(z)|p + |∇N

Q
P

T ue|
p) dz

) 2−p

2

≤ C





(
∑

Q∈QD

∫

Q

|∇ue(z) −∇N

QP
T ue(z)|p dz

) 1
2

+

(
∑

Q∈QD

∫

Q

|TQ(z)|p dz

) 1
2




×



∑

Q∈QD

|Q|
∑

σ∈EQ

|Rϕ
Q,σ|

p

p−1 + |Rz
Q,σ|

p

p−1




p−1
2

+

(
∑

Q∈QD

∫

Q

|∇ue(z) −∇N

QP
T ue|

p

) p−1
2
(
∑

Q∈QD

∫

Q

|TQ(z)|p dz

) 1
2




×

(
∑

Q∈QD

∫

Q

(1 + |∇ue(z)|p + |∇N

QP
T ue|

p) dz

) 2−p

2

Using Young’s inequality, (5.4) and the estimates in Proposition 5.6, the claim follows.

We can now estimate the consistency error of the scheme due to the approximation
of the gradient as follows.

Proposition 5.8. Let T be a mesh on Ω and assume that ue lies in W 2,p(Q).
There exists a constant C > 0 depending on p, reg(T ) and Cϕ such that for any D ∈ D

we have

∑

Q∈QD

|Q||Rgrad
Q |

p

p−1 ≤ Cd
p(p−1)α3

p

D

∑

Q∈QD

∫

Q

(
1 + |∇ue|

p + |D2ue|
p
)

dz.

Proof. In the case 1 < p ≤ 2, using assumption (H4a) and the consistency estimate
of Proposition 5.6, we deduce that

∑

Q∈QD

|Q||Rgrad
Q

|
p

p−1 ≤ C
p

p−1
ϕ

∑

Q∈QD

|Q|

(
1

|Q|

∫

Q

|∇ue(z) −∇N

Q
P

T ue|
p−1 dz

) p

p−1

≤ C
p

p−1
ϕ

∑

Q∈QD

∫

Q

|∇ue(z) −∇N

QP
T ue|

p dz

≤ Cd
p(p−1)α2

p

D

∑

Q∈QD

∫

Q

(
1 + |∇ue|

p + |D2ue|
p
)

dz,
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which gives the claim since αp = 1 as soon as p ≥ 2.
When p > 2, by Jensen’s and Hölder’s inequality, we have

∑

Q∈QD

|Q||Rgrad
Q

|
p

p−1

≤ C
p

p−1
ϕ

∑

Q∈QD

|Q|

(
1

|Q|

∫

Q

(
1 + |∇ue(z)|p−2 + |∇N

QP
T ue|

p−2
)

× |∇ue(z) −∇N

QP
T ue| dz

) p

p−1

≤ C

(
∑

Q∈QD

∫

Q

(1 + |∇ue(z)|p + |∇N

Q
P

T ue|
p) dz

) p−2
p−1

×

(
∑

Q∈QD

∫

Q

|∇ue(z) −∇N

QP
T ue|

p dz

) 1
p−1

≤ Cd
pα2

p

D

∑

Q∈QD

∫

Q

(
1 + |∇ue|

p + |D2ue|
p
)

dz,

(5.7)

and we conclude by noting that pα2
p = p(p − 1)α3

p when p > 2.

5.2. Proof of Theorem 5.1. We have

‖∇ue −∇NuT ‖Lp ≤ ‖∇ue −∇N
P

T ue‖Lp + ‖∇N
P

T ue −∇NuT ‖Lp .

Proposition 5.7 gives a bound for the first term. We come back to the proof of the
stability Theorem 4.10 to evaluate the second one. That proof shows that the estimate
of ‖∇N

P
T ue −∇NuT ‖Lp requires the control of

I
def
= (aN (PT ue) − a

N (uT ), PT ue − uT ) .

By classical manipulations (using the conservativity of numerical fluxes) we express
I through the consistency errors thanks to

a
N

K
(uT ) − a

N

K
(PT ue) =

∑

Q⊂K

∑

σ∈EQ∩∂K

|σ|RQ,σ, ∀K ∈ M

a
N

K∗(uT ) − a
N

K∗(PT ue) =
∑

Q⊂K∗

∑

σ∈EQ∩∂K∗

|σ|RQ,σ, ∀K∗ ∈ M
∗.

If we define the error eT = uT − P
T ue, the formulas above yield

I =
∑

K∈M

∑

Q⊂K

∑

σ∈EQ∩∂K

|σ|RQ,σeK +
∑

K∗∈M∗

∑

Q⊂K∗

∑

σ∈EQ∩∂K∗

|σ|RQ,σeK∗ .

