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A NEW APPROACH TO TRANSPORT EQUATIONS ASSOCIATED TO A REGULA R
FIELD: TRACE RESULTS AND WELL-POSEDNESS.

L. ARLOTTI,J. BANASIAK &B. LODS

ABSTRACT. We generalize known results on transport equations aasdcto a Lipschitz field
.Z on some subspace @" endowed with some general space meagurdVe provide a new
definition of both the transport operator and the trace nreasover the incoming and outgoing
parts of 02 generalizing known results fron®[16]. We also prove the well-posedness of some
suitable boundary-value transport problems and descrilfeli generality the generator of the
transport semigroup with no-incoming boundary conditions

1. INTRODUCTION

In this paper we present new methodological tools to ingati the well-posedness of the
general transport equation

Of(x,t)+ . F(x) - Vxf(x,t) =0 (x e, t>0), (1.1a)
supplemented by boundary condition
f|F7 (Y> t) = ¢*(Y> t)> (y € F*a t> 0)3 (llb)

and the initial condition

F(x,0) = fo(x), (x € Q). (L.10)
HereQ is a sufficiently smooth open subset®¥, ', are suitable boundaries of the phase space
andy_ is a given function of the trace spaté(I'_, du_) corresponding to the boundary. (see
Section 2 for details).

The present paper is part of a series of papers on transpatieqas with general vector fields
[5, 6] and introduce all the methodological tools that allow usardy to solve the initial-boundary
problem (L.1) but also to treat in€] the case of abstract boundary conditions relying the inogm
and outgoing fluxes, generalizing the results3jf [

The main novelty of our approach is that we assiieto be endowed with a general positive
Radon measurg. Here by a Radon measure we understand a Borel measure ¢onifdetions,
see [L5, p. 332]) which is finite on compact sets. As we shall see thieron, taking into account
such general Radon measuréeads to a large amount of technical difficulties, in patécin the
definition of trace spaces and in the derivation of Greensitda. Moreover, for such a measure
1, it is far from being trivial to identify the vector field” - V. to the time derivative along the
characteristic curves (as done $) Formulae (5.4) & (5.5), p.392]): the main difficulty stermgi
from the impossibility of applying classical convolutiorgaments (and the so-called Friedrich’s
lemma). We overcome this difficulty by introducing new mfidtation techniques along the char-
acteristic curves. Let us explain in more details our gdrassumptions:

Keywords:Transport equation, Boundary conditiod%,-semigroups, Characteristic curves.
AMS subject classifications (200@)7D06, 47D05, 47N55, 35F05, 82C40.
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2 L. ARLOTTI, J. BANASIAK&B. LODS

1.1. General assumption and motivations.The transport coefficien# is atime independent
vector field.#Z : RY — R which is (globally)Lipschitz-continuousvith Lipschitz constant
k> 0,i.e.

| #(x1) — F (x2)| < K|x1 — X2 for any x;,x, € RV, (1.2)
Clearly, one can associate a fl¢®, ).cr to this field.Z (with the notations of Sectio.1, T; =
O(-,t,0)) and we make the following fundamental assumption (knowhiasville’s Theorem
whenever is the Lebesgue measure) git

Assumption 1. The measurg is invariant under the flowW7;);cr, i.e. u(73A) = p(A) for any
measurable subset ¢ RY and anyt € R.

Remark 1.1. Notice that, wheneven is the Lebesgue measure o®¥, it is well-known that
Assumptiort is equivalent taliv(.# (x)) = 0 for anyx € RY. More generally, by virtue df2,
Remark 3 & Proposition 4JAssumptiori holds for a general Borel measureprovided the field
7 is locally integrable with respect to anddivergence-freawith respect tq: in the sense that

[, F @6 Vs Ti0)antx) =0, vt e R

for any infinitely differentiable functionf with compact support.

A typical example of such a transport equation is the saedallasov equation for which:

i) The phase spac® is given by the cylindrical domaif2 = D x R? ¢ RS whereD is a
sufficiently smooth open subset &F, referred to as thposition spacewhile the so—called
velocity spacés here given byR3. The measurg is given bydy(x) = dzdg(v) whereg is
a suitable Radon measure B, e.g. Lebesgue measure oWt for continuous models or
combination of Lebesgue measures over suitable spherésefonultigroup model.

i) Foranyx = (z,v) € D x R3,

F(x) = (v,F(x,v)) € R° (1.3)

whereF = (Fy, Fy, F3) is atime independent force field ovBrx R? satisfying Assumption
1and (.2). The free transport case, investigatedlf, [4], corresponds td& = 0.

The existence of solution to the transport equatibid is a classical matter when considering
the whole spac& = RY. In particular, the concept of renormalized solutionswadido consider
irregular transport coefficient(-) (see [LO] and the recent contribution®,[13]) which is of
particular relevance in fluid mechanics.

On the other hand, there are few results addressing thalibiiundary value problemi (1),
possibly due to difficulties created by the boundary coodgi(L.15). We mention here the seminal
works by C. Bardos§], and by R. Beals and V. Protopopesd) (see also 11, 14]). Let us
however mention that the results &f [L1] introduce restrictive assumptions on the charactesistic
of the equation. Forinstance, fields with 'too many’ per@tilajectories create serious difficulties.
They are however covered in a natural way by the theory preddrere, see Exampl@ss& 2.6.

1.2. Presentation of the results.In this paper, we revisit and generalize the afore-mentione
results to the general ca¥ # 0 and for a general Radon measure The latter, in particular,
leads to numerous technical problems such as e.g. detdionired suitable measurgs,. over the
‘incoming’ and ‘outgoing’ partd™ of 9. We provide here a general construction of these ‘trace
measures’ generalizing, and making more precise, thetseso, 11]. This construction allows
us to establish Propositiah12 which allows to compute integrals ov€r via integration along
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the integral curves of? (-) coming from the boundar§<?, and which is free from some restrictive
assumptions obp. cit In particular, we present a new proof of the Green formudaifging and
removing gaps of the proofs i®[11]. Of course, the boundary conditiofr.(b) we treat here is
less general than the abstract ones investigate® ii] but, as we already mentioned it, the tools
we introduce here will allow us to generalize, in a subsetpaper ], the results of thep. cited
by dealing with abstract boundary conditions.

Another major difficulty, when dealing with a general Radogasure., is to provide a precise
definition of the transport operatdrt,., associated tol(1). It appears quite natural to define the
transport operatdr,,,., (with its maximal domain ori.!(£2, du)) as aweak directional derivative
along the characteristic curvea the L'-sense. However, it is not clearpriori that any function
f for which the weak directional derivative exists Il (2, du) (with appropriate and minimal
class of test-functions) admits a trace o¥iar. With the aim of proving such a trace result, we
provide here a new characterization of the transport operatated to amild representatiorof
the solution to {.1). Namely, we prove (Theorerd.6) that the domainZ(7,,.x) (as defined in
Section 3), is precisely the set of functiofiss L' (€2, dyu) that admits a representative which is
absolutely continuous along almost any characteristiozeur

Note that in the classical case wheis the Lebesgue measure, such a representation is known
to be true 10, Appendix]. Actually, in this case, one defines the dom@ifi,,.x) as the set
of all f € L'(£2,dpu) for which the directional derivative-.Z - V f exists in the distributional
sense and belongs o' (2, dy). Then, by convolution arguments, it is well-known that tie¢ s
G () N D(Tmax) is dense i (Tnax) for the graph norm f|| = || f|| + |- - V£]|.

The question is much more delicate for a general Radon measundeed, in such a case,
the convolution argument used in the case of the Lebesgusumeedoes not apply anymore. Our
strategy to prove the characterizationZgf. is also based on a convolution argument but it uses
mollification technique along the characteristic cunasdeveloped in Section 3. Such a result
shall allow us to obtain a rigorous derivation of Green'sriafa, clarifying some results o].

1.3. Plan of the paper. The organization of the paper is as follows. In Section 2 vieduce
main tools used throughout the paper and present the afatemed new results concernirigr
tegration over the characteristic curve$.# as well asa new construction of the boundary mea-
suresover the ‘incoming’ and ‘outgoing’ part+ of 9Q which generalizes and clarifies that of
[9, 11]. In Section 3 we provide a construction of the maximal tpams operator7 ... It is de-
fined in a weak sense, through its action on suitably defirduactions. The fundamental result
of this section shows that any function in the domé&i(iZ,,,x) admits a representation which is
absolutely continuous along almost any characteristicclyhin turn, allows for existence of its
traces on the outgoing and incoming parts of the boundarySeiction 4 we apply the results
of Section 3 to prove well-posedness of the time—dependansport problem with no reentry
boundary conditions associated wiff... Moreover, we consider the corresponding stationary
problem and, as a by-product, we recover a new proof oGiteen formula

2. INTEGRATION ALONG THE CHARACTERISTICS

2.1. Characteristic curves. A crucial role in our study is played by the characteristicves
associated to the fieléF. Precisely, for ank € RY andt € R, consider the initial-value problem

%X(s) = 7 (X(s)), (s € R);

X(t) = x.

