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1. Introduction

In what sense(s) can a dynamical system be “complex” and what is the interplay
between this complexity and the more classical dynamical properties? A very large
body of works has been devoted to this basic question, especially to prove various
forms of complexity from dynamical assumptions. We are interested in reversing this
direction:

What are the dynamical consequences of complexity?

Can complexity characterize a dynamical system?
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This type of question has been studied mainly in low-complexity settings (see,
e.g., [1] and the references therein). We have shown, first in a smooth setting, that
a high-complexity assumption (which we called entropy-expansion) also has very
thorough dynamical implications [9]. A remarkable feature is that this condition,
which involves only so-called dimensional entropies, is enough to analyze measures
of maximum entropy and the related periodic points. We are even able to classify
such systems with respect to all their ergodic and invariant measures of high entropy.
Thus complexity can be analyzed using only (simple) complexity assumptions.

The proofs in [9] mix both combinatorial/entropic arguments and geometric ones
involving Lyapunov exponents, the smoothness and the ensuing approximations by
polynomials, raising the question of separating completely both issues. In [11], we
achieved this separation for, e.g., subshifts of finite type, piecewise monotonic interval
maps with nonzero entropy, and multidimensional β-transformations giving a common
proof to their common “complexity” properties. However the estimate required by
[11] seems tractable only when cylinders are connected, preventing until now the ap-
plication of these constructions to multi-dimensional, non-linear, entropy-expanding
maps.

The present paper overcomes this obstacle (see the remark after Prop. 8.1) by in-
troducing a suitable type of symbolic dynamics which we call puzzles of quasi-finite
type –these are puzzles in the sense of Yoccoz’ construction in complex dynamics.
In comparison with our work in [9] we have to make an additional, probably generic,
assumption, but we also obtain more detailed information about the periodic points.

The puzzle of quasi-finite type are the generalization of the subshifts of quasi-finite
type [11] needed for multi-dimensional, non-linear maps (see the end of section 1.3).
We generalize to these puzzles all the results obtained for subshifts:

– existence of a finite number of ergodic probability measures maximizing the
entropy;

– meromorphic extension of (suitably defined) Artin-Mazur zeta functions count-
ing the periodic points;

– equidistribution of the periodic points;
– classification with respect to measure of large entropy.

The meromorphic extension is deduced from a new, similar result about Markov shifts
(Theorem 4) relating the radius of meromorphy of some zeta functions of Markov shifts
to their entropy at infinity (see Definition 1.10). This is of independent interest.

1.1. Definitions. — We recall the notion of a puzzle due to Yoccoz [27] (closely
related are the tableaux of Branner and Hubbard).

Definition 1.1. — A puzzle is (V, i, f) (or just V ), a set of pieces V = ⊔n≥0Vn (a
disjoint union of finite sets) and two maps i, f : V \ V0 → V satisfying:

– V0 has a single element;
– i ◦ f = f ◦ i;
– i(Vn+1) ⊂ Vn;
– f(Vn+1) ⊂ Vn.

The order of a piece v is |v|, the unique integer n such that v ∈ Vn.
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The above combinatorial data defines a topological dynamics as follows:

Definition 1.2. — A puzzle (V, i, f) defines the dynamics FV : XV → XV :

XV = {v ∈ V0 × V1 × · · · : ∀n ≥ 0 i(vn+1) = vn}

FV : (vn)n≥0 7−→ (f(vn+1))n≥0.

1.2. Some examples. — For v ∈ V , we denote by |v| the unique integer n such
that v ∈ Vn. It is the order of v.

Subshifts are Puzzles. — Let σ : Σ+ → Σ+ be an arbitrary one-sided subshift (i.e., a
closed shift-invariant subset of AN for some finite set A, the shift being σ : (An)n≥0 7→
(An+1)n≥0). We are going to define a puzzle V such that the dynamics FV associated
to V is topologically conjugate to this subshift Σ+.

For each n ≥ 0, let Vn be the set of words of length n that appear in Σ+, i.e.,
sequences x0 . . . xn−1 such that yi+k = xi for i = 0, . . . , n − 1 for some y ∈ X (by
convention, V0 = {∅} where ∅ is the empty word). Define the two maps i and f by:

i(A1 . . . An) = A1 . . . An−1 rightmost delete

f(A1 . . . An) = A2 . . . An leftmost delete.

The conjugacy h : XV → Σ+ is given by h((A1 . . . An)n≥0) = (An+1)n≥0.

From dynamics to puzzles. — Let T : M → M be a self-map. Let P0 = {M},P1,P2 . . .
be a sequence of finite partitions of M satisfying

Pn � Pn+1 and T−1Pn � Pn+1

(where P � Q means that P is less fine than Q: each element of P is a union of
elements of Q; also T−1P := {T−1A : A ∈ P}).

This data defines a puzzle as follows. Let V be the disjoint union of Vn = Pn,
n ≥ 0. Let i(v) = w if w is the element of Pn containing v ∈ Pn+1. Let f(v) = w if
w is the element of Pn containing T (v) for v ∈ Pn+1. The above assumptions ensure
that this is a well-defined puzzle.

Let us give several examples of this construction.

• Let P be some finite partition and let Pn = P ∨ T−1P ∨ · · · ∨ T−n+1P . The
corresponding puzzle is topologically conjugate to the usual symbolic dynamics, i.e.,
the left shift, σ : (An)n≥0 7→ (An+1)n≥0 acting on:

(1) {A ∈ PN : ∃x ∈ M ∀n ≥ 0 T nx ∈ An} ⊂ PN.

• Let P be some finite partition and let Pn be the set of connected components of the
elements of P ∨ T−1P ∨ · · · ∨ T−n+1P . This is the form used in complex dynamics
[27].

• The following is easy but important:

Fact 1.3. — Any continuous map T on a Cantor set K can be realized, up to topo-
logical conjugacy, as a puzzle, that is, there exist a puzzle V and a homeomorphism
φ : XV → K with φ ◦ FV = T ◦ φ.
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Proof: Let Qn, n ≥ 1, be a sequence of partitions of K into closed-open sets with
diameters going to zero. Let Pn+1 = Qn+1 ∨ Pn ∨ T−1Pn. It is then easy to see that
the dynamics of the puzzle thus defined is conjugate to that of T . �

Thus, the dynamics of puzzles are even more diverse than that of subshifts. For
instance, they can have infinite entropy or be without measures of maximum entropy.
To get a tractable class we shall assume some form of “simplicity”.

1.3. Notions of simplicity. — We restrict ourselves to puzzles that are defined
by “few constraints” (and this will include subshifts of finite type as the special case
of finitely many “constraints”). The following choice of a notion of “simplicity” turns
out to allow a detailed analysis and more precisely enforces a close similarity to the
classical properties of subshifts of finite type.

A notion of constraint: irreducibility. — Let the i-tree below v ∈ V be the directed
graph Ti(v) whose vertices are the w ∈ V such that

in(w) := i ◦ · · · ◦ i︸ ︷︷ ︸
nfactors

(w) = v

for some n ≥ 0 and whose edges are u → u′ iff u′ = i(u).

Definition 1.4. — A piece v ∈ V \V0 is f-reducible if the two following conditions
hold:

(R1) f : Ti(v) → Ti(f(v)) is a graph isomorphism;
(R2) there is no w 6= v such that i(w) = i(v), f(w) = f(v) and (R1) holds also for

w.

Otherwise, v is said to be f -irreducible.

Notations. v �1
f w means that v is f -reducible and w = f(v). For k > 1, v �k

f w

is defined inductively as v �1
f f(v) and f(v) �k−1

f w (by convention v �0
f v for any

v ∈ V ). Finally u �f w means that u �k
f w for some k ≥ 1.

Remark. Property (R1) was introduced by Yoccoz under the name of “regularity” . It
is equivalent to the following dynamical property (here [v]V := {x ∈ XV : x|v| = v}):

FV : [v]V → [f(v)]V is a bijection.

In the setting of complex dynamics, failure of (R1) is equivalent to containing critical
points and is called criticality –see [5].

Condition (R2) seems new. It is often a consequence of (R1) –this is the case, if,
for instance, the restrictions FV |[v]V , v ∈ V , are one-to-one.

Remark. In the case where the puzzle is given by a subshift as in section 1.2, condition
(R2) of Definition 1.4 is automatically satisfied (indeed, f(v) = f(w) and i(v) = i(w)
imply v = w) and condition (R1) is equivalent to the notion of a minimum left
constraint introduced for subshifts Σ in [11]: it is a finite word w−n . . . w0 such that:

{x0x1 · · · : x ∈ Σ s.t. x−n . . . x0 = w−n . . . w0}

( {x0x1 · · · : x ∈ Σ s.t. x−n+1 . . . x0 = w−n+1 . . . w0}.
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One can understand the f -irreducible pieces as describing the constraints in XV .
The f -reducibility of some v implies that the possible i-extensions of v are the same
as those of f(v). This is a sort of “local Markov property”. For instance, if all pieces
are reducible then XV = V N

1 . A slightly less extreme example of this phenomenon is
the following Lemma proved in section 2.1.

Lemma 1.5. — If a puzzle V has only finitely many f -irreducible vertices, then XV

is (topologically conjugate to) a subshift of finite type, i.e., a subshift of {1, 2, ..., d}N

for some d ≥ 1, obtained by excluding a finite number of finite sequences [39].

More generally, one can expect puzzles with few f -irreducible vertices to be “sim-
ple”. The definition below formalizes this idea.

Entropy on the puzzle. — The puzzle V will be equipped with the following combi-
natorial distance: for v 6= w,

dV (v, w) = 2−n if n = max{0 ≤ k ≤ min(|v|, |w|) : i|v|−k(v) = i|w|−k(w)}.

Note that dV (i(v), i(w)) ≤ 2dV (v, w) and dV (f(v), f(w)) ≤ 2dV (v, w).
The corresponding metric on XV is

dV (x, y) := sup
n≥0

dV (xn, yn) = 2−n such that n = min{k ≥ 0 : xk 6= yk} or ∞.

Together with f , this induces a notion of Bowen balls in V : for v ∈ V , ǫ > 0,
n ∈ N, the (ǫ, n)-ball around v is

B(v, ǫ, n) := {w ∈ V : ∀0 ≤ k < min(n, |v|, |w|) dV (fkw, fkv) < ǫ}.

The covering number r(ǫ, n, S) is the minimum number of (ǫ, n)-balls needed to
cover S ⊂ V . We define the topological entropy of a sequence S of subsets
Sn ⊂ Vn, n ≥ 1, as:

htop(S) = lim
ǫ→0

lim sup
n→∞

1

n
log r(ǫ, n, Sn).

We recall first Bowen-Dinaburg formula for the topological entropy. The (ǫ, n)-
Bowen ball at x w.r.t. FV (and a distance d on XV ), is B(x, ǫ, n) := {y ∈ XV : ∀k < n
d(F k

V x, F k
V y) < ǫ}. The topological entropy [39] is

htop(FV ) := lim
ǫ→0

htop(FV , ǫ) with htop(FV , ǫ) = lim sup
n→∞

1

n
log r(ǫ, n, XV )

where r(ǫ, n, S) is the minimum number of (ǫ, n)-balls necessary to cover S. We
sometimes write htop(V ) instead of htop(FV ).

Let µ be a probability measure µ on XV which is ergodic and invariant under
FV . The Kolmogorov-Sinai entropy of (FV , µ) can be defined as follows, according to
Katok (we again refer to [39] for background):

h(FV , µ) := lim
ǫ→0

h(FV , µ, ǫ) with h(FV , µ, ǫ) = lim sup
n→∞

1

n
log r(ǫ, n, µ)

where r(ǫ, n, µ) is the minimum number of (ǫ, n)-balls whose union has µ-measure at
least 1/2 (it can be proved that 1/2 can be replaced with any number in (0, 1) without
affecting h(FV , µ)).
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Constraint entropy. — We now state our main condition on the complexity of puzzles

Definition 1.6. — The constraint entropy of a puzzle V = (V, i, f) is:

hC(V ) := htop((Cn)n≥1)

where Cn is the set of irreducible pieces of order n.
The puzzle V is of ∗-quasi-finite type (or, for short, ∗-QFT ) if it satisfies:

hC(V ) < htop(V ).

This notion is essentially unrelated to that of subshifts of weakly quasi-finite type
defined in [11].

W-Local entropy. — ∗-QFT puzzles can still present complexity at arbitrarily small
scales. For example one can build ∗-QFT puzzles which are the union of sequences
of subshifts of finite type with equal or increasing entropy so that they have either
infinitely many or no ergodic invariant probability of maximum entropy —see section
2.2.

Our second restriction prevents these phenomena.

Definition 1.7. — V being a ∗-QFT puzzle, the W-local entropy of V is the defect
in uniformity of h(FV , µ) = limǫ→0 h(FV , µ, ǫ) over large entropy measures (that is,
ergodic invariant probability measures with entropy close to the supremum):

hwloc(V ) := inf
ǫ>0

sup
µ

h(FV , µ) − h(FV , µ, ǫ)

where µ ranges over the ergodic invariant probability measures on XV with entropy
> hC(V ).

Remark.

Obviously, hwloc(V ) ≤ hloc(FV ), the local entropy (introduced by Misiurewicz [30])
under the name topological conditional entropy) which bounds this defect in unifor-
mity over all measures. In particular, hwloc(V ) = 0 if FV is expansive, e.g., a subshift.

Definition 1.8. — A QFT puzzle (or just QFT ) is a puzzle (V, i, f) which satis-
fies:

hC(V ) + hwloc(V ) < htop(V ).

