
HAL Id: hal-00110252
https://hal.science/hal-00110252v1

Submitted on 27 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synthesis and verification of constraints in the PGM
protocol

Marc Boyer, Mihaela Sighireanu

To cite this version:
Marc Boyer, Mihaela Sighireanu. Synthesis and verification of constraints in the PGM protocol.
12th International Formal Methods Europe Symposium, FM’03, Sep 2003, Pisa, Italy. pp.264-281.
�hal-00110252�

https://hal.science/hal-00110252v1
https://hal.archives-ouvertes.fr


Synthesis and verification of constraints in the

PGM protocol ?

Marc Boyer1 and Mihaela Sighireanu2

1 ENSEEIHT - IRIT/TéSA, 2, rue Camichel, 31071 Toulouse France
2 LIAFA - University of Paris 7, 2 place Jussieu, 75251 Paris France
Marc.Boyer@enseeiht.fr, Mihaela.Sighireanu@liafa.jussieu.fr

Abstract. Specifications of protocols usually involve several parame-
ters, for example the number of retransmissions or the timeout delays.
The properties satisfied by the protocol depend often on the relation be-
tween these parameters. Automatic synthesis of such relations becomes
a difficult problem when the constraints are too complex, e.g., non-linear
expressions between integer and/or real parameters. This paper reports
about modeling and constraint synthesis in the Pragmatic General Mul-
ticast (PGM) protocol. The property that we aim to satisfy is the full
reliability property for data transmission. The complexity of the PGM
prevents us from doing automatic synthesis of this constraint. Instead, we
propose a methodology to deal with this problem using classical model-
checking tools for timed and finite systems. Our methodology consists
of several steps. First, we identify the sources of complexity and, for
each source, we propose several abstractions preserving the full reliabil-
ity property. Then, we build an abstract parameterized model on which
we test, after instantiation of parameters, that the basic properties of
the protocol (deadlock freedom, liveness) are preserved. By analyzing
the scenario which invalidate the full reliability property, we find a non-
linear constraint between the parameters of the protocol. We check the
relation found by instantiating the parameters with relevant values and
applying model-checking.

Key words: PGM protocol, real-time multicast protocol, finite and timed
model-checking, parameterized verification, constraint synthesis.

1 Introduction

In the last years, interesting results have been obtained in the verifi-
cation of models using parameters (i.e., constants which values are not
fixed) [AAB00,HRSV01,BCALS01,BCAS01]. The models considered are mainly
parametric counter and timed automata, i.e., models with counters and/or clocks
that can be compared with (expressions on) parameters in order to define lower

? This work was supported in part by the European Commission (FET project AD-
VANCE, contract No IST-1999-29082).



and upper bounds on their possible values. On such models are studied two
kind of problems: verify that the model satisfies some property for all possible
values of parameters (verification problem), or find constraints on parameters
defining the set of all possible values for which the model satisfies a property
(synthesis problem). These problems can be solved as reachability problems in
parametric models. Since the reachability problem is undecidable for parametric
timed [AHV93] and counter automata, semi-algorithmic approaches are used.

The interest of such a research is obvious, especially in the framework of com-
positional specification: components are parameterized and the system obtained
would satisfy some property depending on the tuning of values for parameters.
Unfortunately, this approach is strongly limited by the kind of relations be-
tween parameters, since only linear relations between integer parameters can
be dealt. A possible solution [AAB00] is to use an over-approximation by con-
sidering that these integer parameters are reals. Another limitation is the size
of the models that can be analyzed. While finite verification deals easily with
models containing several tens of finite integer variables, the actual tools doing
infinite model-checking (e.g., Alv [Bul98], Lash [Boi98], TReX [BCAS01]) can
not manage the same number of infinite integer (counter) variables.

We show in this paper how it is possible to manage the current limits of the
parameterized verification by using an accurate methodology and finite model-
checking.

The example we consider is the Pragmatic General Multicast (PGM) pro-
tocol. PGM has been designed to support reliable multicast of small, real-time
generated information to potentially millions of users, for example in video ap-
plications. The protocol was developed jointly by Cisco Systems and Tibco,
and presented to the IETF1 as an open reference specification [SFC+01]. It is
currently supported as a technology preview, usually over IP, with which users
may experiment.

The main property that PGM intends to guarantee (stated in [SFC+01]) is
the following: a receiver either receives all data packets from transmissions and

repairs or it is able to detect uncoverable data packet loss. It means that the full
reliability property of PGM is not mandatory. However, it is interesting to know
under which conditions the full reliability is obtained, and our work focus on
this concern.

The problem of reliable multicast protocols is that the classical solution of
positive acknowledgments (ACKs) used for reliability in unicast protocols (like
TCP) may produce excessive overhead for one-to-many communications. For
this reason, the reliable multicast protocols often use negative acknowledgments
(NAKs) sent by the receivers when some packets are not received. This solution
does not work well during periods of congestion, when many receivers may be af-
fected by losses. Multiple redundant NAKs can be issued by the group of receivers,
adding to the congestion and causing the “NAK implosion” of the network or re-
dundant retransmissions. PGM minimizes the probability of NAK implosion by

1 Internet Engineering Task Force



using a NAK elimination mechanism in the intermediate nodes of the distribution
tree.

The protocol specification in [SFC+01] is too complex w.r.t. the full reliability
property. Indeed, it includes a lot of mechanisms which are designed to minimize
the loading of the network. In this paper, an important contribution is the design
of a model for the protocol where the mechanisms which are not important for
full reliability are abstracted. This abstract model uses twenties clocks, tens of
counters, arrays, FIFO queues. None of the existing tools on infinite verification
can deal with it. Moreover, we prove (manually) that the full reliability property
is verified when some integers parameters satisfy a non-linear relation, so the
parameterized reachability analysis can not be directly applied.

In order to check the constraint found, we instantiate systematically the six
parameters of the protocol and apply the existing tools for real-time and finite
model-checking. We work with the If [BFG+00] and Cadp [FGK+96] tool-boxes.