(2.1)
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Since.Z is Lipschitz continuous o, Eq. .1) has a uniquglobal in timesolution and this
allows to define the flow—mappin® : RY x R x R — RY, such that, forx,¢) € RY x R, the
mapping:

X(:) : seR+— O(x,t, )
is the only solution of Eq.4.1). Being concerned with solutions to the transport equatlof) in
the region(2, we have to introduce the definition of stay times of the otiaréstic curves irf2:

Definition 2.1. For anyx € €, definery(x) = inf{s > 0;©(x,0, +s) ¢ Q}, with the conven-
tion thatinf & = oo, and setr(x) = 74 (x) + 7—(x).

In other words, giverx € Q, Iy = (—7-(x),7+(x)) is the maximal interval for which
O(x,0,s) lies in Q for any s € I and 7(x) is the length of the intervalx. Notice that
0 < 74(x) < oo. Thus, the functior® restricted to the set

A= {(x,t,s); xeQ, teR,se(t—7_(x),t+74(x)) }

is such that®(A) = Q. Note that here welo notassume that the length of the internval =
(—7—(x), 71 (x)) is finite. In particular,/x = R for any stationary poink of .7, i.e. .#(x) = 0.
If 7(x) is finite, then the functioX : s € Ix — O(x,0, s) is bounded since” is Lipschitz
continuous. Moreover, still by virtue of the Lipschitz comtity of ., the only case when. (x)
is finite is when®(x, 0, £s) reaches the boundafjf2 so that®(x, 0, +74(x)) € 9Q2. We note
that, sinceZ is Lipschitz around each point éi2, the points of the sety € 0Q2; % (y) = 0}
(introduced in 9, 11]) are equilibrium points of the# and cannot be reached in finite time.

Remark 2.2. We emphasize that periodic trajectories which do not meetbtbundaries have
74+ = oo and thus are treated as infinite though geometrically theytamunded.

Finally we mention that it is not difficult to prove that the ppangs7+ : © — R are lower
semicontinuous and therefore measurable, see @,.g., 301]

The flow®(x, t, s) defines, at each instahta mapping of the phase spaénto RY. Through
this mapping, to each point there corresponds the poirf; = ©(x,t, s) reached at time by
the point which was at at the ‘initial’ time¢. The flow®, restricted toA, has the properties:

Proposition 2.3. Letx € Q and¢ € R be fixed. Then,
(i) O(x,t,t) =x.
(”) ®(®(X7t7 31)731732) = ®(X7t732)7 Vs1, 82 € (t_T—(X)7t+T+(X))'
(i) O(x,t,s) =0O(x,t —s,0) = O(x,0,s — 1), Vs € (t — 17— (x),t + 74(x)).
(iv) |©(x1,t,s) — O(xa,t,s)| < exp(k|t —s|)|x1 —x2| foranyx;,xs € Q,s—t € Iy, N Ix,.

An important consequence 6fii) above is tha®(x,0,s) = O(x,—s,0) for anyx € €,
0 < s < 74(x). Therefore, from now on, to shorten notations we shall denote

®(x,t) =O(x,0,t), VteR,

so that®(x, —t) = ©(x,t,0), t € R. We define the incoming and outgoing part of the boundary
02 through the flowd:

Definition 2.4. The incoming™_ and the outgoing’;. parts of the boundarg2 are defined by:
'y :={yed;Ix e, 71(x) <ocandy = ®(x,+7+(x)) } . (2.2)
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Properties ofb and ofr. imply thatT';. are Borel sets. Itis possible to extend the definition of
7+ toT'1 as follows. Ifx € T'_ then we put_ (x) = 0 and denote (x) the length of the integral
curve havingx as its left end—point; similarly ik € 'y then we put— (x) = 0 and denote—_ (x)
the length of the integral curve havirgas its right endpoint. Note that this definition implies that
T+ are measurable oveeUT'_ UT',.

Let us illustrate the above definition bf. by two simple2D examples:

Example 2.5(Harmonic oscillator in a rectanglg. LetQ = (—a,a) x (=&, ) with a, £ > 0 and
let us consider the harmonic oscillator force field

F(x) = (v, —w?x), foranyx = (z,v) € Q (2.3)
wherew > 0. We take as: the Lebesgue measure ovRf and, sinceZ is divergence-free,
Assumptionl is fulfilled. In this case, for anky = (zg,v9) € Q, the solution(z(t),v(t)) =
®(xp,t) to the characteristic equatio%lX(t) =.7 (X(t)), X(0) = xo, given by

P (x,t) = (wo cos(wt) + % sin(wt) ; —zow sin(wt) + v cos(wt)) ,
w
is such that
W (t) + v (t) = w?ad + v}, t € (—71-(x0),7+(x0))

which means that the integral curves associate& tareellipsescentered af0,0) and oriented
in the counterclockwise direction. Now,

00 = (1-ab x [-6.8) U (0 x [ U (Fraal < -6 ) U (1ol < (6))

and it is easy to check that

re = (o) x 60 ) U (a2 0.0 ) U (100 % 20 ) U (0.0 ¢ (59 ).

Notice thatl'y NT'_ = {(a,0), (0,¢), (—a,0), (0,—¢)} and
0\ (I'y UT') = {(a,€), (@, =€), (=a,£), (—a, )}

is a discrete set (of linear Lebesgue measure zero).

Example 2.6(Hamonic oscillator in a stadiun). Consider now the two-dimensional phase space
(whereR? is still endowed with the Lebesgue measuje

Q={x=(z,0)eR?; 2> +®<2and-1<v <1}

and consider the harmonic oscillator force figkdgiven by @.3) with w = 1 for simplicity. Then,
the integral curves associated.#o arecirclescentered at0, 0) and oriented in the counterclock-
wise direction. In this case, one can see that

My ={(z,-1); - 1<tz <0}U{(z,1); 0 < £z < 1}.

In particular, one sees thaf2\ (I, Ul'_) = {(z,v) € R?; z* +v? =2; -1 < v < 1} isa’big’
part of the boundarg€2 (with positive linear Lebesgue measure). Notice also thék) = +oo
for anyx = (x,v) with 22 +v? < 1.

The main aim of the present discussion is to repre$gras a collection of characteristics
running between points df _ andI", so that the integral ove® can be split into integrals over
I'_ (or I';) and along the characteristics. However, at present weotadm this in a precise
way since, in general, the sdis andI"_ do not provide a partition ofS2 as there may be ‘too
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many’ characteristics which extend to infinity on eitheresi®&ince we have not assum@do be
boundedI'_ orI"; may be empty and also we may have characteristics running-freo to +oco
such as periodic ones. Thus, in general, characterisaéesngf fromI"_ or ending afl";. would
not fill the whole€2 and, to proceed, we have to construct an auxiliary set byhdiig 2 into the
time domain and use the approach @fjhich is explained below.

2.2. Integration along characteristics. For any0 < T' < oo, we define the domain
Qr =2 x(0,7)

and the measuréu,r = du ® dt on Q7. Consider the vector field ovéd:

Y =0+ F(x) - Vyx=() V¢
whered/ (¢) = (F(x),1) for any{ = (x,t). We can define the characteristic curveszofas the
solution&(s) = (X(s),6(s)) to the system(f—sg(s) =/ (&(s)), I.e.

IX(s) = F(X(s). Th)=1  (seR)
S ds
with
X(0)=x, 6(0)=t.

It is clear that the solutiog(s) to the above system is given by

X(s) = ®(x,s), 0(s) =s+t,

and we can define the flow of solutidh(¢, s) = (®(x, s), s+t) associated te7 and the existence
times of the characteristic curves Yfare defined, for ang = (x,t) € Qr, as

04 (&) =inf{s > 0,(®(x,=£s), £s + 1) & Qr}.

The flow ¥ (-, ) enjoys, mutatis mutandisthe properties listed in Propositich3 and ur is in-
variant under. Moreover, since? is clearly Lipschitz continuous 7, no characteristic of
can escape to infinity in finite time. In other words, all cleéeastic curves ol now have finite
lengths. Indeed, ifp(x, +s) does not reach(?, then the characteristic curv®(¢, +s) enters or
leavesQ through the bottonf2 x {0}, or through the tof2 x {7’} of it. Precisely, it is easy to
verify that for{ = (x,t) € Q1 we have

() =T () AT —t) and (&) =7 (x) AL,
whereA denotes minimum. This clearly implieap{/.(§) ; £ € Qr } < T. Define now
Yy = {C € 0Qp; I¢ € Qp such that = ¥(£, £04(€))}.