The notions of QFT and ∗-QFT puzzles can be readily generalized in the follow-
ing fashion (adding new examples —as this already happens for subshifts, see [11]).
Observe that if (V, i, f) is a puzzle, then so is: (V ∗, i∗, f∗) with V ∗ = V , i∗ = f and
f∗ = i. (V ∗, i∗, f∗) is called the dual puzzle. The dynamics of a puzzle and its dual
are closely related. Hence one could formally extends our theorems by assuming that
their assumptions hold either for the puzzle or for its dual (see Sec. 3.2).
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Determinacy. — The analysis of periodic points uses a further assumption. We state
it in terms of the projections, for N = 1, 2, . . . ,

iN : V →
⋃

k≤N

Vk, v 7→ i(|v|−N)+(v).

iN extends to a map iN : XV →
(⋃

k≤N Vk

)N

in a natural way:

(2) iN (x) = y ⇐⇒ ∀k ≥ 0 yk = fk(xn+k).

Definition 1.9. — A puzzle V is determined if:

u, v �1
f w and i1(u) = i1(v) =⇒ u = v.

Remarks.

(1) Many puzzles are determined, including: those defined by subshifts and those
defined as in Section 1.2 under the extra assumptions: (i) T is one-to-one on the
closure of each element of P ; (ii) for each x ∈ M , limn→∞ diam(Pn(x)) = 0 where
Pn(x) is the unique element (if it exists) of Pn that contains x.

(2) There exist determined puzzles whose duals are not determined.

QFT subshifts are determined QFT puzzles. — Let (σ, X) be an arbitrary QFT sub-
shift. Let V be the puzzle defined by X as in section 1.2. As remarked above, V
is determined. Also, subshifts being expansive, h(σ, µ) = h(σ, µ, ǫ0) for some ǫ0 > 0
depending only on the choice of the metric, not on µ, so the W-local entropy is zero.
As remarked after Definition 1.4, the irreducible pieces of V can be identified with
the minimum left constraints of X . Hence the constraint entropies of the puzzle V
and of the subshift X are the same. Thus

hC(V ) + hwloc(V ) = hC(X) < htop(V ) = htop(V ),

proving the claim.

1.4. Structure Theorem. — Let us first recall the notion of entropy-conjugacy
from [6].

Let T : X → X be a Borel map. Let h(T ) be the supremum of the entropy of
all T -invariant probability measures. Recall that if X is compact and T continuous
then h(T ) is just the topological entropy by the variational principle [39]. A subset
X0 ⊂ X is entropy-negligible if it is Borel and satisfies:

h̃(T, X0) := sup{h(T, µ) : µ ergodic with µ(X0) > 0} < h(T ),

that is, X0 is negligible in the usual sense for all large entropy measures, i.e., invariant
and ergodic probability measures with entropy close to h(T ).

Two Borel maps T : X → X and S : Y → Y are entropy-conjugate(1) if
there exist entropy-negligible subsets X0 ⊂ X and Y0 ⊂ Y and a Borel isomorphism
Ψ : X \ X0 → Y \ Y0 with Ψ ◦ T = S ◦ Ψ. The constant of this isomorphism is

max(h̃(T, X0), h̃(S, Y0)).

(1)The name entropy-conjugacy was introduced by Bowen [4] for a similar notion: topological con-
jugacy after discarding subsets having small dimension-like entropy.
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Recall also that a Markov shift (see [17] and also [13, 24, 26, 34, 35, 36], for
background) is the set Σ(G) of all bi-infinite paths on a countable or finite directed
graph G together with the left-shift σ:

Σ(G) = {x ∈ GZ : ∀n ∈ Z xn → xn+1 on G} and σ((xn)n∈Z) = (xn+1)n∈Z.

The Markov shifts defined by finite graphs are the classical subshifts of finite type (of
order 1) —see [25] for an introduction to this rich classical theory.

Σ(G) is irreducible if it contains a dense orbit (equivalently G is strongly con-
nected). Any Markov shift has a spectral decomposition as a union of countably many
irreducible Markov subshifts (up to wandering orbits). The period of a subset U of
Σ(G) is the greatest common divisor of all k ≥ 1 such that σkU ∩U 6= ∅. The period
of Σ(G) is the largest period of all non-empty open subsets of Σ(G).

A Markov shift is not compact unless it is a subshift of finite type. Its topological
entropy is therefore defined as explained above for a general Borel system. Gurevič
[15] proved that in the irreducible case this entropy is just, for any (a, b) ∈ G2:

h(G) := h(Σ(G)) = lim sup
n→∞

1

n
log #{v ∈ Gn : v1 = a, v1 → v2 → . . . vn = b}.

An irreducible Markov shift is said to be SPR (for stably positively recurrent [17]—
also called strongly positively recurrent [37]) if it admits an entropy-maximizing prob-
ability measure µ which is exponentially filling, i.e., for any non-empty open subset
U of X ,

lim
n→∞

1

n
log µ

(
X \

n⋃

k=0

σ−nU

)
< 0.

Such Markov shifts are closest to being of finite type by a number of results (see, e.g.,
Gurevič [16], Sarig [35], Gurevič-Savchenko [17] among others).

In Sec. 4.1, we shall associate to any puzzle a Markov shift Σ(D) defined by
the adaptation to puzzles of the “complete” Hofbauer diagram developed in [6] for
subshifts.(2)

Finally recall that the natural extension of a map T : X → X is the “smallest”
extension that is invertible, i.e., it is T̃ : X̃ → X̃ with X̃ := {x ∈ XZ : ∀n ∈ Z

T (xn) = xn+1} and T̃ ((xn)n∈Z) = (Txn)n∈Z.

We may now state our key structure theorem:

Theorem 1 (Main Result). — Let V be a puzzle. Let D be its complete Markov
diagram, defined in Sec. 4.1 below.

(1) If V is ∗-QFT , the natural extension of the dynamics of V is entropy-conjugate
with constant at most hC(V ) to the Markov shift Σ(D).

(2) If V is QFT , then, for every H > hC(V )+hwloc(V ), the spectral decomposition
of Σ(D) contains only finitely many irreducible Markov shifts with entropy ≥ H.

(2)This “complete” variant essentially removes “accidental” identifications, i.e., of the type T (A) =
T (B) where A and B are distinct elements of the partition whereas T (A) = T (B) does not belong to
that partition. This variant is necessary for the precise counting of periodic orbits as we explained
in [11] (it also simplifies the proof of the partial isomorphism, see Section 4).
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Moreover these Markov shifts are SPR. More precisely their entropies at infinity (see
Definition 1.10 below) are at most hC(V ) + hwloc(V ).

(3) If V is both QFT and determined then, for any ǫ > 0, there are an integer N
and a finite part D∗ ⊂ D such that the following property holds.

There is a period-preserving bijection between the periodic loops on D that meet
D∗ and the periodic orbits of iN(XV ) after discarding a number p0

n of the n-periodic
orbits of iN(XV ) satisfying:

lim sup
n→∞

1

n
log p0

n ≤ hC(V ) + hwloc(V ) + ǫ.

The proof of this theorem is presented in Sections 4 and 5.

1.5. Dynamical consequences. —

1.5.1. Maximum measures. — The Structure Theorem gives the following, using
Gurevič’s result on maximum measures for Markov shifts. Recall that a Bernoulli
scheme is the shift σ acting on the set of sequences {1, . . . , s}Z (s a positive integer)
endowed with the invariant and ergodic probability measure µ defined by:

µ({α : α0 . . . αk = a0 . . . ak}) = p(a0) . . . p(an)

where (p(1), . . . , p(s)) is a probability vector. A finite extension is the product (X, σ)
with a permutation on a finite set.

For the sake of brevity, a maximum measure will be any ergodic, invariant
probability measure with maximum entropy.

Theorem 2 (Maximum Measures). — A QFT puzzle has at least one and at
most finitely many maximum measure.

More precisely, those are in bijection with the SPR Markov subshifts with maxi-
mum entropy and the natural extensions of these measures are measure-preservingly
isomorphic to finite extensions of Bernoulli schemes,

Moreover, the periods of the (cyclic permutations of the) measures and those of the
irreducible subshifts coincide.

This follows from the Structure Theorem and Gurevič results for Markov shifts, as
explained in Section 7.1.

Remark. The proof that the QFT condition implies the existence of a maximum
measure is closely related to a joint work [12] with S. Ruette.

1.5.2. Zeta functions. — We turn to the numbers of periodic points.

Theorem 3 (Zeta Functions). — Assume that V is a QFT puzzle which is also
determined. Fix a large integer N and consider the reduced zeta function:

ζN (z) := exp
∑

n≥1

zn

n
#{x ∈ iN (XV ) : σn(x) = x}.
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ζN is holomorphic on |z| < e−htop(V ) and has a meromorphic extension to |z| <
e−hC(V )−hwloc(V ). Its singularities near the circle |z| = e−htop(V ) are exactly poles at

e2iπk/pie−htop(V ) i = 1, . . . , r k = 0, . . . , pi − 1

(with multiplicities equal to repetitions in this list) where p1, . . . , pr are the periods of
the distinct maximum measures µ1, . . . , µr.

Moreover, for each ǫ > 0, the poles of ζN (z) in |z| < e−hC(V )−hwloc(V )−ǫ are inde-
pendent of N : for N ′, N > N(V, ǫ), ζN ′(z)/ζN (z) extends to a holomorphic function
on this disk.

This is, technically, the most delicate result as we have to go from entropy estimates
(which confuses very close points) to counting (this is of course why the determinacy
assumption is required) —see Section 7.2.

Remark.

1. In contrast to [11], the lower-bound on the meromorphy radius will be obtained
using a new result about general Markov shifts.

2. Counting the projections at level N of periodic points instead of the periodic
points themselves is necessary as it not even true that #{x ∈ XV : σn(x) = x} < ∞
for any determined QFT puzzle —see Section 2.3.

1.5.3. Semi-local zeta functions for SPR Markov shifts. — The proof of Theorem 3
relies on a similar (and new) result for SPR Markov shifts. First, define the “entropy
at infinity”:

Definition 1.10. — Let G be a countable, oriented, irreducible graph. The entropy
at infinity of G is:

(3) h∞(G) = inf
F⊂⊂G

inf
µ0>0

sup {h(σ, µ) : µ([F ]) < µ0}

where F ranges over the finite subgraphs of G and [F ] := {x ∈ Σ(G) : x0 ∈ F}.

Remarks. (1) h∞(G) = −∞ if G is finite.
(2) H ⊂ G implies that h∞(H) ≤ h∞(G) as both are infimum over µ0 > 0

and F ⊂⊂ G of sup{h(σ, µ) : µ([F ]) < µ0} and sup{h(σ, µ) : µ([F ]) < µ0 and
µ([G \ H ]) = 0}, respectively.

(3) This definition was motivated by the observation of Ruette [34] that the combi-
natorial quantities considered by Gurevič and Zargaryan [18] were related to entropy
at infinity. In particular, h∞(G) < h(G) iff G is SPR (see Proposition 6.1).

Theorem 4. — Let Σ(G) be an irreducible Markov shift with finite Gurevic entropy
h(G). For any finite subset F ⊂⊂ G, the semi-local zeta function of G at F :

ζG
F (z) := exp

∑

n≥1

zn

n
#{x ∈ Σ(G) : σn(x) = x and {x0, . . . , xn−1} ∩ F 6= ∅}

is holomorphic on |z| < e−h(G) and has a meromorphic extension to |z| < e−h∞(G).



Puzzles of Quasi-Finite Type 11

Moreover, for every ǫ > 0, there exists F0 ⊂⊂ G such that, if F, F ′ are two finite
subsets with F0 ⊂ F, F ′ ⊂⊂ G, then

ζG
F ′(z)

ζG
F (z)

is holomorphic and non-zero on |z| < e−(h∞(G)+ǫ).

Remarks.

(0) Notice that the semi-local zeta functions at a single vertex coincide with the
local zeta functions of [17] but differ from those of [36] (which have usually a non-
polar singularity at z = e−h(G) so has no meromorphic extension).

(1) This result is new. In fact, even the case of where F is reduced to a single
vertex had not been observed to our knowledge.

(2) The theorem is trivial if h∞(G) = h(G), that is, if G is not SPR (see Proposition
6.1). In the opposite extreme, for subshifts of finite type, i.e., G finite, this asserts
that ζG

F extends meromorphically over C. Of course, in this case ζG
F = ζG/ζG\F

in terms of the classical Artin-Mazur zeta functions so the semi-local zeta function
extends in fact meromorphically over the Riemann sphere, i.e., is a rational function.

(3) The conclusion of Theorem 4 is false for the full zeta function (i.e., ζG). ζG

is not always defined as a formal series and, even if it is, can have zero radius of
convergence or it can have various types of singularities (see [17, Example 9.7]).

(4) For two finite subsets F, H , ζG
F (z)/ζG

H(z) is meromorphic over |z| < exp−h∞(G)
but it is not necessarily holomorphic and non-zero. If Gn is the complete oriented
graph on {1, 2, . . . , n}, we have h(G3) = log 3, h∞(G3) = −∞, ζG3(z) = ζG3

G3
(z) =

1/(1 − 3z) and ζG3

{0}(z) = ζG3(z)/ζG2(z) = (1 − 2z)/(1 − 3z).

