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PUZZLES OF QUASI-FINITE TYPE, ZETA FUNCTIONS AND

SYMBOLIC DYNAMICS FOR MULTI-DIMENSIONAL MAPS

JÉRÔME BUZZI
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1. Introduction

In what sense(s) can a dynamical system be “complex” and what is the interplay
between this complexity and the more classical dynamical properties? A very large
body of works has been devoted to this basic question, especially to prove various
forms of complexity from dynamical assumptions. We are interested in reversing
this direction:

What are the dynamical consequences of complexity?

Can complexity characterize a dynamical system?

This type of question has been studied mainly in low-complexity settings (see,
e.g., [1] and the references therein). We have shown, first in a smooth setting,
that a high-complexity assumption (which we called entropy-expansion) also has
very thorough dynamical implications [6]. A remarkable feature is that this con-
dition, which involves only so-called dimensional entropies, is enough to analyze
measures of maximum entropy and the related periodic points. We are even able
to classify such systems with respect to all their ergodic and invariant measures
of high entropy. Thus complexity can be analyzed using only (simple) complexity
assumptions.

However the proofs in [6] mix both combinatorial/entropic arguments and geo-
metric ones involving Lyapunov exponents, the smoothness and the ensuing ap-
proximations by polynomials, raising the question of separating completely both
issues. This separation has been achieved in [8] for, e.g., subshifts of finite type and
piecewise monotonic interval maps with nonzero entropy, giving a common proof to
their common ”complexity” properties. However the required estimates could not
be proved for higher dimensional maps satisfying the entropy-expansion condition
mentioned above.

The present paper fills this gap by introducing a suitable type of symbolic dy-
namics which we call puzzles of quasi-finite type –these are puzzles in the sense
of Yoccoz’ construction in complex dynamics. In comparison with our work in [6]
we have to make an additional, probably generic, assumption, but we also obtain
more detailed information about the periodic points.

The puzzle of quasi-finite type are the generalization of the subshifts of quasi-
finite type [8] needed for multi-dimensional, non-linear maps. We generalize to
these puzzles all the results obtained for subshifts:

• existence of a finite number of ergodic probability measures maximizing the
entropy;
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• meromorphic extension of (suitably defined) Artin-Masur zeta functions
counting the periodic points;

• equidistribution of the periodic points;
• classification with respect to measure of large entropy.

We in fact obtain a larger meromorphic extension of the zeta function than in
our paper [8]. It is proved using a new result (Theorem 4) relating the radius of
meromorphy of some zeta functions of Markov shifts to their entropy at infinity
(see Definition 1.9). This is of independent interest.

1.1. Definitions. We recall the notion of a puzzle due to Yoccoz [24] (closely
related are the tableaux of Branner and Hubbard).

Definition 1.1. A puzzle is (V, i, f) (or just V ), a set of pieces V = ⊔n≥0Vn (a
disjoint union of finite sets) and two maps i, f : V \ V0 → V satisfying:

• V0 has a single element;
• i ◦ f = f ◦ i;
• i(Vn+1) ⊂ Vn;
• f(Vn+1) ⊂ Vn.

The order of a piece v is |v|, the unique integer n such that v ∈ Vn.

Definition 1.2. A puzzle (V, i, f) defines the following zero-dimensional dynamics
FV : XV → XV :

XV = {v ∈ V0 × V1 × · · · : ∀n ≥ 0 i(vn+1) = vn}

FV : (vn)n≥0 7−→ (f(vn+1))n≥0.

This dynamics can be, up to a topological conjugacy, any continuous self-map
F of a Cantor set K, i.e., for each such F : K → K, there exist a puzzle V and
a homeomorphism φ : XV → K with φ ◦ FV = F ◦ φ (see Section 2.2). To get a
tractable class one has to make some assumptions. Ours will say that the puzzle
is simple in the sense that it is defined by ”not too many constraints”. Let us give
the definitions.

A notion of constraint: irreducibility. Let the i-tree below v ∈ V be the directed
graph Ti(v) whose vertices are the w ∈ V such that in(w) = v for some n ≥ 0 and
whose edges are u → u′ iff u′ = i(u).

Definition 1.3. A piece v ∈ V \ V0 is f-reducible if the two following conditions
hold:

(R1) f : Ti(v) → Ti(f(v)) is a graph isomorphism;
(R2) there is no w 6= v such that i(w) = i(v), f(w) = f(v) and (R1) holds also

for w.

Otherwise, v is said to be f -irreducible.

Notations. v �1
f w means that v is f -reducible and w = f(v). For k > 1, v �k

f w

is defined inductively as v �1
f f(v) and f(v) �k−1

f w (by convention v �0
f v for any

v ∈ V ). Finally u �f w means that u �k
f w for some k ≥ 1.

Remark. Property (R1) was introduced by Yoccoz under the name of “regularity”.
It is equivalent to the following dynamical property (here [v]V := {x ∈ XV : x|v| =
v}):

FV : [v]V → [f(v)]V is a bijection
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Condition (R2) seems new. It is often a consequence of (R1) –this is the case,
if, for instance, the restrictions FV |[v]V , v ∈ V , are one-to-one.

Remark. In the case where the puzzle is given by a subshift as in section 2.1,
condition (R2) of Definition 1.3 is automatically satisfied (indeed, f(v) = f(w)
and i(v) = i(w) imply v = w) and condition (R1) is equivalent to the notion of
minimum left constraint introduced for subshifts of quasi-finite type in [8].

One can understand the f -irreducible pieces as describing the constraints in XV .
v f -reducible implies that the possible i-extensions of v are the same as those of
f(v). This is a sort of ”local Markov property”. For instance, if all pieces are
reducible then XV = V N

1 . A slightly less extreme example of this phenomenon is:

Lemma 1.4. If a puzzle V has only finitely many f -irreducible vertices, then XV

is (topologically conjugate to) a subshift of finite type, i.e., a subshift of {1, 2, ..., d}N

for some d ≥ 1, obtained by excluding a finite number of finite sequences [34].

More generally, one can expect puzzles with few f -irreducible vertices to be
“simple”. The definition below formalizes this idea.

Entropy on the puzzle. The puzzle V will be equipped with the following combina-
torial distance: for v 6= w:

dV (v, w) = 2−n if n = max{0 ≤ k ≤ min(|v|, |w|) : i|v|−k(v) = i|w|−k(w)}

Note: dV (v, w) ≤ dV (i(v), i(w)) ≤ 2dV (v, w), the first inequality being an equality
except when v = i|w|−|v|(w) or w = i|v|−|w|(v). dV (f(v), f(w)) ≤ 2dV (v, w).

The corresponding metric on XV is

dV (x, y) := sup
n≥0

dV (xn, yn) = 2−n such that n = min{k ≥ 0 : xk 6= yk} or ∞.

Together with f , this induces a notion of Bowen balls in V : For v ∈ V , ǫ > 0,
n ∈ N, the (ǫ, n)-ball around v is:

B(v, ǫ, n) := {w ∈ V : ∀0 ≤ k < min(n, |v|, |w|) dV (fkw, fkv) < ǫ}

The covering numbers r(ǫ, n, S) are again the minimum number of (ǫ, n)-balls
needed to cover S ⊂ V . We define the topological entropy of a sequence S of
subsets Sn ⊂ Vn, n ≥ 1, as:

htop(S) = lim
ǫ→0

lim sup
n→∞

1

n
log r(ǫ, n, Sn).

We recall first Bowen’s formula for topological entropy. The (ǫ, n)-Bowen ball
at x w.r.t. FV (and a distance d on XV ), is B(x, ǫ, n) := {y ∈ XV : ∀k < n
d(F k

V x, F k
V y) < ǫ}. The topological entropy [34] is

htop(FV ) := lim
ǫ→0

htop(FV , ǫ) with htop(FV , ǫ) = lim
δ→0

lim sup
n→∞

1

n
log r(ǫ, n, XV )

where r(ǫ, n, S) is the minimum number of (ǫ, n)-balls necessary to cover S. We
sometimes write htop(V ) instead of htop(FV ).
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Constraint entropy. We now state our main condition on the complexity of puzzles

Definition 1.5. The constraint entropy of a puzzle V = (V, i, f) is:

hC(V ) := htop((Cn)n≥1)

where Cn is the set of irreducible pieces of order n.
The puzzle V is of ∗-quasi-finite type (or, for short, ∗-QFT ) if it satisfies:

hC(V ) < htop(V )

This notion is essentially unrelated to that of subshifts of subshifts of weakly
quasi-finite type defined in [8].

W-Local entropy. ∗-QFT puzzles can still present complexity at arbitrarily small
scales. For example one can build ∗-QFT puzzles which are the union of sequences
of subshifts of finite type with equal or increasing entropy so that they have either
infinitely many or no ergodic invariant probability of maximum entropy (for short,
maximum measures) —see section 2.4.

Our second restriction prevents these phenomena.

Definition 1.6. V being a ∗-QFT puzzle, the W-local entropy of V is the defect
in uniformity of h(FV , µ) = limǫ→0 h(FV , µ, ǫ) over large entropy measures (that
is, ergodic invariant probability measures with entropy close to the supremum):

hwloc(V ) := inf
ǫ>0

sup
µ

h(FV , µ) − h(FV , µ, ǫ)

where µ ranges over the ergodic invariant probability measures on XV with entropy
> hC(V ).

Remark.

(1) Obviously, hwloc(V ) ≤ hloc(FV ), the local entropy (introduced by Misiurewicz
[27]) under the name topological conditional entropy) which indeed bounds this de-
fect in uniformity over all measures. In particular, hwloc(V ) = 0 if FV is expansive,
e.g., a subshift.

(2) It might also be interesting to consider hexp(T ), the infimum of the num-
bers h > 0 such that there exists ǫ > 0 satisfying: for all ergodic and invariant
probability measure µ with h(T, µ) > h, h(T, µ) = h(T, µ, ǫ). It could be called
expansiveness entropy (not related to entropy-expansion). See also [28] and the
references therein for some relations between various (robust) expansiveness and
hyperbolic properties.

(3) Observe that if δusc(T ) is the defect in uppersemicontinuity of the entropy
function over the set of invariant probability measures of T , then

htop(T ) > hexp(T ) + δusc(T )

is, trivially, a sufficient condition for the existence of a measure of maximum entropy.
This condition could be helpful notably for Cr interval maps where there remains
a gap between the known sufficient lower bound on entropy [9] and that in the
counter-examples [3, 29].

Definition 1.7. A QFT puzzle (or just QFT ) is a puzzle (V, i, f) which satisfies:

hC(V ) + hwloc(V ) < htop(V ).
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The notions of QFT and ∗-QFT puzzles can be readily generalized in the follow-
ing fashion (adding new examples —as this already happens for subshifts, see [8]).
Observe that if (V, i, f) is a puzzle, then so is: (V ∗, i∗, f∗) with V ∗ = V , i∗ = f
and f∗ = i. (V ∗, i∗, f∗) is called the dual puzzle.

Determination. The number of periodic points of some QFT puzzles as a function
of the period can be quite wild (see the examples in section 2.4). Hence, the
analysis of periodic points requires a further assumption. We state it in terms of
the projections, for N = 1, 2, . . . ,

iN : V →
⋃

k≤N

Vk, v 7→ i(|v|−N)+(v).

iN extends to a map iN : XV →
(⋃

k≤N Vk

)N

in a natural way.

Definition 1.8. A puzzle V is determined if for all all w ∈ V , and v ∈ Ti(w),
i1 restricted to {u ∈ V : u �1

f v} is one-to-one.

Remarks.

(1) Many puzzles are determined, for example, those defined as in Section 2.2
under the extra assumptions that: (i) T is one-to-one on the closure of each element
of P ; (ii) for each x ∈ M ′, limn diam(Pn(x)) = 0 — Pn(x) is the unique element
(if it exists) of Pn that contains x.

(2) There exist determined puzzles whose duals are not determined.

1.2. Structure Theorem. Let us first recall the notion of entropy-conjugacy from
[3].

Let T : X → X be a Borel map. Let h(T ) be the supremum of the entropy of
all T -invariant probability measures. Recall that if X is compact and T continuous
then h(T ) is just the topological entropy by the variational principle [34]. A subset
X0 ⊂ X is entropy-negligible if it is Borel and satisfies:

h̃(T, X0) := sup{h(T, µ) : µ ergodic with µ(X0) > 0} < h(T ),

that is, X0 is negligible in the usual sense for all large entropy measures, i.e.,
invariant and ergodic probability measures with entropy close to h(T ).

Two Borel maps T : X → X and S : Y → Y are entropy-conjugate if there
exist entropy-negligible subsets X0 ⊂ X and Y0 ⊂ Y and a Borel isomorphism
Ψ : X \ X0 → Y \ Y0 with Ψ ◦ T = S ◦ Ψ. The constant of this isomorphism is

max(h̃(T, X0), h̃(S, Y0)).

Recall also that a Markov shift (see [14] and also [10, 21, 23, 30, 31, 32], for
background) is the set Σ(G) of all bi-infinite paths on a countable or finite directed
graph G together with the left-shift σ:

Σ(G) = {x ∈ GZ : ∀n ∈ Z xn → xn+1 on G} and σ((xn)n∈Z) = (xn+1)n∈Z.

The Markov shifts defined by finite graphs are exactly the very much studied sub-
shifts of finite type (of order 1) —see [22] for an introduction to this rich classical
theory.