Reordering the sum over the diamond cells, we find that

I =
∑

D∈D

(
|σK∗ |(RQK,K∗,σK∗

eK + RQL,K∗,σK∗
eL)

+|σL∗ |(RQK,L∗,σL∗
eK + RQL,L∗,σL∗

eL)

+|σK|(RQK,K∗,σK
eK∗ + RQK,L∗,σK

eL∗)

+|σL|(RQL,K∗,σK
eK∗ + RQL,L∗,σK

eL∗)

)
.

(5.8)
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Using the conservativity property (5.2), the first term in the sum above reads

|σK∗ |(RQK,K∗,σK∗
eK + RQL,K∗,σK∗

eL)

= −|QK,K∗ |RQK,K∗,σK∗

2

sin αD

eL − eK

|σK| + |σL|
+ |QL,K∗ |RQL,K∗,σK∗

2

sin αD

eL − eK

|σK| + |σL|

= −|QK,K∗ |RQK,K∗,σK∗
(∇T

DeT , τ ∗) + |QL,K∗ |RQL,K∗,σK∗
(∇T

DeT , τ ∗). (5.9)

We remark now, by using (4.2) and (4.5), that for any δ ∈ R
4 we have

|QK,K∗ |
(
BQK,K∗ δ, τ ∗) = |σK∗ | sinαDδK∗ = −|QL,K∗ |

(
BQL,K∗ δ, τ ∗) .

Hence by using once more the conservativity property and the definition (4.13), we
can replace ∇T

DeT by the corresponding ∇N
QeT in the right-hand side of (5.9). It

follows

|σK∗ |(RQK,K∗,σK∗
eK + RQL,K∗,σK∗

eL)

= −|QK,K∗ |RQK,K∗,σK∗
(∇N

QK,K∗
eT , τ ∗) + |QL,K∗ |RQL,K∗,σK∗

(∇N

QL,K∗
eT , τ ∗).

The other terms in (5.8) being treated in the same way, it follows that

I ≤ C
∑

Q∈Q

∑

σ∈EQ

|Q||RQ,σ||∇
N

QeT |

≤ C




∑

Q∈Q

∑

σ∈EQ

|Q||RQ,σ|
p

p−1





p−1
p

‖∇NeT ‖Lp .

Using assumptions (H1′a) and (H1′b), we derive that,

‖∇NeT ‖2
Lp ≤ C(1 + ‖∇NuT ‖2−p

Lp + ‖∇N
P

T ue‖
2−p
Lp )

×



∑

Q∈Q

∑

σ∈EQ

|Q||RQ,σ|
p

p−1




p−1
p

‖∇NeT ‖Lp , if 1 < p ≤ 2,

and

‖∇NeT ‖p
Lp ≤ C



∑

Q∈Q

∑

σ∈EQ

|Q||RQ,σ|
p

p−1




p−1
p

‖∇NeT ‖Lp , if p > 2. (5.10)

The claim follows by using the estimate (4.18) and Propositions 5.6, 5.7 and 5.8.

5.3. Proof of Theorem 5.3. We only give the proof in the case p > 2 since
the other case can be treated in the same way. We come back to (5.10) which is still
valid for the h-DDFV scheme. It follows

‖∇NeT ‖Lp ≤ C



∑

Q∈Q

∑

σ∈EQ

|Q||RQ,σ|
p

p−1




1
p

.
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The terms RQ,σ contain the three respective contributions of Rz
Q
, Rϕ

Q,σ and Rgrad
Q . As

far as Rz
Q and Rϕ

Q,σ are concerned, the estimate of Proposition 5.6 is still valid for the
hybrid scheme so that



∑

Q∈Q

∑

σ∈EQ

|Q|
(
|Rz

Q,σ|
p

p−1 + |Rϕ
Q,σ|

p

p−1

)



1
p

≤ Csize(T )
1

p−1 ‖ue‖W 2,p(Q).

We split now the contribution of Rgrad
Q in two parts : the one coming from diamond

cells in Dcont where the usual DDFV approximate flux is usued and the one coming
from the diamond cells in Ddisc where we used our new discrete gradient and flux. It
follows

(
∑

Q∈Q

|Q||Rgrad
Q |

p

p−1

) 1
p

≤ C

(
∑

D∈Dcont

∑

Q∈QD

|Q||Rgrad
Q |

p

p−1

) 1
p

+ C

(
∑

D∈Ddisc

∑

Q∈QD

|Q||Rgrad
Q

|
p

p−1

) 1
p

. (5.11)

Near the discontinuities of the flux, that is for each diamond cell D ∈ Ddisc, we use
the estimate (5.7). Away from the discontinuities, i.e. for D ∈ Dcont we used the
usual DDFV scheme (that is ∇N = ∇T ), so that the gradient consistency estimate
given by (5.7) reads, since ue ∈ W 2,p(D):

∫

D

|∇ue(z) −∇T
P

T ue(z)|p dz ≤ Cdp
D

∫

D

(
1 + |∇ue|

p + |D2ue|
p
)

dz.