(5) The maximum radius of a meromorphic extension(3) of the semi-local zeta
functions may be strictly larger than exp−h∞(G). Indeed, there are Markov shifts
for which the radius of meromorphy of the local zeta functions varies (see Appendix
A for an example where some local zeta functions are rational and others have a
finite radius of meromorphy). One can wonder if these values and for instance their
supremum have a dynamical significance besides the obvious fact that if g ∈ G and
g′ ∈ G′ define the same local zeta functions, the corresponding shifts are almost
isomorphic in the sense of [3]. One would like to “patch together” all the partial
informations provided by all the (semi) local zeta functions.

The proof of Theorem 4 relies on the generalization of an algebraic formula decom-
posing the determinant of finite matrices –see section 6. In the special case of a loop
graph, i.e., the disjoint union of fn loops for each length n ≥ 1 based at a single vertex
a (see Appendix A), with F reduced to {a}, h∞(G) = lim supn≥∞(1/n) log fn and the

determinantal formula coincides with the well-known identity ζa(f) = (1 − fa(z))−1,
where fa(z) :=

∑
n≥1 fnzn, the rest of the proof following then that of [17, Prop.

9.2].

1.5.4. Equidistribution of the periodic points. — The periodic points are equidis-
tributed w.r.t. a suitable measure of maximum entropy:

(3)See Appendix A for formal definitions.
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Theorem 5 (Equidistribution of periodic points). — Assume that V is a QFT
puzzle which is determined. Let µ1, . . . , µr be the distinct maximum measures and
p1, . . . , pr their periods, p = lcm(p1, . . . , pr).

Fix a sufficiently large integer N and consider, for n ∈ pZ, the measures:

µN
n :=

∑

x∈iN (XV )|σn(x)=x

δx.

Then, in the weak star topology,

lim
n→∞,n∈pZ

1

µN
n (XV )

µN
n =

1∑
i pi

r∑

i=1

piµi.

This will also be a consequence of a result of Gurevič and Savchenko [17] for SPR
Markov shifts.

1.6. Classification of QFT puzzles. — In the same way as QFT subshifts [11],
QFT puzzles can be classified up to entropy-conjugacy by their entropy and periods.
Using the classification result [3] obtained with Boyle and Gomez for SPR Markov
shifts, Theorem 1 implies:

Theorem 6 (Classification). — The natural extension of QFT puzzles are com-
pletely classified up to entropy-conjugacy by the following data: the topological entropy
and the list, with multiplicities, of the periods of the finitely many maximum measures.

This gives a very precise meaning to our assertion that complexity assumptions
(defining QFT puzzles) in fact characterize them from the point of view of complexity.

1.7. Smooth maps defining QFT puzzles. — We describe the class of smooth
maps whose symbolic dynamics are QFT puzzles which will both provide interesting
examples of such puzzles and yield a new proof of variants of previous results [9]
about the dynamics of such maps.

Entropy-expansion. — Let F : M → M be a C∞ smooth map of a d-dimensional
compact manifold. The main assumption is that F is entropy-expanding, which is
defined as follows. The codimension one entropy [9] is

hd−1(F ) = sup{htop(F, φ([0, 1]d−1) : φ ∈ C∞(Rd−1, M)}.

Recall that htop(F, σ) counts the number of orbits starting from the not necessarily
invariant set σ — see [39]:

htop(F, σ) = lim
ǫ→0

lim sup
n→∞

r(ǫ, n, σ).

The entropy-expanding condition [9] is:

hd−1(F ) < htop(F ) := htop(F, M).

It is an open condition in the C∞ topology [9]. Entropy-expanding maps form a
natural class of multi-dimensional non-uniformly expanding maps. This class includes
all couplings of interval maps, e.g., all self-maps of [0, 1]2 of the form:

(4) (x, y) 7→ (ax(1 − x) + ǫy, by(1 − y) + ǫx)
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for 3.569... < a, b < 4 (3.569... is the Feigenbaum parameter).
Indeed, x 7→ tx(1 − x) maps [0, 1] into [0, t/4] for 0 ≤ t ≤ 4 and has positive

entropy for t > 3.569..., so that for ǫ = 0, the above is entropy-expanding by [7]. For
ǫ ≥ 0 small enough, the coupling (4) still preserves [0, 1]2. This coupling is finally
entropy-expanding by the openness of this condition.

Such coupled interval maps are natural examples of multi-dimensional non-uniformly
expanding maps with critical points but their ergodic theory has resisted all other ap-
proaches up to now, despite all the results following [38] in the case where one of the
two factors is assumed to be uniformly expanding.

Good partitions. — We shall additionaly assume that there exists a good partition P
for F , i.e., with the following properties:

– P is finite;
– each element of P is the closure of its interior;
– the boundary of each element of P is the image of a compact subset of Rd−1 by

a C∞ smooth map;
– the restriction of f to the closure of any element A of P , f |Ā, is one-to-one.
– for each n ≥ 1, each P , n-cylinder:

A0 ∩ F−1A1 ∩ · · · ∩ F−n+1An−1 Ai ∈ P

has only finitely many almost connected components: maximum subsets which
cannot be split into two subsets at a positive distance;

– we have a uniform bound

sup
x∈M

#{k ∈ N : F k(x) ∈ ∂P} < ∞.

There are many C∞ maps of compact manifolds which fail to have a good partition.
Indeed, it is not difficult to construct C∞ entropy-expanding maps which are bounded-
to-one on no open and dense set.

On the other hand we believe that among C∞ maps, having a good partition is
generic, i.e., this property defines a subset which contains a countable intersection
of open and dense subsets. As a step in this direction, we prove the following in
Appendix B:

Proposition 1.11. — The coupling in eq. (4) has a good partition for all parameters
(a, b, ǫ) except for at most a countable union of smooth hypersurfaces in R3.

Puzzles of Good Entropy-Expanding Maps. — Given an entropy-expanding C∞ smooth
map F with a good partition P as above, we define the associated puzzle to be (V, i, f)
with V = ⊔n≥0Vn where:

– Vn is the collection of almost connected components of P , n-cylinders;
– i, f : Vn+1 → Vn are the maps defined by i(u) = v and f(u) = w if v ⊃ u and

w ⊃ F (u);

(this is a special case of the construction given in section 1.2). We shall see the:



14 Jérôme Buzzi

Theorem 7 (Puzzles of entropy-expanding maps). — Let T : M → M be a
C∞ smooth map of a d-dimensional compact manifold. Assume that T is entropy-
expanding and admits a good partition P. Then the puzzle associated to (T,P) is
QFT and determined. More precisely, hwloc(V ) = 0 and hC(V ) ≤ hd−1(T ).

In particular, such maps have finitely many maximum measures and, up to the
identifications given by some partition, their periodic points define zeta functions with
meromorphic extensions to |z| < exp−hd−1(T ).

These results are stated more precisely as Theorem 8 and its Corollaries 8.2-8.3.

Remark. One can relax the assumption of smoothness to Cr smoothness with r ≥ 1
provided one strengthens the entropy-expansion condition in the following way:

hd−1(f) +
d − 1

r
log+ Lip(f) < htop(f)

and using that, according to [6], the left hand side dominates Hd−1(f), the uniform
codimension 1 entropy defined in that work. We thus obtain a new existence result.
It generalizes the classical result of existence of a maximum measure for all piecewise

monotone maps (i.e., f : [0, 1] → [0, 1] such that [0, 1] =
⋃N

i=1[ai, bi] with f |(ai, bi) is
continuous and strictly monotone) with positive topological entropy.

Numbering. All items are numbered consecutively within each section, except for
the theorems.

Acknowledgments. J.-C. Yoccoz asked me about the relationship between Hof-
bauer’s towers and the puzzles of complex dynamics a long time ago. M. Boyle was
always encouraging at all the stages this work went through. S. Ruette pointed out
to me Proposition 6.1 and the link with h∞(G). I am indebted to O. Sarig, especially
with regard to my results about zeta functions for Markov shifts. His insights led me
to the example given in the Appendix.

The observations of the referees have also significantly improved the exposition of
this paper (including section 6).

2. Further Examples

2.1. Puzzles with finitely many irreducible vertices. — We prove Lemma 1.5,
i.e., that the dynamics of a puzzle with finitely many irreducible vertices is (topolog-
ically conjugate to) a subshift of finite type.

Let n0 be the largest integer such that Vn0 contains a f -irreducible piece. Let n
be an arbitrary integer larger than n0. Recall the map in : XV → V N

n from (2).
To prove the lemma, it is enough to see that in(XV ) is a subshift of finite type
(easy since v reducible implies FV ([v]V ) = [f(v)]V =

⋃
w∈i−1(v)[w]V ) and that all the

subshifts obtained for large n are topologically conjugate by the maps induced by the
restrictions i : Vm → Vn, m ≥ n.

Let n > n0. Consider the finite graph Γn whose vertices are the elements of Vn

and whose arrows are defined by:

u →Γn
v ⇐⇒ ∃w ∈ Vn+1i(w) = u and f(w) = v.
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Figure 1. Construction of α
m+1.

Observe for future reference that, because of the definition of a reducible vertex, w
above is uniquely determined by u and v.

Let Σn ⊂ V N
n be the subshift of finite type defined by Γn. We claim that in(XV ) =

Σn.
Observe first that in(XV ) ⊂ Σn. Indeed, for x ∈ XV and k ≥ 0, i((F k

V x)n+1) =

(F k
V x)n by definition of XV and f((F k

V x)n+1) = (F k+1
V x)n by definition of FV . Thus,

(F k
V x)n →Γn

(F k+1
V x)n, and in(x) ∈ Σn.

We turn to the converse inclusion. Let α0 ∈ Σn for some n > n0. We are going to
define inductively αm ∈ V N

n+m, m ≥ 1, such that, for all m ≥ 0, j ∈ N and 0 ≤ k ≤ m,

(5) (i) ik(αm
j ) = αm−k

j , (ii) αm
j �k

f αm−k
j+k , (iii) αm

j+1 ∈ f(i−1(αm
j )).

This will imply that in(XV ) ⊃ Σn. Indeed, recall that x = in(α0) means that

xk = in−k(α0
0) for k ≤ n and xk = αk−n

0 for k ≥ n. Hence x ∈ XV by (i) and
in(x) = α0, as fk(αk

0) = α0
k by (ii).

Observe that (5) holds for m = 0 because of the definition of Γn. Let us assume
that αp

j has been defined for p ≤ m and all j ∈ N so that eq. (5) is satisfied. For

j ∈ N, let us build αm+1
j satisfying (5).

Let αm+1
j ∈ f−1(αm

j+1) ∩ i−1(αm
j ) (this intersection is not empty by (iii), eq. (5)

and it is unique because αm+1
j is f -reducible). Let us check eq. (5) for m + 1, j.

ik+1(αm+1
j ) = ik(αm

j ) hence (i) is satisfied. f(αm+1
j ) = αm

j+1 and αm+1
j is f -reducible

by the main assumption. Thus αm+1
j �k

f αm+1−k
j+k for k = 1 and for 1 < k ≤ m by the

induction hypothesis. This is (ii). As αm+1
j �1

f αm
j , the i-tree below αm+1

j is mapped

by f onto the i-tree below αm
j . This gives (iii), completing the induction.

Finally, one observes that αp+1 = ip+1(x) is uniquely defined by αp = ip(x) so that
the natural projection ip+1(XV ) → ip(XV ) is in fact a homeomorphism. This finishes
the proof of Lemma 1.5.
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2.2. ∗-QFT puzzles with nasty dynamics. — We give examples of ∗-QFT puz-
zles with infinitely or no maximum measures.

Let Σ0 = {0∞}, Σ1, Σ2, . . . be a sequence of subshifts of finite type over disjoint
alphabets. Assume that the Markov order of Σn is at most n (i.e., A ∈ Σn iff
Ak . . . Ak+n−1 is a word in Σn for all k ≥ 0) and that htop(Σn) > 0 for all n ≥ 1. We
are going to build a puzzle which is conjugate to

⋃
n≥0 Σn. Taking htop(Σn) = log 2

for all n ≥ 1, or htop(Σn) ր log 2 as n → ∞, shall yield the required examples.
Let Ln(Σk) be the set of words of length n appearing in Σk. The puzzle will be

(V, i, f) defined as follows:
Let V0 = {∅} (the empty word) and Vn = ⊔0≤k≤nLn(Σk).
Let w := A1 . . . An ∈ Vn. If w ∈ Ln(Σn), then f(w) = i(w) = 0n−1. Otherwise, let

f(A1 . . . An) = A2 . . . An and i(A1 . . . An) = A1 . . . An−1.
The only vertices of Vn that can be irreducible are those w ∈ Ln(Σn) which are

mapped by f to 0n−1. For n > N , all these vertices are confused with 0n by iN .
Thus at a given level N , the number of distinguishable irreducible vertices in Vn is
bounded independently of n so that hC(V ) = 0. Thus V is indeed a ∗-QFT puzzle.

2.3. QFT puzzles with bad zeta functions. — Let us describe a determined
QFT puzzle with infinitely many periodic orbits of any given length so that the zeta
function defined from the periodic points (and not their projections) is not even well-
defined as a formal series.

Pick a sequence of positive integers p1, p2, . . . such that #p−1(k) = ∞ for all
k ≥ 1. Modify the previous construction taking Σ0 := {0, 1}2 and, for n ≥ 1,
Σn := {σjωn : 0 ≤ j < pn}, a periodic orbit of length pn ≥ 1. Take the symbols
(ωn

j )n≥1,0≤j<pn
pairwise distinct and disjoint from {0, 1}.

Observe that, for any word w from some Σn, n ≥ 1, Ti(w) is a linear graph
whereas Ti(w) for all the other words are not linear. It follows that the irreducible
pieces are: (i) the one-letter words 0 and 1; (ii) the words from Σn of length n. Thus,
hC(V ) = hwloc(V ) = 0.