The definition of . 7 is analogous td'.+ with the understanding that now the charateristic curves
correspond to the vector field’. In other words,X_ 7 (resp. X r) is the subset 0O 7
consisting of all left (resp. right) limits of charactertsturves of< in 2 wheread_ (resp.
I') is the subset 02 consisting of all left (resp. right) limits of charactertsturves of.% in

Q. The main difference (and the interest of such a liftin§p) is the fact thatach characteristic
curve of.«Z does reach the boundaries. r in finite time The above formulae allow us to
extend functiong . to X1 7 in the same way as we extended the functiengo I' .. With these
considerations, we can represent, up to a set of zero medseghase spad@ as

Qr ={¥(,s); {cX_7,0<s <l ()}

(W 5) £ T, 0<s < () 9
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With this realization we can prove the following:

Proposition 2.7. LetT" > 0 be fixed. There are unique positive Borel measdreson X, 7 such
thatdur = dvy ® ds = drv_ ® ds.

Proof. For anyd > 0, defined; as the set of all bounded Borel subsétsof ¥_  such that
04(€) > dforanyé € E. Letus nowfix E € &5. Forall0 < o < 6 put

E, ={¥(,s); { € E,0<s<o0}.

Clearly E, is a measurable subset@fr. Define the mapping : o € (0,0] — h(o) = pr(E,)
with #(0) = 0. If o1 ando, are two positive numbers such that+ o2 < §, then

E01+02 \E0'1 = {‘Il(£> S); el o1 <s<o+ 02} = {‘I’(%Ul); ne EO'Q}‘

The properties of the flowr (see Propositior2.3) ensure that the mapping — ¥(n,01) is
one-to-one and measure preserving, so that

1 (Eoytoy \ Eoy) = pr(Egy) = h(02).
SinceE,, 15, = Eyy U (Ey 40, \ Eoy ), We immediately obtain
h(01+02) :h(01)+h(02) for any o1, o9 > 0 with o1 + o9 < 0. (25)

This is the well-known Cauchy equation, though defined onlgio interval of the real line. It can
be solved in a standard way using non-negativity insteadwficuity, yielding:

h(o) = cgo forany 0<o<é

wherecg = h(d)/0. We definev_(E) = cg. Itis not difficult to see that, with the above
procedure, the mapping_(-) defines a positive measure on the rifig= | J;. , &5 of all the Borel
subsets ok _ 7 on which the functior?, (£) is bounded away frorfl. Such a measure_ can be
uniquely extended to the-algebra of the Borel subsets Bf_ 1 (see e.g.12, Theorem A, p. 54]).
Consider now a Borel subsét of ©_ - and a Borel subset of R™, such that for alt € £ and

s € I'wehave) < s < (4(§). Then

ExI={®(s);€cB,sel}Cr.

Thanks to the definition af_(-), we can state thaty(E x I) = v_(E)meas(I) where mead)
denotes the linear Lebesgue measurd af R. This shows thatlyr = dv_ ® ds. Similarly
we can define a measure on X 7 and prove thatlyr = dv; ® ds. The uniqueness of the
measureslr+ is then obvious. O

Remark 2.8. Note that the above construction of the Borel measdresdiffers from that of11,
Lemmas XI.3.1 & 3.2][9, Propositions 7 & 8jvhich , moreover, only apply whenis absolutely
continuous with respect to the Lebesgue measure. Our emtistin is much more general and can
also be generalized to the case of a non—divergence forcefie[5].

Next, by the cylindrical structure &2, and the representation bf, 7 as
Y_r=T_x(0T)ux{0} and ;= (T4 x(0,7))UQx{T},

the measuredry overI'y x (0,7") can be written aslvy = duy ® dt, wheredu are Borel
measures oil. This leads to the following
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Lemma 2.9. There are unique positive Borel measus. on I'. such that, for anyf €
Ll(QT,dMT)

T T (y)At
fecdurte) = [ [Cany) [ f(@(y. =50 - s)as
Qr 0 ry 0 (2.6)

T_(X)AT
e [aneo [T @) 7 - s

and

T T+ (V)N T 1)
| seenaureen = [a [ aee) [T @0+ sas
Qr 0 I_ 0 (27)

+/Qd,u(x) /OT+(X)AT f(®(x,5),s)ds.

The above fundamental result allows to compute integrads the cylindrical phase-spa€g,r
through integration along the characteristic curves. lsehow generalize it to the phase space
Q. Here the main difficulty stems from the fact that the chamastic curves of the vector field
% are no longer assumed to be of finite length. In order to extemima2.9to possibly infinite
existence times, first we prove the following:

Lemma 2.10. LetT" > 0 be fixed. Thenry(x) < T for anyx € Q if and only ifr_(x) < 7" for
anyx € Q.

Proof. It is easy to see that, (x) < T for anyx € € is equivalent tor(x) < T for anyx € Q
and this is also equivalent ta. (x) < T for anyx € Q. O

Hereafter, the support of a measurable functfotefined ont? is defined aSuppf = Q \ w
wherew is the maximal open subset ©f on which f vanishesl—almost everywhere.

Proposition 2.11. Let f € L'(£2,dy). Assume that there exists > 0 such thatr, (x) < 7, for
anyx € Supp(f). Then,

[ a0 = [ ) | Y @y, ds

ry

- [ e | " @y, s)as.

(2.8)

Proof. For anyT > 79, define the domaif2y = € x (0,7). SinceT < oo, it is clear that
f € LY(Qp,dudt) and, by @.6), we get

7 [ reodute) = [ Ca / ) / T @y, —s)dss

[ aneo) [ " @ -

Since the formula is valid for an§" > 7, differentiating with respect t@" leads to the first
assertion. The second assertion is proved in the same wasitty fiormula 2.7). O
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To drop the finiteness assumptionon(x), first we introduce the sets
Qp ={xeQ; 1:(x) < 0}, Qi ={x€Q; 7(x) = 0},
and
i ={y el's; 7=(y) = oo}.
Then

Proposition 2.12. Givenf € L'(€2,du), one has

TJF( )
F(0dp(x) = /F Qi (y) /0 " F@(y.Fs)) ds, (2.9)

Qyp

and

/Q PR /F ) /0 £ (®(y.55)) ds. 2.10)

Proof. Assume firstf > 0. Let us fixT' > 0. Itis clear thatx € Q satisfiesr; (x) < T if and
only if x = ®(y, —s),withy € I'y and0 < s < T A 7_(y). Then, by Propositio.11,

TAT-(y)
/{T+(x)<T} f(x)du(x) = /FJr dqu(y)/O f(®(y,—s))ds.

Sincef > 0, the inner integral is increasing wihand, using the monotone convergence theorem,
we letT — oo to get

7—(¥)
F()du(x) = / A (y) /0 £ (@(y,—s))ds

Q.

which coincides withZ.9). We proceed in the same way with integrationfonand get the second
part of 2.9). Next we consider the set

A={xeQ;x=P(y,—5),y € Dy, 0<s<T}.

Proposition2.11asserts that
T
[ sedu0 = [ dusty) [ @i -o)ds
A Q0o 0
Letting again” — oo, we get £.10). We extend the results to arbitrafyby linearity. O

Finally, with the following, we show that it is possible t@atsfer integrals over_ to I, :

Proposition 2.13. For anyy € LY(T'_,du_),

/ $(y)dp_(y) = / H(®(z, —_(2)))dpy (2) (2.11)
I\

P\ oo

Proof. For anye > 0, let f. be the function defined oft; N Q_ by
P(@(x, —7-(x))) if 7o (x) + 74(x) > €,
Pe(x) =

T4 (%) + 7 (%)
0 else
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Sincey. € LY(Q, N, du), Egs. @.9) and @.10) give

+(y) ds
/ﬂmﬂ- vl = /{T+<y>>e}\r_oo dﬂ(y)/o T’Z)(y)u(y)

Y(y)dp—(y).

- /{T+<y>>e}\r_oo
In the same way,

q - q 7 (¥) ®
/ﬂmﬂ_ Ye(x)dpu(x) —/{T_(y)>€}\r+oo u+(y)/0 (@(y, _T‘(Y)))T,(y)

_ / (@ (y, =7 (y))du_(y),
T (y)>e I\ oo

which leads to

/ Y(@(y, —7-(y))du+(y) = / U(y)dp-(y)
{r—(¥)>eN\ 4o {r+()>eN\M -
for anye > 0. Passing to the limit as— 0 we get the conclusion. O

We end this section with a technical result we shall needearséquel (see Lemna?3):

Proposition 2.14. Let K be a compact subset &f. Denote
Ky :={yel'y; 3ty € R suchthat®(y,£t) € K foranyt > tp}.
Thenuy (K1) =0.
Proof. Let K be a fixed compact subset 6f. Applying Eq. .9 or (2.10 to the function
f(x) = xx(x), one has

00 > p(K) 2/ dp—(y) /OOO Xk (@ (y,t))dt. (2.12)

By definition, ify € K_, then for some, € R, xx (®(y,t)) = 1 for anyt > to. Therefore,

/ XK (®(y,t)) = oo, Vy € K_.
0
Inequality @.12) implies thatu_ (K_) = 0. One proves the result fd, in the same way. [

3. THE MAXIMAL TRANSPORT OPERATOR AND TRACE RESULTS

The results of the previous section allow us to define the {imal) transport operatdf,,. as
the weak derivative along the characteristic curves. Torbeige, let us define the spacetest
functions?) as follows:

Definition 3.1 (Test—function3. Let%) be the set of all measurable and bounded functipns
Q — R with compact support if2 and such that, for any € Q, the mapping

s € (—7-(x), 74 (x)) — P(P(x,9))
is continuously differentiable with

xe€N— dizp(q)(x, s)) measurable and bounded (3.1)
8 s=0
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Remark 3.2. Notice that the class of test-functiofisis not defined as a subset b7 (€2, du);
that is, we do not identify functions equalalmost everywhere. Itis however a natural question to
know whether two test-functions coincidipealmost everywhere are such that there derivatives
(defined by3.1)) do coincideu-almost everywhere. We provide a positive answer to thistore

at the end of the paper (see Appendix).