This estimate is proved for instance in [3, Lemma 7.5]. Hence, (5.11) now gives

(
∑

Q∈Q

|Q||Rgrad
Q

|
p

p−1

) 1
p

≤ Csize(T )
1

p−1 ‖ue‖W 2,p(Q)

+ Csize(T )
1

(p−1)2

(∫

Ωdisc

(1 + |∇ue| + |D2ue|)
p dz

) 1
p

,

where we introduced Ωdisc =
⋃

D∈Ddisc
D. Since we assumed that ϕ is smooth on each

subdomain Ωi, we see that the set Ωdisc is an size(T )-neighborhood of union of the
boundaries of the Ωi’s. Hence, there exists C > 0 such that |Ωdisc| ≤ Csize(T ). It
follows by the Hölder inequality and using the assumption ue ∈ W 2,q(Q), that

(
∑

Q∈Q

|Q||Rgrad
Q |

p

p−1

) 1
p

≤ Csize(T )
1

p−1 ‖ue‖W 2,p(Q)

+ Csize(T )

“

1
(p−1)2

+ q−p

pq

”

‖ue‖W 2,q(Q),

and the claim is proved since 1
(p−1)2 + q−p

pq
≥ 1

p−1 as soon as q ≥ p(p − 1)2.
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6. Examples. In the case of a linear problem where ϕ(z, ξ) = A(z)ξ, it is easily
seen that, for any D ∈ D the numerical flux ϕN

D is a linear map of the DDFV gradient
∇T

D
uT . More precisely, there exists a unique definite positive matrix AD such that

ϕN
D (∇T

DuT ) = AD∇T
DuT .

In general, it is difficult to give an explicit formula for the matrix AD but it can be
evaluated by computing the map δD that is, following Proposition 4.2 and its proof,
by computing the inverse of the nD × nD matrix

∑
D∈QD

|Q|tBQBQ. This operation
has a very low computational cost and has to be made only once.

In some particular cases, it is possible to find an explicit form for AD which is
interesting in order to illustrate our approach and to compare the results with the 1D
case. Let us consider a given diamond cell D ∈ Dint whose diagonals are σ = K|L and
σ∗ = K∗|L∗.

• First example: We assume that A(z) is constant on each control volume. We
denote by AK the value of A(z) on the control volume K. The matrix AD is
then defined by

(ADν, ν) =
(|σK| + |σL|)(AKν, ν)(ALν, ν)

|σL|(AKν, ν) + |σK|(ALν, ν)
, (6.1)

(ADν
∗, ν∗) =

|σL|(ALν
∗, ν∗) + |σK|(AKν

∗, ν∗)
|σK| + |σL|

−
|σK||σL|

|σK| + |σL|

((AKν, ν∗) − (ALν, ν∗))2

|σL|(AKν, ν) + |σK|(ALν, ν)
, (6.2)

(ADν, ν∗) =
|σL|(ALν, ν∗)(AKν, ν) + |σK|(AKν, ν∗)(ALν, ν)

|σL|(AKν, ν) + |σK|(ALν, ν)
. (6.3)

We recognize in (6.1) the weighted harmonic mean-value of (AKν, ν) and
(ALν, ν) and in the first term of (6.2) the weighted arithmetic mean-value of
(AKν

∗, ν∗) and (ALν
∗, ν∗).

• Second example: We assume that A(z) = λ(z)Id is isotropic, continuous on
each quarter-diamond and we assume that the mesh is orthogonal, that is
σ ⊥ σ∗ or equivalently sinαD = 1. Introducing λQ =

∫
Q

λ(z) dµQ(z), the

mean-value of λ over Q with respect to the measure dµQ, the equivalent

matrix AD satisfies in that case:

(ADν, ν) =
|σK| + |σL|

|σK∗ | + |σL∗ |

(
|σK∗ |λQL,K∗ λQK,K∗

|σK|λQL,K∗ + |σL|λQK,K∗

+
|σL∗ |λQL,L∗ λQK,L∗

|σK|λQL,L∗ + |σL|λQK,L∗

)
, (6.4)

(ADν
∗, ν∗) =

|σK∗ | + |σL∗ |

|σK| + |σL|

(
|σK|λQK,L∗ λQK,K∗

|σK∗ |λQK,L∗ + |σL∗ |λQK,K∗

+
|σL|λQL,L∗ λQL,K∗

|σK∗ |λQL,L∗ + |σL∗ |λQL,K∗

)
, (6.5)
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(ADν, ν∗) = 0. (6.6)

Notice that even though A(z) is isotropic, the matrix AD is only diagonal
(in the orthogonal frame (ν, ν∗)) and not isotropic in general. Furthermore,
we see that (6.4) and (6.5) combine arithmetic mean-value of the coefficients
in the transverse direction and harmonic mean-value of the coefficients along
the direction we are looking at.

Unfortunately, in the nonlinear case there are very few cases where all the com-
putations can be performed explicitly (see for instance the 1D example 2.1). That is
the reason why we propose in the following section a fully practical method to solve
the m-DDFV and h-DDFV schemes in any situation.