Moreover, since we have to do more than twenty thousand tests, we inten-
sively use shell scripts to manage fully automatically the instantiation of pa-
rameters. This part shows us the interest of parameterized verification. Also,
our work allows to find some abstractions for the PGM. They may be useful for
verification by infinite model-checking.

In addition to these specific contributions for the PGM protocol, we highlight
the current methodology for constraint synthesis using finite model-checking.
We show (1) how to obtain a good model, (2) how constraints are obtained, and
(3) how are chosen values for parameters in order to automatically verify the
constraint by finite model-checking. The PGM is a good example to illustrate
this methodology due to its complexity.

Related work. Recent work has been done in the verification of a simplified, timed
version of the PGM protocol in [BBP02]. The model considered implements the
same topology that our (linear one with three nodes). However, the model used
for communication between automata corresponds to one-place buffers with de-
lay. Our model is more general in this direction because it uses bounded FIFO
queues with delays. They verify the reliability property of the protocol by instan-
tiating the parameters and then calling the Uppaal [PL00] tool for verification
of timed systems. They didn’t find the relation we synthesize, although they are
interested by the same property.

The work done in [BL02] concerns the validation with Lash of the sliding
window mechanism of the protocol for any number of data packets sent. A more
theoretical work is done in [EM02] and consists of a mathematical framework
for multicast protocol that allows to generalize the results obtained for linear
topologies to tree topologies.

Outline. Section 2 gives an overview of the protocol. Section 3 presents the model
we verified for the PGM protocol and describes the abstractions applied to this
model. Section 4 contains the proof of the constraint we found for satisfaction
of the full reliability property. Section 5 describes shortly the tools used and
the methodology employed. Then, Section 6 gives the properties checked and



the verification results. Section 7 summarizes the work done and gives some
concluding remarks on this experience.

2 Overview of PGM

A “session” of the PGM protocol (a given data transfer from a source to a group
of receivers) builds a tree: the source is the root of the tree, the receivers are the
leaves, and the other network elements are intermediary nodes. This tree may
change during the session by the dynamic join/leave of receivers. Figure 1 shows
such a distribution tree and the direction (upstream or downstream) followed by
the five basic packets of the protocol.

RDATA,
SPM, NCF

ODATA,
NAK

RR

RNE

S

Fig. 1. Distribution tree of the PGM with packets involved (S = source, NE = network
element, R = receiver).

In the normal course of data transfer, a source multicasts sequenced data
packets (ODATA) along a path of the distribution tree to the receivers. When a
receiver detects missing data packets from the expected sequence, it unicasts
repeatedly to the last network element of the path negative acknowledgments
(NAKs) containing the sequence number of missing data. Network elements for-
ward NAKs hop-by-hop to the source using the reverse path, and confirm each
hop by multicasting a NAK confirmation (NCF) in response to the child from which
the NAK was received. Receivers and network elements stop sending NAK at the
reception of a corresponding NCF. Finally, the source itself receives and confirms
the NAK by multicasting an NCF to the group. If the data missing is still in the
memory, repairs (RDATA) may be provided by the source in response to the NAK.
To avoid NAK implosion, PGM specifies procedures for NAK elimination within
network elements in order to propagate just one copy of a given NAK along the
reverse of the distribution path.

The basic data transfer operation is augmented by SPMs (Source Path Mes-
sages) packets from a source, periodically interleaved with ODATA. SPMs have two
functions. First, they carry routing informations used to maintain up-to-date
PGM neighbor information and a fixed distribution tree. Second, they comple-
ment the role of data packets when there is no more data to send by holding the
state of the sender window. In this way, the receiver may detect data losses and
send further NAKs.

In the following, we describe the functions of each component of the protocol.



Source functions. The source executes five functions: multicast of ODATA packets,
multicast of SPMs, multicast of NCFs in response to any NAKs received, multicast
of RDATA packets, and maintain (update and advance) of the transmit window.

The transmit window plays an important role in the PGM operations. Any
information produced by the application using PGM (upper level in the net-
work layers) is put in the transmit window and split in several ODATA chunks,
numbered circularly from 0 to 232 − 1. This data is maintained in the window
TXW SECS time units for further repairs and sent with a maximum transmit rate
of TXW MAX RTE (bytes/seconds). The left edge of this window, TXW TRAIL, is de-
fined as the sequence number of the oldest packet available for repairs. The right
edge, TXW LEAD, is defined as the sequence number of the most recent data packet
the source has transmitted. To provide information about the sender window,
TXW TRAIL edge is sent with O/RDATA and SPM packets and the TXW LEAD edge is
included only in SPMs. If TXW TRAIL = TXW LEAD + 1, the window is considered
empty. The maximum size of the window (TXW SIZE = TXW LEAD - TXW TRAIL +
1) should be less than 216 −1. The edge TXW LEAD is advanced when data is pro-
duced by the application. The strategy of the source to advance the TXW TRAIL

edge is not fixed in [SFC+01].
Two types of SPMs are sent by the source: ambient SPMs are sent “at least

sufficient” [SFC+01] rate to maintain routing information; heartbeat SPMs are
transmitted in absence of data at a decaying rate, in order to assist detection of
lost data before the advance of the transmit window.

Receiver functions. The receiver executes five functions: receive O/RDATA within
the transmit window and eliminate duplicates, unicast NAKs repeatedly until it
receives a matching NCF if it detects a loss, suppress NAKs sending after the
reception of the NCF, maintain a local receive window.

The receive window is determined entirely by the packets from the source,
since it evolves according to the information received from the source (data
packets and SPMs). For each session, the receiver maintains the buffer and the
two edges of the window: RXW TRAIL is the sequence number of the oldest data
packet available for repair from the source (known from data and SPMs) and
RXW LEAD is the greatest sequence number of any received data packet within
the transmit window.

Network element functions. Network element forwards ODATA without interven-
tion. They play an important role in routing, NAKs reliability, and avoiding NAKs
implosion. Indeed, they forward only the first copy of a NAK and discard NAKs for
which they have repair data. They also forward RDATA only to the child which
signaled by a NAKs the loss of the corresponding data.

3 Modeling PGM

It is easy to see that modeling the full PGM protocol is out of the scope of
existing model-cheking tools, because we need to handle dynamic topology with



a lot of processes, dynamic routing, tens of counters and clocks per process,
sequence numbers up to 232 − 1, etc.