An important property of test-functions is the followingnsequence of Propositichl14

Lemma 3.3. Lety € Q) be given. Foru--almost anyy € I'; there exists a sequencet),,
(depending ory) such that
lim t5 = 7. (y) and (®(y,£t5)) =0 VYneN.

n—oo

Proof. Let ¢ € 2 be given and letX = Supp(y)). For anyy € T'_ with 7, (y) < oo one
has®(y, 7+ (y)) € I'+ and, sinceX is compact inQ2, ¢(®(y, 71 (y)) = 0 and the existence of
a sequencét,!),, converging tor, (y) with the above property is clear. Now, Propositidri4
applied toK shows that there exists a 96t  I'_ with . (I" \ I'_) = 0 and such that, for any
y € I'"_, there is a sequenge ),, converging toco such thatb(y, ¢,,) ¢ K for anyn € N. This
proves the result. The statement for is proved in the same way. O

In the next step we define the transport operé®@r.., Z(7Tmax))-

Definition 3.4 (Transport operator7,,.,). The domain of the maximal transport operatfy,.
is the setZ(T.ax) of all £ € L1(2, du) for which there existg € L' (€2, du) such that

[ otweodute) = [ o0 Lo@xs)|  dutx) v eD.

s=0
In this caseyg =: Thmax /-

Remark 3.5. Of course, in some weak sengg..f = —% - Vf. Precisely, for any € €} (2),
the following formula holds:

[ (5600 9600) 1000x) = | T ()00 ().

3.1. Fundamental representation formula: mild formulation. Recall that, iff; and f; are two
functions defined oveR2, we say thaffs is arepresentative of; if u{x € Q; fi1(x) # f2(x)} =

0, i.e. whenf; (x) = fa(x) for u-almost every € Q. The following fundamental result provides
a characterization of the domain 9f(7;,.x):

Theorem 3.6.Let f € L'(£2, ). The following are equivalent:

(1) There existyy € L'(Q, 1) and a representativet® of f such that, foru-almost every
x € Qand any—7_(x) < t; < to < 74(x):

P t) — [H(B(x 1)) = / (@ (x, 5))ds. (32)

t1
(2) f € Z(Tiax). Inthis caseyg = Taxf.

The proof of the theorem is made of several steps. The diffart of the proof is the impli-
cation(2) = (1). Itis carried out through several technical lemmas basedt opllification
along the characteristic curvegecall that, whenever is not absolutely continuous with respect
to the Lebesgue measure, no global convolution argumertikable). Let us make precise what
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this is all about. Consider a sequerieg ),, of one dimensional mollifiers supported|in 1], i.e.
foranyn € N, g, € €5°(R), 0n(s) =01if s ¢ [0,1/n], on(s) =0 andfol/n on(s)ds = 1. Then,
forany f € L'(€2,dpu), define the (extended) mollification:

T_(%)
pno 1) = [ o) F(B0x~))ds

As we shall see later, such a definition corresponds prgdisel time convolution over any char-
acteristic curves (see e.@.4)). Note that, with such a definition, it is not cleapriori that o,, ¢ f
defines a measurable function, finite almost everywhers.gtaved in the following that actually
such a function is integrable.

Lemma 3.7. Givenf € L'(Q,du), 0, ¢ f € L'(Q,du) for anyn € N. Moreover,
lon o FI<IfIl, VfeL'(Q,dp),n €N, (3.3)
Proof. One considers, for a givehi € L' (€, du), the extension of by zero outside?:
Fx) = f(x),  VxeQ  Fx) =0 vxecRY\Q
Thenf € L'(RY,dpu). Let us consider the transformation:
T : (x,5) € RY xR T(x,5) = (®(x,—5),—s) € RN x R.

As a homeomorphismY is measure preserving for pure Borel measures. It is alssunegre-
serving for completions of Borel measures (such as a Leleesggasure) since it is measure-
preserving on Borel sets and the completion of a measuret@é@nel by adding to the Borel
o-algebra all sets contained in a measure-zero Borel set§18eTheorem 13.B, p. 55]. Then,
according to 12, Theorem 39.B, p. 162], the mapping

(x,5) € RN X R — f(®(x,—5))

is measurable as the compositionofwith the measurable functiofx, s) — f(x). Define now
A={(x,8);x€020<s <7 (x)},Aisameasurable subset Bf¥ x R. Therefore, the
mapping

(x,5) € RN X R — f(®(x,—5))xa (X, 5)on(s)

is measurable. Sinag, is compactly supported, it is also integrable oRéY x R and, according
to Fubini’'s Theorem

. T (x)
(om0 f1(x) = / F(®(x, —5))xa (%, 8)a(s)ds = /O 0n() (@ (x, —5))ds

is finite for almost everk € € the and the associated applicatigno f is integrable.

Let us prove nowd.3). Since|o, ¢ f| < on © |f], to show thab,, o f € LY(£2,dp), it suffices
to deal with anonnegative functiorf € L'(£2,du). One sees easily that, for agyc I'_ and any
0<t<7i(y)

t

(0n 0 F)(®(y,1)) = /0 0(3)F (B(y. £ — 5))ds = /0 onlt— 9)[(®(y.s)ds.  (3.4)
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Thus,
T+(y) T+(y) 7+(y)
/0 (0w o f](B(y, 1))t = /0 ds [ ou(o (@l — o)t
T+(y)AL/n T+(y)—s
:/ gn(s)ds/ f(@(y,r))dr.
0 0
Therefore,
T+(y) 1/n T+(y)
0 < /0 0w o f)(B(y, D)dt < /0 on(s)ds /0 F(®(y, r)dr
+(y)
:/ f(@(y,r))dr, Vyel'_,neN
0
so that

7+(¥) T+(y)
/ du—(y)/o ’ [@n<>f](‘1>(y,t))dt</ du—(y)/o ’ f(®(y,r))dr.

This proves, thanks to Propositi@nl2, that
/ [on © fldu é/ fdp. (3.5)
Q Q_

Now, in the same way:

[ et = [ i) [love i@ty
= [ o [ at [ entr@ty, s s
= /moo dpy(y) /OOO dzt/tC>o on(r —t) f(®(y, —r))dr.

so that

[l Rt = [ anety) [Tty [ ot oas
<[ [ @ e

/ on o F(R)du(x) < / £ () dpu(x). (3.6)
QN0 o0

QN0
Finally

/ﬂmm_w[enoﬂ(x)du(x) z/ﬂmm_w du(x)/0 0n(5) f(®(x, —s))ds
:/ Qn(S)dS/ f(®(x,—s))du(x).
0 Q4N oo

Now, from Assumptiori, for anys > 0,

/ f(@(x,~3)dptx) = [ F()du(x),
9 oo TN

Qoo oo
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so that
/ 000 AN = | F)dp(x). @)
QLN Q1N
Combining 8.5), (3.6) and @.7), one finally gets|o,, © f|| < || f]|- O
As itis the case for classical convolution, the famiby, ¢ f),, approximates in L!-norm:

Proposition 3.8. Givenf € LY(£2,dpu),

(Qn < f)(X) - f(X)

lim
n—oo ﬂ

du(x) = 0. (3.8)

Proof. According to 8.3) and from the density o&,(2) in L'(€2,du), it suffices to prove the
result for anyf continuous ovef2 and compactly supported. Splittingnto positive and negative
parts,f = f™ — f~, one can also assunfeto be nonnegative. From the continuity of bgtland
®(-,-), one has

Hn = Supp(on ¢ f) = {X € Q, Jsp € Supp(o,) such thatb (x, —sg) € Supp(f)}.
Moreover, it is easily seen that,, ., C ., for anyn > 1. Finally, it is clear that
1 C {x € Q;3y € Supp(f) with |x —y| < d}

whered = sup{|®(x,s) —x|; 0 < s < 1;x € Supp(f)} < oo. Therefore #; is compact. Set
now

O, == 5, USupp(f) and O, ={x€0y;7-(x) <1/n}.