X is irreducible if it contains a dense orbit (equivalently its graph is strongly
connected). Any Markov shift has a spectral decomposition as a union of countably
many irreducible ones (up to wandering orbits). The period of a subset U of X is
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the greatest common divisor of all n ≥ 1 such that σkU ∩ U 6= ∅. The period of X
is the largest period of all non-empty open subsets of X .

A Markov shift is not compact unless it is a subshift of finite type. Its topological
entropy is therefore defined as explained above for a general Borel system. Gurevič
[12] proved that in the irreducible case this entropy is just, for any (a, b) ∈ G2:

h(G) := h(Σ(G)) = lim sup
n→∞

1

n
log #{v ∈ Gn : v1 = a, v1 → v2 → . . . vn = b}

An irreducible Markov shift is said to be SPR (for strongly positively recurrent)
[14]) if it admits an entropy-maximizing probability measure µ which is exponen-
tially filling, i.e., for any non-empty open subset U of X ,

lim
n→∞

1

n
log µ

(
X \

n⋃

k=0

σ−nU

)
< 0

Such Markov shifts are closest to being of finite type by a number of results (see,
e.g., Gurevič [13], Sarig [31], Savchenko [14] among others).

Finally recall that the natural extension of a map T : X → X is the “smallest”
extension that is invertible, i.e., it is T̃ : X̃ → X̃ with X̃ := {x ∈ XZ : ∀n ∈ Z

T (xn) = xn+1} and T̃ ((xn)n∈Z) = (Txn)n∈Z.

We may now state our main result:

Theorem 1 (Main Result). Let V be a puzzle.
(1) If V (or its dual puzzle) is a ∗-QFT puzzle, the natural extension of the

dynamics of V is entropy-conjugate with constant at most hC(V ) to a Markov shift
Σ(G).

(2) If V (or its dual puzzle) is QFT , then, for every H > hC(V ), the spectral
decomposition of Σ(G) contains only finitely many irreducible Markov shift with
entropy ≥ H. Moreover these Markov shifts are SPR. More precisely their entropies
at infinity (see Definition 1.9 below) are at most hC(V ) + hwloc(V ).

(3) If V is both QFT and determined then, for each number ǫ > 0, integer N0

and finite part D0 of D, there exists an integer N ≥ N0 and a large finite part
DN ⊃ D0 of D with the following property. There is a period-preserving bijection
between the periodic loops on D that meet DN and the periodic orbits of iN(XV )
after discarding a number p0

n of the n-periodic orbits of iN (XV ) satisfying:

lim sup
n→∞

1

n
log p0

n ≤ hC(V ) + hwloc(V ) + ǫ.

The proof of this theorem, presented in Sections 4 and 5, relies on the adaptation
to puzzles of the ”complete” Hofbauer diagram developed in [3] for subshifts.1

1.3. Dynamical consequences.

1This ”complete” variant essentially removes ”accidental” identifications, i.e., of the type
T (A) = T (B) where A and B are distinct elements of the partition whereas T (A) = T (B) does
not belong to that partition. This variant is necessary for the precise counting of periodic orbits
as we explained in [8] (it also simplifies the proof of the partial isomorphism, see Section 4).
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1.3.1. Maximum measures. The Structure Theorem gives the following, using Gurevič’s
result on maximum measures for Markov shifts.

Theorem 2 (Maximum Measures). A QFT puzzle has at least one and at most
finitely many maximum measures and those are in bijection with the SPR Markov
subshifts with maximum entropy. The natural extensions of these measures are the
products of a Bernoulli scheme by a cyclic permutation. Moreover, the periods of
the (permutations of the) measures and those of the irreducible subshifts coincide.

This follows immediately from the Structure Theorem and Gurevič results for
Markov shifts, as explained in Section 7.1.

Remark. The proof that the QFT condition implies the existence of a maximum
measure is closely related to a joint work [9] with S. Ruette.

1.3.2. Zeta functions. We turn to the numbers of periodic points.

Theorem 3 (Zeta Functions). Assume that V is a QFT puzzle which is also de-
termined. Fix a large integer N and consider the reduced zeta function:

ζN (z) := exp
∑

n≥1

zn

n
#{x ∈ iN(XV ) : σn(x) = x}.

ζN is holomorphic on |z| < e−htop(V ) and has a meromorphic extension to |z| <
e−hC(V )−hwloc(V ). Its singularities near the circle |z| = e−htop(V ) are exactly poles
at

e2iπk/pie−htop(V ) i = 1, . . . , r k = 0, . . . , pi − 1

(with multiplicities equal to repetitions in this list) where p1, . . . , pr are the periods
of the distinct maximum measures µ1, . . . , µr.

Moreover, for each ǫ > 0, the poles of ζN (z) in |z| < e−hC(V )−hwloc(V )−ǫ are
independent of N : for N ′, N > N(V, ǫ), ζN ′(z)/ζN (z) extends to a holomorphic
function on this disk.

This is, technically, the most delicate result as we have to go from entropy
estimates (which confuses very close points) to counting (this is of course why the
determinacy assumption is required) —see Section 7.2.

Remark.

1. Even in the special case of subshifts of quasi-finite type, this strengthens
[8]. An interesting example of such subshifts is obtained by taking the symbolic
dynamics of any piecewise monotonic map with non-zero entropy (see [8]). The
constraint entropy is zero in these cases. Hence the above says that its zeta function
has a meromorphic extension to |z| < 1. For the symbolic dynamics of piecewise
monotonic maps (which are subshifts of quasi-finite type), this had been shown by
Milnor and Thurston [26].

2. Counting the projections at level N of periodic points instead of the periodic
points themselves is necessary as it not even true that #{x ∈ XV : σn(x) = x} < ∞
for an arbitrary QFT puzzles.
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1.3.3. Semi-local zeta functions for SPR Markov shifts. The proof of this result
relies on a similar (and new) result for SPR Markov shifts. First, define the ”entropy
at infinity”:

Definition 1.9. Let G be a countable, oriented, irreducible graph. The entropy

at infinity of G is:

(1) h∞(G) = inf
F⊂⊂G

inf
µ0>0

sup {h(σ, µ) : µ([F ]) < µ0} .

where F ranges over the finite subgraphs of G and [F ] := {x ∈ Σ(G) : x0 ∈ F}.

Remarks. (1) h∞(G) = −∞ if G is finite.
(2) H ⊂ G implies that h∞(H) ≤ h∞(G) as both are infimum over µ0 > 0

and F ⊂⊂ G of sup{h(σ, µ) : µ([F ]) < µ0} and sup{h(σ, µ) : µ([F ]) < µ0 and
µ([G \ H ]) = 0}, respectively.

(3) This definition was motivated by the observation of Ruette [30] that it is
related the combinatorial quantities considered by Gurevič and Zargaryan [15] (see
Proposition 6.1). In particular, h∞(G) < h(G) iff G is SPR.

Theorem 4. Let Σ(G) be an irreducible Markov shift with finite Gurevic entropy
h(G). For any finite subset F ⊂⊂ G, the semi-local zeta function of G at F :

ζG
F (z) := exp

∑

n≥1

zn

n
#{x ∈ Σ(G) : σn(x) = x and {x0, . . . , xn−1} ∩ F 6= ∅}

is holomorphic on |z| < e−h(G) and has a meromorphic extension to |z| < e−h∞(G).
Moreover, for every ǫ > 0, there exists F0 ⊂⊂ G such that, if F, F ′ are two finite

subsets with F0 ⊂ F, F ′ ⊂⊂ G, then

ζF ′(z)

ζF (z)
is holomorphic and non-zero on |z| <−h∞(G)−ǫ .

Remarks.

(1) This is new. In fact, even the case of the usual local zeta function, i.e., with
F reduced to a single vertex had not been observed to our knowledge. Notice that,
even in this case, the above definition differs from that of [32] (which has usually
a non-polar singularity at z = e−h(G) so has no meromorphic extension) but is the
same as [14].

(2) The theorem is trivial if h∞(G) = h(G), that is, if G is not SPR (see Propo-
sition 6.1). In the opposite extreme, for subshifts of finite type, i.e., G finite, this
asserts that ζG

H extends to a meromorphic extension over C. Of course, in this case

ζG
H = ζG/ζG\H in terms of the classical Artin-Mazur zeta functions so the semi-

local zeta function extends in fact meromorphically over the Riemann sphere, i.e.,
is a rational function.

(3) The conclusion of Theorem 4 is false for the full zeta function (i.e., ζG). ζG

is not always defined as a formal series and, even if it is, can have zero radius of
convergence or it can have various types of singularities (see [14, Example 9.7]).

(4) ζG
F (z)/ζG

H(z) is meromorphic over |z| < exp−h∞(G) but it is not necessarily
holomorphic and non-zero. If Gn is the complete oriented graph on {1, 2, . . . , n},
we have h(G) = log 3, h∞(G3) = −∞, ζG3(z) = ζG3

G3
(z) = 1/(1− 3z) and ζG3

{0}(z) =

ζG3(z)/ζG2(z) = (1 − 2z)/(1 − 3z).
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(5) The maximum radius of a meromorphic extension2 of the semi-local zeta
functions may be strictly larger than exp−h∞(G). There are even Markov shifts for
which the radius of meromorphy of the local zeta functions varies (see the appendix
for an example where some local zeta functions are rational and other have a finite
radius of meromorphy). One can wonder if these values and for instance their
supremum has a dynamical significance besides the obvious fact that if g ∈ G and
g′ ∈ G′ define the same local zeta functions, the corresponding shifts are almost
isomorphic in the sense of [2]. One would like to ”patch together” all the partial
informations provided by all the (semi) local zeta functions.

The proof of Theorem 4 relies on the generalization of an algebraic formula
decomposing the determinant of finite matrices –see section 6. In the special
case of a loop graph, i.e., the disjoint union of fn loops for each length n ≥ 1
based at a single vertex a (see the Appendix), with F reduced to {a}, h∞(G) =
lim supn≥∞(1/n) log fn and the determinantal formula coincides with the well-

known identity ζa(f) = (1 − fa(z))−1, where fa(z) :=
∑

n≥1 fnzn, so the above

reduces exactly to the proof of [14, Prop. 9.2].

1.3.4. Equidistribution of the periodic points. The periodic points are equidistributed
w.r.t. a suitable measure of maximum entropy:

Theorem 5 (Equidistribution of periodic points). Assume that V is a QFT puz-
zle which is determined. Let µ1, . . . , µr be the distinct maximum measures and
p1, . . . , pr their periods, p = ppcm(p1, . . . , pr).

Fix a sufficiently large integer N and consider, for n ∈ pZ, the measures:

µN
n :=

∑

x∈iN (XV )|σn(x)=x

δx

Then, in the weak star topology,

lim
n→∞,n∈pZ

1

µN
n (XV )

µN
n =

1∑
i pi

r∑

i=1

piµi.

This is also deduced of a result of Gurevič and Savchenko [14] for SPR Markov
shifts.

1.4. Classification of QFT puzzles. In the same way as QFT subshifts [8], QFT
puzzles can be classified up to entropy-conjugacy by their entropy and periods.
Using the classification result [2] obtained with Boyle and Gomez for SPR Markov
shifts, the above structure theorem implies:

Theorem 6 (Classification). The natural extension of QFT puzzles are completely
classified up to entropy-conjugacy by the following data: the topological entropy and
the list, with multiplicities, of the periods of the finitely many maximum measures.

This gives a very precise meaning to our assertion that complexity assumptions
(defining QFT puzzles) in fact characterize them from the point of view of com-
plexity.

2See the Appendix for formal definitions.
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1.5. Smooth maps defining QFT puzzles. We describe the class of smooth
maps whose symbolic dynamics are QFT puzzles which will both provide interesting
examples of such puzzles and yield a new proof of variants of previous results [6]
about the dynamics of such maps.

Let F : M → M be a C∞ smooth map of a d-dimensional compact manifold.
The main assumption is that F is entropy-expanding, which is defined as follows.

The codimension one entropy [6] is

hd−1(F ) = sup{htop(F, σ) : σ ⊂⊂ Nd−1}.

Here σ ⊂⊂ Nd−1 means that σ ranges over the compact subsets of arbitrary C∞

d−1-dimensional submanifolds. Recall that htop(F, σ) counts the number of orbits
starting from the non necessarily invariant set σ — see [34]:

htop(F, σ) = lim
ǫ→0

lim sup
n→∞

r(ǫ, n, σ).

The entropy-expanding condition [6] is:

hd−1(F ) < htop(F ) := htop(F, M).

It is an open condition in the C∞ topology [6]. Entropy-expanding maps form a
natural class of multi-dimensional non-uniformly expanding maps. It includes small
couplings of interval maps [4], e.g.,

(x, y) 7→ (1.5 − x2 + ǫy, 1.8 − y2 + ǫx)

for small enough ǫ. Such coupled interval maps are natural examples of multi-
dimensional non-uniformly expanding maps with critical points but their ergodic
theory has resisted all other approaches up to now, despite all the results following
[33] in the case where one of the two factor is assumed to be uniformly expanding.

We shall additionaly assume that there exists a good partition P for F , i.e., with
the following properties:

• P is finite;
• each element of P is the closure of its interior;
• the boundary of each element of P is the image of a compact subset of Rd−1

by a C∞ smooth map;
• the restriction of f to the closure of any element A of P , f |Ā, is one-to-one.
• for each n ≥ 1, each P , n-cylinder:

A0 ∩ F−1A1 ∩ · · · ∩ F−n+1An−1 Ai ∈ P

has only finitely many almost connected components: maximum subsets
which cannot be split into two subsets at a positive distance;

• we have a uniform bound

sup
x

#{k ∈ N : F k(x) ∈ ∂P} < ∞.