In order to be able to look at the full reliability property, the first step
consists of obtaining a “good” model. This model should be simple enough to be
checked by the existing model-checking tools, but it has also to be realistic and
to preserve the interesting behaviours for this property. To obtain such a model,
we first analyze each dimension of complexity of PGM. For each dimension, we
identify the abstractions that can be done and we specify those chosen for our
model. This is the first step of our methodology.

3.1 Dimensions of complexity

First dimension considered is the topology. The general topology is a dynamic
graph, but we argue that we can focus our attention on static topologies.

Indeed, we can abstract the dynamic graph of a session by a maximal static
graph where all the nodes belonging to the group at a moment in the session are
present. When a node joins the group at a moment t during a session, it behaves
like a node which loses all the data sent between the beginning of the session
and t. When a node leaves the group, it can be abstracted into a node which
receives all the data in time, i.e., it is silent w.r.t. reliability of data transfer. In
this case, we may ignore all of the mechanisms proposed for joining/leaving for
nodes and for sending routing (distribution path) information.

Moreover, the static distribution tree of a session may be abstracted into
a linear topology. Indeed, if we consider that the loss rate does not depend
on the number of receivers, adding more receivers to the tree does not change
the advance of the transmit window. The loss of one data packet by several
receivers may be abstracted by the loss detected in one receiver. More formal
arguments in this direction are given in [EM02]. In conclusion, in order to study
the full reliability property, we may consider linear topology with one source,
one intermediate node, and one receiver, like in Figure 2.

(O/RDATA,SPM)

Sender Receiver

sn

ns

nr

rn

INDATA OUTDATA
OUTLOSS

NLOSS

(O/RDATA,SPM)

(NAK) (NAK)

Network

element

Fig. 2. Abstract model considered for topology and communication medium.

Second dimension considered is the policy of loss for packets. In the general
case, any number of any kind of packets could be loss. We can reduce the huge
non determinism of such behaviour by noting that NAK, NCF, and SPM packets



are small packets (they include one or two sequence numbers), for which the
probability of loss using an IP network is small. Moreover, the loss of NAK and
NCF packets is dealt by special mechanisms executed locally (for each link). Then,
we may consider that the transmission of control packets is reliable. For data
packets, we consider that at most MAX NB LOSS ODATA packets are lost, where
MAX NB LOSS is a parameter of the model. The transmission of RDATA packets is
abstracted to be reliable, as proposed in [SFC+01].

The third dimension considered is the communication network. Since PGM is
designed to work on IP, the model for communication is unbounded, unordered,
unreliable channels with no maximal transmission delay. However, the protocol
uses SPMsto carry routing informations in order to maintain a fixed distribution
tree between sender and receivers. This allows us to abstract communication
media to FIFO queues. The real-time feature of the protocol and the small sizes
of PGM packets suggest us to put bounds on the size and the delays of com-
munication channels. In conclusion, our communication media are reliable FIFO
queues with bounded sizes and fixed delays of transmission (see Figure 2). Such
a communication primitive is present in our modeling language, If [BFG+00].
Losses of packets are simulated within the network element.

The next dimension concerns the length of information to be transmitted

during the session w.r.t. the size of the transmit window. To cover most of
the mechanisms of the protocol, this length should be greater than two transmit
windows, and a transmit window should contain at least three data packets. This
abstraction is implicitly used in [BBP02] since they consider that the maximal
number of ODATA packets sent is ten. In our model, this length is a parameter,
called MAX NB DATA.

Another dimension is the shape of the traffic from the application.
In [SFC+01] is suggested that the source should implement a scheme for the
traffic management and it should also bound the maximum rate of transmission.
Moreover, a local absence of data should also be managed by sending heartbeat
SPMs. A simple abstraction that avoids the heartbeat mechanisms (i.e., additional
packets) and reduces the traffic shape is to consider a fixed rate of information
generation. This rate is given by a parameter, DATA PERIOD, specifying the time
units between the generation of two data packets. The application sends the
data at this rate until the end of the transmission. When this end is reached,
the source signals it by a “closing SPM” [Boy02] packet containing the status
of the window, which signals the absence of data and replaces the heartbeat
mechanism.

The protocol also provides a lot of mechanisms to ensure efficiency of trans-
mission. These mechanisms (e.g., filtering of NAKs in network elements, back-off
timeouts for NAKs, filtering of RDATA) are not relevant to the reliability property
that we aim to test.

Other mechanisms are introduced in order to obtain some properties for the
transmission, mainly the reliability of the NAKs and NCFs. We abstract these
mechanisms and consider that there are no loss of NAKs, so no need for NCFs.



The last dimension of complexity concern the management of the transmit

window. In [SFC+01], no policy is fixed for the advance of the window and the
sending of the ambient SPMs. In our model, we consider that the sender tries to
keep in the window the maximum number of data packets in such a way that
it can receive any time data from application, i.e. TXW SIZE packets are always
kept. When the application finishes the transmission, the packets are dropped
out from the window each DATA PERIOD time units. Concerning the sending of
ambient SPMs, we choose to send an ambient SPM for every DATA PER SPM data
packets generated by the application, with DATA PER SPM a parameter of the
protocol.

3.2 Abstract model considered

The second step consists of applying the abstractions described above in order
to obtain a formal model of the PGM protocol. The models obtained for the
PGM source, receiver, and network element are given respectively on Figures 3,
5, and 4. We explain in this section the resulting model.

We use If [BFG+00], which underlying model is a network of finite state,
timed automata communicating by channels of different policies, rendez-vous,
and shared variables. The finite types that can be used are boolean, bounded
integer, user defined enumerated type, record and finite array of finite types.
In If, states can be decorated with invariants for time elapsing. By default,
the invariant is true. Unstable states are states where the time cannot pass
(represented by a vertex with an U inside). Transitions are guarded by boolean
expressions on finite variables, zones on clocks, and inputs from communication
channels (notation c?s(x,y) for input from channel c of the signal s with data
assigned to variables x and y). A special guard is the eager guard (represented
by a transition with a black point at the source vertex) which means that the
transition must be taken as soon as possible w.r.t. the synchronization with other
transitions. If the guard is true, some actions can be executed before the control
goes in the target state. The actions belong to reset clocks, assignment of finite
variables, and output of messages on channels (notation c!s(x,y) for output
on channel c of the signal s with data x and y). In order to obtain easy to read
automata, the automaton of each component is split in several parts, each part
has like source a shared state and implements a specific function (see Section 2)
of the component.