7. Numerical implementation of the scheme. In this section we present a
fully explicit algorithm to solve the finite volume scheme under study and we prove
its convergence. From now on, we suppose given a DDFV mesh T on Ω and a source
term f .

7.1. Some remarks on the potential case. We assume, only in this para-
graph, that ϕ derives from a potential Φ, that is

{
ϕ(z, ξ) = ∇ξΦ(z, ξ), for all ξ ∈ R

2 and a.e. z ∈ Ω,
Φ(z, 0) = 0, for a.e. z ∈ Ω.

(7.1)

We can now define an approximation of Φ on each quarter-diamond by ΦQ(·) =∫
Q Φ(z, ·)dµQ(z), that satisfies ∇ΦQ = ϕQ. Since ϕ is strictly monotonic, the function

Φ is strictly convex.
Proposition 7.1. The solution uT of the scheme (4.16) is the unique minimizer

of the functional defined by

JT (vT ) = 2
∑

D∈D

∑

Q∈QD

|Q|ΦQ(∇N

QvT ) −
∑

K

|K|fKvK −
∑

K∗

|K∗|fK∗vK∗ , ∀vT ∈ R
T .

Proof. By using assumptions (H1), (H2) and (H3), the definition (7.1) and the
Poincaré inequality, it is easily seen that JT is strictly convex and coercive on R

T

and thus has a unique minimizer that we call uT .
Let us now write the Euler-Lagrange equation for this minimization problem. The

equation corresponding to the unknown uK reads

2
∑

D∈DK

∑

Q∈QD

|Q|

(
ϕQ(∇N

Q
uT ), (Id + BQ.DδD)

∂∇T
DuT

∂uK

)
= |K|fK.

By definition of δD, for any D we have
∑

Q∈QD
|Q|tBQϕQ(∇N

QuT ) = 0 so that the term
containing the derivative DδD of δD vanishes. Furthermore, by definition of ∇T

DuT we
have

∂∇T
D
uT

∂uK

= −
1

sin αD

νK

|σ∗|
,

hence it follows, using (4.15),

|K|fK = −2
∑

D∈DK

(
∑

Q∈QD

|Q|ϕQ(∇N

QuT ),
1

sin αD

νK

|σ∗|

)

= −2
∑

D∈DK

|D|

(
ϕN

D (∇T

DuT ),
1

sin αD

νK

|σ∗|

)
= −

∑

D∈DK

|σ| (ϕN

D (∇T

DuT ), νK) ,
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since |D| = 1
2 |σ||σ

∗| sinαD, and the claim is proved.

From now on, we denote by ∆ =
⊕

D∈D
R

nD the space in which the artificial
unknowns (δD)D are lying. We introduce the following new functional defined on
R

T × ∆

JT ,∆(vT , δ̃) = 2
∑

D∈D

∑

Q∈QD

|Q|ΦQ(∇T

DvT + BQδ̃D)

−
∑

K

|K|fKvK −
∑

K∗

|K∗|fK∗vK∗ , ∀vT ∈ R
T , ∀δ̃ ∈ ∆.

Proposition 7.2. The functional JT ,∆ has a unique minimizer which is given
by (uT , (δD(∇T

DuT ))D).

Proof. It is easily seen that, for any vT ∈ R
T fixed, the functional δ̃ ∈ ∆ 7→

JT ,∆(vT , δ̃) decouples into a sum over D of independant maps depending only on δ̃D

for a given D ∈ D. Following the proof of Proposition 4.2, each of these maps has a
unique minimum exactly given by δD(∇T

D
vT ). Hence we proved

JT (vT ) = JT ,∆ (vT , (δD(∇T

D
vT ))D) ≤ JT ,∆(vT , δ̃), ∀δ̃ ∈ ∆,

with equality if and only if δ̃ = (δD(∇T
D
vT ))D, which gives the claim.

7.2. Derivation of the decomposition-coordination method. In the case
of a potential flux ϕ, we proved in Proposition 7.2 that the solution of the scheme
can be obtained by minimizing a functional which can be computed explicitly but
depending on much more unknowns than the cardinality of R

T in which we look for
the approximate solution.

We propose, for this non-quadratic minimization problem, a saddle-point formula-
tion (in the very spirit of [12, 13]). Let us define the set (R2)Q of families of vectors of
R

2 indexed by the set of quarter diamonds. We suppose given a family A = (AQ)Q∈Q

of definite positive 2×2 matrices which is aimed to play the role of heterogeneous and
isotropic augmentation parameters. More precisely, we introduce now the augmented
lagrangian

LT ,∆
A (vT , δ̃, g, λ) = 2

∑

Q∈Q

|Q|ΦQ(gQ) + 2
∑

Q∈Q

|Q|(λQ, gQ −∇T

D
vT − BQδ̃D)

+
∑

Q∈Q

|Q|
(
AQ(gQ −∇T

DvT − BQδ̃D), (gQ −∇T

DvT − BQδ̃D)
)

−
∑

K

|K|fKvK −
∑

K∗

|K∗|fK∗vK∗ , ∀vT ∈ R
T , ∀δ̃ ∈ ∆, ∀g, λ ∈ (R2)Q.