Remark. Of course not all C∞ maps of compact manifolds have such partitions (for
instance, there are infinitely-to-one smooth maps, even in the entropy-expanding
category). But we believe that generic C∞ maps have good partitions.

Given F and a good partition P as above, we define the associated puzzle to be
(V, i, f) with V = ⊔n≥0Vn where:

• Vn is the collection of almost connected components of P , n-cylinders;
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• i, f : Vn+1 → Vn are the maps defined by i(u) = v and f(u) = w if v ⊃ u
and w ⊃ F (u).

We shall see the:

Theorem 7 (Puzzles of entropy-expanding maps). Let T : M → M be a C∞

smooth map of a d-dimensional map. Assume that T is entropy-expanding and
admits a good partition P. Then the puzzle associated to (T,P) is QFT and deter-
mined. More precisely, hwloc(V ) = 0 and hC(V ) ≤ hd−1(T ).

In particular, such maps have finitely many maximum measures and, up to the
identifications given by some partition, their periodic points define zeta functions
with meromorphic extensions to |z| < exp−hd−1(T ).

These results are stated more precisely as Theorem 8 and its Corollaries 8.2-8.3.

Remark. One could relax the assumption of smoothness to Cr smoothness with
r ≥ 1 provided one strengthens the entropy-expansion condition in the following
way:

hd−1(f) +
d − 1

r
log+ Lip(f) < htop(f)

(in fact our proofs needs only Hd−1(f) < htop(f) where Hd−1(f) is the uniform
codimension 1 entropy defined in [3]). We obtain then a new existence result, but
the assumption of a good partition avoids the most interesting difficulties.

Numbering. All items are numbered consecutively within each section, except for
the theorems.

Acknowledgments. J.-C. Yoccoz asked me about the relationship between Hof-
bauer’s towers and the puzzles of complex dynamics a long time ago. M. Boyle was
always encouraging at all the stages this work went through. S. Ruette pointed out
to me Proposition 6.1 and the link with h∞(G). Last but not least, I am indebted
to O. Sarig, especially with regard to my results about zeta functions for Markov
shifts. His insights led me to the example given in the Appendix.

2. Examples of puzzles

For v ∈ V , we denote by |v| the unique integer n such that v ∈ Vn. It is the
order of v.

2.1. Simplest example. Let σ : Σ+ → Σ+ be an arbitrary one-sided subshift
(i.e., a closed shift-invariant subset of AN for some finite set A, the shift being
σ : (An)n≥0 7→ (An+1)n≥0). We are going to define a puzzle V such that the
corresponding dynamics XV is topologically conjugate to this subshift Σ+.

For each n ≥ 0, let Vn be the set of words of length n that appear in Σ+, i.e.,
sequences x0 . . . xn−1 such that yi+k = xi for i = 0, . . . , n − 1 for some y ∈ X (by
convention, V0 = {∅} where ∅ is the null word). Define the two maps i and f by:

i(A1 . . . An) = A1 . . . An−1 rightmost delete

f(A1 . . . An) = A2 . . . An leftmost delete

The conjugacy h : XV → Σ+ is given by h((A1 . . . An)n≥0) = (An+1)n≥0.



Puzzles of Quasi-Finite Type 13

2.2. From dynamics to puzzles. Let T : M → M be a self-map. Let P0 =
{M},P1,P2 . . . be a sequence of finite partitions satisfying

Pn � Pn+1 and T−1Pn � Pn+1

(where P � Q means that P is less fine than Q: each element of P is a union of
elements of Q).

This data defines a puzzle as follows. Let V be the disjoint union of Vn = Pn,
n ≥ 0. Let i(v) = w if w is the element of Pn containing v ∈ Pn+1. Let f(v) = w
if w is the element of Pn containing T (v) for v ∈ Pn+1. The above assumptions
ensure that this is a well-defined puzzle.

Let us give several applications of this construction.

• Let P be some finite partition and let Pn = P ∨ T−1P ∨ · · · ∨ T−n+1P . The
corresponding puzzle is topologically conjugate to the usual symbolic dynamics,
i.e., the left shift, σ : (An)n≥0 7→ (An+1)n≥0 acting on:

(2) {A ∈ PN : ∃x ∈ M ∀n ≥ 0 T nx ∈ An} ⊂ PN.

Observe the following

Fact 2.1. Any continuous map T on a Cantor set K can be realized, up to topo-
logical conjugacy, as a puzzle.

Proof: Let Qn, n ≥ 1, be a sequence of partitions of K into closed-open sets with
diameters going to zero. Let Pn+1 = Qn+1 ∨ Pn ∨ T−1Pn. It is then easy to see
that the dynamics of the puzzle thus defined is conjugate to that of T . �

We see that the dynamics of puzzles are even more diverse (and possibly wild)
than that of subshifts. For instance, they can have infinite entropy or be without
measures of maximum entropy.

• Let P be some finite partition and let Pn be the set of connected components
of the elements of P ∨ T−1P ∨ · · · ∨ T−n+1P . This is the form used in complex
dynamics [24].

2.3. Puzzles with finitely many irreducible vertices. We prove Lemma 1.4,
i.e., that the dynamics of a puzzle with finitely many irreducible vertices is (topo-
logically conjugate to) a subshift of finite type.

Let n0 be the largest integer such that Vn0
contains a minimal left constraint.

Let n be an arbitrary integer larger than n0. Recall the map in : XV → V N
n . To

prove the lemma, it is enough to see that in(XV ) is a subshift of finite type (easy
since v reducible implies FV ([v]V ) = [f(v)]V =

⋃
w∈i−1(v)[w]V ) and that all the

subshifts obtained for large n are topologically conjugate.
Let n > n0. Consider the finite graph Γn whose vertices are the elements of Vn

and whose arrows are defined by:

u →Γn
v ⇐⇒ ∃w ∈ Vn+1i(x) = u and f(x) = v.

Observe for future reference that, because of the definition of a reducible vertex, w
above is uniquely determined by u and v.

Let Σn ⊂ V N
n be the subshift of finite type defined by Γn. We claim that

in(XV ) = Σn.



14 Jérôme Buzzi
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Figure 1. Construction of αm+1.

Observe first that in(XV ) ⊂ Σn. Indeed, for x ∈ XV , (F k+1
V x)n = f((F k

V x)n+1)
by definition of FV and i(F k

V x)n+1 = (F k
V x)n by definition of XV so that (F k

V x)n →Γn

(F k+1
V x)n, therefore in(x) ∈ Σn.
We turn to the converse inclusion. Let α0 ∈ Σn for some n > n0. We are going

to define inductively αm ∈ V N
n+m, m ≥ 1, such that, for all m ≥ 0, j ∈ N and

0 ≤ k ≤ m,

(3) (i) ik(αm
j ) = αm−k

j , (ii) αm
j �k

f αm−k
j+k , (iii) αm

j+1 ∈ f(i−1(αm
j )).

Indeed, setting xk = in−k(α0
0) for k ≤ n and xk = αk−n

0 for k ≥ n, we get x ∈ XV

by (i) such that α0 = in(x), as fk(αk
0) = α0

k by (ii).
Observe that (3) holds for m = 0 because of the definition of Γn. Let us assume

that αp
j has been defined for p ≤ m and all j ∈ N so that eq. (3) is satisfied. For

j ∈ N, let us build αm+1
j satisfying (3).

Let αm+1
j ∈ f−1(αm

j+1)∩ i−1(αm
j ) (this intersection is not empty by (iii), eq. (3)

and it is unique because αm+1
j is f -reducible). Let us check eq. (3) for m + 1, j.

ik+1(αm+1
j ) = ik(αm

j ) hence (i) is satisfied. f(αm+1
j ) = αm

j+1 and αm+1
j is f -

reducible by the main assumption. Thus αm+1
j �k

f αm+1−k
j+k for k = 1 and for

1 < k ≤ m by the induction hypothesis. This is (ii). As αm+1
j �1

f αm
j , the i-tree

below αm+1
j is mapped onto the i-tree below αm

j . This gives (iii), completing the
induction.

Finally, one observes that αp+1 = ip+1(x) is uniquely defined by αp = ip(x) so
that the natural projection ip+1(XV ) → ip(XV ) is in fact a homeomorphism. This
finishes the proof of Lemma 1.4.

2.4. ∗-QFT puzzles with nasty dynamics. We give examples of ∗-QFT puzzles
with infinitely or no maximum measures.

Let Σ0 = {0∞}, Σ1, Σ2, . . . be a sequence of subshifts of finite type over disjoint
alphabets. Assume that the Markov order of Σn is at most n (i.e., A ∈ Σn iff
Ak . . . Ak+n−1 is a word in Σn for all k ≥ 0) and that htop(Σn) > 0 for all n ≥ 1. We
are going to build a puzzle which is conjugate to

⋃
n≥0 Σn. Taking htop(Σn) = log 2

for all n ≥ 1, or htop(Σn) ր log 2 as n → ∞, shall yield the required examples.
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Let Ln(Σk) be the set of words of length n appearing in Σk. The puzzle will be
(V, i, f) defined as follows:

Let V0 = {∅} (the empty word) and Vn = ⊔0≤k≤nLn(Σk).
Let w := A1 . . . An ∈ Vn. If w ∈ Ln(Σn), then f(w) = i(w) = 0n−1. Otherwise,

let f(A1 . . . An) = A2 . . . An and i(A1 . . . An) = A1 . . . An−1.
The irreducible vertices of Vn are then the elements w of Ln(Σn) which are

mapped by f to 0n−1 as the tree Ti(0
n−1) is not isomorphic to Ti(w) (which is

essentially the puzzle for Σn). For n > N , all these constraints are confused with
0n by iN . Thus at a given level N , the number of distinguishable irreducible vertices
in Vn is bounded independently of n so that hC(V ) = 0. Thus V is indeed a ∗-QFT
puzzle.

2.5. QFT puzzles with bad zeta functions. Let us describe a QFT puzzle with
infinitely many periodic orbit of any given length so that the zeta function defined
from the periodic points (and not their projections) is not even well-defined as a
formal series.

Pick a sequence of positive integers p1, p2, . . . such that #p−1(k) = ∞ for all
k ≥ 1. Modify the previous construction to make Σn a periodic orbit of length pn,
except for Σ1 which can be any subshift of finite type with nonzero entropy. Then
hC(V ) = hwloc(V ) = 0 so V is indeed a QFT puzzle.

Remark. Obvious adaptations of this construction yield examples with arbitrary
growth rates of the number of periodic orbits.

3. Basic properties

3.1. Some properties of f-reducibility.

Lemma 3.1. If i(u) = i(u′), fk(u) = fk(u′) and u �k
f v and f : Ti(f

l−1(u′)) →

Ti(f
l(u′)), l = 1, . . . , k are graph isomorphisms then u = u′. In particular,

(4) i(u) = i(u′) and u �k
f w and u′ �l

f w =⇒ k = l and u = u′.

Proof: (4) clearly follows from the first claim. For k = 0, 1, this claim fol-
lows from the definition of �k

f . Assume the claim for some k − 1 ≥ 0. Now,

i(fk−1(u)) = fk−1(i(u)) = fk−1(i(u′)) = i(fk−1(u′)) and both fk−1(u) �1
f v

and f : Ti(f
k−1(u′)) → Ti(v) is an isomorphism. This implies that fk−1(u) =

fk−1(u′) =: w by the definition of �1
f . Now i(u) = i(u′) and u �k−1

f w and

f : Ti(f
l−1(u′)) → Ti(f

l(u′)), l = 1, . . . , k − 1, so the induction hypothesis implies
u = u′. �

Lemma 3.2. If i(u) �k
f i(v) and fk(u) = v with |u|, |v| ≥ 1 and k ≥ 0, then

u �k
f v. In particular, if u with |u| > 1 is f -irreducible, then so is i(u).

Proof: i(u) �k
f i(v) implies that the i-trees below i(u) and i(v) are isomorphic

through fk. As i◦f = f ◦ i, this implies the same for the sub-i-trees below u and v.
Assuming by contradiction that u 6�k

f v we obtain that there exists w ∈ i−1(i(u)),

w 6= u with fk(w) = fk(u), but this would contradict that fk|Ti(i(u)) is one-to-one.
�
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3.2. Natural extension and duality. Except in trivial cases, the dynamics FV :
XV → XV is non-invertible. To obtain an invertible dynamical system, one goes
to the natural extension. It can be described as (XV , FV ) with:

XV = {(vn,p)n,p : ∀(n, p) ∈ N × Z i(vn+1,p) = f(vn+1,p−1) = vn,p ∈ Vn}

FV : (vn,p)n,p 7−→ (f(vn+1,p−1))n,p.

The distance on XV is defined as: d(x, y) =
∑

n≥0 2−nd(x−n, y−n).

Remark that (XV , FV ) is homeomorphic to the usual realization of the natural
extension: {(vp)p∈Z ∈ XZ

V : ∀p ∈ Z FV (vp−1) = vp} with (vp)p∈Z 7−→ (FV (vp))p∈Z.