The source inputs data from the upper level (increments TXW LEAD) each
DATA PERIOD time units until the limit of MAX NB DATA is reached (Figure 3,
Part (a)). Interleaved with this activity, the source sends ODATA packets in the
transmit window as soon as (eager transition) the data is available. For every2

DATA PER SPM data packets generated by the application, the source sends an
ambient SPM. When the MAX NB DATA limit is reached and all the data have been

2 Although the guard for this transition is c>=DATA PER SPM, the transition is eager,
so it will be taken immediately when the value DATA PER SPM is reached.



(a)

sn!SPM(TXW LEAD,TXW TRAIL)

S0: x<=DATA PERIOD

x:=0, c:=0, sqn:=0
close:=1
TXW TRAIL:=0
TXW LEAD:=-1

c:=0

close &

c:=0
close:=0

TXW TRAIL=TXW LEAD+1 /
TXW LEAD=MAX NB DATA &

x>=DATA PERIOD /
TXW LEAD<MAX NB DATA &

sqn<=TXW LEAD /

(b)

TXW LEAD-TXW TRAIL=TXW SIZE &

TXW TRAIL<=TXW LEAD /

TXW TRAIL++

TXW TRAIL<=TXW LEAD+1 &
TXW LEAD=MAX NB DATA &
x>=DATA PERIOD /
TXW TRAIL++, x:=0

S0

sn!SPM(TXW LEAD,TXW TRAIL)

TXW LEAD-TXW TRAIL<=TXW SIZE+1 &
c>=DATA PER SPM /

TXW LEAD++,c++,x:=0

sqn++
sn!ODATA(sqn,TXW TRAIL)

TXW TRAIL<=n<=TXW LEAD /

n>TXW LEAD

n<TXW TRAIL

Snak

sn!RDATA(n,TXW TRAIL)

U

ns?NAK(n)

(c)

S0

Fig. 3. Model for the PGM source: (a) sending ODATA and SPM, (b) window advance,
(c) dealing with NAK and RDATA.

i<RS LEN &
RS[i]!=seq /

Nnak

Nspm

nr!SPM(lead,trail),i:=0

sn?SPM(lead,trail) /
(d)

i=RS LEN

RS[RS LEN++]:=seq
ns!NAK(seq)

i=RS LEN /

i<RS LEN & RS[i]=seq

rn?NAK(seq) / i:=0
(c)

RS[i]:=RS[--RS LEN]
nr!RDATA(seq,trail)

i<RS LEN & RS[i]=seq /

i=RS LEN

i<RS LEN &

Nodata

i<RS LEN &
RS[i]!=seq /

i++

Nrdata

i++

i++

RS[i]:=RS[--RS LEN]

RS[i]<trail /
i<RS LEN &

N0

N0 N0

N0

nloss:=0
RS LEN:=0

(b)

(a)

RS[i]>=trail /

sn?RDATA(seq,trail) / i:=0

U

U

U

U

nloss++
env!NLOSS(seq)

nloss<MAX NB LOSS /

sn?ODATA(seq,trail)

nr!ODATA(seq,trail)

Fig. 4. Model for the PGM network element: (a) dealing ODATA, (b) dealing RDATA, (c)
dealing NAKs, (d) dealing SPMs.



RXW[0..RCV SIZE-1]:=0

(is xdata & sqn>RXW LEAD+1)Rupt

Rupt’

env!OUTDATA(RXW TRAIL)
RXW[RXW TRAIL%RCV SIZE] /

RXW TRAIL<=RXW LEAD &

RXW[(++RXW LEAD)%RCV SIZE]:=0

R0RXW LEAD:=-1
RXW TRAIL:=0

rn!NAK(RXW LEAD+1)RXW[sqn%RCV SIZE]:=1

RXW LEAD++

is xdata & sqn=RXW LEAD+1 /

RXW[sqn%RCV SIZE]:=1

is xdata & sqn<=RXW LEAD /

RXW[(RXW TRAIL++)%RCV SIZE]:=0

| (!is xdata & lead>RXW LEAD)

Rtrail

RXW[(RXW TRAIL++)%RCV SIZE]:=0

env!OUTLOSS(RXW TRAIL)
!RXW[RXW TRAIL%RCV SIZE] /

RXW TRAIL<=RXW LEAD &

RXW LEAD++
env!OUTLOSS(RXW TRAIL)

RXW TRAIL>RXW LEAD /

RXW TRAIL<=RXW LEAD &
RXW[RXW TRAIL%RCV SIZE] /
env!OUTDATA(RXW TRAIL)

RXW TRAIL<trail

Radt’

Radt

(b)

(a)

Rtrail

lead<=RXW LEAD

U

UU

U

U

U

!is xdata &

RXW TRAIL>=trail

nr?ODATA(sqn,trail)/is xdata:=1

nr?RDATA(sqn,trail)/is xdata:=1

nr?SPM(lead,trail)/is xdata:=0

Fig. 5. Model for the PGM receiver: (a) main loop, (b) updating trail.



sent, a closing SPM packet is sent to inform the receiver about the absence of
recovery. This solution has been proposed in [Boy02] to be able to give a cor-
rect status about the data packets sent in the last transmit window in absence
of heartbeat SPMs. Part (b) specifies the policy of window advance. Part (c)
specifies the treatment of NAK.

The network element forwards ODATA packets (Figure 4, part (a)) or non deter-
ministically losses data (signaled to the environment by the NLOSS signal). The
sequence numbers of data to be recovered are stored in a vector RS of maximal
size RS SIZE and of current size RS LEN. This vector is updated at the arrival of
RDATA, NAK, and SPM packets (parts (b), (c), and (d) respectively). It is used to
avoid duplication of NAKs.