Let u, u′ be words, u not from Σ0 such that u, u′ �1
f w and i1(u) = i1(u

′). Ti(u)

is then a linear graph forcing Ti(u
′) to be so. It follows that u = ωn

j . . . ωn
j+ℓ and

u′ = ωm
k . . . ωm

k+ℓ for some integers j, k, ℓ, n, m with ℓ ≥ 1 by reducibility. Hence
f(u) = f(u′) implies that ωn

j+1 = ωm
k+1. By the choice of pairwise distinct symbols,

this yields u = u′: V is determined.
Therefore V is indeed a determined QFT puzzle.

Remark. Obvious adaptations of this construction yield examples with arbitrary
growth rates of the number of periodic orbits.

3. Basic properties

3.1. Some properties of f-reducibility. —
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Lemma 3.1. — If i(u) = i(u′), fk(u) = fk(u′) and u �k
f v and f : Ti(f

l−1(u′)) →

Ti(f
l(u′)), l = 1, . . . , k are graph isomorphisms then u = u′. In particular,

(6) i(u) = i(u′) and u �k
f w and u′ �l

f w =⇒ k = l and u = u′.

Proof: (6) clearly follows from the first claim. For k = 0, 1, this claim follows from
the definition of �k

f . Assume the claim for some k− 1 ≥ 0 and let u, u′ and v be as in

the claim for k. Now, i(fk−1(u)) = fk−1(i(u)) = fk−1(i(u′)) = i(fk−1(u′)) and both
fk−1(u) �1

f v and f : Ti(f
k−1(u′)) → Ti(v) is an isomorphism. This implies that

fk−1(u) = fk−1(u′) =: w by the definition of �1
f . Now i(u) = i(u′) and u �k−1

f w

and f : Ti(f
l−1(u′)) → Ti(f

l(u′)), l = 1, . . . , k−1, so the induction hypothesis implies
u = u′. �

Lemma 3.2. — If i(u) �k
f i(v) and fk(u) = v with |u|, |v| ≥ 1 and k ≥ 0, then

u �k
f v. In particular, if u with |u| > 1 is f -irreducible, then so is i(u).

Proof: i(u) �k
f i(v) implies that the i-trees below i(u) and i(v) are isomorphic

through fk. This implies the same for the sub-i-trees below u and v. Assuming by
contradiction that u 6�k

f v we obtain that there exists w ∈ i−1(i(u)), w 6= u with

fk(w) = fk(u), but this would contradict that fk|Ti(i(u)) is one-to-one. �

3.2. Natural extension and duality. — Except in trivial cases, the dynamics
FV : XV → XV is non-invertible. To obtain an invertible dynamical system, one goes
to the natural extension. It can be described as (XV , FV ) with:

XV = {(vn,p)n,p : ∀(n, p) ∈ N × Z i(vn+1,p) = f(vn+1,p−1) = vn,p ∈ Vn}

FV : (vn,p)n,p 7−→ (vn,p+1)n,p.

The distance on XV is defined as: d(x, y) =
∑

n≥0 2−ndV (x−n, y−n).

Remark that (XV , FV ) is homeomorphic to the usual realization of the natural
extension: {(vp)p∈Z ∈ XZ

V : ∀p ∈ Z FV (vp−1) = vp}.

The symmetry of the roles of i and f gives rise to a duality between puzzles: just
exchange the maps i and f associated to a puzzle (V, i, f). We denote by (V ∗, i∗, f∗)
the resulting puzzle. The natural extension of their dynamics FV and FV ∗ are in-
verse of each other, as the description of the natural extensions given above makes it
obvious.

Remark. As it was already the case for subshifts of quasi-finite type [11], hC(V ∗)
may be different from hC(V ). It may indeeed occur that hC(V ) < htop(V ) and
hC(V ∗) = htop(V ∗) (or the other way around). This allows easy construction of
puzzles such that hwloc(V

∗) is different from hwloc(V ).
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4. Measure-theoretic Structure

In this section we begin the proof of the structure theorem (Theorem 1). We
first introduce the Markov shift which underlies our analysis and then we explain its
consequences for entropy-conjugacy. The proof then has three stages: (i) the Markov
shift is shown to be measurably conjugate to a part of the natural extension of the
puzzle dynamics; (ii) the entropies of the measures living on the excluded part are
bounded, yielding claim (1) of the Theorem; (iii) the entropy “at infinity” in the
Markov diagram is also controlled, yielding claim (2) of the Theorem. Claim (3), on
the periodic points, is proved in the next section.

4.1. The complete Markov diagram. — The key object is the following count-
able oriented graph.

Definition 4.1. — The complete Markov diagram of a puzzle V is a countable,
oriented graph D defined as follows. Its vertices are the f -irreducible vertices of V .
Its arrows are the following:

(7) v ; w ⇐⇒ ∃u ∈ V i(u) = v and u �f w.

Notice that because of Lemma 3.1, u in eq. (7) is unique given v ; w.

Remark. If V is in fact a subshift over alphabet V1, this complete Markov diagram
reduces to the one introduced in [6]. Under the additional assumption that there

are no “accidental” identifications, i.e., F
|v|
V ([v]) = F

|w|
V ([w]) only if w = f |v|−|w|(v)

(assuming |v| ≥ |w|), this further reduces to the Hofbauer diagram [19].

Let Σ+(D) be the associated one-sided subshift:

Σ+(D) = {v ∈ V N : v0 ; v1 ; v2 ; . . . }

together with the left-shift σ((vn)n∈N) = (vn+1)n∈N.

We build a conjugacy from the Markov shift onto (a part of) the puzzle dynamics.

Proposition 4.2. — Let v ∈ Σ+(D) and n ≥ 0. There exists a unique w(n) ∈ V
such that:

(i) in(w(n)) = v0;
(ii) for all k = 0, . . . , n: ik(w(n)) �f vn−k.

Moreover, the following property holds:

(iii) i(w(n+1)) = w(n).

Figure 2 gives a typical example of the construction of wn.

Proof: Let v ∈ Σ+(D). For each n ≥ 0, we are going to define w0, . . . , wn such that:

(8) ij(wj) = vn−j and ∀k = 0, . . . , j ik(wj) �f vn−k.

Observe that w(n) := wn will then have the required properties (i) and (ii) by eq. (8).
(iii) will follow from showing the uniqueness of the solution to (8).

For j = 0, set w0 = vn. For 1 ≤ j ≤ n, assume that wj−1 has been defined
satisfying (8). As vn−j ; vn−j+1, there exist an integer l ≥ 1 and u ∈ i−1(vn−j)
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Figure 2. Construction of w
(3) from v0v1v2v3 as in Proposition 4.2.

such that u �l
f vn−j+1 (where, necessarily, l = |u|− |vn−j+1| = |vn−j |+1−|vn−j+1|).

Hence there exists a wj ∈ Ti(u) which is the f l-preimage of wj−1 in Ti(vn−j+1) (recall
that ij−1(wj−1) = vn−j+1).

Let us check (8) for wj . Compute

|wj | = l + |wj−1| = |vn−j | + 1 − |vn−j+1| + (j − 1 + |vn−j+1|) = |vn−j | + j.

As wj ∈ Ti(u) and i(u) = vn−j (i.e., wj ∈ Ti(vn−j)), this implies the first part of (8):

(9) ij(wj) = vn−j .

For the second part, observe that u �l
f vn−j+1, ij−1(wj) = u, ij−1(wj−1) = vn−j+1

and f l(wj) = wj−1. Hence Lemma 3.2 implies that, for 0 ≤ k ≤ j − 1, ik(wj) �l
f

ik(wj−1). Using the second part of (8) for wj−1 we see that:

∀0 ≤ k < j ik(wj) �f ik(wj−1) �f vn−k.

Thus eq. (8) holds for wj and k < j. For k = j, this second part is just (9).
This completes the inductive construction of wn.

For future reference, observe that wj depends only on vn−j . . . vn and that the case
k = 0 of the previous equation gives:

(10) wj �f wj−1 �f vn

Let us check the uniqueness of problem (8). We prove that for wn satisfying eq. (8),
in−pwn is unique by an induction on 0 ≤ p ≤ n. For p = 0, this is obvious. Assume
it for p− 1 ≥ 0. Observe that i(in−p(wn)) = in−p+1(wn) and in−p(wn) �f vp. These
two conditions uniquely determine in−p(wn) according to Lemma 3.1. Thus wn is
indeed unique.
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Thus we have shown the existence of w(n) satisfying properties (i)-(iii) of the state-
ment. We show that w(n) is unique under (i) and (ii). We proceed by induction on
n. For n = 0 this is obvious. Assume the uniqueness for n− 1 ≥ 0. Let w′ := i(w(n)).
Observe that

– in−1(w′) = in(w(n)) = v0;
– for 0 ≤ k < n, ik(w′) = ik+1(w(n)) �f vn−k−1.

By the induction hypothesis, w′ = w(n−1). Thus i(w(n)) = w(n−1) and w(n) �f vn.

Lemma 3.1 gives the uniqueness of w(n), completing the induction. �

Corollary 4.3. — Let v ∈ Σ+(D). Then there exists a unique x ∈ XV such that
x|v0| = v0 and for all j ≥ 0, x|v0|+j �f vj . Moreover x|v0|+j depends only on
v0v1 . . . vj . For future reference we denote this x ∈ XV by x(v).

Proof: For each n ≥ 0, apply the above proposition to the sequence v0 ; . . . ; vn

to get w(n). As i(w(n+1)) = w(n), we define a sequence x in XV by x|w(n)| = w(n).

Moreover, for each n ≥ 0, x|w(n)|−n+j = in−j(w(n)) �f vj . As |w(n)| = |v0| + n, this
implies that x|v0|+j �f vj .

The uniqueness is proved by applying inductively Lemma 3.1 to i(x|v0|+j+1) =
x|v0|+j and x|v0|+j �f vj .

It is obvious that x|v0|+j = x|wj | depends only on v0 . . . vj . �

Let us define π : Σ+(D) → XV by:

π(v) = F
|v0|
V (x(v))

with x(v) defined as in the above Corollary.

Lemma 4.4. — The map π : Σ+(D) → XV is well-defined, continuous and satisfies:
π ◦ σ = FV ◦ π.

Proof: The above Corollary shows that π is indeed well-defined and continuous with
values in XV . We turn to the commutation relation. We must show that

(11) f((πv)n) = (πσv)n−1

for all large n.
Let w(n+1) be built as in Proposition 4.2 from v0 . . . vn+1 using the finite sequence

w0, . . . , wn+1 defined in (8). Let w̃(n) be defined similarly from v1 . . . vn+1 using
w̃0, . . . , w̃n.

Observe that wk = w̃k for k ≤ n as they are both determined by vn+1−k . . . vn+1.
According to (10), w(n+1) �ℓ

f w̃(n) with ℓ := |w(n+1)| − |w̃(n)| = |v0| + 1 − |v1| ≥ 0.
Hence

f(f |v0|(w(n+1))) = f |v1|(w̃(n)).

Now π(v) = F
|v0|
V (x) with x|v0|+n+1 = w(n+1). Likewise, π(σ(v)) = F

|v1|
V (y) with

y|v1|+n = w̃(n). (11) now follows from the previous equation. �
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Figure 3. Proof of vp ; vp+1 for Proposition 4.6.

4.2. Partial conjugacy. — We are going to show that π gives an isomorphism
between a subset of the natural extension XV of XV and the whole of Σ(D).

Observe that π : Σ+(D) → XV extends naturally to π : Σ(D) → XV by setting
π(v) = x with x0px1p · · · = π(vpvp+1 . . . ) because of the commutation in Lemma 4.4.

Definition 4.5. — x ∈ XV is eventually Markovian at time p if there exists
0 ≤ N < ∞ such that:

∀n ≥ N xn,p−n �f xN,p−N .

The eventually Markovian subset XM
V of XV is

XM
V = {x ∈ XV : x is eventually Markovian at all times }.

Proposition 4.6. — Define ι : XM
V → Σ(D) by ι(x) = v if, for all p ∈ Z, vp is the

unique irreducible vertex such that for all sufficiently large n:

(12) xn,p−n �f vp.

Then ι : (XM
V , FV ) → (Σ(D), σ) is well-defined and gives an isomorphism whose

inverse is π.

Proof: Let us first check that ι is well-defined with ι(XM
V ) ⊂ Σ(D). Let x ∈ XM

V .

XM
V is precisely defined so that v = ι(x) is a well-defined element of DZ. (12) gives

uniqueness at once.
Let us show that vp ; vp+1 for an arbitrary p ∈ Z. For n large enough,

(13) (i) xn,p−n �ℓ
f vp and (ii) xn+1,p+1−n−1 = xn+1,p−n �k

f vp+1

where ℓ = |xn,p−n| − |vp| and k = |xn+1,p−n| − |vp+1|.
Let u = f ℓ(xn+1,p−n) (note that |xn+1,p−n| = n + 1 > n > ℓ). We have i(u) =

f ℓ(i(xn+1,p−n)) = f ℓ(xn,p−n) = vp. Hence it is enough to see that u �f vp+1.
Given (13,ii), this will follow from ℓ ≤ k. If ℓ > k, xn+1,p−n �ℓ

f u (a consequence of

xn,p−n �f vp according to Lemma 3.2) and xn+1,p−n �k
f vp+1 would imply: vp+1 �ℓ−k

f

u, contradicting the irreducibility of vp+1. Thus ι(x) ∈ Σ(D).
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Let us prove that ι ◦ π = IdΣ(D). Let v ∈ Σ(D) and x = π(v) ∈ XV . Let us check

that x belongs to XM
V . We have, for p ∈ Z and n ≥ 1,

xn,p−n = (π(vp−nvp−n+1 . . . ))n = f |vp−n|(y|vp−n|+n)

where y|vp−n|+n �k
f vp for k = |vp−n| + n − |vp| by Corollary 4.3. For n ≥ |vp|,

k ≥ |vp−n| and

(14) xn,p−n = f |vp−n|(y|vp−n|+n) �f vp.