The symmetry of the roles of i and f gives rise to a duality between puzzles:
just exchange the maps i and f associated to a puzzle (V, i, f). We denote by
(V ∗, i∗, f∗) the resulting puzzle. The natural extension of their dynamics σV and
σV ∗ are inverse of each other, as the description of the natural extensions given
above makes it obvious.

Remark. As it was already the case for subshifts of quasi-finite type [8], hC(V ∗)
may be different from hC(V ). It may indeeed occur that hC(V ) < htop(V ) and
hC(V ∗) = htop(V ∗) (or the other way around). This implies trivially that hwloc(V

∗)
might be different from hwloc(V ). On the other hand, if µ is an invariant probability
measure of (XV , FV ), µ the correspondiong one for the natural extension and µ∗

the one for the dual puzzle dynamics,

h(FV ∗ , µ∗, 2ǫ) ≤ h(FV , µ, 2ǫ) ≤ h(FV , µ, ǫ) ≤ h(FV , µ, ǫ) ≤ h(FV ∗ , µ∗, ǫ/2)

for all ǫ > 0. To see, e.g., the second inequality above, observe that, letting n0 :=
log ǫ−1/ log 2:

[∀0 ≤ k < n d(xk, yk) < ǫ] =⇒ [∀n0 ≤ k < n − n0 d(F k
V x, F k

V y) < 2ǫ].

4. Measure-theoretic Structure

In this section we begin the proof of the structure theorem (Theorem 1). We
first introduce the Markov shift which underlies our analysis and then we explain
its consequences at the level of entropy-conjugacy. The proof then has three stages:
(i) the Markov shift is shown to be measurably conjugate to a part of the natural
extension of the puzzle dynamics; (ii) the entropy of the measures living on the
excluded part are bounded, yielding claim (1) of the Theorem; (iii) the entropy
“at infinity” in the Markov diagram is also controlled, yielding claim (2) of the
Theorem. Claim (3), on the periodic points, is proved in the next section.

Remark. We assume in this proof that hC(V ) is the entropy of the sequence of
f -irreducible vertices of V . We leave the entirely similar case when hC(V ) is given
by the dual puzzle to the diligent reader.

4.1. The complete Markov diagram. The key object is the following countable
oriented graph.

Definition 4.1. The complete Markov diagram of a puzzle V is a countable,
oriented graph D defined as follows. Its vertices are the f -irreducible vertices of V .
Its arrows are the following:

(5) v ; w ⇐⇒ ∃u ∈ V i(u) = v and u �f w.

Notice that because of Lemma 3.1, u in eq. (5) is unique given v ; w.
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Figure 2. Construction of w3 from v0v1v2v3 as in Proposition 4.2.

Remark. If V is in fact a subshift over alphabet V1, this complete Markov diagram
reduces to the one introduced in [3]. Under the additional assumption that there

are no ”contingente” identifications, i.e., F
|v|
V [v] = F

|w|
V [w] only if w = f |v|−|w|(v)

(assuming |v| ≥ |w|), this further reduces to the Hofbauer diagram [16].

Let Σ+(D) be the associated one-sided subshift:

Σ+(D) = {v ∈ V N : v0 ; v1 ; v2 ; . . . }.

We build a conjugacy from the Markov shift onto (a part of) the puzzle dynamics.

Proposition 4.2. Let v ∈ Σ+(D) and n ≥ 0. There exists a unique w(n) ∈ V such
that:

(i) in(w(n)) = v0;
(ii) for all k = 0, . . . , n: ikw(n) �f vn−k.

Moreover, the following property holds:

(iii) i(w(n+1)) = w(n).

Figure 2 gives a typical example of the construction of wn.

Proof: We inductively define sequences wj ∈ V , j = 0, . . . , n, such that:

(6) ij(wj) = vn−j and ∀k = 0, . . . , j ikwj �f vn−k.

Observe that w(n) := wn will then have the required properties (i) and (ii) by eq.
(6). (iii) will follow from the uniqueness of problem (6).

For j = 0, set w0 = vn. Assume that 1 ≤ j ≤ n and that wj−1 has been defined
satisfying (6). As vn−j ; vn−j+1, there exist an integer l ≥ 1 and u ∈ i−1(vn−j)
such that u �l

f vn−j+1 (where, necessarily, l = |u|−|vn−j+1| = |vn−j |+1−|vn−j+1|).

Hence there exists a wj ∈ Ti(u) which is the f l-preimage of wj−1 in Ti(vn−j+1)
(recall that ij−1(wj−1) = vn−j+1).

Let us check (6) for wj . Compute

|wj | = l + |wj−1| = |vn−j | + 1 − |vn−j+1| + (j − 1 + |vn−j+1|) = |vn−j | + j.
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Thus, wj ∈ Ti(u) and i(u) = vn−j (i.e., wj ∈ Ti(vn−j)) implying the first part of
(6):

(7) ij(wj) = vn−j .

We now prove the second part. Observe that u �l
f vn−j+1, ij−1(wn) = u,

ij−1(wj−1) = vn−j+1 and f l(wj) = wj−1. Hence Lemma 3.2 implies that, for
0 ≤ k ≤ j − 1, ik(wj) �l

f ik(wj−1). Adding the second part of (6) for wj−1 we see
that:

∀0 ≤ k < j ik(wj) �f ik(wj−1) �f vn−k.

Thus eq. (6) holds for wj and k < j. For k = j, this second part is just (7).
This completes the inductive construction of wn.

For future reference, observe that wj depends only on vn−j . . . vn and that the
case k = 0 of the previous equation gives:

(8) wj �f wj−1 �f vn

Let us check the uniqueness of problem (6). We prove that for wn satisfying
eq. (6), in−pwn is unique by an induction on 0 ≤ p ≤ n. For p = 0, this is
obvious. Assume it for p − 1 ≥ 0. Observe that i(in−p(wn)) = in−p+1(wn) and
in−p(wn) �f vp. These two conditions uniquely determine in−p(wn) according to
Lemma 3.1. Thus wn is indeed unique.

Thus we have shown the existence of w(n) satisfying properties (i)-(iii) of the
statement. We show that w(n) is already unique under (i) and (ii). We proceed by
induction on n. For n = 0 this is obvious. Assume the uniqueness for n − 1 ≥ 0.
Let w′ := i(w(n). Observe that

• in−1(w′) = in(w(n)) = v0;
• for 0 ≤ k < n, ik(w′) = ik+1(w(n) �f vn−k−1, hence ik(w′) �f vn−1−k.

By the induction hypothesis, w′ = w(n−1). Thus i(w(n)) = w(n−1) and w(n) �f vn

with vn and w(n−1) uniquely determined. Now, applying Lemma 3.1 completes the
induction.

For the claim i(w(n+1)) = w(n), observe that ω := i(w(n+1)) satisfies in(ω) = v0

and ikω �f vn+1−k−1 for 0 ≤ k ≤ n. Hence, the above uniqueness does imply that

ω = w(n), i.e., i(w(n+1)) = w(n) as claimed. �

Corollary 4.3. Let v ∈ Σ+(D). Then there exists a unique x ∈ XV such that
x|v0| = v0 and for all j ≥ 0, x|v0|+j �f vj. Moreover x|v0|+j depends only on
v0v1 . . . vj. For future reference we denote this x ∈ XV by x(v).

Proof: For each n ≥ 0, apply the above proposition to the sequence v0 ; . . . ; vn

to get wn. As i(wn+1) = wn, the wn define a sequence x in XV by x|wn| = wn.

Moreover, for each n ≥ 0, x|wn|−n+j = in−j(wn) �f vj . As |wn| = |v0| + n, this
implies that x|v0|+j �f vj .

The uniqueness is proved by applying inductively Lemma 3.1 to i(x|v0|+j+1) =
x|v0|+j and x|v0|+j �f vj .

It is obvious that x|v0|+j = x|wj | depends only on v0 . . . vj . �



Puzzles of Quasi-Finite Type 19

Let us define π : Σ+(D) → XV by:

π(v) = F
|v0|
V x

with x as above.

Lemma 4.4. The map π : Σ+(D) → XV is well-defined, continuous and satisfies:
π ◦ σ = FV ◦ π.

Proof: The above shows that π is indeed well-defined and continuous with values
in XV . We turn to the commutation relation.

We show that f((πv)n) = (πσv)n−1 for all n ≥ 1. Denote by zk, resp. wk, the
kth step result of the construction (6) for v0 ; . . . ; vn, resp. v1 ; . . . ; vn so
that zn+1 = f((πv)n) and wn = (πσv)n−1.

Observe that zk = wk for k ≤ n as they are both determined by vn−k . . . vn.

Now π(v) = F
|v0|
V x with x|v0|+n = zn+1 and π(σ(v)) = F

|v1|
V y with y|v1|+n−1 = wn.

By (8), zn+1 �ℓ
f zn = wn with ℓ = |zn+1| − |zn| = |v0| + 1 − |v1|. It follows that

f |v0|+1−|v1|(zn+1) = wn, hence: f(f |v0|zn+1) = f |v1|wn, implying the claim. �

4.2. Partial conjugacy. We are going to show that π gives an isomorphism be-
tween a subset of the natural extension XV of XV and the whole of Σ(D).

Observe that π : Σ+(D) → XV extends naturally to π : Σ(D) → XV by setting
π(v) = x with x0px1p · · · = π(vpvp+1 . . . ) because of the commutation in Lemma
4.4.

x ∈ XV is eventually Markovian at time p if there exists 0 ≤ N < ∞ such that:

∀n ≥ N xn,p−n �f xN,p−N .

The eventually Markovian subset XM
V of XV is

XM
V = {x ∈ XV : ∀p ∈ Z x is eventually Markovian at time p}

Proposition 4.5. Define ι : XM
V → Σ(D) by ι(x) = v if for all p ∈ Z, vp is the

irreducible vertex such that for all sufficiently large n:

(9) xn,p−n �f vp.

Then ι : (XM
V , FV ) → (Σ(D), σ) is well-defined and gives an isomorphism whose

inverse is π.

Proof: Let us first check that ι is well-defined with ι(XM
V ) ⊂ Σ(D). Let x ∈ XM

V .

Observe that by the definition of XM
V , v = ι(x) is well-defined as a unique element

of DZ. For an arbitrary p ∈ Z, let us show that vp ; vp+1. For n large enough,

(10) (i) xn,p−n �ℓ
f vp and (ii) xn+1,p+1−n−1 = xn+1,p−n �k

f vp+1

where ℓ = |xn,p−n| − |vp| and k = |xn+1,p−n| − |vp+1|. Let u = f ℓ(xn+1,p−n) (note
that |xn+1,p−n| = n + 1 > n > ℓ).

We have i(u) = f ℓ(i(xn+1,p−n)) = f ℓ(xn,p−n) = vp. To see that u �f vp+1

(which will imply the claim vp ; vp+1), it is enough, by (10,ii), to show that ℓ ≤ k.
But vp ; vp+1 implies 0 ≤ |vp| − |vp+1| + 1 = k − ℓ, proving the claim. Thus, ι is
well-defined.
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Figure 3. Construction of w3 from v0v1v2v3 as in Proposition 4.2.

Let us prove that ι ◦ π = IdΣ(D). Let v ∈ Σ(D) and x = π(v) ∈ XV by Lemma

4.4. Let us check that x belongs to XM
V . We have, for p ∈ Z and n ≥ 1,

xn,p−n = (π(vp−nvp−n+1 . . . ))n = f |vp−n|(y|vp−n|+n)

where y|vp−n|+n �k
f vp for k = |vp−n| + n − |vp| by Corollary 4.3. For n ≥ |vp|,

k ≥ |vp−n| and this implies that

(11) xn,p−n = f |vp−n|(y|vp−n|+n) �f vp.

Thus x is eventually Markov at any time p. x ∈ XM
V as claimed. Observe that eq.

(11) also implies that ι(x) = v, i.e., ι ◦ π = IdΣ(D) as claimed.

This shows that ι : XM
V → Σ(D) is onto. It remains to show that it is one-to-one.

Let x, y ∈ XM
V with ι(x) = ι(y) =: v. Let p ∈ Z. As vp ; vp+1, there is a unique

u1
p such that i(u1

p) = vp and u1
p �k

f vp+1 for k = |vp| + 1 − |vp+1| by Lemma 3.1.

We claim that u1
p ; u1

p+1. Indeed, u1
p �f vp+1 implies that fk : Ti(u

1
p) →

Ti(vp+1) is an isomorphism so that there exists w ∈ Ti(u
1
p) with fk(w) = u1

p+1.

Lemma 3.2 gives then that w �f u1
p+1. But this says that u1

p ; u1
p+1, as claimed.

This claim allows us to repeat the previous construction with u1
p instead of vp,

obtaining sequences u2, u3, . . .
We now show that these sequences determine x and y and thus force them to

coincide.
For n large enough, we have xn,p−n, yn,p−n �ℓ

f vp for ℓ = n−|vp| and xn+1,p−n, yn+1,p−n �f

vp+1. Then xn+1,p−n �ℓ
f xn+1−ℓ,p−n+ℓ+1 =: w and w must satisfy i(w) = vp and

w �f vp+1 (observe that |w| = n + 1 − ℓ = |vp| + 1 ≥ |vp+1|). Thus

xn+1,p−n, yn+1,p−n �f w = u1
p = x|vp|+1,p−|vp|+1 = y|vp|+1,p−|vp|+1.