The receiver waits for any kind of packets (ODATA, RDATA, and SPM) and updates
the receive window implemented by the array RXW (of maximal size RXW SIZE).
This array is used as a circular buffer (sequence numbers taken modulo the size
of the array) and it stores booleans saying if the corresponding data packet has
been received or not. Initially, all the entries are false. Based on RXW array, when
the transmit window advance (the trail received is greater than RXW TRAIL),
the receiver sends either OUTDATA signal to the environment or it signals a loss
(OUTLOSS signal).

The parameters of the model are summarized in Table 1. For each parameter
we give either a value, if it has been fixed during experiments, or an interval of
values otherwise. We discuss the choice of these value in Section 6.

Table 1. Summary of parameters.

Size parameters

TXW SIZE Transmit window size 1–6
MAX NB LOSS Max. number of lost data at some point 0–5
MAX NB DATA Max. number of data the source can send 3–18
DATA PER SPM Nb. of data generated between two ambient SPM 1-3, ∞
RS SIZE Max. size of RS array MAX NB LOSS

RXW SIZE Max. size of receiver window TXW SIZE

SN SIZE, NS SIZE Max. size of sender-network element buffers 12, 4
NR SIZE, RN SIZE Max. size of network element-receiver buffers 12, 4

Time parameters

DATA PERIOD Period of data sending 2–10,15
TXW MAX RTE = 1/DATA PERIOD,
TXW SECS = (TXW SIZE − 1) × DATA PERIOD

SN DELAY, NS DELAY Max. delay for sender-network element buffers 2, 2
NR DELAY, RN DELAY Max. delay for network element-receiver buffers 2, 2



4 Constraint for recovering all losses

In the third step of our methodology, we analyze the sequence of events needed
to obtain the target property. In our case, the sequence allowing to recover a
loss ensures the full reliability. It involves four steps:

1. one or more ODATA packets are lost (by the node, in our model);
2. the receiver receives a packet (ODATA, RDATA, or SPM) signaling that a previous

data packets have been lost;
3. the NAK signaling the loss is received by the source before the corresponding

data have been dropped from the transmit window;
4. the corresponding RDATA is sent and received.

These steps concern the following aspects of our model:

– the loss policy: in our model only MAX NB LOSS ODATA packets can be lost;
– the transit delay of packets (i.e., round trip time, RTT): is computed from the

delays of communication buffers, RTT = SN DELAY+ NR DELAY+ RN DELAY+
NS DELAY;

– the production rate of ODATA: given by DATA PERIOD;
– the rate of ambient SPM: given by DATA PER SPM and DATA PERIOD;
– the transmit window policy: fixed to maintain as long as possible data in the

transmit window.

NAK

RDATA

ODATA/SPM/RDATA

∆

RTT

Sender Node Receiver

Fig. 6. Pattern of loss recovering.

Let ∆ be the delay between the instant the first lost ODATA packet is sent and
the instant that the first unlost packet is sent. The delay between the sending of
the unlost packet and the reception of the matching NAK is the RTT, if we assume
that a NAK is sent as soon as a loss is detected (it is the case in our model, but
in a more realistic one, we should add a random back-off).



Then, the lost packets are recovered if ∆ + RTT is less than3 the lifetime of
the data in the transmit window, i.e. DATA PERIOD× TXW SIZE in our model.

The value of ∆ depends on the kind of the first non-lost packet: ODATA, RDATA,
or SPM, i.e., ∆ = min(∆ODATA, ∆RDATA, ∆SPM). We cannot give an upper bound
of ∆RDATA. Indeed, it could be ∞ if no packet has been lost before. For ∆ODATA,
if we consider that no more than MAX NB LOSS packets are lost, its maximum
value is MAX NB LOSS×DATA PERIOD. This value is false for the last MAX NB LOSS

packets since they can all be lost and not followed by any ODATA. For ∆SPM, the
upper bound is (DATA PER SPM− 1) × DATA PERIOD (the -1 comes from the fact
that the SPM is sent at the same time that the last ODATA of the DATA PER SPM

set).
Then, we obtain the following property:

Property 1. If a data packet m does not belong to the last MAX NB LOSS packets,
then m is always recovered if:

TXW SIZE− min (MAX NB LOSS, DATA PER SPM− 1) >
RTT

DATA PERIOD
(1)

5 Verification methodology and tools

The last step of our methodology is the verification of the constraint obtained
using finite timed model-checking. It consists of the following actions:

1. We assign to parameters given in Table 1 relevant, concrete values (see Sec-
tion 6).

2. Using these values, the parameterized model corresponding to the automata
given on figures 3–5 is translated (by substitution) into a concrete model.

3. The concrete model is translated into a labeled transition system (LTS).
4. In order to check the model obtained, some basic, unparameterized proper-

ties like absence of deadlock, absence of overflows, etc. are checked on the
LTS.

5. The parameterized property to be checked is also translated into a set of con-
crete properties, one property per sequence numbers from 0 to MAX NB DATA

(which is a parameter).
6. The concrete properties are checked on the LTS.

In order to instantiate parameterized implementation and properties to concrete
ones, we use shell scripts calling sed commands. The translation from the If

concrete implementation into the LTS is done using the generator tool of the
If toolbox. The LTS model is generated into the Bcg [FGK+96] format. The
temporal logic properties have been written using the regular alternation-free
µ-calculus [Koz83,EL86] and checked using the evaluator tool [MS00] of the
Cadp [FGK+96] toolbox. The tools used provide good performances: the time

3 The inequality is strict because of the possible interleaving of actions dropping the
data from the window and sending RDATA.



and memory spent for generating and checking the models are reasonable for the
values of parameters reported here4. For example, the full series of experiments
(≈ three hundred cases) take 4 hours on a PC at 1GHz and 1Go of RAM.