If, for any Q ∈ Q, we take AQ = rId for a given parameter r > 0 we recover
the augmented lagrangian algorithm proposed in [12, 13]. It is easily seen that this
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lagrangian has a unique saddle-point (uT , δD, p, λ) satisfying the equilibrium equations






ϕQ(gQ) + λQ + AQ(gQ −∇T

D
uT − BQδD) = 0, ∀Q ∈ Q,

∑

Q∈QD

|Q|tBQAQ(BQδD + ∇T

DuT − gQ) −
∑

Q∈QD

|Q|tBQλQ = 0, ∀D ∈ D,

gQ −∇T

DuT − BQδD = 0, ∀Q ∈ Q,

2
∑

Q∈Q

|Q| (AQ(∇T

D
uT + BQδD − gQ),∇T

D
vT ) =

∑

K

|K|fKvK +
∑

K∗

|K∗|fK∗vK∗

+ 2
∑

Q∈Q

|Q|(λQ,∇T

DvT ), ∀vT ∈ R
T .

(7.2)

These equations are clearly equivalent to





λQ = −ϕQ(gQ), ∀Q ∈ Q,
∑

Q∈QD

|Q|tBQλQ = 0, ∀D ∈ D,

gQ = ∇T

D
uT + BQδD, ∀Q ∈ Q,

− 2
∑

Q∈Q

|Q|(λQ,∇T

D
vT ) =

∑

K

|K|fKvK +
∑

K∗

|K∗|fK∗vK∗ , ∀vT ∈ R
T .

(7.3)

The first three equations imply that δD = δD(∇T
DuT ), then the fourth equation is

nothing but a different way to write (4.16). As a consequence, the saddle-point of

LT ,∆
A gives the unique solution to the finite volume scheme.

From equations (7.2), we deduce an iterative method to solve our problem follow-
ing the same idea than [12, ALG 2, p. 170]. In our setting, the algorithm reads as
follows: we suppose given λ0 ∈ (R2)Q, g0 ∈ (R2)Q then for any n ≥ 1:

1. Find (uT ,n, δn
D) ∈ R

T × ∆ solution to the linear problem

2
∑

Q∈Q

|Q|

(
AQ(∇T

DuT ,n + BQδn
D − gn−1

Q ),∇T

DvT

)

=
∑

K

|K|fKvK +
∑

K∗

|K∗|fK∗vK∗ + 2
∑

Q∈Q

|Q|(λn−1
Q ,∇T

Dv), ∀vT ∈ R
T .

∑

Q∈QD

|Q|tBQAQ(BQδn
D

+ ∇T

D
uT ,n − gn−1

Q
) −

∑

Q∈QD

|Q|tBQλn−1
Q

= 0, ∀D ∈ D.

(7.4)

Notice that the second equation explicitly gives, locally on each diamond cell
D, the expression of δn

D
as an affine function of ∇T

D
uT ,n. It is only needed

to compute, one time at the beginning of the algorithm, the inverse of all
the definite positive symmetric matrices

∑
Q∈QD

|Q|tBQ AQ BQ whose size is
nD × nD (which is low since nD = 1 for boundary diamond cells and nD = 4
for interior diamond cells).
Finally, once the second equation in (7.4) is solved, we can introduce the
expression of δn

D
as a function of ∇T

D
uT ,n in the first equation of (7.4). This

first equation is now an explicit large linear system in the variables uT ,n.
Notice that the matrix of this large sparse linear system is the same at each
iteration which is very important if one wants to use direct linear solvers
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for instance. Finally, notice that the size and the stencil of this system is
exactly the same than the one of the DDFV matrix for the Laplace equation
for instance.

2. For any Q ∈ Q, find gn
Q satisfying

ϕQ(gn
Q) + λn−1

Q + AQ(gn
Q −∇T

DuT ,n − BQδn
D) = 0. (7.5)

This is the unique nonlinear part of the algorithm. The equation is localized
on each quarter diamond and consists in solving a nonlinear equation in R

2

defined by the explicit map ϕQ+AQ. Notice that ϕQ+AQ is strictly monotonic
and coercive on R

2 so that the solution gn
Q

to (7.5) exists and is unique.
From a practical point of view, one can use here a Newton method to solve
all these equations simultaneously (this step can be massively parallelized).

3. Finally compute λn
Q

through

λn
Q

= λn−1
Q

+ γAQ(gn
Q
−∇T

D
uT ,n − BQδn

D
), ∀Q ∈ Q, (7.6)

where γ > 0 is given parameter.
The choice of the best augmentation matrices A and parameter γ is a complex problem
(see the discussion in [12] for instance). We will give some examples of such choices
in Section 8.