In particular, ι(σx) = ι(σy) = u1.
Thus we can repeat this analysis with u1

p instead of vp we get:

uj
p = x|vp|+j,p−|vp|+1 = y|vp|+j,p−|vp|+1

As |uj
p| ≥ j → ∞, we obtain x = y. �
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Corollary 4.6. The induced maps on the invariant probability measures π : Prob(σ, Σ(D)) →
Prob(FV , XV ) and π : Prob(σ, Σ+(D)) → Prob(FV , XV ) are one-to-one and pre-
serves ergodicity and entropy.

Proof: That π : Σ(D) → XV is a partial isomorphism trivially implies the stated
properties of π : Prob(σ, Σ(D)) → Prob(FV , XV ). To finish, recall that the natural
extension construction preserves ergodicity and entropy, �

Corollary 4.7. The map π : Σ+(D) → XV is at most countable-to-one almost
everywhere w.r.t. any invariant probability measure on Σ+(D).

Proof: By Poincaré recurrence, for a.e. v ∈ Σ+(D), Lv := lim infp→∞ |vp| < ∞.
Hence, there exist pv ≥ Lv such that |vpv

| = Lv. Now, for p ≥ pv, |vp| ≤ L+(p−pv)
so (9) implies that, writing x := π(v), vp = fk(x|vp|,p−|vp|) and p−|vp| ≥ pv−L ≥ 0.
Therefore x = π(v), pv and v0, . . . , vpv

determine v. As there are countably many
choices of the finitely many vertices v0, . . . , vpv

, the corollary is proved. �

4.3. Entropy of the non-Markov part.

Proposition 4.8. If µ is an invariant and probability measure with µ(XV \XM
V ) =

0, then

h(FV , µ) ≤ hC(V ).

Lemma 4.9. Up to a set of zero measure with respect to any invariant probability
measure, each x ∈ XV \ XM

V satisfies: for all p ∈ Z there exist arbitrarily large
integers n such that xn,p−n does not f -reduce, i.e., it is an f -irreducible vertex.

Proof of the Lemma: By definition x ∈ XV \ XM
V iff there exists p ∈ Z as in

the statement of the Lemma. Let X(p) be the set of such x. The lemma is clearly
equivalent to the fact that, for any invariant probability µ,

(12) µ


⋃

p∈Z

X(p)


 = µ


⋂

p∈Z

X(p)


 .

It is enough to prove this for ergodic µ’s such that the union has positive and hence

full measure. If we prove that X(p+1) ⊂ X(p), it will follow that µ
(⋃

p∈Z
X(p)

)
=

limp→∞ µ(X(p)) which is equal to µ(X(p)) for any p ∈ Z by invariance of µ, proving
(12). But observe that by Lemma 3.2

xn,p−n �f xN,p−N =⇒ xn+1,p+1−(n+1) �f xN+1,p+1−(N+1))

so that x /∈ X(p) =⇒ x /∈ X(p + 1), which concludes the proof. �

Recall that the entropy of an invariant and ergodic probability measure µ can
be computed as [20]:

h(FV , µ) = lim
ǫ→0

h(FV , µ, ǫ) with

h(FV , µ, ǫ) = lim sup
n→∞

1

n
log min

{
#S : µ

(⋃

x∈S

B(x, ǫ, n)
)

> µ0

}
.

where 0 < µ0 < 1 is arbitrary.



22 Jérôme Buzzi

Proof of the Proposition: Let µ be an invariant probability measure carried by
XV \XM

V . We may and do assume that µ is ergodic. Let α > 0 be arbitrarily small.
There exists r > 0 (depending on µ) so that h(FV , µ) ≤ h(FV , µ, r)+α. Fix L1 < ∞
and r1 > 0 such that for x, y ∈ XV , d(x2L1,−L1

, y2L1,−L1
) < r1 =⇒ d(x, y) < r

(for any distances on XV and XV compatible with the topologies). Let L2 such
that r(r1, n, Cn) ≤ e(hC(V )+α)n for all n ≥ L2 and fix, for each such n, some (r1, n)-
cover3 Cn of Cn with this minimum cardinality. For each v ∈ Cn, we pick some
x = xv ∈ XV such that xv

n,0 = v and let Xn := {xv ∈ XV : v ∈ Cn}.
Let L >> L1 log K/α + L2 where K is the minimum cardinality of an r-dense

subset of XV . It follows from Lemma 4.9 that there exists a measurable function
n : XV → N such that, for µ-a.e. x ∈ XV :

• n(x) ≥ L;
• xn,−n is f -irreducible for n = n(x).

Hence (see [8]) a µ-typical x satisfies the following. For all large n, there exist
disjoint integer intervals [ai, bi) ⊂ [0, n), i = 1, . . . , r, such that

(1)
∑r

i=1 bi − ai ≥ (1 − α)n;
(2) bi − ai ≥ L for all i = 1, . . . , r;
(3) xbi−ai+1,ai

6�f xbi−ai,ai+1: in particular, xbi−ai+1,ai
is f -irreducible. Thus

F ai+L1

V (x) ∈ B(y, r, bi − ai − 2Li) for some y ∈ Xbi−ai+1.

It follows in a standard fashion (see, e.g., again [8]) that h(FV , µ) ≤ hC(V ) + 5α +
2 logα. Letting α decrease to zero concludes the proof. �

4.4. Entropy at infinity in the diagram.

Proposition 4.10. Let H > hC(V ) + hwloc(V ). Then there exist a finite subset
D0 ⊂ D such that:

h(D\D0,D) := inf
µ0>0

sup

{
h(σ, µ) : µ ∈ Proberg(Σ(D)) and µ

( ⋃

D∈D0

[D]

)
< µ0

}
≤ H

where Proberg(Σ(D)) is the set of shift-invariant and ergodic probability measures
on Σ(D)).

Proof: We have to find D0 and µ0 > 0 such that if µ ∈ Proberg(Σ(D)) such that

(13) µ

( ⋃

D∈D0

[D]

)
< µ0,

then h(σ, µ) ≤ H .
Let α > 0 be so small that hC(V ) + hwloc(V ) + 3| logα| ≤ H . Let r > 0 be

such that hwloc(FV , r) ≤ hwloc(FV ) + α (the point here is that r is independent of
the invariant measure —compare with Proposition 4.5). Fix L1 < ∞ and r1 > 0
such that, for all x, y ∈ XV , d(x2L1,−L1

, y2L1,−L1
) < r1 =⇒ d(x, y) < r. We

increase L1 if necessary so that L1 > r−1
1 . Recall that C = (Cn)n≥1 with Cn the

set of irreducible vertices of order n. Let L2 such that r(r1, n, C) ≤ e(htop(C)+α)n

for all n ≥ L2. Let K be the cardinality of a finite r-dense subset of XV and let
L > α−1L1 log K + L2.

Finally let
D0 = {v ∈ D : |v| ≤ L}

3Here, (r, n)-cover is in the sense used to define the entropy of sequences.
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and let µ0 > 0 be a very small number to be specified later.
Let µ be an ergodic invariant probability measure on Σ(D) satisfying (13). We

bound h(σ, µ). First observe that by Corollary 4.6, h(σ, µ) = h(FV , π∗µ). Let
x ∈ XV be a π∗µ-typical point. Thus x = π(v) with v a path on D spending a
fraction of its time less than µ0 in D0.

This implies that there exists disjoint integer intervals [a1, b1), · · · ⊂ [0, n) and
vertices v1, · · · ∈ D \D0 such that

∑
i bi − ai ≥ (1 − µ0)n, d(xai+k, fk(vi)) < r1 for

all k ∈ [0, bi−ai−L1). Note that the bi−ai are large (larger than L). By definition
of D, the vis are f -irreducible. It follows as in the proof of Proposition 4.8 that

h(FV , π∗µ, r) ≤ hC(V ) + 4α + 2| log α| + µ0 log K ≤ hC(V ) + 3| log α|

if µ0 = µ0(V, r, α) is small enough. Thus,

h(FV , π∗µ) ≤ hC(V ) + hwloc(FV , r) + 3| logα| ≤ H,

proving the proposition. �

4.5. Conclusion of the Analysis of Large Entropy Measures. We collect all
the partial results and check that they imply the first two claims of Theorem 1.

Let first V be a ∗-QFT puzzle. Propositions 4.5 and 4.8 immediately imply that
XV is entropy-conjugate with constant hC(V ) to the Markov shift, Σ(D), proving
the first claim of the Theorem.

We assume that V is QFT : htop(XV ) > H∗ := hC(V )+ hwloc(XV ). Proposition
4.10 implies that h∞(D) ≤ H∗.

Take H strictly between H∗ and htop(V ): D contains only finitely many irre-
ducible Markov subshifts S with entropy h(S) ≥ H . This implies that h(S) >
H∗ ≥ h∞(D) ≥ h∞(S). Hence, by the result of Gurevič and Zargaryan [15] quoted
in Proposition 6.1 below these irreducible subshifts are SPR. This proves claim (2)
of Theorem 1.

5. Periodic Structure

In this section we prove Claim (3) of Theorem 1 which relates most periodic
orbits in the Markov shift with most periodic orbits in some fine scale approximation
iN(XV ) of the puzzle dynamics XV .

5.1. Partition of the periodic points. The construction will use two integer
parameters N, L ≥ 1 depending on ǫ > 0. We shall denote iN ◦π : Σ(D) → iN (XV )
by πN . The n-fixed points ξ = Fn

V ξ of iN(XV ) fall into three disjoint categories:

(P1) there exist v ∈ π−1
N (ξ) ∈ Σ(D) such that IN (v) := {p ≥ 0 : |vp| < N} is

infinite.
(P2) π−1

N (ξ) 6= ∅ but for all v in this set, IN (v) is finite.

(P3) π−1
N (ξ) = ∅.

Denote by F̃ixi(n), i = 1, 2, 3, 4, the corresponding set of periodic points of iN(XV ).
On the other hand, we consider on the Markov shift only the periodic points

defined by low loops :

F̂ix1(n) := {v ∈ Σ(D) : σnv = v and {v0, . . . , vn−1} ∩ DN 6= ∅}.

We shall say nothing about the others.
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5.2. Low loops and periodic points of iN (XV ). Let ǫ > 0, N0 and D0 be
given as in the statement of the Theorem. Fix N ≥ N0 so that DN ⊃ D0 and
h(D \DN ) ≤ hC(V ) + hwloc(V ) + ǫ (which is possible by Proposition 4.10 as h(D \
DN ) ≤ h(D \DN ,D)).

We first claim that for all n ≥ 1:

(14) #F̃ix1(n) = #F̂ix1(n)

We need the following consequence of determinacy:

Lemma 5.1. Let V be a determined puzzle and N ≥ 1. Let v, v′ ∈ Σ(D). If
x = π(v) and x′ = π(v′) satisfy i1(x) = i1(x

′), then:

(15) v0 = v′0 =⇒ ∀n ≥ 0 xn,−n = x′
n,−n

Proof: For n = n0 := |v0|, the right hand side of (15) follows from v0 = xn0,−n0
=

x′
n0,−n0

, which holds by (9). This implies (15) for n ≤ n0. Assuming it for some
n ≥ n0, (9) again implies xn+1,−n−1, x

′
n+1,−n−1 �f xn,−n = x′

n,−n. Together with
the determinacy and i1(xn+1,−n−1) = i1(x

′
n+1,−n−1), this completes the induction

and the proof of the lemma. �

We deduce (14) from this Lemma. Let

Σ(N) := {v ∈ Σ(D) : ∃p → ∞ |vp| < N}

By Lemma 5.1, πN |Σ(N) is one-to-one. F̃ix1(n) is by definition the set of fixed
points ξ of σn in πN (Σ(N)). By the injectivity of πN |Σ(N) and the σ-invariance
of Σ(N), such ξ are the πN images of the fixed points of σn in πN (Σ(N)). This
proves the claim (14).

5.3. Remaining loops and periodic points. Second, we shall see that the re-
maining factors are holomorphic:

Lemma 5.2. For every ǫ > 0, for all n ≥ 1;

#F̃ix2(n) ≤ C(N, ǫ)e(hC(V )+ǫ)n(16)

#F̃ix3(n) ≤ C(N, ǫ)e(hC(V )+ǫ)n.(17)

Remark. Of course, L being large, h(Σ(D \ DN )) < H := hC(V ) + hwloc(V ) + ǫ <
htop(V ) but this is unsufficient to prove (16) as Gurevič entropy only controls the
number of loops based at a fixed vertex. Indeed, in some examples, D\DN contains
infinitely many loops of each length.

This Lemma will be enough to conclude the proof of Theorem 3.

5.4. Paths above N . To prove (16) we bound the number of the n-periodic pro-
jections to iN(XV ) of (not necessarily periodic) paths on D \ DN .

The proof is similar to that of Proposition 4.10. For n ≥ N , let

(18) C(n) :=

{
(iN (v), iN (f(v)), . . . , iN(fn−N (v))) ∈ V n−N

≤N :

v ∈ Vn and v is irreducible

}
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By (9), for all w ∈ Σ(D), writing y := π(w) ∈ XV ,
(19)

w0 irreducible with ℓ := |w0| ≥ N =⇒ (yN,−ℓ+1, yN,−ℓ+2, . . . , yN,−N) ∈ C(ℓ)

so that {C(n) : n ≥ 1} controls the projections of high paths. By the definition
of hC(V ), #C(n) ≤ C(N, ǫ)e(hC(V )+ǫ)n, hence this control should give the right
entropy bound. Let us see the details (the bound proved below is only hC(V ) +
hwloc(V )). We fix L = L(N, ǫ), a large integer.