Thus x is eventually Markov at any time p. x ∈ XM
V as claimed. Observe that eq.

(14) also implies that ι(x) = v, i.e., ι ◦ π = IdΣ(D) as claimed.

It remains to show that ι : XM
V → Σ(D) is one-to-one. Let x, y ∈ XM

V with
ι(x) = ι(y) =: v. Let p ∈ Z. As vp ; vp+1, there is a unique u1

p such that i(u1
p) = vp

and u1
p �k

f vp+1 for k = |vp| + 1 − |vp+1| by Lemma 3.1.

For n large enough, we have xn,p−n, yn,p−n �ℓ
f vp for ℓ = n−|vp| and xn+1,p−n, yn+1,p−n �f

vp+1. Then xn+1,p−n �ℓ
f xn+1−ℓ,p−n+ℓ =: w and w must satisfy i(w) = vp and

w �f vp+1 (observe that |w| = n + 1 − ℓ = |vp| + 1 ≥ |vp+1|). By Lemma 3.1,
w = xn+1,p−n. Thus

xn+1,p−n, yn+1,p−n �f u1
p = x|vp|+1,p−|vp| = y|vp|+1,p−|vp|.

We want to repeat this analysis with u1 replacing vp. First we check that u1
p ; u1

p+1,

i.e., that there is some w such that i(w) = u1
p and w �f u1

p+1 (but some u1
p might

be reducible). Indeed, fk : Ti(u
1
p) → Ti(vp+1) is an isomorphism so that there exists

w ∈ Ti(u
1
p) with fk(w) = u1

p+1. Lemma 3.2 gives then that w �f u1
p+1. But this says

that u1
p ; u1

p+1, as claimed.

We proceed inductively, assuming that some sequence (uj
p)p∈Z has been obtained

such that uj
p ; uj

p+1 and

(15) xn+j,p−n �f uj
p = x|uj

p|+1,p−|vp|
= y|uj

p|+1,p−|vp|

We define uj+1
p as the unique piece such that i(uj+1

p ) = uj
p and uj+1

p �f uj
p+1. The

same reasoning as above yields (15) with j replaced by j + 1.
As |uj

p| = |vp| + j → ∞, we obtain x = y. �

Corollary 4.7. — The induced maps on the invariant probability measures π : Prob(σ, Σ(D)) →
Prob(FV , XV ) and π : Prob(σ, Σ+(D)) → Prob(FV , XV ) are one-to-one and preserve
ergodicity and entropy.

Proof: That π : Σ(D) → XV is a partial isomorphism trivially implies the stated
properties of π : Prob(σ, Σ(D)) → Prob(FV , XV ). To finish, recall that the natural
extension construction preserves ergodicity and entropy. �
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4.3. Entropy of the non-Markov part. —

Proposition 4.8. — If µ is an invariant and probability measure with µ(XV \XM
V ) =

0, then

h(FV , µ) ≤ hC(V ).

To analyze the non-Markov part, the first step is the following:

Lemma 4.9. — Up to a set of zero measure with respect to any invariant probability
measure, each x ∈ XV \ XM

V satisfies: for all p ∈ Z there exist arbitrarily large
integers n such that xn,p−n is an f -irreducible vertex.

Proof of the Lemma: By definition x ∈ XV \ XM
V iff there exists p ∈ Z as in

the statement of the Lemma. Let X(p) be the set of such x. The lemma is clearly
equivalent to the fact that, for any invariant probability µ,

(16) µ


⋃

p∈Z

X(p)


 = µ


⋂

p∈Z

X(p)


 .

It is enough to prove this for ergodic µ’s such that the union has positive and hence

full measure. If we prove that X(p + 1) ⊂ X(p), it will follow that µ
(⋃

p∈Z
X(p)

)
=

limp→−∞ µ(X(p)) which is equal to µ(X(p)) for any p ∈ Z by invariance of µ, proving
(16). But observe that by Lemma 3.2

xn,p−n �f xN,p−N =⇒ xn+1,p+1−(n+1) �f xN+1,p+1−(N+1))

so that x /∈ X(p) =⇒ x /∈ X(p + 1), which concludes the proof. �

Recall that the entropy of an invariant and ergodic probability measure µ can be
computed as [23]:

h(FV , µ) = lim
ǫ→0

h(FV , µ, ǫ) with

h(FV , µ, ǫ) = lim sup
n→∞

1

n
log min

{
#S : µ

(⋃

x∈S

B(x, ǫ, n)
)

> µ0

}

where 0 < µ0 < 1 is arbitrary.

Proof of the Proposition: Let µ be an invariant probability measure carried by
XV \XM

V . We may and do assume that µ is ergodic. Let α > 0 be some small number.
There exists r > 0 (depending on µ) such that h(FV , µ) ≤ h(FV , µ, r)+α. Fix L1 < ∞
and r1 > 0 such that for x, y ∈ XV , d(x2L1,−L1, y2L1,−L1) < r1 =⇒ d(x, y) < r (for
any distance on XV and XV compatible with the topologies). Let L2 be such that
r(r1, n, Cn) ≤ e(hC(V )+α)n for all n ≥ L2 and fix, for each such n, some (r1, n)-cover(4)

Cn of Cn with this minimum cardinality. For each v ∈ Cn, we pick some x ∈ XV such
that xn,0 = v and let Xn := {xv ∈ XV : v ∈ Cn}.

(4)Recall the definition of the entropy of sequences.
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Let L >> L1 log K/2α + L2 where K is the minimum cardinality of an r-dense
subset of XV . It follows from Lemma 4.9 that there exists a measurable function
n : XV → N such that, for µ-a.e. x ∈ XV :

– n(x) ≥ L;
– xn,−n is f -irreducible for n = n(x).

Hence (see [11, p. 394]) a µ-typical x satisfies the following. For all large n, there
exist disjoint integer intervals [ai, bi) ⊂ [0, n), i = 1, . . . , s, such that

1.
∑s

i=1 bi − ai ≥ (1 − α)n;
2. bi − ai ≥ L for all i = 1, . . . , s;
3. xbi−ai+1,ai

6�f xbi−ai,ai+1: in particular, xbi−ai+1,ai
is f -irreducible. Thus

F ai+L1

V (x) ∈ B(y, r, bi − ai − 2L1) for some y ∈ Xbi−ai+1.

It follows (see, e.g., the same reference) that h(FV , µ) ≤ hC(V ) + 3α + α| log α| ≤ H .
As α > 0 is arbitrarily small, this concludes the proof. �

4.4. Entropy at infinity in the diagram. —

Proposition 4.10. — Let H > hC(V ) + hwloc(V ). Then there exists a finite subset
D0 ⊂ D such that:

h(D\D0,D) := inf
µ0>0

sup

{
h(σ, µ) : µ ∈ Proberg(Σ(D)) and µ

( ⋃

D∈D0

[D]

)
< µ0

}
≤ H

where Proberg(Σ(D)) is the set of shift-invariant and ergodic probability measures on
Σ(D).

Proof: It is enough to find D0 and µ0 > 0 such that if µ ∈ Proberg(Σ(D)) satisfies:

(17) µ

( ⋃

D∈D0

[D]

)
< µ0,

then h(σ, µ) ≤ H .
Let α > 0 be so small that hC(V )+hwloc(V )+4α+α| log α| ≤ H . Let r > 0 be such

that, for all invariant and ergodic probability measures µ with h(FV , µ) > hC(V ):

h(Fv, µ) − h(FV , µ, r) ≤ hwloc(FV ) + α

(the point here is that r and therefore L1 and r1 are now fixed, especially they are
independent from µ —compare with Proposition 4.6). Fix L1 < ∞ and r1 > 0 such
that, for all x, y ∈ XV , d(x2L1,−L1, y2L1,−L1) < r1 =⇒ d(x, y) < r. We increase L1

if necessary so that L1 > r−1
1 . Recall that C = (Cn)n≥1 with Cn the set of irreducible

vertices of order n. Let L2 such that r(r1, n, Cn) ≤ e(htop(C)+α)n for all n ≥ L2. Let
K be the cardinality of a finite r-dense subset of XV and let L > α−1L1 log K + L2.

Finally let
D0 = {v ∈ D : |v| ≤ L}

and let µ0 > 0 be a very small number to be specified later.
Let µ be an ergodic invariant probability measure on Σ(D) satisfying (17). We

bound h(σ, µ). First observe that by Corollary 4.7, h(σ, µ) = h(FV , π∗µ). Let x ∈ XV
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be a π∗µ-typical point. Thus x = π(v) with v a path on D spending a fraction of its
time less than µ0 in D0.

This implies that there exist disjoint integer intervals [a1, b1), · · · ⊂ [0, n) with
vbi

∈ D \ D0 such that
∑

i bi − ai ≥ (1 − µ0)n and x|vbi
|,bi−|vbi

| = vbi
. The latter

implies: d(xai+k, fk(vbi
)) < r1 for all k ∈ [0, bi − ai − L1). Note that the bi − ai are

large (larger than L). By definition of D, the vbi
s are f -irreducible. It follows as in

the proof of Proposition 4.8 that

h(FV , π∗µ, r) ≤ hC(V )+α+
1

L
+

1

L
| log

1

L
|+(µ0+2L1/L) log K ≤ hC(V )+3α+α| logα|

if µ0 = µ0(V, r, α) is small enough. If h(FV , π∗µ) ≤ hC(V ) ≤ H , there is nothing to
show. Otherwise,

h(FV , π∗µ) ≤ hC(V ) + hwloc(FV , r) + 4α + α| log α| ≤ H

as claimed. �

4.5. Conclusion of the Analysis of Large Entropy Measures. — We collect
all the partial results and check that they imply the first two claims of Theorem 1.

First, let V be a ∗-QFT puzzle. Propositions 4.6 and 4.8 immediately imply that
XV is entropy-conjugate with constant hC(V ) to the Markov shift, Σ(D), proving
claim (1) of the Theorem.

For claim (2), we assume that V is QFT : htop(XV ) > H∗ := hC(V ) + hwloc(XV ).
Proposition 4.10 implies that h∞(D) ≤ H∗.

Take H strictly between H∗ and htop(V ): D contains only finitely many irreducible
Markov subshifts S with entropy h(S) ≥ H . This implies that h(S) > H∗ ≥ h∞(D) ≥
h∞(S). Hence, by the result of Gurevič and Zargaryan [18] quoted in Proposition 6.1
below these irreducible subshifts are SPR. This proves claim (2) of Theorem 1.

5. Periodic Structure

In this section we prove Claim (3) of Theorem 1 which relates most periodic orbits
in the Markov shift with most periodic orbits in some fine scale approximation iN (XV )
of the puzzle dynamics XV . It is here that we need determinacy, exactly once, to prove
eq. (18).

5.1. Partition of the periodic points. — The proof will use two integer param-
eters N, L ≥ 1 depending on ǫ > 0. We shall denote iN ◦ π : Σ(D) → iN(XV ) by
πN . The n-fixed points ξ = σn(ξ) of iN (XV ) satisfy exactly one of the following
properties:

(P1) there exist v ∈ π−1
N (ξ) ∈ Σ(D) such that IN (v) := {p ≥ 0 : |vp| < N} is infinite.

(P2) π−1
N (ξ) 6= ∅ but for all v in this set, IN (v) is finite.

(P3) π−1
N (ξ) = ∅.

Denote by F̃ixi(n), i = 1, 2, 3, the corresponding sets of periodic points of iN (XV )

(these sets do not depend on L, which will define a splitting of F̃ix2(n) below).
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On the other hand, we consider on the Markov shift only the periodic points defined
by low loops :

F̂ix1(n) := {v ∈ Σ(D) : σnv = v and {v0, . . . , vn−1} ∩ DN 6= ∅}.

We shall say nothing about the others.

5.2. Low loops and periodic points of iN(XV ). — Let ǫ > 0, N0 and D0 be
given as in the statement of the Theorem. Fix N ≥ N0 so that DN ⊃ D0 and
h(D \DN ) ≤ hC(V ) + hwloc(V ) + ǫ/2 (which is possible by Proposition 4.10 as h(D \
DN ) ≤ h(D \ DN ,D)).

We first claim that for all n ≥ 1:

(18) #F̃ix1(n) = #F̂ix1(n).

We need the following consequence of determinacy:

Lemma 5.1. — Let V be a determined puzzle and N ≥ 1. Let v, v′ ∈ Σ(D). If
x = π(v) and x′ = π(v′) satisfy i1(x) = i1(x

′), then:

(19) v0 = v′0 =⇒ ∀n ≥ 0 xn,−n = x′
n,−n

Proof: For n = n0 := |v0|, the right hand side of (19) follows from v0 = xn0,−n0 =
x′

n0,−n0
, which holds by (12). This implies (19) for n ≤ n0. Assuming it for some

n ≥ n0, (12) again implies xn+1,−n−1, x
′
n+1,−n−1 �f xn,−n = x′

n,−n. Together with
the determinacy and i1(xn+1,−n−1) = i1(x

′
n+1,−n−1), this completes the induction

and the proof of the lemma. �

We deduce (18) from this Lemma. Let

Σ(N) := {v ∈ Σ(D) : ∃p → ∞ |vp| < N}.