7.3. General fluxes. Convergence of the iterative solver. The above algo-
rithm is deduced from the lagrangian formulation of the scheme which is only available
in the variational case (7.1). Nevertheless, the iterative algorithm (7.4)-(7.6) can be
used in the general case of any monotonic flux ϕ. We can now prove the convergence
of this algorithm in the non-variational setting.

Theorem 7.3. Let T be a DDFV mesh on Ω and (ϕQ)Q a family of strictly
monotonic continuous maps from R

2 onto itself. Then for any augmentation matrices

family A and any γ ∈
]
0, 1+

√
5

2

]
, the algorithm given by (7.4)-(7.6) converges, when

n goes to infinity, towards the unique solution to (7.3) that is the unique solution to
the m-DDFV scheme (4.16).

The proof we present here is an adaptation to our framework of the arguments
given in [12]. Furthermore, a similar algorithm and result is available for the hybrid
h-DDFV scheme.

Proof. For any real-valued or vector-valued families f = (fQ)Q∈Q and g =
(gQ)Q∈Q we introduce the following inner products and associated norms:

(f, g)0 =
∑

Q∈Q

|Q|(fQ, gQ), ‖f‖0 = (f, f)
1
2
0 ,

(f, g)A =
∑

Q∈Q

|Q|(AQfQ, gQ), ‖f‖A = (f, f)
1
2

A ,

(f, g)A−1 =
∑

Q∈Q

|Q|(A−1
Q

fQ, gQ), ‖f‖A−1 = (f, f)
1
2

A−1 .

Let us define the error terms vT ,n = uT ,n − uT , hn = (hn
Q)Q ∈ (R2)Q with hn

Q =
gn
Q
− gQ, µn = (µn

Q
)Q ∈ (R2)Q with µn

Q
= λn

Q
− λQ and βn = (βn

D
)D ∈ ∆ with

βn
D = δn

D − δD. Finally, we introduce the nonlinear map ϕQ : (R2)Q 7→ (R2)Q defined
by (ϕQ(g))Q = ϕQ(gQ) and the linear map B : ∆ 7→ (R2)Q defined by (Bβ)Q = BQβD,
where D is the diamond cell such that Q ∈ QD.
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Using those notations, we see from (7.4)-(7.6) that these quantities solve the
following equations:

1. Equation for vT ,n:

(∇T vT ,n + Bβn − hn,∇T

DwT )A +
(
hn − hn−1,∇T wT

)
A

=
(
µn−1,∇T wT

)
0
, ∀wT ∈ R

T . (7.7)

2. Equation for βn
D:

∑

Q∈QD

|Q|tBQAQ(BQβn
D

+ ∇T

D
vT ,n − hn

Q
) +

∑

Q∈QD

|Q|tBQAQ(hn
Q
− hn−1

Q
)

−
∑

Q∈QD

|Q|tBQµn−1
Q

= 0, ∀D ∈ D. (7.8)

3. Equation for hn
Q
:

ϕQ(gn
Q)− ϕQ(gQ) + µn−1

Q + AQ(hn
Q −∇T

DvT ,n − BQβn
D) = 0, ∀Q ∈ Q. (7.9)

4. Equation for µn
Q
:

µn
Q = µn−1

Q + γAQ(hn
Q −∇T

DvT ,n − BQβn
D), ∀Q ∈ Q. (7.10)

We take wT = vT ,n in (7.7), we get

(∇T vT ,n + Bβn − hn,∇T vT ,n)A +
(
hn − hn−1,∇T vT ,n

)
A =

(
µn−1,∇T vT ,n

)
0
.

(7.11)

From (7.10), we deduce

1

2
‖µn‖2

A−1 −
1

2

∥∥µn−1
∥∥2

A−1 − γ
(
µn−1, hn −∇T vT ,n − Bβn

)
0

−
1

2
γ2 ‖hn −∇T vT ,n − Bβn‖2

A = 0. (7.12)

Taking the (·, ·)0 inner product of (7.9) with hn = gn − g, we get

(ϕQ(gn) − ϕQ(g), gn − g)0 + (hn −∇T vT ,n − Bβn, hn)A +
(
µn−1, hn

)
0

= 0.

Multiplying (7.8) by βn
D
, summing over D and using (7.11), it follows

(ϕQ(gn) − ϕQ(g), gn − g)0 + ‖hn −∇T vT ,n − Bβn‖2
A

+
(
µn−1, hn −∇T vT ,n − Bβn

)
0

+
(
hn − hn−1,∇T vT ,n + Bβn

)
A = 0.