6 Experiments

6.1 Choosing relevant values for parameters

In searching relevant values for parameters, we follow three criteria:

C1: Cover all cases for both satisfaction values of Equation 1. This leads to a
case analysis of Equation 1. When it is false, we may have two cases:
C1.1: TXW SIZE− min (MAX NB LOSS, DATA PER SPM− 1) ≤ 0
C1.2: 0 < TXW SIZE− min (MAX NB LOSS, DATA PER SPM− 1) ≤ RTT/DATA PERIOD

which implies RTT > DATA PERIOD

When Equation 1 is true, we may have also two cases:
C1.3: TXW SIZE− min (MAX NB LOSS, DATA PER SPM− 1) > RTT/DATA PERIOD ≥ 1
C1.4: TXW SIZE− min (MAX NB LOSS, DATA PER SPM− 1) ≥ 1 > RTT/DATA PERIOD

C2: Choose values preserving the ratio between the real life values of parame-
ters. This criterion reduces the number of experiments selected with criterion
C1. Indeed, we observe the following relation between the parameters:
C2.1: The maximal number of losses MAX NB LOSS could be viewed like a

fraction 1/p of the maximal number of data sent MAX NB DATA. Then,
MAX NB DATA may be considered like a multiple n of the transmit window
size, TXW SIZE. If we suppose that the network has a low rate of losses
(e.g., p = 20), the value of n/p may vary, for example, between 0.05 when
the number of data is small (e.g., n = 1) and 100 when the number of
data is great (n ≈ 103).

C2.2: The rate DATA PER SPM may belong to two classes of values. If
DATA PER SPM is greater than MAX NB LOSS, it can be approximated to ∞
since the recover will not be done with SPMs packets. The second class
of values is defined by the ratio between TXW SIZE and DATA PER SPM. A
great ration (a lot of SPMs sent by transmit window) implies an overload
of the network but ensures quick data recovery. Then, we have to test
values greater and less than 1 for this ration.

C2.2: In real life, the RTT may vary considerably depending on the physical
network. If the network is real-time oriented, the values taken by RTT

may vary between 400ms to 40ms (ATM networks). For DATA PERIOD,
the value given as example in [SFC+01] is ≈ 60ms. So, the interesting
cases will concern values of RTT/DATA PERIOD ≥ 1 or closer to 1 (video
applications usually run faster than the network).

C3: Choose values allowing to generate the LTSs. For example, we abstract the
real values of TXW SIZE to values between 1–5. We do the same with RTT

and DATA PERIOD values.

4 However, for values outside the set taken here, we obtain in some cases state explo-
sion.



6.2 Properties checked

On the LTS generated from the model we checked properties like deadlock free-
dom, absence of overflows for FIFOs, and a lost data packet is either signaled as
lost or recovered. We used these properties only to check the correctness of our
abstract model.

The temporal logic formulae φ used to prove Property 1 is: “ODATA packet
number SQN is sometimes signaled as lost”. In the regular free µ-calculus, this
formula is:

<true*.’.*sn_in,ODATA,{_SQN_},.*’.true*.’.*OUTLOSS,{_SQN_}.*’> true

which means that it is possible to have a sequence of transitions having an input
of ODATAwith number SQN on queue sn (sub-string sn_in,ODATA,{_SQN_}) and
then this packet is signaled as lost (sub-string OUTLOSS,{_SQN_}). The property
is parameterized by the SQN number which belongs to 0..MAX NB DATA.

If the result of model-checking φ is false, then the packet is never signaled as

lost (i.e. it is either no lost or always recovered).

6.3 Results and discussion

The results for a part of experiments done are presented on Tables 2–4. The
experiments are looking to the truth value of checking φ while varying each
parameter involved in the Equation 1. We report value b ∈ {t, f} in the columns
corresponding to a given sequence number if the result of checking φ for this
sequence number is ¬b. The results in italic correspond to (unrelevant) cases
when the sequence number does not satisfy the hypothesis of Property 1 or
Equation 1 is not satisfied (see the last column of tables).

The tables 2 and 3 report about the recover of losses based on ∆ODATA
(assuming ∆SPM = ∞). Table 4 reports about the impact of ambient SPMs. In
all these tables we limit our report to experiments with an RTT value fixed to
8. Instead, we vary the value of DATA PERIOD in order to cover all the cases
defined at the beginning of this section. The last paragraph below reports on
the consequences of varying the RTT value.

Recovery based on ODATA This case corresponds to DATA PER SPM >
MAX NB LOSS. The eight series of experiments done vary the three remaining
parameters (MAX NB LOSS, TXW SIZE, and DATA PERIOD). Note that in all config-
urations tested in Tables 2 and 3, the MAX NB LOSS last packets may be defini-
tively lost. So, the hypothesis of Property 1 is checked to be important. Another
interesting result is the check of the necessity of Equation 1 since when it is false,
all the packets (with numbers satisfying or not the hypothesis of Property 1) can
be lost.

Recovery based on SPM To test this case, we consider only configurations where
DATA PER SPM < MAX NB LOSS, except the first line of Table 4 which is used to
show the difference between the recovering based on ODATA and on SPM. Indeed,



Table 2. Effect of the production rate DATA PERIOD on the loss recovery.