By Lemma 5.1, πN |Σ(N) is one-to-one. F̃ix1(n) is by definition the set of fixed points
ξ of σn in πN (Σ(N)). By the injectivity of πN |Σ(N) and the σ-invariance of Σ(N),
such ξ are the πN images of the fixed points of σn in πN (Σ(N)). This proves the
claim (18).

5.3. Remaining loops and periodic points. — To conclude we check that the
remaining factors are holomorphic.

Lemma 5.2. — For every ǫ > 0, there exists N0(ǫ) < ∞ such that, for all N ≥
N0(ǫ), for all n ≥ 1:

#F̃ix2(n) ≤ C(N, ǫ)e(hC(V )+ǫ)n(20)

#F̃ix3(n) ≤ C(N, ǫ)e(hC(V )+ǫ)n.(21)

Remark. Of course, N being large, h(Σ(D \ DN )) < H := hC(V ) + hwloc(V ) + ǫ <
htop(V ) but this is unsufficient to prove (20) as Gurevič entropy only controls the
number of loops based at a fixed vertex. Indeed, in some examples, D \ DN contains
infinitely many loops of each length.

This Lemma will be enough to conclude the proof of Theorem 3.
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5.4. Paths above N . — To prove (20) we bound the number of the n-periodic
projections to iN(XV ) of (not necessarily periodic) paths on D \ DN .

The proof is similar to that of Proposition 4.10. For n ≥ N , let

(22) C(n) :=

{
(iN (v), iN (f(v)), . . . , iN (fn−N(v))) ∈ V n−N

≤N : v ∈ Cn

}
.

By (12), for all w ∈ Σ(D), writing y := π(w) ∈ XV ,

(23) w0 irreducible with ℓ := |w0| ≥ N =⇒ (yN,−ℓ+1, yN,−ℓ+2, . . . , yN,−N) ∈ C(ℓ)

so that {C(n) : n ≥ 1} controls the projections of high paths. By definition,

(24) #C(n) ≤ C(N, ǫ)e(hC(V )+ǫ)n,

hence this control should give an entropy bound. Let us see the details (note that the
bound proved below is only hC(V ) + hwloc(V )). We fix L = L(N, ǫ), a large integer.

Let n ≥ 1 and ξ ∈ iN (XV ) with σn(ξ) = ξ satisfying (P2): ξ = πN (v) for some
v ∈ Σ(D) satisfying: |vp| ≥ N for all p ≥ p0. By periodicity of ξ, we can assume
p0 = 0 by shifting v a multiple of the period. We shift again ξ to ensure IL(v) = ∅
if IL(v) is finite, |v0| ≤ L otherwise (this might produce an irrelevant factor n in the
estimates). Let x = πN (v) ∈ XV .

Define inductively the integers r ≥ 1, n > b1 > · · · > br ≥ 0 as follows. b1 := n−1.
If bi − |vbi

| ≥ 0 and |vbi
| > L, then set bi+1 := bi − |vbi

| ≥ 0, otherwise let r := i.
Finally set ℓi := |vbi

| for all i = 1, 2, . . . , r.
Now, by (23), xN,bi−ℓi+k = iN ◦ fk(vbi

) for 0 ≤ k < ℓi − N . Thus, there exists
x(i) ∈ C(ℓi), such that ξbi−ℓi+k = (x(i))k for 0 ≤ k ≤ ℓi − N .

Notice that ℓi ≥ L for i = 1, . . . , r − 1. Hence, given n ≥ 1 and br, when v ranges
over Σ(D\DN ), the number of choices for the integers b1, . . . , br−1 is at most eǫ(n−br)

as L is large. On the other hand, eq. (24) yields, for any ℓ ≥ 0,

#{ξ−ℓ+1 . . . ξ0 : ξ = πN (v) with v ∈ Σ(D) and |v0| = ℓ} ≤ C(N, ǫ)e(hC(V )+ǫ)ℓ×(#V≤N )N

This implies:

(25) #{ξbr
. . . ξn−1 : ξ ∈ F̃ix2(n) with given br and IN (v) = ∅} ≤

(#V≤N )N(n−br)/L · eǫ(n−br) · C(N, ǫ)(n−br)/L exp(hC(V ) + ǫ)(n − br)

≤ Ce(hC(V )+3ǫ)(n−br)

using that L = L(N, ǫ) is large. Note that there are at most n possibilities for br. It
remains to count the possibilities for ξ0 . . . ξbr−1. There are two cases.

First case: |vbr
| ≤ L. F̃ix

(1)

2 (n) be the corresponding subset of F̃ix2(n). Recall that
in this case IL(v) is infinite and |v0| ≤ L. Hence v0 . . . vbr

is a path on D \DN which
starts and ends in the finite subgraph DL \DN . The number of such paths with given
br is bounded using the Gurevič entropy by:

(#DL \ DN )2e(h(D\DN)+ǫ/2)br ≤ (#DL \ DN )2e(h(V )+hwloc(V )+ǫ)br .
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Combining with eq. (25) and summing over 1 ≤ r ≤ n/L + 1 and 0 ≤ br ≤ n we
obtain:

#F̃ix
(1)

2 (n) ≤ C′(L, N, ǫ)n2e(h(V )+hwloc(V )+3ǫ)n.

Second case: |vbr
| > L and br−|vbr

| =: −δ < 0. Let F̃ix
(2)

2 (n) be the corresponding

subset of F̃ix2(n). We shift ξ by δ (and add δ to each bi) so br − |vbr
| = 0 (doing this

we lose the property |v0| ≤ L if IL(v) is infinite). Of course, b1, . . . , bs ≥ n for some
(maximum) s ≥ 1. We forget about b1, . . . , bs−1 and we trim vbs

in the following way.
We replace bs, vbs

and ℓs by n− 1, v∗ := ibs−n+1(vbs
) and ℓ∗ := ℓs − (bs −n + 1) ≥ 1.

We have now that x−N,bs−ℓs+i = iN(f iv∗) for 0 ≤ i < ℓ∗ − N . We may now apply
(25) with br = 0. This concludes the proof of (20).

5.5. Unliftable periodic orbits. — Let ξ ∈ F̃ix3(n). By definition, for any x ∈
XV projecting to ξ, there exist p ∈ Z and arbitrarily large integers k such that, xk,p−k

is f -irreducible. Take such an integer k ≥ N + n and observe that v∗ := xN+n,p−k is
f -irreducible by Lemma 3.2. Hence, setting q := p − k − |v∗|,

ξq+i = iN (f i(v∗)) for all 0 ≤ i < n.

This implies that

#F̃ix3(n) ≤ C(N, ǫ)e(hC(V )+ǫ)n,

proving eq. (21) and concluding the proof of Theorem 3.

6. Semi-local zeta functions of SPR Markov shifts

We give a proof of Theorem 4 about the meromorphy of the semi-local zeta func-
tions of SPR Markov shifts, after recalling the relation between the entropy at infinity
and the SPR property.

6.1. SPR property and entropy at infinity. — A combinatorial quantity re-
lated to our h∞(G) first appeared in a work of Gurevič-Zargaryan [18] to give a
sufficient condition for being SPR, which was then shown to be necessary (see [17,
Theorem 3.8]). The explicit relation (26) below is due to Ruette [34].

Proposition 6.1 (Gurevič-Zargaryan, Gurevič-Savchenko, Ruette)
Let G be a countable, oriented, irreducible graph with h(G) < ∞. The graph G is

SPR iff h∞(G) < h(G) where the entropy at infinity h∞(G) has been defined in 3 and
can be computed as:

(26) h∞(G) = inf
F⊂⊂G

max
u,v∈F

lim sup
n→∞

1

n
log #{(x0, . . . , xn) ∈ {u} × Gn−1 × {v} :

∀i = 0, . . . , n xi → xi+1 on G and {x1, x2, . . . , xn−1} ∩ F = ∅}

where F ⊂⊂ G means that F ranges over the finite subgraphs of G.

Observe that by this proposition, the conclusion of our Theorem 4 is non-trivial iff
the Markov shift is SPR.
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6.2. Semi-local zeta function of large subsets. — The first step of the proof
of Theorem 4 is the following weaker claim on semi-local zeta functions defined by
large subgraphs:

Claim 6.2. — For every ǫ > 0, there exists a finite subset F0 ⊂⊂ G such that for
all finite subsets F0 ⊂ F ⊂⊂ G, the semi-local zeta function ζG

F (z) extends meromor-
phically to |z| < exp−(h∞(G) + ǫ).

The crux of the proof is to check that

ζG
F (z) = 1/ det(Id−L(z))

with L(z) a finite square matrix with holomorphic entries for |z| < e−(h∞(G)+ǫ) and
Id is the identity matrix.

One can give a direct, self-contained proof by generalizing an algebraic formula
for the determinant of a finite matrix in terms of its block decomposition used for a
similar purpose in [20]. We give a shorter proof based on the formula in eq. (28),
quoted from [2], as suggested by a referee.

Proof of Claim 6.2: Let F be a finite subgraph of G. For each u, v ∈ F , define

fF
n (u, v) := #{x1 . . . xn−1 : x ∈ Σ(G) s.t. x0 = u, xn = v

and {x1, x2, . . . , xn−1} ∩ F = ∅}.

Recall the definition of h(G\F, G) as introduced in Proposition 4.10. There is F0 ⊂⊂
G such that, if F0 ⊂ F ⊂⊂ G, then h(G \ F, G) < h∞(G) + ǫ for arbitrarily small
ǫ > 0. Hence, by eq. (26), for all u, v ∈ F :

(27) lim sup
n→∞

1

n
log fF

n (u, v) < h∞(G) + ǫ.

Now define Ln = Ln(z) to be the F × F -matrix with following polynomial entries
in z:

Ln(u, v) :=
∑

0≤k≤n

fF
k (u, v)zk.

Consider the zeta function:

ζF
n (z) := exp

∑

p≥1

zp

p
#{x0 . . . xp : x ∈ Σ(G), σp(x) = x,

{i ∈ Z : xi ∈ F} has gaps of lengths at most n}.

The formula from [2] is:

(28) ζF
n (z) = det(Id−Ln(z))−1.

Let L be the F×F matrix with power series entries defined by L(u, v) := limn→∞ Ln(u, v).
The limit here is in the sense of formal power series. Increasing n only adds high
powers, hence this limit exists. Also ζG

F (z) = limn→∞ ζF
n (z). By eq. (28), we get

ζG
F (z) = det(Id−L(z))−1.

Eq. (27)implies that the entries of L have a radius of convergence at least e−h∞(G)−ǫ.
Therefore ζG

F (z) must be meromorphic over |z| < exp−(h∞(G) + ǫ). �
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6.3. Proof of Theorem 4. — Claim 6.2 shows the meromorphy of semi-local zeta
functions relative to large finite subsets.

We first show the last claim of the Theorem. For ǫ > 0, let F0 ⊂⊂ G as in the
proof of Claim 6.2. let F ′, F ⊃ F0 be other finite subgraphs. Let F1 := F ∪ F ′.

ζG
F1

(z)

ζG
F (z)

= exp
∑

n≥1

zn

n
#{x ∈ Σ : σn(x) = x and {x0, . . . , xn−1}meets F1 but not F}.

The radius of convergence of the above series is at least e−h(G\F0) ≥ e−(h∞(G)+ǫ).
The same applies to ζG

F1
(z)/ζG

F ′(z). This proves that ζG
F (z)/ζG

F ′(z) is a holomorphic

non-zero function over |z| < e−(h∞(G)+ǫ).
We now show that all semi-local zeta functions are meromorphic on |z| < e−h∞(G),

finishing the proof of Theorem 4.
Let F ⊂⊂ G. Let ǫ > 0. By taking H such that F ⊂ H ⊂⊂ G, H large enough,

we can ensure that

h(G \ H, G \ F ) ≤ h∞(G \ F ) + ǫ

(see the definition of h(·, ·) in Proposition 4.10). After possibly increasing H , Claim

6.2 ensures that ζ
G\F
H\F (z) has a meromorphic extension to |z| < exp−h∞(G \ F ) − ǫ.

We compute:
(29)

ζG
H(z)/ζG

F (z) = exp
∑

n≥1

zn

n
#{x ∈ Σ(G) : σnx = x and

{x0, . . . , xn−1} ∩ H 6= ∅ but {x0, . . . , xn−1} ∩ F = ∅}

= exp
∑

n≥1

zn

n
#{x ∈ Σ(G \ F ) : σnx = x and

{x0, . . . , xn−1} ∩ (H \ F ) 6= ∅}

= ζ
G\F
H\F (z).

As h∞(G \ H) ≤ h∞(G \ F ) ≤ h∞(G) (see the remark after Definition 1.10). Thus

ζG
F (z) = ζG

H(z)/ζ
G\F
H\F (z) is meromorphic on |z| < exp−h∞(G) − ǫ. Letting ǫ > 0

decrease to 0, finish the proof of Theorem 4.

7. Proof of the Consequences

7.1. Measures of maximum entropy. — Our Structure Theorem implies that
the set of maximum measures for a ∗-QFT puzzle or for the associated Markov shift
have the same cardinality. We apply some results of Gurevič.

First, according to [15], each irreducible subshift of a Markov shift carries at most
one maximum measure and this measure, if it exists, is a Markov measure (which
implies by [21] that it is a finite extension of a Bernoulli). Hence, a ∗-QFT puzzle has
at most countably many maximum measures (because it has at most countably many
states) and a QFT puzzle has only finitely many irreducible components (because
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its spectral decomposition contains finitely many irreducible subshifts with maximum
entropy).