Multiplying this equation by γ and adding to (7.12), we get rid of the term containing
µn−1

Q . We obtain

1

2
‖µn‖2

A−1 −
1

2

∥∥µn−1
∥∥2

A−1 + γ (ϕQ(gn) − ϕQ(g), gn − g)0

+
γ

2
(2 − γ) ‖hn −∇T vT ,n − Bβn‖2

A + γ
(
hn − hn−1,∇T vT ,n + Bβn

)
A = 0. (7.13)
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From (7.5) we get, for any Q ∈ Q,

ϕQ(gn
Q) − ϕQ(gn−1

Q ) + (µn−1
Q − µn−2

Q )

+ AQ

(
(hn

Q
− hn−1

Q
) − (∇T

D
vT ,n −∇T

D
vT ,n−1) − BQ(βn

D
− βn−1

D
)

)
= 0,

so that, using (7.10) it follows

ϕQ(gn
Q
) − ϕQ(gn−1

Q
) + AQ(hn

Q
− hn−1

Q
) + AQhn−1

Q

− AQ

(
∇T

DvT ,n + BQβn
D

)
= (1 − γ)AQ(hn−1

Q −∇T

DvT ,n−1 − BQβn−1
D ).

Taking the inner product (·, ·)0 of these equations by gn − gn−1 = hn − hn−1 we get

(
ϕQ(gn) − ϕQ(gn−1), gn − gn−1

)
0
+
∥∥hn − hn−1

∥∥2

A
+
(
hn−1, hn − hn−1

)
A −

(
∇T vT ,n + Bβn, hn − hn−1

)
A

= (1 − γ)
(
hn−1 −∇T vT ,n−1 − Bβn−1, hn − hn−1

)
A .

If we add to this equation the following algebraic relation

1

2
‖hn‖2

A −
1

2

∥∥hn−1
∥∥2

A −
1

2

∥∥hn − hn−1
∥∥2

A =
(
hn−1, hn − hn−1

)
A ,

we get

1

2
‖hn‖2

A −
1

2

∥∥hn−1
∥∥2

A +
1

2

∥∥hn − hn−1
∥∥2

A

+
(
ϕQ(gn) − ϕQ(gn−1), gn − gn−1

)
0
−
(
∇T vT ,n + Bβn, hn − hn−1

)
A

= (1 − γ)
(
hn−1 −∇T vT ,n−1 − Bβn−1, hn − hn−1

)
A .

Multiplying this equation by γ and summing with (7.13), it follows:

1

2

(
‖µn‖2

A−1 + γ ‖hn‖2
A

)
−

1

2

(∥∥µn−1
∥∥2

A−1 + γ
∥∥hn−1

∥∥2

A

)

+ γ
(
ϕQ(gn) − ϕQ(gn−1), gn − gn−1

)
0

+ γ (ϕQ(gn) − ϕQ(g), gn − g)0

+
γ

2

∥∥hn − hn−1
∥∥2

A +
γ

2
(2 − γ) ‖hn −∇T vT ,n − Bβn‖2

A

= γ(1 − γ)
(
hn−1 −∇T vT ,n−1 − Bβn−1, hn − hn−1

)
A . (7.14)

We can now use Cauchy-Schwarz’s and Young’s inequalities to get

γ(1 − γ)
(
hn−1 −∇T vT ,n−1 − Bβn−1, hn − hn−1

)
A

≤
γ

2

∥∥hn − hn−1
∥∥2

A +
γ(1 − γ)2

2

∥∥hn−1 −∇T vT ,n−1 − Bβn−1
∥∥2

A

−
γ

2

[ ∥∥hn − hn−1
∥∥
A − (1 − γ)

∥∥hn−1 −∇T vT ,n−1 − Bβn−1
∥∥
A

]2
.
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By the assumption on γ, we have (1 − γ)2 ≤ (2 − γ) so that (7.14) yields

1

2

(
‖µn‖2

A−1 + γ ‖hn‖2
A + γ(2 − γ) ‖hn −∇T vT ,n − Bβn‖2

A

)

−
1

2

(∥∥µn−1
∥∥2

A−1 + γ
∥∥hn−1

∥∥2

A + γ(2 − γ)
∥∥hn−1 −∇T vT ,n−1 − Bβn−1

∥∥2

A

)

+ γ
(
ϕQ(gn) − ϕQ(gn−1), gn − gn−1

)
0

+ γ (ϕQ(gn) − ϕQ(g), gn − g)0

+
γ

2

[ ∥∥hn − hn−1
∥∥
A − (1 − γ)

∥∥hn−1 −∇T vT ,n−1 − Bβn−1
∥∥
A

]2
≤ 0. (7.15)

Since each map ϕQ is monotonic so is ϕQ, we deduce that the sequence
(
‖µn‖2

A−1 + γ ‖hn‖2
A + γ(2 − γ)

∥∥hn−1 −∇T vT ,n−1 − Bβn−1
∥∥2

A

)

n

of non-negative numbers is non-increasing and then converges. Coming back to (7.15),
we deduce that (gn

Q
)n converges towards gQ for any Q ∈ Q, that is hn

Q
→ 0. If γ 6= 1

we also deduce from (7.15) that

hn
Q −∇T

DvT ,n − BQβn
D

n→∞
−−−−→ 0, ∀Q ∈ Q

and hence ∇T
D
vT ,n + BQβn

D
goes to 0. Then it follows that µn

Q
→ 0 by (7.9). Using

now (4.8), we find that for any D ∈ D we have ∇T
DvT ,n → 0 and finally βn

D → 0.
In the case γ = 1, we can draw the same conclusions directly from (7.14) since

the right-hand side is 0 in that case.