Let n ≥ 1 and ξ ∈ iN (XV ) with σnξ)ξ satisfying (P1): ξ = π(v) for some
v ∈ Σ(D) satisfying: |vp| ≥ N for all p ≥ p0. By periodicity of ξ, we can assume
p0 = 0 by shifting v a multiple of the period. We shift again ξ to ensure IL(v) = ∅
if IL(v) is finite, |v0| ≤ L otherwise (this might produce an irrelevant factor n in
the estimates). Let x = π(v) ∈ XV .

Define inductively the integers r ≥ 1, n > b1 > · · · > br ≥ 0 as follows. b1 :=
n − 1. If bi is defined, bi ≥ 0 and |vbi

| > L, then bi−1 := bi − |vbi
|, otherwise let

r := i − 1. Finally set ℓi := |vbi
| for all i = 1, 2, . . . , r.

Now, by (19), xN,bi−ℓi+k = iN ◦ fk(vbi
) for 0 ≤ k < ℓi − N . Thus, there exists

xi ∈ C(ℓi), such that ξbi−ℓi+k = (x(i))k for 0 ≤ k ≤ ℓi − N .
Notice that ℓi ≥ L for i = 1, . . . , r. Hence, given n ≥ 1 and br, when v ranges

over Σ(D \ DN ), the number of choices for the integers b1, . . . , br−1 is at most
eǫ(n−br) as L is large. This implies a bound of the type:

(20) #{ξbr
. . . ξn−1 : ξ ∈ F̃ix2(n) with given br} ≤

Cn(#V≤N )N(n−br)/L · eǫ(n−br) · C(N, ǫ)(n−br)/L exp(hC(V ) + ǫ)(n − br)

≤ Ce(hC(V )+3ǫ)(n−br)

using that L = L(N, ǫ) is large. Note that there are at most n possibilities for br.

There are two cases. First case: |vbr
| ≤ L. Let F̃ix

(1)

2 (n) be the corresponding

subset of F̃ix2(n). v0 . . . vbr
is a path on D \DN which starts and ends in the finite

subgraph DL \ DN . Using Gurevič entropy, we obtain:

#F̃ix
(1)

2 (n) ≤ n(#DL \ DN )2
∑

br

e(h(D\DN)+ǫ)br × Ce(hC(V )+3ǫ)(n−br)

≤ Ce(hC(V )+hwloc(V )+4ǫ)n

Second case: |vbr
| > L and br −|vbr

| =: −δ < 0. Let F̃ix
(2)

2 (n) be the corresponding

subset of F̃ix2(n). We shift ξ by δ (and add δ to each bi) so br−|vbr
| = 0 (doing this

we lose the property |v0| ≤ L if IL(v) is infinite but not the (irrelevant) factor n).
Of course, b1, . . . , bs ≥ n for some (maximum) s ≥ 1. We forget about b1, . . . , bs−1

and we trim vbs
in the following way. We replace bs, vbs

and ℓs by n − 1, v∗ :=
ibs−n+1(vbs

) and ℓ∗ := ℓs − (bs −n + 1). We have now that x−N,bs−ℓs+i = iN(f iv∗)
for 0 ≤ i < ℓ∗ − N . We now proceed as in (20) and obtain:

F̃ix
(2)

2 (n) ≤ Ceǫnn(#VN )N(n/L+1) ·C(N, ǫ)n/L+1 exp(hC(V ) + ǫ)n ≤ Ce(hC(V )+3ǫ)n

This concludes the proof of (16).

5.5. Unliftable periodic orbits. Let ξ ∈ F̃ix3(n). By definition, for any x ∈ XV

projecting to ξ, there exist p ∈ Z and arbitrarily large integers k such that, xk,p−k



26 Jérôme Buzzi

is f -irreducible. Take such an integer k ≥ N + n and observe that v∗ := xN+n,p−k

is f -irreducible by Lemma 3.2. Hence, setting q := p − k − |v∗|,

ξq+i = iN (f i(v∗)) for all 0 ≤ i < n

This implies that

#F̃ix3(n) ≤ C(N, ǫ)e(hC(V )+ǫ)n

proving eq. (17) and concluding the proof of Theorem 3.

6. Semi-local zeta functions of SPR Markov shifts

We give a proof of Theorem 4 about the meromorphy of the semi-local zeta
functions of SPR Markov shifts, after recalling the relation between the entropy at
infinity and the SPR property.

6.1. SPR property and entropy at infinity. A combinatorial quantity related
to h∞(G) appearing in our result appear in a work of Gurevič-Zargaryan [15] to
give a sufficient condition for being SPR, which was then shown to be necessary
(see [14, Theorem 3.8]). The explicit relation (21) below is due to Ruette [30].

Proposition 6.1 (Gurevič-Zargaryan, Gurevič-Savchenko, Ruette). Let G be a
countable, oriented, irreducible graph with h(G) < ∞. The graph G is SPR iff
h∞(G) < h(G) where the entropy at infinity h∞(G) has been defined in 1 and can
be computed as:

(21) h∞(G) = inf
F⊂⊂G

max
u,v∈F

lim sup
n→∞

1

n
log #{(x0, . . . , xn) ∈ {u} × Gn−1 × {v} :

∀i = 0, . . . , n xi → xi+1 on G and {x1, x2, . . . , xn−1} ∩ F = ∅}

where F ⊂⊂ G means that F ranges over the finite subgraphs of G.

Observe that by this proposition, the conclusion of our Theorem 4 is non-trivial
iff the Markov shift is SPR.

6.2. Semi-local zeta function of large subsets. The first step of the proof of
Theorem 4 is the following weaker claim on semi-local zeta functions defined by
large subgraphs:

Claim 6.2. For every ǫ > 0, there exists a finite subset F0 ⊂⊂ G such that
for all finite subsets F0 ⊂ F ⊂⊂ G, the semi-local zeta function ζG

F (z) extends
meromorphically to |z| < exp−h∞(G) − ǫ.

The crux of the proof is to check that

ζG
F (z) = 1/ det(I − M(z))

with M(z) a finite matrix with holomorphic entries for |z| < e−h∞(G)−ǫ. It is
inspired by [17] and especially by their use of the following formula for a block
decomposition A, U, V, B of a finite matrix such that B is invertible:

det

(
A U
V B

)
= detB det(A − UB−1V ).

This formula is proved algebraically. But it has a combinatorial interpretation
for incidence matrices as a splitting between periodic sequences going through the
indices of A and the others, as we shall see for infinite matrices.
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Proof of Claim 6.2: Let ǫ > 0 and fix a finite subgraph F0 ⊂⊂ G such that
h(G \ F0, G) < h∞(G) + ǫ, hence, for all u, v ∈ F0:

lim sup
n→∞

1

n
log #{x1 · · · → xn−1 : x ∈ Σ(G) s.t.

x0 = u, xn = v, and {x1, x2, . . . , xn−1} ∩ F = ∅} < h∞(G) + ǫ.

This trivially holds for all larger (but finite) F ⊂ G. Let K : G × G → {0, 1} be

the adjacency matrix of G and let K =

(
A U
V B

)
be the decomposition associated

to G = F ∪ F c. Consider:

Z(z) :=
∑

r≥1

1

r
Tr


zA +

∑

i≥0

zU · ziBi · zV




r

.

Observe that the coefficient of zn in Tr
(
zA +

∑
i≥0 zU · ziBi · zV

)r

is the number

of sequences x ∈ Σ(G) with x0 ∈ F , x = σnx, S := {k = 0, . . . , n− 1 : xk ∈ F} has
cardinality r.

For such an x ∈ Σ(G), let O(x) := {σnx : n ∈ Z}, d(x) := #O(x) be the minimal

period and S̃(x) := S ∩ [0, d− 1]. Let t(n, d, S̃) be the number of such x with given

n, d and S̃. Hence

1

r
Tr


zA +

∑

i≥0

zU · ziBi · zV




r

=
∑

n≥1

zn

r

∑

d|n
n
d
|r

∑

S̃ ⊂ [0, d − 1]

0 ∈ S̃

S̃ = r/(n/d)

t(n, d, S̃)

Summing over r ≥ 1, we get that:

(22) Z(z) =
∑

n≥1

zn
∑

d|n

∑

S̃ ⊂ [0, d − 1]

0 ∈ S̃

t(n, d, S̃)

#S̃

d

n
.

Now, let OF (d) := {x ∈ Σ : #O(x) = d and {x0, . . . , xd−1}∩F 6= ∅} and further

partition OF (d) into OF (d, S̃/ ≡) according to S̃(x) := {k : xk ∈ F} up to a

translation (S̃ ≡ T̃ iff S̃ = T̃ + q in Z/dZ for some integer q).

Each periodic orbit in OF (d, S̃/ ≡) (∅ 6= S̃ ⊂ Z/dZ) gives #S̃ distinct points

x = σnx with x0 ∈ F for each p ≥ 1 (n = pd). The translated S̃ may be distinct or

not. Nevertheless, each periodic orbit in OF (d, S̃/ ≡) contributes #S̃ to the sum

of t(pd, d, S̃) over all S̃. Therefore:4

Z(z) =
∑

d≥1

∑

S̃/≡

∑

p≥1

#S̃ · #OF (d, S̃/ ≡)

p#S̃
zpd =

∑

d≥1

∑

p≥1

zpd

pd
d#OF (d) =

∑

n≥1

zn

n

∑

d|n

d#OF (d)

Obviously, each orbit in OF (d) corresponds to d distinct fixed points x = σnx
with {x0, . . . , xn} ∩ F 6= ∅. Hence, the above implies:

exp Z(z) = ζG
F (z)

4The notation ≡ on the first summation symbol stresses that this summation is over S ⊂ Z/dZ

up to translation.
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(an equality between formal series). Now, if Q is a finite square matrix with spectral
radius < 1,

det(I − Q) = expTr log(I − Q) = exp−
∑

r≥1

zr

r
Tr(Qn)

Hence, at least for small z (therefore as formal series):

exp−Z(z) = det(I − zA − M(z))

where M is the finite F × F -matrix defined by:

M(z) =
∑

n≥0

zU · znBn · zV.

M(z) is a holomorphic function of z for |z| < e−h∞(G)−ǫ with ǫ = ǫ(F ) > 0. Indeed,
its (finitely many) coefficients are just power series in the numbers of paths on F c

of length n between all the couples of vertices (in F ). Hence these coefficients
are bounded by C(ǫ, F )e(h∞(G)+ǫ)n as F ⊃ F0. This proves the meromorphy over
|z| < exp−h∞(G) − ǫ. �

6.3. Proof of Theorem 4. Claim 6.2 shows the meromorphy of semi-local zeta
functions relative to large finite subsets.

We first show the last claim of the Theorem. For ǫ > 0, let F0 ⊂⊂ G as in the
proof of Claim 6.2. let F ′, F ⊃ F0 be other finite subgraphs. Let F1 := F ∪ F ′.

ζG
F1

(z)

ζG
F (z)

= exp
∑

n≥1

zn

n
#{x ∈ Σ : σn(x) = x and {x0, . . . , xn−1}meets F1 but not F}.

The radius of convergence of the above series is at least e−h(G\F0) ≥ e−h∞(G)−ǫ.
The same applies to ζG

F1
(z)/ζG

F ′(z). This proves that ζG
F (z)/ζG

F ′(z) is a holomorphic

non-zero function over |z| < e−h∞(G)−ǫ.
We now show that all semi-local zeta functions are meromorphic on |z| <

e−h∞(G), finishing the proof of Theorem 4.
Let F ⊂⊂ G. Let ǫ > 0. By taking H such that F ⊂ H ⊂⊂ G, H large enough,

we can ensure that
h(G \ H, G \ F ) ≤ h∞(G \ F ) + ǫ

(see the definition in Proposition 4.10). After possibly increasing H , Claim 6.2

ensures that ζ
G\F
H\F (z) has a meromorphic extension to |z| < exp−h∞(G \ F ) − ǫ.

We compute:
(23)

ζG
H(z)/ζG

F (z) = exp
∑

n≥1

zn

n
#{x ∈ Σ(G) : σnx = x and

{x0, . . . , xn−1} ∩ H 6= ∅ but {x0, . . . , xn−1} ∩ F = ∅}

= exp
∑

n≥1

zn

n
#{x ∈ Σ(G \ F ) : σnx = x and

{x0, . . . , xn−1} ∩ (H \ F ) 6= ∅}

= ζ
G\F
H\F (z)

By the choice of H , this function is meromorphic on |z| < exp−h∞(G \ H) − ǫ.
But h∞(G \ H) ≤ h∞(G) (see the remark after Definition 1.9). Thus ζG

F (z) =
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ζG
H(z)/ζ

G\F
H\F (z) is meromorphic on |z| < exp−h∞(G\H)−ǫ. Letting ǫ > 0 decrease

to 0, finish the proof of Theorem 4.

7. Proof of the Consequences

7.1. Measures of maximum entropy. Our Structure Theorem implies that the
set of maximum measures for a ∗-QFT puzzle or for the associated Markov shift
have the same cardinality. We apply some results of Gurevič.