The existence of a maximum measure for a QFT puzzle follows from the fact that
the spectral decomposition of its Markov diagram must contain an irreducible subshift
with entropy equal to that of the puzzle and that this subshift must be SPR. SPR
implies positive recurrence which is equivalent to the existence of a maximum measure
by the same result of Gurevič. Theorem 2 is proved.

7.2. Zeta functions. — We prove Theorem 3. Recall that for the results involving
the counting of the periodic points, we assume, in addition to QFT , determinacy. For
simplicity, we assume that the Markov diagram D is irreducible and leave the general
case to the reader. Let ǫ > 0. Theorem 1 gives a large integer N such that the
n-periodic orbits of iN (XV ) and the loops of D going through DN can be identified
up to an error bounded by exp(hC(V ) + hwloc(V ) + ǫ)n. Hence

ζN (z) := exp
∑

n≥1

zn

n
#{x ∈ iN(XV ) : Fn

V (x) = x}

is equal to the semi-local zeta function of D at DN up to a holomorphic, non-zero
factor on the disk |z| < e−hC(V )−hwloc(V )−ǫ by Claim (3) of Theorem 1. By Theorem
4, this semi-local zeta function can be extended to a meromorphic function on |z| <
e−hC(V )−hwloc(V ), proving the main claim.

The singularities of ζN (z) on |z| = e−htop(V ) are as claimed by the same statement
proved for local zeta function (F reduced to one vertex) by Gurevic and Savchenko
[17].

This concludes the proof of Theorem 3.

7.3. Equidistribution of periodic points. — We give a sketch of the proof of
Theorem 5 which is essentially that from [11] using the estimates of the analysis of
the zeta function above.

There is equidistribution for an irreducible SPR Markov shift according to Gurevic
and Savchenko [17]. For the (easy) extension to the general case, it is enough to
see (like in [11]) that the number of n-periodic points living on an irreducible SPR
Markov shift Σ with period p is equivalent to penhtop(Σ) if n is a multiple of p, zero
otherwise.

To apply it to the puzzle, one has to recall the following facts from the above
analysis of the zeta function:

– the projection Σ(D) → XV is continuous;
– there is a one-to-one, period-preserving correspondence between iN -projections

of periodic points going through a large finite subset F and a subset of the
periodic points of XV ;

– the remaining periodic points both on iN (XV ) and Σ(D) contributes negligibly
to the considered measures by the reasoning in the proof of Theorem 3.
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8. Application to entropy-expanding maps

We prove Theorem 7: smooth entropy-expanding maps introduced in [7] define
determined puzzles of quasi-finite type, provided that they are endowed with a good
partition in the sense of section 1.7. We prove a more detailed statement (Theorem 8
and give some consequences in Corollaries 8.2-8.3. The first corollary is a new proof
of results in [9] under an additional assumption. The second is new.

8.1. Puzzle and consequences. — At this point, T may be just a continuous
self-map of a compact metric space M together with a finite partition P into subsets
A such that Ā = int(A) and T |Ā is one-to-one. P is the set of the interiors of the
elements of P .

The puzzle is defined by the refining sequence of “partitions” Pn which are, for each
n ≥ 1, the set of almost connected components of the P , n-cylinders, i.e., intersections
of the form A0 ∩ T−1A1 ∩ · · · ∩ T−n+1An−1, Ai ∈ Pn. We assume that each Pn

is finite. Their advantage over the usual connected components is the following key
upper bound on the constraint entropy (to be proved later):

Proposition 8.1. — For the puzzle V defined by almost connected components of
the P -cylinders:

hC(V ) ≤ htop(T, ∂P ) + hmult(T, P )

where hmult(T, P ) := lim supn→∞
1
n log mult(Pn) with mult(Q) := maxx∈M #{A ∈

Q : A ∋ x}.

We shall show that the puzzle defined in this way by an entropy-expanding map
with a good partition is close to the original dynamics and also satisfies the remaining
assumptions of our theory.

Remark. The above proposition is the counterpart of the upper bound on minimum
left constraint entropy in [11], first claim in the proof of Lemma 7, p. 385. It is
here that we reap the main benefit of the puzzle construction: we can consider almost
connected components of cylinders, instead of whole cylinders — thus we get the direct
link between the constraint entropy and the topological entropy of the boundary “for
free”, without having to assume the connectedness of cylinders as in [11], Lemma 7.

We recall some well-known notions to fix precise definitions and notations.
The coding map γV of (M, T, (Pn)n≥1) (or just the coding of V ) is the partially

defined map γ : M ′ → XV defined by (i) M ′ :=
⋂

n≥1

⋃
A∈Pn

A; (ii) γ(x) is the
unique y ∈ XV such that, for all n ≥ 1, T nx ∈ yn. The coding for the usual symbolic
dynamics, simply denoted by γ, is obtained in this way by considering the partitions
into cylinders of given order: P1,P2, . . . .

A finite extension of F : X → X is a skew product over F with finite fibers,
i.e., G : Y → Y such that Y ⊂ X × N, #(Y ∩ {x} × N) < ∞ for all x ∈ X , and
G(x, n) = (F (x), Ψ(x, n)) for some Ψ : X ×N → N. We do not require the cardinality
of the fibers to be constant.

A periodic extension of F : X → X is a map of the form H : X ×{0, . . . , p− 1} →
X×{0, . . . , p−1} with, for 0 ≤ j < p, H(x, j) = H(x, j+1) and H(x, p−1) = (F (x), 0).
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Theorem 8. — Let T : M → M be a C∞ entropy-expanding map of a compact
manifold. Assume that P is a good partition and let (V, i, f) be the puzzle obtained
by taking the almost connected components of the P , n-cylinders, n ≥ 0 (see section
1.2). Let γV be the coding,

Then:

1. γV defines an entropy-conjugacy between (XV , FV ) and (M, T ), possibly up to
a finite extension: there is a Borel finite extension G of FV and an entropy
conjugacy of G and T which extends γV ;

2. hC(V ) ≤ hd−1(T ) < htop(T ) = htop(V );
3. V is of quasi-finite type with hwloc(V ) = 0;
4. One can find a determined subpuzzle V ′ ⊂ V such that the two previous proper-

ties still hold and only few periodic orbits are destroyed:
(30)

∀N ≥ 1 lim sup
n→∞

1

n
log #{ξ ∈ iN(XV ) : ξ = Fn

V (ξ) and ξ /∈ iN(XV ′)} ≤ hd−1(T ).

Applying Theorems 2 and 6 to V yields a new proof of a slightly weaker version
of our result [9] about the measures of large entropy of entropy-expanding maps (we
“lose” here a finite extension):

Corollary 8.2. — Let T : M → M be a C∞ entropy-expanding map. Let P be a
good partition. Then:

– T has finitely many ergodic, invariant probability measure with maximum en-
tropy;

– the natural extension of such maps T are classified up to entropy-conjugacy and
possibly a period and a finite extension by their topological entropy.

Theorem 3 applied to V ′ gives information about periodic points:

Corollary 8.3. — In the same setting, let ǫ > 0. Perhaps after replacing P with a
finer good partition, the Artin-Mazur zeta function at level P of T :

ζP(z) := exp
∑

n≥1

zn

n
#{α ∈ γ(M ′) : σnα = α}

is holomorphic on the disk |z| < e−htop(T ) and has a meromorphic extension to the

larger disk |z| < e−hd−1(T )−ǫ. In particular, there exist integers p ≥ 1 and m ≥ 1 such
that for n → ∞ along the multiples of p:

#{α ∈ γ(M ′) : σnα = α} ∼ menhtop(f)

Proof of Corollaries 8.2-8.3: Corollary 8.2 is a trivial consequence of point 1
of Theorem 8 together with Theorems 2 and 6.

Corollary 8.3 follows similarly from points 3 and 4 of Theorem 8 together with
Theorem 3 using as the refined finite good partition, the partition defined by the
almost connected components of the P , N -cylinders where N = N(ǫ) is given by
Theorem 3. �
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Remark. (1) If M is one or two-dimensional, then a topological argument easily
shows that each periodic sequence in the coding γ(M ′) correspond to a periodic point
(e.g., using Brouwer fixed point theorem in connected components of the closure of
cylinders). In higher dimension, one must use the non-uniform expansion.

(2) The results of Kaloshin [22] show that upper bounds on the number of periodic
points can hold for arbitrary maps only after some identifications.

In the sequel we prove Theorem 8.

8.2. Entropy-conjugacies. —

Lemma 8.4. — Let T : M → M be an entropy-expanding map with a good partition
P. Then the puzzle defined by the almost connected components of cylinders has
the same entropy as T . More precisely, the coding γV defines an entropy-conjugacy
between T and a Borel finite extension of FV .

To prove this, we use a common extension XV ⋉ M of the puzzle and of T defined
as:

XV ⋉ M = {(v, x) ∈ XV × M : ∀n ≥ 0 x ∈ vn}

endowed with the map FV ⋉ T which is just the restriction of the direct product. Let
π1, resp. π2, be the projection XV ⋉ M → XV , resp. XV ⋉ M → M .

• We claim that FV ⋉ T and T are entropy-conjugate. Observe that, the partition
being good for T , no point returns infinitely many times to ∂P . Hence ∂P has zero
measure w.r.t. any T -invariant probability measure. The same is true for π−1

2 (∂P ).
Hence (v, x) 7→ x is an isomorphism w.r.t. any invariant probability measure, proving
the claim. In particular, htop(FV ⋉ T ) = htop(T ) by the variational principle.

• We claim that FV ⋉ T and FV are entropy-conjugate, perhaps after replacing the
latter FV by a Borel finite extension. As the extension is continuous and compact,
any invariant probability measure of FV can be lifted to FV ⋉ T . We have to show
that, given a large entropy measure of FV (1) there are only finitely many ergodic
lifts µ̂; (2) for each such µ̂, π1 : (XV ⋉ M, µ̂) → (XV , π1µ̂) is a finite extension.

We first prove point (2). We can assume µ̂ to be an arbitrary FV ⋉T -invariant and
ergodic probability measure with h(FV ⋉T, µ̂) = h(T, π2µ̂) > hd−1(T ). Let µ = (π2)∗µ̂
and ν = (π1)∗µ̂. µ is a T -invariant ergodic measure satisfying h(T, µ) > hd−1(T ). By
[9] this implies that µ has only strictly positive Lyapunov exponents, hence, by [10],
π1 : (XV ⋉ M, µ̂) → (XV , ν) is a finite extension. This proves point (2).

We prove point (1) following [10]. Assume by contradiction that there exists in-
finitely many distinct ergodic lifts µ̂1, µ̂2, . . . of some ergodic and invariant probability
measure µ of FV . We can assume that µ̂n converges to some µ̂∗. As π2 is continuous,
µ̂∗ is also a lift of µ and so are almost all of its ergodic components. They project
on M to ergodic invariant probability measures with positive Lyapunov exponents.
As explained in [10], this implies that for each such ergodic component ν̂, for ν̂-a.e.
(v, x), there exists a ball B around x in the fiber which contains no generic point wrt
any measure distinct from ν̂. It follows that there are only countably (or finitely)
many ergodic components. Thus, there exists an ergodic component of µ̂∗, such that
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the union of these fibered neighborhood has positive µ̂∗-measure. Hence it has posi-
tive measure for µ̂n for n large. But this implies that µ̂n = µ̂∗, a contradiction. Point
(1) is proven and the claim follows.

The above two claims prove the lemma.

8.3. Constraint entropy. — Before proving Proposition 8.1 which will imply claim
2 of Theorem 8, we give a geometric necessary condition for the irreducibility of puzzle
pieces.

Lemma 8.5. — Let (V, i, f) be a puzzle generated by the almost connected compo-
nents of the cylinders of a partition P.

Let v ∈ V and let A be the unique the element of P containing v,

f(v) ∩ ∂T (A) = ∅ =⇒ v is f -reducible.

Proof: Assume f(v) ∩ ∂T (A) = ∅. v is an almost connected component of A ∩
T−1(f(v)) = (T |Ā)−1(f(v)). By the assumption, this last set is uniformly homeo-
morphic to f(v), hence is almost connected. Therefore it is equal to v.

This shows that v is uniquely determined by f(v) and A = i1(v) (a fortiori i(v)),
verifying condition (2) of reducibility.

Consider now (*) f : Ti(v) → Ti(f(v)). Observe that for any w ∈ Ti(f(v)),
w ⊂ f(v). Hence, w ∩ ∂T (A) = ∅. The reasoning for the uniqueness of v shows that
the map (*) is one-to-one: f(u) = f(u′) implies that T (u) and T (u′) are both almost
connected subsets of f(u) = f(u′), so they must be equal.

For w ∈ Ti(f(v)), u = (T |A)−1(w) ∈ Ti(v) satisfies w = f(u). Hence the map (*)
is onto and therefore an isomorphism, proving condition (1) of reducibility. �

Proof of Proposition 8.1: Let r > 0 and ǫ > 0. Let Σn be an arbitrary (r, n)-
separated subset of Cn, the set of irreducible pieces of order n. Recall that there exists
some L = L(r), such that, for all n ≥ L, x, x′ ∈ Vn are (r, n)-separated then there
exists some 0 ≤ k < n − L such that (fkx)L 6= (fkx′)L.