MAX

NB LOSS

MAX

NB DATA

DATA

PER SPM

TXW

SIZE
RTT

DATA

PERIOD

LTS Msg. always delivered
Eq. 1

States Trans. 0 1 2 3 4 5 6 7 8 9

Increasing the size of the transmission, MAX NB DATA

1 4 ∞ 2 8 9 853 910 t t t t f − − − − − 1 > 0.89

1 7 ∞ 2 8 9 1684 1795 t t t t t t t f − − 1 > 0.89

1 9 ∞ 2 8 9 2353 2505 t t t t t t t t t f 1 > 0.89

Varying the production rate, DATA PERIOD

1 9 ∞ 2 8 15 2321 2473 t t t t t t t t t f 1 > 0.53

1 9 ∞ 2 8 10 3607 4222 t t t t t t t t t f 1 > 0.8

1 9 ∞ 2 8 9 2353 2505 t t t t t t t t t f 1 > 0.89

1 9 ∞ 2 8 8 6390 7601 f f f f f f f f f f 1 > 1

1 9 ∞ 2 8 7 2113 2238 f f f f f f f f f f 1 > 1.1

1 9 ∞ 2 8 5 2347 2557 f f f f f f f f f f 1 > 1.6

1 9 ∞ 2 8 3 4960 5941 f f f f f f f f f f 1 > 2.7

Varying the production rate with wider window and same TXW SIZE−MAX NB LOSS

2 9 ∞ 3 8 15 11420 13074 t t t t t t t t f f 1 > 0.53

2 9 ∞ 3 8 10 19649 24575 t t t t t t t t f f 1 > 0.8

2 9 ∞ 3 8 9 11829 13498 t t t t t t t t f f 1 > 0.89

2 9 ∞ 3 8 8 60393 78011 f f f f f f f f f f 1 > 1

2 9 ∞ 3 8 7 10853 12194 f f f f f f f f f f 1 > 1.1

2 9 ∞ 3 8 5 17623 21324 f f f f f f f f f f 1 > 1.6

2 9 ∞ 3 8 3 33717 42744 f f f f f f f f f f 1 > 2.7

Varying the production rate with wider window and bigger TXW SIZE−MAX NB LOSS

1 9 ∞ 4 8 15 2344 2489 t t t t t t t t t f 3 > 0.53

1 9 ∞ 4 8 10 3532 4088 t t t t t t t t t f 3 > 0.8

1 9 ∞ 4 8 5 3546 4106 t t t t t t t t t f 3 > 1.6

1 9 ∞ 4 8 4 21180 28065 t t t t t t t t t f 3 > 2

1 9 ∞ 4 8 3 6443 7848 t t t t t t t t t f 3 > 2.7

1 9 ∞ 4 8 2 155587 225502 f f f f f f f f f f 3 > 4



Table 3. Effect of the number of losses MAX NB LOSS and of the window size TXW SIZE

on the loss recovery.

MAX

NB LOSS

MAX

NB DATA

DATA

PER SPM

TXW

SIZE
RTT

DATA

PERIOD

LTS Msg. always delivered
Eq. 1

States Trans. 0 1 2 3 4 5 6 7 8 9

Varying the window size, TXW SIZE

1 9 ∞ 4 8 9 2376 2521 t t t t t t t t t f 3 > 0.89

1 9 ∞ 3 8 9 2366 2515 t t t t t t t t t f 2 > 0.89

1 9 ∞ 2 8 9 2353 2505 t t t t t t t t t f 1 > 0.89

1 9 ∞ 1 8 9 2098 2225 f f f f f f f f f f 0 > 0.89

Varying the window size and faster source, i.e. less DATA PERIOD

1 9 ∞ 4 8 8 6088 7203 t t t t t t t t t f 3 > 1

1 9 ∞ 3 8 8 6440 7641 t t t t t t t t t f 2 > 1

1 9 ∞ 2 8 8 6390 7601 f f f f f f f f f f 1 > 1

1 9 ∞ 1 8 8 4053 4929 f f f f f f f f f f 0 > 1

Varying the window size and more losses

2 9 ∞ 5 8 9 11915 13566 t t t t t t t t f f 3 > 0.89

2 9 ∞ 4 8 9 11878 13540 t t t t t t t t f f 2 > 0.89

2 9 ∞ 3 8 9 11829 13498 t t t t t t t t f f 1 > 0.89

2 9 ∞ 2 8 9 10597 11934 f f f f f f f f f f 0 > 0.89

2 9 ∞ 1 8 9 7992 8536 f f f f f f f f f f −1 > 0.89

Varying the number of losses

0 9 ∞ 5 8 9 248 253 t t t t t t t t t t 5 > 0.89

1 9 ∞ 5 8 9 2383 2523 t t t t t t t t t f 4 > 0.89

2 9 ∞ 5 8 9 11915 13566 t t t t t t t t f f 3 > 0.89

3 9 ∞ 5 8 9 46368 55966 t t t t t t t f f f 2 > 0.89

4 9 ∞ 5 8 9 136148 170412 t t t t t t f f f f 1 > 0.89

5 9 ∞ 5 8 9 307266 391888 f f f f f f f f f f 0 > 0.89

Table 4. Effect of the ambient rate DATA PER SPM on the loss recovery.

MAX

NB LOSS

MAX

NB DATA

DATA

PER SPM

TXW

SIZE
RTT

DATA

PERIOD

LTS Msg. always delivered
Eq. 1

States Trans. 0 1 2 3 4 5 6 7 8 9

Varying the rate of ambiant SPM, DATA PER SPM

3 9 ∞ 3 8 6 186456 248566 f f f f f f f f f f 0 > 1.3

3 9 4 3 8 6 610863 820882 f f t t f f t t f f 0 > 1.3

3 9 3 3 8 6 483265 643931 f t t f t t f t t f 1 > 1.3

3 9 2 3 8 6 283761 375570 t t t t t t t t t t 2 > 1.3

3 9 1 3 8 6 702196 938857 t t t t t t t t t t 3 > 1.3

Varying the production rate, DATA PERIOD

3 9 3 3 8 10 138383 178656 t t t t t t t t t f 1 > 0.8

3 9 3 3 8 9 76004 89939 t t t t t t t t t f 1 > 0.89

3 9 3 3 8 8 683325 911658 f t t f t t f t t f 1 > 1

3 9 3 3 8 7 75111 87847 f t t f t t f t t f 1 > 1.1

3 9 3 3 8 6 483265 643931 f t t f t t f t t f 1 > 1.3

3 9 3 3 8 5 115770 142441 f t t f t t f t t f 1 > 1.6



in the configuration corresponding to the first line, all packets are lost, but in
the next configurations, all packets satisfying the hypothesis are recovered. An
interesting point is that, even if the Equation 1 is not satisfied, some packets
are always recovered (two per DATA PER SPM period). In fact, some packets sent
before an SPM can always be recovered because the sum ∆SPM + RTT is small
enough to recover before the window advance.

In both cases, when DATA PERIOD is increased, the number of packets lost
increases.

Considerations on sizes of LTSs In some series of experiments, the size of the
state space increases globally, but not locally. It is particularly visible on the
second, third, and forth series of Table 2. This global increase seems “normal”:
there are more packets in the system when DATA PERIOD increases so the system
is more “complex”.