First, according to [12], each irreducible subshift of a Markov shift carries at
most one maximum measure and this measure, if it exists, is a Markov measure
(which implies by [18] that it is a finite extension of a Bernoulli). Hence, a ∗-
QFT puzzle has at most countably many maximum measures (because it has at
most countably many states) and a QFT puzzle has only finitely many irreducible
components (because its spectral decomposition contains finitely many irreducible
subshifts with maximum entropy).

The existence of a maximum measure for a QFT puzzle follows from the fact
that its spectral decomposition must contain an irreducible subshift with entropy
equal to that of the puzzle and that this subshift must be SPR, hence positively
recurrent which is equivalent to the existence of a maximum measure by the same
result of Gurevič. Theorem 2 is proved.

7.2. Zeta functions. Recall that for the results involving the counting of the pe-
riodic points, we assume, in addition to QFT , determinacy. For simplicity, we
assume that the Markov diagram D is irreducible and leave the general case to the
reader. Let ǫ > 0. Theorem 1 gives a large integer N such that the n-periodic
orbits of iN(XV ) and the loops of D going through DN can be identified up to an
error bounded by exp(hC(V ) + hwloc(V ) + ǫ)n. Hence

ζN (z) := exp
∑

n≥1

zn

n
#{x ∈ iN(XV ) : Fn

V (x) = x}

is equal to the semi-local zeta function of D at DN up to a holomorphic, non-
zero factor on the disk |z| < e−hC(V )−hwloc(V )−ǫ by Claim (3) of Theorem 1. By
Theorem 4, this semi-local zeta function can be extended to a meromorphic function
on |z| < e−hC(V )−hwloc(V ), proving the main claim.

The singularities of ζN (z) on |z| = e−htop(V ) are as claimed by the same state-
ment proved for local zeta function (F reduced to one vertex) by Gurevic and
Savchenko [14].

This concludes the proof of Theorem 3.

7.3. Equidistribution of periodic points. We give a sketch of the proof which
is essentially that from [8] using the estimates of the analysis of the zeta function
above.

There is equidistribution for an irreducible SPR Markov shift according to Gure-
vic and Savchenko [14]. For the (easy) extension to the general case, it is enough to
see (like in [8]) that the number of n-periodic points living on an irreducible SPR
Markov shift Σ with period p is penhtop(Σ) if n is a multiple of p, zero otherwise.

To apply it to the puzzle, one has to recall the following facts from the above
analysis of the zeta function:

• the projection Σ(D) → XV is continuous;
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• there is a one-to-one, period-preserving correspondence between iN -projections
of periodic points going through a large finite subset F and a subset of the
periodic points of XV ;

• the remaining periodic points both on iN (XV ) and Σ(D) contributes negli-
gibly to the considered measures by the reasoning in the proof of Theorem
3.

8. Application to entropy-expanding maps

We prove Theorem 8: smooth entropy-expanding maps introduced in [4] define
determined puzzles of quasi-finite type, provided that they are endowed with a
good partition in the sense of section 1.5. We give some consequences of this in
Corollaries 8.2-8.3. The first corollary is a new proof of results in [6] under an
additional assumption. The second is new.

8.1. Puzzle and consequences. At this point, T may be just a continuous self-
map of a compact metric space M together with a finite partition P into subsets

A such that Ā = int(A) and T |Ā is one-to-one. P is the set of the interiors of the
elements of P .

The puzzle is defined by the refining sequence of ”partitions” Pn which are,
for each n ≥ 1, the set of almost connected components of the P , n-cylinders, i.e.,
intersections of the form A0 ∩ T−1A1 ∩ · · · ∩ T−n+1An−1, Ai ∈ Pn. We assume
that each P is finite. Their advantage over the usual connected components is the
following estimate (to be proved later):

Proposition 8.1. For the puzzle V defined by almost connected components of the
P -cylinders:

hC(V ) ≤ htop(T, ∂P ) + hmult(T, P )

where hmult(T, P ) := lim supn→∞
1
n log mult(Pn) with mult(Q) := maxx∈M #{A ∈

Q : A ∋ x}.

We shall show that the puzzle defined in this way by an entropy-expanding
map with a good partition is close to the original dynamics and also satisfies the
assumptions of our theory. Recall the following notions.

The coding map γV of (M, T, (Pn)n≥1) (or just the coding of V ) is the partially
defined map γ : M ′ → XV defined by (i) M ′ :=

⋂
n≥1

⋃
A∈Pn

A; (ii) γ(x) is the
unique y ∈ XV such that, for all n ≥ 1, T nx ∈ yn. The coding for the usual
symbolic dynamics, simply denoted by γ, is obtained in this way by considering the
partitions into cylinders of given order: P1,P2, . . . .

A finite extension of F : X → X is a skew product over F with finite fibers,
i.e., G : Y → Y such that Y ⊂ X × N, #(Y ∩ {x} × N) < ∞ for all x ∈ X , and
G(x, n) = (F (x), Ψ(x, n)) for some Ψ : X × N → N.

A periodic extension of F : X → X is a map of the form H : X×{0, . . . , p−1} →
X × {0, . . . , p − 1} with H(x, j) = H(x, j + 1) and H(x, p − 1) = (F (x), 0).

Theorem 8. Let T : M → M be a C∞ entropy-expanding map of a compact
manifold. Assume that P is a good partition and let (V, i, f) be the puzzle obtained
by taking the almost connected components of the P , n-cylinders, n ≥ 0 (see section
2.2). Let γV be the coding,

Then:
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(1) γV defines an entropy-conjugacy between (XV , FV ) and (M, T ), possibly up
to a finite extension: there is a Borel finite extentsion G of FV and an
entropy conjugacy of G and T which covers γV ;

(2) hC(V ) ≤ hd−1(T ) < htop(T ) = htop(V );
(3) V is of quasi-finite type with hwloc(V ) = 0;
(4) One can find a determined subpuzzle V ′ ⊂ V such that the two previous

properties still hold and only few periodic orbits are destroyed:
(24)

∀N ≥ 1 lim sup
n→∞

1

n
log #{ξ ∈ iN (XV ) : ξ = Fn

V (ξ) and ξ /∈ iN (XV ′)} ≤ hd−1(T ).

Applying Theorems 2 and 6 to V yields a new proof of a slightly weaker version
of our result [6] about the measures of large entropy of entropy-expanding maps:

Corollary 8.2. Let T : M → M be a C∞ entropy-expanding map. Let P be a good
partition. Then:

• T has finitely many ergodic, invariant probability measure with maximum
entropy.

• the natural extension of such maps T are classified up to entropy-conjugacy
and possibly a period and a finite extension by their topological entropy.

Theorem 3 applied to V ′ gives information about periodic points:

Corollary 8.3. In the same setting, let ǫ > 0. Perhaps after replacing P with a
finer good partition, the Artin-Masur zeta function at level P of T :

ζP (z) := exp
∑

n≥1

zn

n
#{α ∈ γ(M ′) : σnα = α}

is holomorphic on the disk |z| < e−htop(T ) and has a meromorphic extension to the

larger disk |z| < e−hd−1(T )−ǫ. In particular, there exist integers p ≥ 1 and m ≥ 1
such that for n → ∞ along the multiples of p:

#{α ∈ γ(M ′) : σnα = α} ∼ menhtop(f)

Beyond the new information on periodic points, the point of this new approach
is that it separates the purely combinatorial arguments involving the puzzle itself
and the ones involving the geometry and smoothness.

Proof of Corollaries 8.2-8.3: Corollary 8.2 is a trivial consequence of point
1 of Theorem 8 together with Theorems 2 and 6.

Corollary 8.3 follow similarly from points 3 and 4 of Theorem 8 together with
Theorem 3 using as the refined finite good partition, the partition defined by the
almost connected components of the P , N -cylinders where N = N(ǫ) is given by
Theorem 3. �

Remark. (1) If M is one or two-dimensional, then a topological argument easily
shows that each periodic sequence in the coding γ(M ′) correspond to a periodic
point (e.g., using Brouwer fixed point theorem in connected components of the
closure of cylinders). In higher dimension, one must use the non-uniform expansion.

(2) The results of Kaloshin [19] show that upper bounds on the number of peri-
odic points can only hold after some identifications.

In the sequel we prove Theorem 8.
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8.2. Entropy-conjugacies.

Lemma 8.4. Let T : M → M be an entropy-expanding map with a good partition
P. Then the puzzle defined by almost connected components of cylinders has the
same entropy as T . More precisely, the coding γV defines an entropy-conjugacy
between T and a Borel finite extension of FV .

To prove this, we use a common extension XV ⋉M of the puzzle and of T defined
as:

XV ⋉ M = {(v, x) ∈ XV × M : ∀n ≥ 0 x ∈ vn}

endowed with the map FV ⋉ T which is just the restriction of the direct product.
Let π1, resp. π2, be the projection XV ⋉ M → XV , resp. XV ⋉ M → M .

• We claim that FV ⋉ T and T are entropy-conjugate. Observe that, the partition
being good for T , no point returns infinitely many times to ∂P . Hence ∂P has
zero measure w.r.t. any T -invariant probability measure. The same is true for
π−1

2 (∂P ). Hence (v, x) 7→ x is an isomorphism w.r.t. any invariant probability
measure, proving the claim. In particular, htop(FV ⋉T ) = htop(T ) by the variational
principle.

• We claim that FV ⋉ T and FV are entropy-conjugate, perhaps after replacing the
latter FV by a Borel finite extension. As the extension is continuous and compact,
any invariant probability measure of FV can be lifted to FV ⋉ T . We have to show
that, given a large entropy measure of FV (1) there are only finitely many ergodic
lifts µ̂; (2) for each such µ̂, π2 : (XV ⋉ M, µ̂) → (XV , π2µ̂) is a finite extension.

We first prove point (2). Let µ̂ be an arbitrary FV ⋉ T -invariant and ergodic
probability measure with h(FV ⋉ T, µ̂) > hd−1(T ) (this is possible because of the
entropy-expansion assumption and the fact that htop(FV ⋉ T ) = htop(T )). Let
µ = (π2)∗µ̂ and ν = (π1)∗µ̂. µ is a T -invariant ergodic measure satisfying h(T, µ) =
h(FV ⋉ T, µ̂) by the previous paragraph so h(T, µ) > hd−1(T ). By [6] this implies
that µ has only strictly positive Lyapunov exponents, hence, by [7], π2 : (XV ⋉

M, µ̂) → (XV , ν) is a finite extension. This proves point (2).
We prove point (1) following [7]. Assume by contradiction that there exists

infinitely many distinct ergodic lifts µ̂1, µ̂2, . . . of some ergodic and invariant prob-
ability measure µ of FV . We can assume that µ̂n converges to some µ̂∗. As π2

is continuous, µ̂∗ is also a lift of µ and so are almost all of its ergodic compo-
nents. They project on M to ergodic invariant probability measures with positive
Lyapunov exponents. As explained in [7], this implies that for each such ergodic
component ν̂, for ν̂-a.e. (v, x), there exists a ball B around x in the fiber which
contains no generic point wrt any measure distinct from ν̂. It follows that there
are only countably (or finitely) many ergodic components. Thus, there exists an
ergodic component of µ̂∗, such that the union of these fibered neighborhood has
positive µ̂∗-measure. Hence it has positive measure for µ̂n for n large. But this
implies that µ̂n = µ̂∗, a contradiction. Point (1) is proven and the claim follows.

The above two claims prove the lemma and therefore Lemma 8.4.

8.3. Constraint entropy. Before proving Proposition 8.1 which will imply claim
2 of Theorem 8, we give a geometric necessary condition for the irreducibility of
puzzle pieces.
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Lemma 8.5. Let (V, i, f) be a puzzle generated by the almost connected components
of the cylinders of a partition P.

Let v ∈ V and let A be the unique the element of P containing v,

f(v) ∩ ∂T (A) = ∅ =⇒ v is f -reducible.

Proof: Assume f(v) ∩ ∂T (A) = ∅. v is an almost connected component of
A ∩ T−1(f(v)) = (T |Ā)−1(f(v)). By the assumption, this last set is uniformly
homeomorphic to f(v), hence is almost connected. Therefore it is equal to v.

This shows that v is uniquely determined by f(v) and A = i1(v) (a fortiori i(v)),
verifying condition (2) of reducibility.

Consider now (*) f : Ti(v) → Ti(f(v)). Observe that for any w ∈ Ti(f(v)),
w ⊂ f(v). Hence, w ∩ ∂T (A) = ∅. The reasoning for the uniqueness of v shows
that the map (*) is one-to-one: f(u) = f(u′) implies that T (u) and T (u′) are both
almost connected subsets of f(u) = f(u′), so they must be equal.

For w ∈ Ti(f(v)), u = (T |A)−1(w) ∈ Ti(v) satisfies w = f(u). Hence the map
(*) is onto and therefore an isomorphism, proving condition (1) of reducibility. �

Proof of Proposition 8.1: Let r > 0 and ǫ > 0. We are going to bound by
e(htop(T,∂P)+hmult(T,P )+2ǫ)n the cardinality of Σn an arbitrary (r, n)-separated subset
of Cn, the set of irreducible pieces of order n. Recall that there exists some L = L(r),
for all n ≥ L, x, x′ ∈ Vn are (r, n)-separated if there exists some 0 ≤ k < n − L
such that (fkx)L 6= (fkx′)L.