We are going to bound the cardinality of Σn by e(htop(T,∂P)+hmult(T,P )+2ǫ)n.
Let ρ > 0 be smaller than the distance between any two almost connected com-

ponent of any L-cylinder (there are only finitely many of them, L being fixed, and
the distance between any two of them is positive as we are considering almost con-
nected components). For all integers n large enough, mult(Pn) < e(hmult(T,P )+ǫ)n and
r(ρ/2, n, ∂P) ≤ e(htop(T,∂P)+ǫ)n.

Let Sn be a minimum (ρ/2, n)-spanning subset of ∂P . To every v ∈ Σn, associate
a point x = x(v) ∈ Sn such that d(T kv, T kx) < ρ/2 for all 0 ≤ k < n (T kv is a subset
of M). This is possible since v̄ ∩ ∂P 6= ∅ by Lemma 8.5.

The map x : Σn → Sn is at most (#VL)L ·e(hmult(T,P )+ǫ)n-to-1. Indeed, assume that
there exists x ∈ Sn with more than this number of pre-images. We can find a set of
e(hmult(T,P )+ǫ)n pre-images, all with the same ((fkv′)L)n−L≤k<n. As e(hmult(T,P )+ǫ)n >
mult(Pn), two of these, say v and v′, must almost connected components of the same
n,P-cylinder. But then d(T kv, T kv′) ≤ d(T kv, T kx) + d(T kx, T kv′) < ρ implies



36 Jérôme Buzzi

(fkv′)L = (fkv)L for all 0 ≤ k < n − L, contradicting the separation assumption.
Therefore #Σn ≤ (#VL)L · e(hmult(T,P )+ǫ)n#Sn and

hC(FV ) ≤ htop(T, ∂P) + hmult(T, P ) + 2ǫ,

with arbitrary ǫ > 0, proving the claim. �

8.4. Determinacy. — We turn to determinacy. The delicate point here is that it
is possible (though exceptional) that u �f v in the absence of the geometric property
of Lemma 8.5, because of the following phenomenon.

A puzzle piece v ∈ V is trivial if there exists k ≥ 1 such that for every w ∈ Ti(v),

(31) w ∩ T (∂Pk) 6= ∅.

The trivial subset of V is the smallest subset V 0 of the puzzle such that:

– V 0 contains all trivial pieces;
– if f(v) ∈ V 0 then v ∈ V 0.

Observe that V \V 0 equipped with the restrictions of i and f is a puzzle as f(V \V 0) ⊂
V \ V 0 (by definition) and i(V \ V 0) ⊂ V \ V 0 (as Ti(i(v)) ⊃ Ti(v)).

Lemma 8.6. — Let (V, i, f) be the puzzle defined by a dynamical system T : M → M
as in Proposition 8.1. The non trivial puzzle V ′ := V \ V 0 is determined.

Assume additionally that hC(V ) < htop(V ). Then the obvious injection i : XV ′ →
XV is an entropy-conjugacy and the approximate periodic points of the two systems
satisfy the estimate (30) of Theorem 8:

∀N ≥ 1 lim sup
n→∞

1

n
log #{ξ ∈ iN(XV ) \ iN(XV ′) : σnξ = ξ} ≤ hC(V ).

Proof: To prove the determinacy, we consider v, v′, w ∈ V ′ such that i1(v) =
i1(v

′) =: A ∈ P and v, v′ �1
f w. Assume by contradiction that v 6= v′. T |Ā is a home-

omorphism hence v, v′ are disjoint almost connected components of (T |Ā)−1(TA∩w).
v, v′ �f w implies that:

{f(u) : u ∈ Ti(v)} = {f(u′) : u′ ∈ Ti(v
′)} = Ti(w).

Hence, every t ∈ Ti(w) is an almost connected set containing both disjoint sets T (v)
and T (v′). Therefore t ∩ ∂T (v) 6= ∅, so that t ∩ T (∂P |v|) 6= ∅. Thus w is trivial, the
sought-for contradiction.

We now let µ be an ergodic FV -invariant probability measure such that, for some
v ∈ V 0, µ([v]V ) > 0. By invariance of µ, µ([w]V ) > 0 for a trivial w = fn(v) with
0 ≤ n < |v|. Now, x ∈ [w]V implies that x|w| = w and xn∩T (∂Pℓ) 6= ∅ for all n ≥ |w|

and some fixed, minimal ℓ ≥ 0. Therefore t := F ℓ
V (x) satisfies tm ∩ T (∂P ) for all

m ≥ |w| − ℓ. The reasoning in the proof of Proposition 8.1 implies:

h(FV , µ) ≤ htop(FV , [w]V ) ≤ hC(V ) < htop(V ),

proving the entropy-conjugacy.
Consider now some periodic sequence ξ ∈ iN (XV ) \ iN (XV ′). Hence ξ = iN (x)

with xm ∈ V 0 for some m ≥ 0. Thus fn(xm) is trivial. We may assume n = 0 by
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shifting to another point of the same periodic orbit). Therefore xp ∩ T (∂Pk) 6= ∅ for
some k and all p ≥ m. As above, it follows that f j(xp+j) ∩ T∂P 6= ∅ for all p ≥ m
and some j which can be assumed to be fixed and then 0. The claimed bound on the
number of periodic points follows. �

8.5. W-local Entropy. — We prove the third point of Theorem 8:

Lemma 8.7. — If V is a ∗-QFT puzzle which is determined then, for all invariant
and ergodic probability measures µ on XV with h(FV , µ) > hC(V ),

h(FV , µ) = h(FV , µ, ǫ∗)

So in particular, hwloc(V ) = 0.

Proof: Any ergodic invariant probability measure on XV with entropy > hC(V ) can
be lifted to an isomorphic µ̂ on Σ(D) by Theorem 1. h(σ−1, µ̂) = h(σ, µ̂) = h(FV , µ)
can be bounded by the growth rate of the number paths on D ending at any fixed
vertex v∗ ∈ D with µ̂([v]Σ(D)) > 0. But those paths are uniquely determined by
their i1-projection as V is determined (Lemma 5.1). Thus, h(FV , µ) = h(σ, i1(µ)) =
h(FV , µ, 1/2). �

Corollary 8.8. — Let V be a ∗-QFT puzzle with a subpuzzle V ′ which is determined.
Assume that the inclusion XV ′ → Xv is a conjugacy with respect to all ergodic in-
variant probability measures with entropy > hC(V ). Then hwloc(V ) = 0.

Proof: By the previous lemma, hwloc(V
′) = 0. Let us see that this property carries

over to V .
Let µ be an ergodic invariant probability measure of XV with h(FV , µ) > hC(V ).

Hence, it can be identified to an invariant measure µ′ of FV ′ . Therefore h(FV ′ , µ′) =
h(σ, iN (µ′)) for some integer N ≥ 1. But V ′ ⊂ V hence one can define almost
everywhere iN : XV → iN (XV ′) and check that iN (µ) and iN (µ′) are isomorphic so
that h(FV , µ) = h(σ, iN (µ)), proving the claim. �

A

Varying Radius of Meromorphy

Definition A.1. — Denote by M(f) the radius of meromorphy of a formal power
series f . It is zero if the radius of convergence of f , ρ(f), is zero. Otherwise it is the
supremum of the radiuses r of the disks D(r) centered at zero for which there exists
a rational function F (z) such that f(z)/F (z) can be extended to a holomorphic and
non-zero function on D(r).

Fact A.2. — There exists a countable oriented SPR graph G ∋ a, b such that M(ζG
a ) 6=

M(ζG
b ).

We found this example after an illuminating discussion with O. Sarig.
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Before giving our construction, we recall some basic tools. The main tool here is
the notion of a loop graph (or petal graph in the terminology of B. Gurevič). These
graphs have a distinguished vertex and an arbitrary number of first return loops(5)

of each length based at the distinguished vertex, but distinct first return loops are
disjoint except for the distinguished vertex. Such graphs are completely described by
their first return series f(z) :=

∑
n≥1 fnzn where fn is the number of first return

loops of length n (based at the distinguished vertex). It is well-known that the local
zeta function at the distinguished vertex is

ζG
∗ (z) =

1

1 − f(z)
=
∑

n≥1

ℓnzn

where ℓn is the number of loops of length n based at the distinguished vertex(6).

We now give the construction. We consider two disjoint loop graphs defined by
first return series a(z) :=

∑
n≥1 anzn and b(z) :=

∑
n≥1 bnzn. We call their respective

distinguished vertices a and b.
We define a new graph G by taking the disjoint union of:

– the two preceding loop graphs;
– a set of disjoint paths from a to b described by a series s(z) :=

∑
n≥1 snzn (there

are sn simple paths of length n from a to b and these are disjoint);
– a set of simple paths (i.e., injective as maps) from b to a described by a series

t(z) :=
∑

n≥1 tnzn.

Claim A.3. — The first return series of G at a is:

â(z) = a(z) +
s(z)t(z)

1 − b(z)
.

Indeed, any first return loop at a in G is exactly in one of the following classes:

– the first return loops in the loop graph a;
– the concatenations of a transition from a to b, a (not necessarily first return)

loop at b, a transition from b to a.

Fix b(z) = 2z2 (so the associated Markov shift is the set of all infinite concatena-
tions of the two words of length 2, say b0 and b1).

Let τ(z) :=
∑

n≥1 τnzn = s(z)t(z). We arrange it so:

– τ0 = τ1 = 0, τn = 0 or 1;
– |z| = 1 is the natural boundary of τ .

By the Pólya-Carlson theorem [32], the last condition is equivalent to τn not being
eventually periodic. This can be obtained by taking {n : sn = 1} and {n : tn = 1} to
be disjoint subsets of 2, 22, 23, . . . satisfying the aperiodic condition above. It follows
that q(z) := τ(z)/(1 − b(z)) satisfies:

1. q0 = 0, 0 ≤ qn ≤ 2n/2+1 ≤ 5n

(5)That is, sequences v0 →
e1 v1 → · · · →

en vn where the vertices vi’s and edges ei’s are distinct
except for v0 = vn which is the distinguished vertex.
(6)These loops may go several times through the distinguished vertex.
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2. |z| = 1 is the natural boundary of q.

Now, set a0 = 0 and, for n ≥ 1: an := 5n − qn ≥ 0. We have: ân = an + qn = 5n for
n ≥ 1, â0 = 0. Hence â(z) = 5z/(1 − 5z) and

ζG
a (z) =

1

1 − â(z)
=

1 − 5z

1 − 10z

is a rational function. In particular, M(ζG
a ) = ∞. On the other hand,

b̂(z) = b(z) +
τ(z)

1 − a(z)
= 2z2 +

(1 − 2z2)q(z)

1 − 5z
1−5z + q(z)

= 2z2 +
(1 − 2z2)(1 − 5z)

1 + (1 − 10z)/q(z)

Therefore ζG
b (z) = 1/(1− b̂(z)) has meromorphy radius: M(ζG

b ) = M(b̂) = M(q) = 1
and

M(ζG
b ) < M(ζG

a )

as claimed.
Observe that h(G) = log 10 and h∞(G) = log 5. Hence h∞(G) < h(G) and G is

SPR as claimed, finishing the construction.

B

Good Partitions for Almost All Couplings

We consider the following, convenient family of coupled maps. For (a, b, c) ∈ R3,
we let

Fa,b,c(x, y) =

(
a(1 − 4x2) + cy2 −

1

2
, b(1 − 4y2) + cx2 −

1

2

)
.

For (a, b, c) ∈ Ω = {(a, b, c) ∈ (0, 1)3 : c < 4 − 4 max(a, b)}, Fa,b,c(Q) ⊂ Q for
Q := [− 1

2 , 1
2 ]2. There is a natural partition P into four elements:

Qǫ1,ǫ2 := {(x, y) ∈ Q : ǫ1x > 0, ǫ2y > 0} (ǫ1, ǫ2) ∈ {−1, 1}2

according to the signs of x and y. Most of the properties of a good partition are
obvious for this convenient family:

Indeed, Fa,b,c|Q̄ǫ1,ǫ2 is obviously one-to-one. The boundary of the partition is:

∂P = [−1/2, 1/2]× {0} ∪ {0} × [−1/2, 1/2]∪ ∂Q.

∂P is obviously the image of a compact subset of R by a C∞ map. The semi-algebraic
nature of both Fa,b,c and ∂P implies that each cylinder has indeed finitely many
connected components and therefore finitely many almost connected components.

To conclude, we show that, after discarding countably many hypersurfaces in the
parameter space, there is a constant such that:

(32) ∀(x, y) ∈ Q #{k ≥ 0 : F k
a,b,c(x, y) ∈ ∂P} ≤ 2.

We prove that for each 0 < n < m, there exists a hypersurface containing all the
parameters (a, b, c) such Fn

a,b,c(x, 0) and Fm
a,b,c(x, 0) are both in {0} × [−1/2, 1/2] for

some x ∈ [−1/2, 1/2]. The cases involving other pieces of ∂P are similar and together
they imply eq. (32).
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Observe that F k
a,b,c(x, 0) ∈ {0} × [−1/2, 1/2] is equivalent to

Pk,a,b,c(x) = 0

for some polynomials in x whose coefficients are themselves polynomials in a, b, c.
The degrees of Pn,a,b,c and Pm,a,b,c are fixed, say p and q, outside of an algebraic

hypersurface . Hence the parameters we are considering are such that the (p + q) ×
(p+ q) resultant of the two polynomials Pn,a,b,c and Pm,a,b,c is zero: these parameters
satisfy a polynomial equation. This equation is not trivial as it is not satisfied for
a = b = 1, c = 0. Indeed, F1,1,0(x, y) = (1

2 −4x2, 1
2 −4y2) so the x-coordinate can take

the value 0 only once in an orbit (the subsequent values are then 1/2,−1/2,−1/2, . . .).
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