Noticing that;.(O; ) is finite, one can see easily thaty, 1(O,;) = 0. Sincesupycq |on o f(x)| <
supycq | f(x)], foranye > 0, there exists,y > 1 such that

L

n

FGolduG) < and [ g0 fGOlduGx) << ¥ o
On
Now, noticing thatSupp(eg, ¢ f — f) C O, one has for any. > ny,
[lewos=sin= [ lewos—si<2e+ [ loios =i
Foranyx € O,, \ O,,, sincep is supported if0, 1/n], one has

1/n
[lon o fl(x) = f(x) = /0 on(8)f(®(x, —s))ds — f(x)

1/n
- /0 0n(5) (f(B(x, —3)) — F(x)) ds.
Note that, thanks to Gronwall’'s lemma,

|P(x, —s) — x| < %(exp(ks) —1) < —(exp(r/n) — 1), Vx € 01,5 € (0,1/n)

= |

whereL = sup{|.Z (x)|,x € O;}. Sincef is uniformly continuous o1, it follows that

nler;Osup{\f(Q(x,—s) — f(x)]; x€ Oy, s € (0, l/n)} =0
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from which we deduce that there exists some> 0, such thalp,, ¢ f(x) — f(x)| < ¢ for any
x € O, \ O, and anyn > n;. One obtains then, for any > n;,

[ leno s = fldn < 22 4+ en(0,1,0;) < 22 + 2u(O)
Q
which proves the result. O

We saw that, for a giverf € L'(2,du), o, < f is also integrabler{ € N). Actually, we shall
see thab,, o f is even more regular thaft

Lemma 3.9. Givenf € L'(Q,du), setf, = o, o f,n € N. Then,f,, € Z(Tmax) With
7 (x)
Tl == [ di()f (@0 —9)ds. xeq.

Proof. Setg, (x) = — OT*(") 0h,(s)f(®(x,—s))ds, x € . Itis easy to see that, € L' (Q,du).
Now, giveny € 9), let us consider the quantity

d
I= [ G0 o@s)|  dutx),

s=0

One has to prove that = [, gn(x)¥(x)du(x). We split the above integral ové& into three
integrals/_, I, and/,, overQ_, 2_. N, andN ., N_, respectively. Recall that, for any
x € Q_, there is somg € I'_ and some € (0,74 (y)) such thatk = ®(y, ). In such a case

d d

— = —¢(P(y,1)). 3.9

TU@(x,9)| = Z(@(.1)) (3.9)

Then, according to Prof2.12and Eqg. 8.4):

s=0

T+ (y)
E= [ ane [ @ Ge@.

T+(y) t
[ 4w /O S u(@(y, 1)t /O 0u(t — )F((y, 5))ds (3.10)

7+(¥) T+(y)
[ ) [ s [ So@ e - s

Let us now investigate more carefully this last integralt e I'_ be fixed. If7; (y) < oo then,
since is compactly supported, we havé®(y, 7, (y))) = 0 and integration by part (together
with o,,(0) = 0) leads to

() g T+ (y) ,
J A e ey BRAGR LI

If now 7 (y) > oo, then, since,, is supported if0, 1/n], one has
() g s+1/n g
[ gr@een-sa= [ Lu@ e - s

T+ (y)
__ / o, (t — 5)(®(y, 1))dt
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Finally, we obtain,

+(y) T+(y)
I = —/ olu—(y)/0 ’ f(q’(y,s))ds/ Y W(B(y, 1)), (t — s)dt

7+(¥) t
— [aw [T v [ 6@ - s

Using again Prop2.12, we finally get
L= [ anuidut)

One proves in the same way that

d
- e IGO0 )

dpu(x) = /Q 0.

s=0
It remains to considef,, = fmmmm fa(x) Lo (B (x, 8))|5:0du(x)- One has

A9 [ o) (@Gx )t

f(®(x, —1))dp(x).

s=0
Foranyx € Q. NQ_, and anyt > 0, settingy = ®(x, —t), one hayy € Q_, NN, and
Lyp(@(x,9))|,_, = S0(@(y,t)) from which Liouville's Theorem (Assumptiof) yields

[ @] F@x )it = |

QpooNQ oo
Therefore,

SU(B(y. ) F)n(y).

s=0

0 d
e = [ i) [ e ety o
. &) [ du@ly.
Q0N 0
- _/ Q/n(t)dt/ f)(®(y, 1)duly).
0 Q«koomﬂfoo

Arguing as above, one can "turn back” to thevariable to get

/ S )@y, 1)duly) = / F(@(x, —1)(x)dpa(x),
Qi ooNQ_ oo 9 oo TN
i.e.
JA—— /ﬂ o PEG0 /O do(t) (@ (x, —1))dt = /Q IR
and the Lemma is proven. O

Remark 3.10. Notice that Propositior8.8together with Lemma.9prove thatZ(7,,,.x) is a dense
subset of.} (2, dp).

Now, wheneverf € Z(7max), One has the following more precise result:
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Proposition 3.11. If f € 2(Tnax), then
[Tmax(on © )I(x) = [on © Tmaxf](x), (x €2, neN). (3.11)
Before proving this result, we need the following very sim@mma:

Lemma 3.12. For any« € 2 and anyn € N, define

T (x)
Xn(X) = /0 on(8)Y(P(x,s))ds, x € Q.

Then,y,, belongs td).

Proof. Sincer, is measurable and, is compactly supported, it is easy to see thatis measur-
able and bounded ové€2. Now, for anyx € €2, and anyt € (7_(x), 7+(x)), one has

T (x)
Xn(P(x,1)) = /t on(s — )(®(x, s))ds.

It is clear then from the properties pf, that the mapping € (—7_(x), 74 (x)) — xn(®(x,1)) is
continuously differentiable with

T4 (%) T4 (x)
@) == [ a6 0@t = [ ol — O3 0@, ds

(3.12)
In particular, fort = 0, one gets

T4 (x)
— [ dew @)

d
N n(I)Xv
(@ t))t:O

: . N d .
Sincey!), is compactly supported and € ), the applicationx € © — EX”((I)(X’ t))|t:0 is
measurable and bounded. O

PROOF OF PROPOSITION 3.11. We use the notations of Lemn®9. Sinceg, ¢ Tnaxf €
LY(£2,dp), it suffices to show that

[ 505 0@0xs)| i) = [ 90len 0 Twe /|00, W€ D.
Q 0 Q

Here again, we shall deal separately with the integrals ®verQ, N Q_, andQ, N 2_..
Let y,, be defined as in Lemn& 12 as we already saw it (se8.(2), for anyy € I'_, and any
0<s<1(y), %Xn@(y, s)) = fs”(y) on(t— s)%[w@(y,t))]dt. Consequently, according to
(3.10,

+(y) d
_dueo = [ auty) [ 5@ ) @ty mar

d
[ 1) (@)

d
= [ 0@,

du(x) = / 0 0) Tona f] () ()

s=0 Q_
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where, for the two last identities, we useétl9) and the fact that,, € 2. Now, using Prop2.12

T4 (x)
/ () e f] () dpa(x) = / (Trnase /() dps(x) / on (P (B (x, 7))dr
Q Q_ 0

T+(¥) s
— [ ) [ v@s [ (s - OlTume i@ (000

Therefore, Eq.3.4) leads to

T+(¥)
/ 0 00) Tonae f) () () = / du_(y) /0 BB, 5))on © Toun f)(B(y, 5))ds

= o T;Z)(X) [Qn <& Tmaxf] (X)d:u(x)'
The integrals ovef2, NN, andQ2_, N2, are evaluated in the same way. ]

We are in position to prove the following

Proposition 3.13. Let f € L'(Q,du) and f,, = 0, ¢ f,n € N. Then, foru_—a. ey €T'_,

fn(®(y,5)) = fo(@(y, 1)) = / [Twaxfol(®(y,r))dr VO <s <t <7i(y) (313)

In the same way, for almost evexy= I' .,

fn(®(z,—5)) — fu(P(z,—t)) = / Tinax fn(®(z, —1))dr, VO < s<t<T7_(2).

Proof. We focus only on §.13), the second assertion following the same lines. Sifice
LY(£2_,dpu), Proposition2.12implies that the integrafo”(y) |f(®(y,r))|dr exists and is finite
for u_-almost everyy € I'_. Therefore, foru_-almost everyy € I'_ and any0 < ¢t < 74(y),
the quantitiesf;, o,,(t — s) f(®(y, s))ds and [; o, (t — s)f(®(y, s))ds are well-defined and fi-
nite. Moreover, thanks to Eq.3(4) Lemmag3.9, they are respectively equal §,(®(y,t)) and
[Thaxfn](®(y,t)). In particular, the mapping € (0,7 (y)) — [ZTmaxfn](®(y,t)) € R is con-
tinuous. Itis then easy to see that, for any. s < ¢t < 71.(y)

/St[Tmaxfn]@(y,r))dr = /: dr /O o (r —u) f(®(y, u))du
—_ /Osf(Q(Y,u))du /: o, (r — u)dr — /Stf(‘I’(y,U))du /ut o (r — w)dr

t s
—— [ 1@ et - udu+ [ F@0)0n(s - u)du
0 0
which is nothing but$.13. O
As a consequence, one gets the following result :

Iiroposition 3.14.Forany f € Z(Tnax), there exists some functioﬁé € L'(924,dp) such that
f+(x) = f(x) for u- almost everk € Q4 and, foru_—almost every € I'_:

f(@(y;5) = [-(®(y,1) = / Tomax [I(@(y,r))dr VO <s<t<7(y), (3.14)
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while, for 4 —almost every € I';
~ ~ t
f1(®(z,—5)) — f+(®(z,—-1)) = / [Tmax [](®(z, —r))dr V0 <s<t<T_(2).