Let ρ > 0 be smaller than the distance between any two almost connected
component of any L-cylinder (there are only finitely many of them, L being fixed,
and the distance between any two of them is positive as we are considering almost

connected components). As P is a good partition, mult(Pn) ≤ (#P)d+1 for all
n ≥ 1. Hence, for all integers n large enough, mult(Pn) ≤ eǫN . As n is large,
r(ρ/2, n, ∂P) ≤ e(htop(T,∂P)+ǫ)n for all n ≥ N .

Let Sn be a minimal (ρ/2, n)-spanning subset of ∂P . To every v ∈ Σn, associate
a point x = x(v) ∈ Sn such that d(T kv, T kx) < ρ/2 for all 0 ≤ k < n (T kv is a
subset of M). This is possible since v̄ ∩ ∂P 6= ∅ by Lemma 8.5.

The map x : Σn → Sn is at most Ce(hmult(T,P )+ǫ)n-to-1. Indeed, assume that
there exists x ∈ Sn with more than e(hmult(T,P )+ǫ)n pre-images. By dividing the pre-
images into a constant number C of subsets, we can assume that (fkv′)L = (fkv)L

for n−L ≤ k < n. As e(hmult(T,P )+ǫ)n > mult(Pn), two of the preimages, say v and
v′, must correspond to the same n,P-cylinder. But d(T kv, T kv′) ≤ d(T kv, T kx) +
d(T kx, T kv′) < ρ, which is not more than the distance between any two distinct
almost connected components of the relevant L-cylinder. Hence (fkv′)L = (fkv)L

for all 0 ≤ k < n − L, a contradiction. This implies #Σn ≤ Ce(hmult(T,P )+ǫ)n#Sn:

hC(FV ) ≤ htop(T, ∂P) + hmult(T, P ) + 2ǫ,

with arbitrary ǫ > 0, proving the claim. �

8.4. Determination. We turn to the fourth claim of Theorem 8. The delicate
point here is that it is possible (though exceptional) that u �f v in the absence of
the geometric property of Lemma 8.5.

A puzzle piece v ∈ V is trivial if there exists k ≥ 1 such that for every w ∈ Ti(v),

(25) w ∩ T k(∂P) 6= ∅.
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The trivial subset of V is the smallest subset V ∗ of the puzzle such that:

• V ∗ contains all trivial pieces;
• if f(v) ∈ V ∗ then v ∈ V ∗.

The non trivial puzzle is V \ V ∗ with the maps i and f obtained by restriction.

Lemma 8.6. Let (V, i, f) be the puzzle defined by a dynamical system T : M → M
as in Proposition 8.1.

The non trivial puzzle V ′ := V \ V 0 is again a puzzle and V ′ is determined.
Assume additionally that hC(V ) < htop(V ). Then the obvious injection i :

XV ′ → XV is an entropy-conjugacy and the approximate periodic points of the
two systems satisfy the estimate (24) of Theorem 8:

∀N ≥ 1 lim sup
n→∞

1

n
log #{ξ ∈ iN (XV ) \ iN (XV ′) : σnξ = ξ} ≤ hC(V ).

Proof: Note the following easy facts: (i) V 0 =
⋃

k≥0 f−kV ∗ if V ∗ denotes the

trivial pieces of V ; (ii) if Ti(v) ⊂ Ti(v
′) then v′ ∈ V ∗ =⇒ v ∈ V ∗.

(i) immediately gives that: v /∈ V 0 =⇒ f(v) /∈ V 0. Now, if i(v) ∈ V 0,
fk(i(v)) = i(fk(v)) ∈ V ∗ for some k ≥ 0 and therefore fk(v) ∈ V ∗ by (ii). Hence
v /∈ V 0 =⇒ i(v) /∈ V 0. Thus, V ′ is a puzzle.

For the determinacy, consider v, v′, w ∈ V ′ such that i1(v) = i1(v
′) =: A ∈ P and

v, v′ �1
f w. Assume by contradiction that v 6= v′. T |Ā is a homeomorphism hence

v, v′ are almost connected components of (T |Ā)−1(TA ∩ w). v, v′ �f w implies
that:

{f(u) : u ∈ Ti(v)} = {f(u′) : u′ ∈ Ti(v
′)} = Ti(w)

Hence, every t ∈ Ti(w) meets both almost connected sets T (u) ⊂ T (v) and T (u′) ⊂
T (v) with u ∈ Ti(v), u′ ∈ Ti(v

′). Therefore t ∩ ∂T (v) \ ∂w, so that t ∩ T∂A 6= ∅.
Thus w is trivial, contrarily to assumptions. Thus V ′ is determined.

We now let µ be an ergodic FV -invariant probability measure such that, for some
v ∈ V 0, µ([v]V ) > 0. This implies that µ([fk(v)]V ) > 0 for some k < |v| such that
fkv is trivial. We can assume k = 0. It is now immediate that

h(FV , µ) ≤ htop(FV , [v]V ) ≤ hC(V ) < htop(V ).

proving the entropy-conjugacy.
Consider now the periodic sequences ξ ∈ iN (XV ) \ iN(X ′

V ) ⊂ iN(XV \ XV ′).
Hence ξ = iN(x) with fn(xn+m) ∈ V 0 for some n, m ≥ 0. As above, we can assume
that in fact fn(xn+m) ∈ V ∗. As we are interested only in periodic orbits and an
exponential estimate, we can assume that n = 0. But xm ∈ V ∗ implies that for all
k ≥ m, xk ∈ V ∗, hence xk ∩ T∂P 6= ∅. Let

S := {x ∈ XV : ∀k ≥ 1 xk ∩ T∂P 6= ∅}

It is easily seen as above that htop(FV , S) ≤ hC(V ). This implies the claim of the
Lemma for all N ≥ 1. �

8.5. W-local Entropy. We prove the third point of Theorem 8:

Lemma 8.7. If V is a ∗-QFT puzzle which is determined then, for all invariant
and ergodic probability measure µ on XV with h(FV , µ) > hC(V ),

h(FV , µ) = h(FV , µ, ǫ∗)

So in particular, hwloc(V ) = 0.
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Proof: Any ergodic invariant probability measure with entropy > hC(V ) can be
lifted to an isomorphic µ̂ on Σ(D) by Theorem 1. h(σ−1, µ̂) = h(σ, µ̂) = h(FV , µ)
can be bounded by the growth rate of the number paths on D ending at any fixed
vertex v∗ ∈ D with µ̂([v]Σ(D)) > 0. But those paths are uniquely determined by
their i1-projection as V is determined (Lemma 5.1). Thus, h(FV , µ) = h(σ, i1(µ)) =
h(FV , µ, 1/2). �

Corollary 8.8. Let V be a ∗-QFT puzzle with a subpuzzle V ′ which is determined.
Assume that FV and FV ′ are entropy-conjugate wrt ergodic invariant probability
measures with entropy > hC(V ). Then hwloc(V ) = 0.

Proof: Let µ be an ergodic invariant probability measure of XV with h(FV , µ) >
hC(V ). Hence, it can be identified to an invariant measure µ′ of FV ′ . Therefore
h(FV ′ , µ′) = h(σ, iN (µ′)) for some integer N ≥ 1. But V ′ ⊂ V hence one can
define almost everywhere iN : XV → iN (XV ′) and check that iN (µ) and iN (µ′) are
isomorphic so that h(FV , µ) = h(σ, iN (µ)), proving the claim. �

Appendix A. Varying Radius of Meromorphy

Definition A.1. Denote by M(f) the radius of meromorphy of a formal power
series f . It is zero if the radius of convergence of f , ρ(f), is zero. Otherwise
it is the supremum of the radiuses r of the disks D(r) centered at zero for which
there exists a rational function F (z) such that f(z)/F (z) can be extended to a
holomorphic and non-zero function on D(r).

Fact A.2. There exists a countable oriented SPR graph G ∋ a, b such that M(ζG
a ) 6=

M(ζG
b ).

We found this example after an illuminating discussion with O. Sarig.

Before giving our construction, we recall some basic tools. The main tool here
is the notion of a loop graph (or petal graph in the terminology of B. Gurevič).
These graphs have a distinguished vertex and an arbitrary number of simple loops5

of each length based at the distinguished vertex, but distinct first return loops are
disjoint except for the distinguished vertex. Such graphs are completely described
by their first return series f(z) :=

∑
n≥1 fnzn where fn is the number of simple

loops of length n (based at the distinguished vertex). It is well-known that the
local zeta function at the distinguished vertex is

ζG
∗ (z) =

1

1 − f(z)
=
∑

n≥1

ℓnzn

where ℓn is the number of loops of length n based at the distinguished vertex6.

We now give the construction. We consider two disjoint loop graphs defined
by first return series a(z) :=

∑
n≥1 anzn and b(z) :=

∑
n≥1 bnzn. We call their

respective distinguished vertices a and b.
We define a new graph G by taking the disjoint union of:

• the two preceding loop graphs;

5That is, sequences v0 →
e1 v1 → · · · →

en vn where the vertices vi’s and edges ei’s are distinct
except for v0 = vn which is the distinguished vertex. Such sequences are called first return loops
of length n.

6These loops may go several times through the base.
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• a set of disjoint paths from a to b described by a series s(z) :=
∑

n≥1 snzn

(there are sn simple paths of length n from a to b and these are disjoint);
• set of simple paths from b to a described by a series t(z) :=

∑
n≥1 tnzn.

Claim A.3. The first return series of G at a is:

â(z) = a(z) +
s(z)t(z)

1 − b(z)

Indeed, a first return loop at a in G is:

• a first return loop in the loop graph a;
• a transition from a to b, followed by a (non necessarily first return) loop at

b, a transition from b to a.

Fix b(z) = 2z2 (so the associated Markov shift is the set of all infinite concate-
nations of the two words of length 2, say b0 and b1).

Let τ(z) :=
∑

n≥1 τnzn = s(z)t(z). We can arrange it so:

• τ0 = τ1 = 0, τn = 0 or 1;
• |z| = 1 is the natural boundary of τ (by the Polya-Carlson theorem, this is

equivalent to τ not being rational).

It follows that q(z) := τ(z)/(1 − b(z)) satisfies:

(1) q0 = 0, 0 ≤ qn ≤ 2n+1 ≤ 5n

(2) |z| = 1 is the natural boundary of q.

Now, set a0 = 0 and, for n ≥ 1: an := 5n − qn ≥ 0. We have: ân = an + qn = 5n

for n ≥ 1, â0 = 0. Hence â(z) = z/(1 − 5z) and

ζG
a (z) =

1

1 − â(z)
=

1 − 5z

1 − 6z

is a rational function. In particular, M(ζG
a ) = ∞. On the other hand,

b̂(z) = b(z) +
τ(z)

1 − a(z)
= 2z2 +

(1 − 2z2)q(z)

1 − z
1−5z + q(z)

= 2z2 +
(1 − 2z2)(1 − 5z)

1 + (1 − 6z)/q(z)

Therefore ζG
b (z) = 1/(1− b̂(z)) has meromorphy radius: M(ζG

b ) = M(b̂) = M(q) =
1 Thus,

M(ζG
b ) < M(ζG

a )

as claimed.
Observe that h(G) = log 6 and h∞(G) = log 5. Hence h∞(G) < h(G) and G is

SPR as claimed, finishing the construction.
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[13] B.M. Gurevič, Stably recurrent nonnegative matrices, Uspekhi Mat. Nauk 51 (1996), no.

3(309), 195–196 - English: Russian Math. Surveys 51 (1996), no. 3, 551–552
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[23] R. D. Mauldin, M. Urbański, Graph directed Markov systems. Geometry and dynam-

ics of limit sets, Cambridge Tracts in Mathematics, 148. Cambridge University Press,
Cambridge, 2003.

[24] C. T. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies,
135. Princeton University Press, Princeton, NJ, 1994.

[25] W. de Melo, S. van Strien, One-dimensional dynamics, Ergebnisse der Mathematik und
ihrer Grenzgebiete (3), 25. Springer-Verlag, Berlin, 1993.

[26] J. Milnor, W. Thurston, On iterated maps of the interval, in: Dynamical Systems, Lecture
Notes in Mathematics 1342, Springer, 465–564.

[27] M. Misiurewicz, Topological conditional entropy, Studia Math. 55 (1976), no. 2, 175–200.
[28] M. J. Pacifico, J. Vieitez, Entropy-expansiveness and domination, preprint IMPA no.

D029 (2006). See http://www.preprint.impa.br.
[29] S. Ruette, Mixing Cr maps of the interval without maximal measure, Israel J. Math. 127

(2002), 253–277.
[30] S. Ruette, On the Vere-Jones classification and existence of maximal measures for count-

able topological Markov chains, Pacific J. Math. 209 (2003), no. 2, 366–380.
[31] O. Sarig, Thermodynamic formalism for countable Markov shifts, Ergodic Theory Dynam.

Systems 19 (1999), no. 6, 1565–1593.
[32] O. Sarig, Thermodynamic formalism for null recurrent potentials, Israel J. Math. 121

(2001), 285–311.
[33] M. Viana, Multidimensional nonhyperbolic attractors, Inst. Hautes Etudes Sci. Publ.

Math. No. 85 (1997), 63–96.



38 Jérôme Buzzi

[34] P. Walters, An introduction to ergodic theory. Graduate Texts in Mathematics, 79.
Springer-Verlag, New York-Berlin, 1982.

C.N.R.S. / C.M.L.S., Ecole polytechnique, 91128 Palaiseau cedex, France
E-mail address: buzzi@math.polytechnique.fr

URL: www.jeromebuzzi.com