8. Numerical results. We present here some numerical results in the following
situation: we consider the domain Ω =]0, 1[×]0, 1[, and the flux ϕ defined by

ϕ(z, ξ) =

{
|ξ|p−2ξ, if z1 < 0.5,

(Aξ, ξ)
p−2
2 Aξ, if z1 > 0.5,

(8.1)

where A is the matrix A =

(
α 0
0 β

)
, α, β ∈]1, +∞[. Then we construct the source

term f , and the boundary data in such a way that the solution of (1.1) is given by

ue(z) =





(αz1 + γz2)
2, if z1 < 0.5,

(
z1 + γz2 +

α − 1

2

)2

, if z1 > 0.5,

where γ =
√

α1−α
1−β

. It is easily seen that this function ue satisfies the transmission

condition on the line {z1 = 1
2}, for any value of p.

In a first test case, we choose p = 3.0 and (α, β) = (5.0, 2.0) so that the problem
we consider has discontinuities and is anisotropic. We show in Figure 8.1 the errors
in three different norms as a function of the mesh size, in a logarithmic scale, for the
original DDFV scheme (3.1)-(3.2) (marked by �) and for the m-DDFV scheme (4.15)-
(4.16) (marked by ♦). Notice that, since the operator defined by (8.1) is piecewise
constant, the h-DDFV scheme of Definition 5.2 is exactly the same than the m-DDFV
scheme.

As predicted by the theory, the m-DDFV scheme provides a much better con-
vergence rate than the original DDFV scheme. Furthermore, and it is an important
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Fig. 8.1. Test case 1 : p = 3.0, α = 5, β = 2

point, the error (in any of the three norms we consider) obtained by the m-DDFV
scheme is better even in the case of coarse meshes.

As a second test case we assume that p = 5.0 and (α, β) = (10.0, 10.0). In this
situation the operator is isotropic but the jump of the diffusion coefficient is of order
102.5. We observe (see Figure 8.2) the same overall behavior of the two schemes.
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Fig. 8.2. Test case 2 : p = 5.0, α = β = 10.0

Finally, we want to illustrate the behavior of the decomposition-coordination
algorithm proposed in Section 7. First of all, it is shown in [12] for instance that such
algorithms can be applied, in suitable infinite dimensional functional spaces, directly
to the continuous problem (1.1). This fact let us hope that the convergence rate of
the present method may not depend too much on the size of the mesh we consider.
Actually, in our numerical computations, we observed that the number of iterations
needed to achieve a given residual norm was essentially the same in each level of
refinement of the mesh we considered.

Let us now illustrate the fact that one can take advantage of using the heteroge-
neous and isotropic augmentation matrices family A. To this end, we consider the first
example given above (Figure 8.1) and we plot in Figure 8.3 the evolution during the
iterations of the Lp, W 1,p errors and the residual norm of the algorithm. The left plot
is the one obtained with the classical augmentation term, that is when AQ = rId for
any Q ∈ Q, with r = 1.5. In the right plot, we have chosen AQ = rId if Q ⊂ {z1 < 1

2}
and AQ = rA if Q ⊂ {z1 > 1

2}.
We see that the use of anisotropic and heterogeneous augmention terms let us

achieve the tolerance 10−7 on the residual norm in ∼ 130 iterations instead of ∼ 180
in the isotropic case. Furthermore, we see that the error due to the scheme is achieved
after ∼ 40 iterations, that is when the residual norm is ∼ 5.10−6 in the first case
whereas it is only achieved in ∼ 150 iterations, for a residual norm of 5.10−7. This
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Fig. 8.3. Convergence of the iterative solver. Isotropic (left) and anisotropic augmentation (right)

illustrate the fact that the choice of suitable augmentation matrices A may let us save
a significant amount of computational time to solve our scheme.

9. Conclusions. In this paper we provide a modification of the DDFV finite
volume scheme for nonlinear elliptic problems on general 2D grids in order to take into
account discontinuities in the coefficients. The m-DDFV scheme we obtained is proved
to present a better consistency of the fluxes at the discontinuities. The performance
of the scheme is illustrated by numerical results on heterogeneous and anisotropic p-
laplacian equations. Furthemore, we proposed a generalisation of the decomposition-
coordination method of Glowinski in order to solve our scheme. We show that the
use of heterogeneous and anisotropic augmentation terms in this approach may lead
to much better performance of the algorithm.
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