Proof. Define, for anyn > 1, f,, = o, < f, S0 that, from Propositior.11and3.8, lim,, .o || fn —
fH + HTmaxfn - Tmaxf” = 0. In particular,

lim o | fn(x) = F(X)| + | [Tmax fn] (%) = [Tmax f](x)| dp(x) = 0.

n—oo

Then Eq. 2.9 yields

T+(y)
/ i (y) /O Fa(®(y,5)) — F(@(y,5))] ds

T+(y)
[ @) [ T ) ®(.9) ~ T (8.5 ds — 0

SinceTiax f andZp.. f, both belong tal! (2, du). Consequently, for almost evegy< I'_ (up
to a subsequence, still denoted by we get

{fn@(y, ) — f(@(y.")
Tmaxfn(q)(y7')) I [Tmaxf](q)(y7')) in Ll((O,T+(y)),dS)

asn — oo. Letus fixy € I'_ for which this holds. Passing again to a subsequence, we may
assume thaf, (®(y, s)) converges (pointwise) t@¢(®(y, s)) for almost everys € (0,74 (y)).
Let us fix such a&g. Then,

Fo(®(y. 50)) — Fu(@(y.5)) = / T fal(B(y.r))dr Vs € (0,74(y)).

S0
Now, the right-hand-side has a limit as— oo so that the first term on the left-hand side also
must converge as — oo. Thus, for anys € (0,74 (y)), the limit

nlLH;O fn((I’(yas)) = f;(q,(y, 8))

exists and, for any < s < 74(y)

F(®(y.5) = F-(@(v.s0) - [ T f)(@(y, )

S0

It is easy to check then thgt (x) = f(x) for almost every € £2_. The same arguments lead to
the existence of, . O

The above result shows that the mild formulation of Theoi#is fulfilled for any x €
Q_ U Q.. Itremains to deal witlf2, :=Q_ o N Q.

Proposition 3.15. Let f € Z(Tmax). Then, there exists a sé& C Q. with ©(O) = 0 and a

function f defined on{z = ®(x, t), x € Q. \ O, t € R} such thatf(x) = f(x) u-almost every
x € Q. and

f(@(x,s)) — f(®(x,1)) = / [Tmax f](®(x,7))dr, Vx €\ O, s <t
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Proof. Since(x,t) — (z,t) = (®(x,t),t) isa measurable and measure preserving mapping from
Q. x R onto itself, Proposition8.8and3.11give

lim [ du(x) [ [fa(@(x,1) — F(@(x,1)]dt =0 (3.15)
lim dp(x) | Tinax fr(® (X, 1)) — Thax f(P®(x,1))|dt = 0, (3.16)
n—oo Qoo I

for any I, = [—k, k|, k € N. This shows, in particular, that there is (a maxim@lz Q. with

(&) = 0 such that, for almost every € 2, \ £ and any bounded intervdlC R:

[1r@etiat+ [T ) (@00l < o0
1 1

and we can argue as in Propositiri 3that
fu(®(x,8)) — folx) = —/ Tiax fn(®(x,r))dr, Vs € R.
0

Proposition3.8 yields the existence of a subsequeii¢g, ), and au-null set Ay with € C Ay C
Q. such that

lim f,, (x) = f(x), Vx € O \ Ap.

p—00

Now, for anyk € N,

lim dp(x) / | Tnax [, (®(x,1)) — Toaxf (R (x, 1)) dt = 0
Qoo I

p—00

so that, there is a subsequence (depending)@nd au-null set A, with Ag C Ax C Q4 Such
that

lim
Pk)y—o° J 1,

Letx € Q \ Ax and|s| < k be fixed. From

Frng, (B 8)) = Fuy, (%) = — /0 Tonweyy, (®(x.7)dr

we deduce that the limltm,, , .o f"m) (®(x, s)) exists and is equal to

Ty, (B(3,1)) = Tmaxf(Q(x,t))‘ dt=0, Vxe Q) A

o, (B06,) = £~ [ T (B0

P(k)—00 P (k)

We define therf by
F(®(x,5) = p(grgoo Frpgy ((x,5), X € Qoo \ Ay, [s| <k
and definingd = |J,», Ay, we get the result. O

Before the proof of Theorer®.6, we have to establish existence of the tracé an
Proposition 3.16. Let f satisfies condition (1) of Theore®m6. Then
; f#
Jim (@ (y, 1))

exists for almost every € T'_. Similarly,lim; .o, f*(®(y, —t)) exists for almost every € T,
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Proof. First we note that there 8_ C Q_ with (€2 \ S~2_) = 0 such that 8.2) is valid any
xeQ_.letl_={yel_;y=®(x7_(x),xcQ_}. Itiseasytoseethat (I'_\I'_) = 0.
Indeed, otherwise, by?(9), there would be a subset Of of positive -measure, not intersecting
Q_, which would contradict3.2). Consequently, any € 2_ can be written as = ®(y, 7_(y)),

y € I'_ and (.2) can be recast as

F@(y. 1) — F(@(y.t0)) = / " (@ (y, 5)ds. (3.17)

for almost anyy € I'_, where0 < t < tg < 74(y). Using again2.9), s — ¢g(®(y,s) is
integrable on(0, 74 (y) for almost anyy € I'_. Consequently, for almost evegy € I'_ we can
pass to the limit in§.17) with ¢ — 0; it is easy to check that this limit does not dependgrirhe
existence ofim;_o, f*(®(y,—t)) for a. e.y € I', follows by the same argument. O

The above proposition allows to define the trace operators.

Definition 3.17. For any f € 2(Tmayx), define the traceB* f by
+ — . ﬁ _ - — ] ﬁ
B f(y) = lim f*(®(y,~t)) and  B7f(y):= lim f(2(y,?))
for anyy € I';. for which the limits exist, wherg” is a suitable representative ¢t
PROOF OFTHEOREM 3.6. To prove tha(2) — (1), givenf € Z(7Tyax), Set

f(x) ifxeq.,
Fix) =< fi(x) ifx € Q. N,
f(x) if x € Qo N Qoo

where f are given by Propositio.14while f is provided by Prop3.15 Then, it is clear that
foranyx € Q and any—7_(x) < t; < to < 74(x)

to

fﬁ(q}(xﬂtl)) - fﬁ(cﬁ(X’ t2)) = / [Tinax f1(®(x, 5))ds

t1
and @.2) is proven.
Let us now prove thafl) = (2). Let us fixy) € ), one has

d d

T+(¥)
[ s s@iesn ynt = [ an) [ r@i0) S ol

T+(¥)
~ [ dem [ F@m e

Notice that since botH, f(x)diqp(@(x, 5))|,_odu(x) and [, ¥ (x)g(x)du(x) exist, Propo-
_ 5 - _
sition 2.12and Fubini's Theorem, the integrals
T+(¥) g d T+(¥)
| pevoGe@mna ad [T @ ne@.0d

are well-defined foy:,_-almost everyy € I'_. Let us prove that these two integrals coincide for
almost-everyy € I'_. According to Lemma3.3, for almost everyy € I'_, there is a sequence



22 L. ARLOTTI, J. BANASIAK&B. LODS

(tn)n (depending ory) such that)(®(y,t,)) = 0 andt,, — 74(y). Thus,

ln

T+ (¥) d d
[ rem ) se@e o= in [ @0 5@
0

n—oo 0

and

T+(y) ln

| s@eop@y. = lin [T u@e.0u@e. o)
Further, for almost every € I"_, according t0 8.2),
t

@) =B - [ a®.n Ve 0. y)

Integration by parts, using the fact that®(y,0)) = ¢(®(y,t,)) = 0 for anyn, leads to
tn d tn
[ @@ = [y @ ne@.0.

Consequently, for,_ almost every € T'_:

T+(¥) d +(¥)
J A AT TR LT AR TR FIC 1o L CE )
0 0

Finally, we get

1 T+(¥)
/n_ Fe) (@ (x, )| ,_odn(x) = /_ dM(Y)/o VIR Ol D) (3.19)

— [ v,
Q

Using now parametrization ovér,, we prove in the same way that
d
[ S @) dnt) = [ gvdntx. (320
QN s QNN

It remains now to evaluatel := fﬂmm_w f(x)d%wir(x, s)){szody(x). According to As-
sumptionl

d
A= /Qmmoo fﬁ(é(x,t))&w(é(x,t))d,u(x), vt € R.