Nevertheless, there are some local decreases: in the second series of Table 2,
when DATA PERIOD decreases from 10 to 9 or from 8 to 7, etc., and in the second
series of Table 4 when DATA PERIOD decreases from 10 to 9 and from 8 to 7. The
explanation we found to this phenomenon involves the RTT and DATA PERIOD.
Indeed, when RTT and DATA PERIOD are coprime, there are less events to inter-
leave than when they have a common divisor. So the sizes of LTSs are smaller
in the first case than in the second. To check this explanation, we also did the
experiments of in Table 2 with different values of RTT (more details presented
in [Boy02]).

7 Conclusion

The verification and synthesis problems for parameterized system are difficult
problems when the parameters are related by non-linear relations. In this paper
we propose a methodology using finite and real-time model-checking to deal with
the synthesis problem on such systems. Of course, the problem of synthesis is not
completely managed. We obtain a relation by carefully modeling and analyzing
the protocol.

Such a work gives some ideas about how the existing finite verification tools
can be used to deal with parameterized verification. At the present time, the
use of Unix shell scripts seems to be unavoidable because there are no means to
easily instantiate parameters in models and properties. It would be useful to have
specification languages and verification scripts allowing to specify parameterized
models and properties and then to instantiate these specifications with actual
values in a functional style.

Another contribution is design of a (static but almost complete) formal model
for the PGM protocol and the synthesis of the constraint between its parameters.
The modeling process allows us to signal some lacks in the reference specification.

Finally, by doing the present work, we won the experience for obtaining sim-
pler models for PGM such that they can be managed by the existing tools for
infinite state systems. Indeed, the abstract model considered here is too com-
plex for tools doing parameterized model-checking, e.g. TReX [BCAS01]. The



sources of complexity are the great number of infinite domain variables (since
finite integer variables are now considered as counters), and the non-linear re-
lation between integer parameters. First experiments with TReX lead to mem-
ory explosion due to the size of symbolic representation used for parameterized
configurations for clocks and counters. By looking at these representations, we
obtain some hints about how to reduce their size. For example, the use of live
analysis for counter variables may be useful due to the lack of communication
by shared variables.

References

[AAB00] A. Annichini, E. Asarin, and A. Bouajjani. Symbolic techniques for para-
metric reasoning about counter and clock systems. In E.A. Emerson and
A.P. Sistla, editors, Proceedings of the 12th CAV, volume 1855 of LNCS,
pages 419–434. Springer Verlag, July 2000.

[AHV93] R. Alur, T.A. Henzinger, and M.Y. Vardi. Parametric real-time reasoning.
In ACM Symposium on Theory of Computing, pages 592–601, 1993.

[BBP02] B. Bérard, P. Bouyer, and A. Petit. Analysing the pgm protocol with up-
paal. In P. Pettersson and W. Yi, editors, Proceedings of the 2nd Workshop
RT-TOOLS, Copenhagen (Denmark), August 2002.

[BCALS01] A. Bouajjani, A. Collomb-Annichini, Y. Lackneck, and M. Sighireanu.
Analysing fair parametric extended automata analysis. In Proceedings of
SAS’01, LNCS. Springer Verlag, July 2001.

[BCAS01] A. Bouajjani, A. Collomb-Annichini, and M. Sighireanu. Trex: A tool for
reachability analysis of complex systems. In Proceedings of CAV’01, LNCS.
Springer Verlag, 2001.

[BFG+00] M. Bozga, J.-C. Fernandez, L. Girvu, S. Graf, J.-P. Krimm, and L. Mounier.
If: A validation environment for times asynchronous systems. In E.A. Emer-
son and A.P. Sistla, editors, Proceedings of the 12th CAV, volume 1855 of
LNCS, pages 543–547. Springer Verlag, July 2000.

[BL02] B. Boigelot and L. Latour. ADVANCE Project Deliverable Report, chapter
Verifying PGM with infinitely many packets. LIAFA, 2002.

[Boi98] B. Boigelot. Symbolic Methods for Exploring Infinite State Spaces. PhD
thesis, University of Liège, 1998.

[Boy02] M. Boyer. On modeling and verifying the pgm protocol. Technical report,
LIAFA, 2002.

[Bul98] T. Bultan. Automated symbolic analysis of reactive systems. PhD thesis,
University of Maryland, 1998.

[EL86] E. A. Emerson and C-L. Lei. Efficient model checking in fragments of the
propositional mu-calculus. In Proceedings of the 1st LICS, pages 267–278,
1986.

[EM02] J. Esparza and M. Maidl. ADVANCE Project Deliverable Report, chapter
Verifying PGM with infinitely many topologies. LIAFA, 2002.

[FGK+96] J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and
M. Sighireanu. Cadp (cæsar/aldebaran development package): A protocol
validation and verification toolbox. In R. Alur and T.A. Henzinger, editors,
Proceedings of the 8th CAV, volume 1102 of LNCS, pages 437–440. Springer
Verlag, August 1996.



[HRSV01] T. Hune, J. Romijn, M. Stoelinga, and F. Vaandrager. Linear parametric
model checking of timed automata. In Proceedings of TACAS’01, 2001.

[Koz83] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer
Science, 27:333–354, 1983.

[MS00] R. Mateescu and M. Sighireanu. Efficient on-the-fly model-checking for
regular alternation-free mu-calculus. In Proceedings of the 5th International
Workshop on Formal Methods for Industrial Critical Systems FMICS’2000
(Berlin, Germany), April 2000.

[PL00] P. Pettersson and K.G. Larsen. Uppaal2k. Bulletin of the European As-
sociation for Theoretical Computer Science, 70:40–44, February 2000.

[SFC+01] Tony Speakman, Dino Farinacci, Jon Crowcroft, Jim Gemmell, Steven Lin,
Dan Leshchiner, Michael Luby, Alex Tweedly, Nidhi Bhaskar, Richard Ed-
monstone, Todd Montgomery, Luigi Rizzo, Rajitha Sumanasekera, and
Lorenzo Vicisano. PGM reliable transport protocol specification. RFC
3208, IETF, Decembre 2001. 111 pages.