Let us integrate the above identity o\ 1), so that

A= / fH(®(x,1)) dt (®(x,t))dt.

n_wmn+w

Let us fixx € Q_o N Q. Foranyt € (0,1), one hasf®(®(x, 1)) — Jig( ds
and integration by parts yields

1 1
/ FE(® (o, 1)) (@3 1))t = / DB (%, £))g(®(x, 1))t — () fH(x)
0 0
1
+ (P (x, 1))<fﬁ(x)—/0 g(‘I’(x,s))ds)

/ BB (x, 1)g(@ (x, £))dE + (B (x, 1)) FH(@(x, 1)) — () ()
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where we used agairB). Integrating overQ?_., N 2., we see from Liouville’s Theorem
(Assumptionl) that

/ B(®(x, 1)) (B (x, 1)) dpu(x) = / () () du(x),
Q_oNQoo QoMo
i.e.
1
A= dux) [ (@, )g(Blx, 1))

QN oo 0

which, thanks to Liouville’'s Theorem, is nothing but
d
fo o TOGU@E i = [ g ueaanc. @2

Combining .19, (3.20 and @3.21), we obtain

d
[ 10 i@ )] o0 = [ gbxvixauto. Ve

which exactly means that € Z(7p,ax) With ¢ = 71,.« and the proof is complete. O

Corollary 3.18. TracesB*f onT'.. can be defined for any € 2(T..,). For p_- almost any
y € I'_ we have

B /(y) = fA(@(y.1) + /O T /1By, 8))ds, Yt € (0,74.(1)),

where f! is a suitable representative ¢f An analogous formula holds f@&™ f.

Lemma2.9 provides the existence of Borel measudes. onI', which allow us to define the
natural trace spaces associated to Probled),(namely,

LY = LYTx,dpg).

However, the traceB® f, f € 2(Tax), NOt Nnecessarily belong o), .

4. WELL-POSEDNESS FOR INITIAL AND BOUNDARY VALUE PROBLEMS

4.1. Absorption semigroup. From now on, we will denoteX = L!(£2,du) endowed with its
natural norml| - || x. Let 7y be the free streaming operator with re—entry boundary conditions

Tov = Tmaxtp,  foranyy € (7o),
where the domaiw (7)) is defined by
2(To) = {v € P(Tmax); B~ ¢ = 0}.
We state the following generation result:

Theorem 4.1. The operator(7y, (7)) is the generator of a nonnegative,-semigroup of con-
tractions (Up(t))¢>0 in L' (€2, dy) given by

Uo(t)f(X) = f((I)(Xa _t))X{t<Tf(x)}(X)7 (X €N, fe X)a
wherey 4 denotes the characteristic function of a skt
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Proof. The proof is divided into three steps:

e Step 1.Let us first check that the family of operatdii$y(t)).>o is a nonnegative contractive
Cp-semigroup inX. Thanks to Propositio.3, we can prove that, for any € X and anyt > 0,
the mappingUs(t)f : © — R is measurable and the semigroup propertigd))f = f and
Uo(t)Uo(s)f = Up(t+ s)f (t,s > 0) hold. Let us now show thatlUy(¢) f||x < | f]lx. We have

1Ua(t) /]l = / Uo(t) fldps + / Uo(t) Fldps + / Uo(t) Fldp.

Q4 QN2 oo QN oo
Proposition2.12and?2.3yield

T—(¥)
/Q 0001 = / dusty) /O Uo(t) F(@(y, —s))[ds
max(0,7— (y)—t)
=/ du+(y)/ If(®(y,—s—1t))|ds
ry 0

max(t,7— (y))
- / aty) / F(@(y, —r)dr < / Fldp.

Q4
In the same way we obtain

[ o= [ e [T o= [ i

Moo Q_NQpoo
and

/ Uo(t) fldp = / Fldp.
Q—oomﬂ-l»oo Q—oomﬂ-l»oo

This proves contractivity of/y(¢). Let us now show thalt/y(¢) f is continuous, i.e.
lim [Uo(t)f — fllx = 0.

It is enough to show that this property holds for ghyg %, (2). In this caselim;_.o Uy(t) f(x) =
f(x) for anyx € €. Moreover,sup,cq |Us(t) f(x)| < supycq | f(x)| and the support af/y(¢) f
is bounded, so that the Lebesgue dominated convergenaethésads to the result. This proves
that (U (t)):>0 is aCp-semigroup of contractions iX. Let.4, denote its generator.

e Step 2.To show thatZ(Ay) C 2(7y), fix f € 2(Ap), A > 0andg = (A — Ap)f. Then,

T_(x)
1= [ Mg @)t (xen) (4.1)
To prove thatf € 2(7max) With Thax f = Ao f, it suffices to prove that
d
[ 060 = 90000 = [ 10 0(@(x.5)
Q Q

Let us fixiy € ), setp(x) := Lv(®(x,s))|,_, and write

du(x), Ve D).
s=0

/ f(x)p(x)du(x) = F(x)p(x)du(x) + / F(x)p(x)dpu(x)
Q

Q4 Q4N

4 / F)e()du(x) = I + I + Is.
Q400N oo
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We first deal withl;. For anyy € 'y andt € (0,7_(y)) we havep(®(y, —t)) = — S¥(®(y, 1))
andf(®(y, —t)) ft eXp A(s —t))g(®(y, —s))ds. Then, by Propositior2.12,

—(y) T—(y)
I = —/F du+(Y)/0 ’ %w(é(y, —t))dt/t Y exp(—A(s — 1))g(®(y, —s))ds
—(y) s
= _/r+ d,qu(Y)/O Y g(‘i’(y,—s))ds/o exp(—A(s —t))% (Y(®(y,—t))) dt
:/ du (Y)/T(y)g(q)(y —8))x
T+ i 0 ’

< {A /0 exp(=A(s — £)b(®(y, —t))dt — H(®(y. —s>>} ds

where we used the fact that®(y,0)) = 0 for anyy € I'; sincey is compactly supported. Thus

t

7—(y) T—(y)
=) /F djiy () /0 " (@ (y, 1)t / " exp(=A(s — £)g(B(y, —5))ds

—(y)
- / du(y) /O 9(®B(y, —5)b(B(y, —s))ds

—(y)
= / du+(y)/ P(®(y, —1)) (Af(®(y, —1) — g(®(y, —1)))dt.
Iy 0
Using again Propositio&.12 we obtain
h= [0~ 9(x) wx)du(x). (4.2)
Q4
Arguing in a similar way, we prove that
h==[ OG- 9(0) Bx)dux) 4.3)
QN2 oo
Finally, since

flx)= / exp(—At)g (®(x,—t)) dt forany xe€ Q_o N,
0

one has
I = /Q () /0 " exp(—M)g(B(x, —))dt
— [ exp(-ane | £ (5)9(® (x, —1))dpu(x).
0 D ooNQpoo

Now, Assumptionl asserts that

/ Px)g(B(x~0)dp(x) = [ g()o(®(x, )du(x), V>0,
Q00N oo Q0N o0
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and, sincep(®(x,t)) = Sv(®(x,t)), finally

o0 d
= [ b0 [ ena g (@G 1)

-/ 9()Y(x)dn(x) + A
QN0 QN oo
Using again Assumptiof, this finally gives
h-- [ (9(x) = A(x)) D(x)dn(x). (4.4)
Q oNQyoo
Combining @.2)—(4.4) leads to
| #6050 @] duto) =~ [ (9x) = M) v
Q s=0 Q

which proves thalf € Z(7ax) and(A — Tax)f = g. Next, fory e T'_ and0 < ¢t < 74 (y) we
write t = 7_ (®(y, t)) and, by Propositio2.3and @.1), we obtain

f(@(y.1) = /0 exp(—A(t — ) g(B(y, ))ds. .5)

Consequentlylim, o+ f(®(y,t)) = 0ae.y € I'_,i.e. B"f = 0sothatf € 2(7;) and
Aof=Tof =Af—g.

e Step 3.Now let us show the converse inclusign7y) C Z(Ap). Let f € 2(7;). Changing
possibly f on a set of zero measure, we may wrjte= f#, where f? is the representative gf
given by Theoren3.6. Then, for anyx € Q and any0 < ¢t < 7_(x)

F(@(x, 1)) — f(x) = /0 (Trnase /(B (%, —1))dr

which, according to the explicit expression@f(t), means that

o)) [ exp(-A)0 (@)

Uo(t) f(x) — f(x) = /0 Uo(7) Tmax f (x)dr (4.6)

foranyx € Q andt < 7_(x). Letting¢ converge towards_ (x) we obtain

T_(x)
Fx) = - /0 (Trnas F)(B (3, 1))

In particular, Eq. 4.6) holds true for angk € Q and anyt > 7_(x). Arguing exactly as in16, p.
38], the pointwise identity4.6) represents th&—integral, i.eUy(t)f — f = fot Uo (1) Tinax fdr
in LY(£2,dp). Consequentlyf € 2(Ag) with Agf = Taxf. O

4.2. Green’s formula. The above result allows us to treat more general bounddugyaoblem:

Theorem 4.2. Letu € L' andg € X be given. Then the function

T (x)
flx) = /0 exp(—At) g(®(x, —t))dt + X{r— (x)<oc} exp(—A7— (x))u(®(x, —7-(x)))
is a unique solution f € 2(7;,ax) of the boundary value problem:

{(A - Tmax)f =9,

— (4.7)
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whereX > 0. MoreoverB™ f € L! and

1B fllzn + Allfllx < llullzr + llgllx, (4.8)
with equality sign if > 0 andu > 0.
Proof. Let us writef = f + fo with f1(x) = [~ exp(—At) g(® (x, —t))dt, and
f2(%) = X{r_(x)<o0) XP(=AT-(X))u(® (x, -7-(x))),  x €
According to Theorend.1, f; = (A — 7o) lg,i.e. fi € D(Tmax) With (A — Thuax) f1 = g and
B~ f1 = 0. Therefore, to prove that is a solution of 4.7) it suffices to check thafe € Z(7ax),
(A — Tiax) f2 = 0 @ndB~ fo = u. Itis easy to see thab € L'(£2,du) (see also4.10). To prove

that fo € Z(Tmax) ONe argues as in the proof of Theordm. Precisely, let) € ), noticing that
fo2 vanishes outsid€ _, one has thanks ta(9)

d m+(y) d
| a0 @) it = [ ) [T R@0)

T+ (y) d
= [ ) [ -3 @)
For almost every € I'_, we compute the integral ovéd, 7, (y)) by parts, which yieldsf, €
@(Tmax) with Tmafo = )\fg AISO,

f2(@(y, 1)) = exp(=At)u(y), yel_, 0<t<r(y) (4.9)

from which we see tha®~ f5 = w.

Consequentlyf is a solution to 4.7). To prove that the solution is unique, it is sufficient to
prove that the only solutioh € Z(7iax) t0 (A — Tiax)h = 0,B~h = 0, is h = 0. This follows
from the fact that such a solutidnactually belongs t@&7(7) if A € 0(7p). Finally, it remains
to prove ¢.8). For simplicity, we denote the representativefgfi = 1, 2, defined in Proposition
3.16 with the same letter. Usingt(9) and the fact thaf, vanishes oif2_ ., from (2.9) we get

A/ﬂ | foldp = A/ﬂ_ | foldp = A/F_ dp—(y) /Ou(y) e M u(y)|dt
— [ @l (1) du-(y)
I

(4.10)

Defineh :y € I'_ — h(y) = |u(y)|le ™+ Itis clear thath vanishes o' _., andh(y) <
lu(y)| for a.e.y € I'_. In particular,h € L' and, according toX11),

[ - = /P ) = /F MG ) )

= e = O|u(®(z, —7_ (2 z) =
f T @G Gl ) = [

g BT fo(2)ldps(2) = BT fal 1 -

Combining this with ¢.10) leads to

Allf2llx +1BF fall oy = llull - (4.11)
Now, let us show thaB*f; € L1 and [B* fill 1 + Allfillx < [lgllx. Foranyy € I'; and
0 <t < 7_(y), we see, as above, th@t(®(y, —)) = [T~ exp(—A(s — £))g(®(y, —s))ds.
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This shows that

()
B 1(y) = lim (@) = [ exp(-19)g(@(y.~)ds
t— 0

According to Propositior2.12,
—(y)
/ dM+(Y)/ l9(®(y, —S))IdSZ/ lg| dp
ry 0 Q.

which, sinceexp(—A(s — t))|g(®(y, —s))| < |g(®(y,—s))|, impliesBT f; € LL. Let us now
assumey > 0. Thenf; > 0 and hence

)‘Hfluz)‘/ﬂfld,UZ)\ fldu+)\/

QN2 o

fldﬂ+)\/ f1dp.

Q. Q0N oo

Using similar arguments to those used in the study,ofve have
7 (¥)
3 hdu= [ ) [ a@(-0) (- e(-an)at
Q. r, 0
which, by Propositior2.12, implies A fﬂ+ fidu = fm gdp — fm BT f1 dp. Similar argument
shows that\ fn,nmoo fidp = fn,nmoo g dpu, while the equality

A / Sidp = / gdpu,
Q—oomﬂ+oo Q—oomﬂ-l»oo

is a direct consequence of the invariance.afith respect to®(-,¢). This shows thad|| f||x =
llgllx — HBJFfHLl+ for g > 0. In general, defining

T_ (%)
Fi(x) = / exp(—As) |g(®(x, —s)|ds, x €,
0
we obtainHBJffluLl+ + A f1llx < HBJFF1HL1+ + Al F1||x = |lgllx which, combined with4.11),
gives @.9). O

Remark 4.3. Notice that, in order to get the existence and uniquenesiseo$olutionf to (4.7),
it is not necessary for to belong toL'(I'_,du_). Indeed, we only have to make sure that
fo € LY, dp), ie., from(4.10, [ |u(y)] (1 —e &) du_(y) < oco. Of course, to get

(4.9), the assumption € LY(T'_,du_) is necessary.

Let us note that, with the notation of Theore&n®, we have

/ B+fdu++)\/ fdu:/ udu_+/gdu. (4.12)
r. Q r_ Q

Indeed, for nonnegative andg, (4.8) turns out to be preciselyt(12). Then, for arbitrary, € L'
andg € X, we get .12 by splitting functions into positive and negative partfislleads to the
following generalization of Green’s formula:

Proposition 4.4(Green’s formuld. Let f € 2(Tax) satisfiesB~f € L. ThenBT f € L1 and

/ Tl = / B fdu. — / BY fdy,
Q r_ Iy
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Proof. For givenf € 2(Ty.x), We obtain the result by setting= B~ f € L! andg = () —
Thax)f € X in Eq. @.12). O

Remark 4.5. If du is the Lebesgue measure Br', the above formula leads to a better under-
standing of the measurek:. Indeed, comparing it to the classical Green’s formula (segp
[8]), we see that the restriction df:+ on the seb, = {y € 9Q; £%(y) - n(y) > 0} equals

7 (y) - n(y)l dr(y),
whered~(-) is the surface Lebesgue measuredsi.

APPENDIX: ABOUT THE CLASS OF TESTFUNCTIONS

We answer in this Appendix a natural question concerningd#éfaition of the class of test-
functions). Precisely, we prove that two test-functions equahlmost everywhere are such that
their derivatives (in the sense d.()) also coincideu-almost everywhere. To prove our claim,
it clearly suffices to prove that, given € 9) such that)(x) = 0 for pu-a. e. x € €2, one has
p(x) = 0 for p-a. e.x € Q wherep(x) = L) (®(x, 3))‘5:0' Let

E:={xeQ;(x) =0andp(x) # 0}.
It is clear thatE' is measurable and that one has to prove thi&) = 0. It is no loss of generality
to assume thak is bounded We observe that for any € F, there exist9x > 0 such that
(®(x,t)) #0, V0 < |t] < dx. (A1)
Let us splitE as follows
E=(ENQ_)U(ENQyNQ o) U(ENQyoNQ_o) :=E_UEL UEy

and prove that(E_) = u(F4) = u(Ex) = 0.
(1) Firstconsiderr_. Sincey(x) = 0 for u-a. e.x € ©_ and using the fact that anyc € _
can be written as = ®(y, ¢) for somey € I'_ and0 < ¢ < 7, (y), we observe that, for
p—a. ey el y(®(y,t)) = 0 for almost every (in the sense of the Lebesgue measure
iNR) 0 <t < 7 (y). Forsuch & € I'_, continuous differentiability of — (®(y,?))
impliesy(®(y,t)) = 0forany 0 < ¢t < 74 (y). This means, according té (1) that, for
pu—-a.eyel'_, ®(y,t) ¢ Eforany0 <t < 7,(y). Since

+(y)
n(ENQ-) =/ du(.v)/o xe(®(y,1))dt

we see thap(E_) = 0.
(2) In the same way, using;. instead ofl"_, we show thaju (F N 2. NNQ_) = 0.
(3) Itremains to prove that(FE.,) = 0. In accordance withA.1), we define for, any: € N,

Byi= {x€ Bui ez 1/n} = {x € Bas u(@(x) £0. YO < i < 10},

According to Assumptiod, it is easy to see that(F,,) = 0 foranyn € N sincey(x) =0
for y-a.e.x € Q. Moreover,Fy C K, C...C E, C E,y1 C ..., and

ﬁ <E00\En> = .

n=1
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Since we assumed( E) < oo, we haveu(Ex \ E1) < oo andlimy, ..o pt(Eo \ Ey) = 0.
Writing Ew = E, U (Ex \ Ey,), we see thai(E) = 0.
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