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SEMIGROUPS FOR GENERAL TRANSPORT EQUATIONS WITH ABSTRACT
BOUNDARY CONDITIONS

L. ARLOTTI, J. BANASIAK & B. LODS

ABSTRACT. We investigate”y-semigroup generation properties of the Vlasov equatiagh gen-
eral boundary conditions modeled by an abstract boundagyatqr H. For multiplicative bound-
ary conditions we adapt techniques frohY][and in the case of conservative boundary conditions
we show that there is an extensidnof the free streaming operat@fz which generates é'-
semigroup(V (t)):>0 in L'. Furthermore, following the ideas df][ we precisely describe its
domain and provide necessary and sufficient conditionsremsthat (Vz (t)):>0 is stochastic.
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1. INTRODUCTION

hal-00110239, version 2 - 19 Jan 2007

Let us consider the general transport equation

O f(x,t) + F(x) - Vi f(x,t) =0 (x€N, t>0), (1.1a)

Keywords:Transport equation, Boundary conditiokd%,-semigroups, Characteristic curves.
AMS subject classifications (200@)7D06, 47D05, 47N55, 35F05, 82C40.
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supplemented by the abstract boundary condition

f\l"f(yvt) = H(f\l"Jr)(yvt)v (y el_t> 0)7 (llb)
and the initial condition
f(x,0) = fo(x), (x € Q). (1.1c)
Here is a smooth open subset BfY endowed with a positive Radon measdye(-), I's. are
suitable boundaries of the phase space and the boundatapgris a linearboundedoperator
between trace spacds, corresponding to the boundari€s. (see Section 2 for details). The

transport coefficienf is atime independentector fieldF : © — R satisfying the following
general assumptions:

Assumption 1. F : @ — R¥ is Lipschitz-continuous with Lipschitz constant- 0, i.e.
| F(x1) — F(x2)| < Klx1 — %2 for any x;,x; € Q.

Assumption 2. The fieldF is divergence-free with respect toin the sense that

[ 709 Vs xidut) 0
for any Lipschitz continuous functigfiwith compact support of2.

A typical example of such a transport equation is the saedallasov equation for which:

i) The phase spac® is given by the cylindrical domai®2 = D x R? ¢ RS whereD is a
smooth open subset &, referred to as th@osition spacewhile the so—calledrelocity
spaceis here given byR?. The measurdy is given bydu(x) = dzd3(v) wheredj(-) is a
suitable Radon measure &3.

i) Foranyx = (z,v) € D x R3,

F(x) = (v,F(z,v)) € RS (1.2)

whereF = (Fy, Fy, F3) is atime independent force field ovBrx< R? such that Assumptions
1 and2 are fulfilled.

The existence of solution to the transport equatibid is a classical matter when considering
the whole spac& = RY. In particular, the concept of renormalized solutionsvadido consider
irregular transport coefficient(-) (see L0] and the recent contributiond,[ 16]) which is of
particular relevance in fluid mechanics.

On the other hand, there are few results addressing thalibiiundary value problemi (1),
possibly due to difficulties created by the boundary coadgi{l.1¢. We mention here the seminal
works by C. Bardos{], and by R. Beals and V. Protopopes@] (see also 13]). Let us also
mention more recent contribution$d] which also includes time-dependent transport coefficient
and p, 17] dealing with the force-freeK = 0) Vlasov equation.2).

ForF # 0, the method of Beals and Protopopes8lprovides the existence and a very precise
description of aCj-semigroup governingl(l) for ||H| < 1 while, for nonnegative boundary
operatorH with |H|| = 1, it ensures the existence of(&-semigroup related tal(1) without
describing its generator. The method 8f eaves totally open the multiplicative cagél|| > 1.
We also mention that the existing theories introduce i&ste assumptions on the characteristics
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of the equation. Forinstance, fields with 'too many’ peratilajectories create serious difficulties.
They are however covered in a natural way by the theory pteddrere.

On the other hand, in the force-free cdde- 0, the case of conservative boundary conditions
||IH|| = 1 has been solved irb], while the multiplicative case has been addressed.# [The
results of p, 17] are based upon a relatively simple representation, iedgdy the fundamental
work of [19], of the resolvent of the free-streaming operdioy (whose domain includes the
boundary conditionsl(1g) as a strongly convergent series.

The main objective of this work is to generalize the resultgspand [17] to the general case
F # 0. Here again, the key ingredient is the derivation of a sletadpresentation of the resolvent
of the free-streaming operatdt;;, see Theoren3.6 and Propositior8.1Q0 We point out that the
proof of TheorenB.6relies on a generalization of the result fro& 13] which allows to compute
integrals over2 via integration along the integral curves®f-) coming from the boundary(?,
and which is free from some restrictive assumptiongpfit. In particular, we present a new proof
of the Green formula which clarifies some points of the praofs8, 13].

The organization of the paper is as follows. In the followsggtion (Section 2), we introduce
the main tools used throughout the paper and present thenaéotioned new results concerning
integration over the characteristic curved F. Section 3 is dealing with various preliminary
results. In particular, the question of the existence afenaesults is addressed in Section 3.1. In
Section 3.2, we establish some basic existence results|yr@@rtaining tostationary versions
of (1.1) and, as a consequence, we derive a new prodbreken formula generalizing that of
[8, 13]. Section 3.3 is concerned with tisetting of the problerand with the representation of the
resolvent of the free-streaming operaiy; as a strongly convergent series. In Section 4, we are
dealing with the transport equatioh.{) for multiplicative boundary conditiongjeneralizing the
results of L7]. Finally, in Section 5, we consider the delicate questibeanservative boundary
conditions We employ a strategy already used 8}, [borrowing some tools to the so—called
additive perturbation theory of substochastic semigrgéps

Notations: We shall adopt the following notations throughout this pager any unbounded
operatorA, the domain of4 shall be denoted by/(A) whereass,(A), o,(A), o.(A) ando(A)

will denote respectively the point spectrum, the residpaicsrum, the continuous spectrum and
the resolvent set ofl. For A\ € p(A), the resolvent ofd will be denoted by eithegzZ(\, A) or

(A — A)~!. For any Banach spaces andY, %#(X,Y) denotes the space of bounded linear
operators formX to Y whereas#(X) = #(X, X).

2. INTEGRATION ALONG THE CHARACTERISTICS

2.1. Characteristic curves. SinceF is Lipschitz overQ2 (with constants > 0), it is known from
Kurszbraun’'s extension theoreml] p. 201], thatF can be extended as a Lipschitz function (with
same Lipschitz constant > 0) over the whole spacg”. We shall still denote this extension by
F. A crucial role in our study is played by the characteristicves associated to the field

F:xeRV— F(x) e RV,
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Precisely, for ank € RY andt € R, consider the initial-value problem

OX(5) = FX(s),  (s€R),

X(t) = x.

(2.1)

SinceF is Lipschitz-continuous oV, Eqg. @.1) has a unique solution and this allows to define
the mapping® : @ x R x Ix; — 2, Ix; C R, such that, fo(x,¢) € Q x R, the mapping:

X(:) : s€Ix— O(x,t,s)

is the only solution of Eq.4.1). Note that, in generak is only defined on a suitable neighborhood
I, of the initial time¢, which also depends an. This leads to the definition of existence times
of the characteristic curves:

Definition 2.1. For anyx € €, define
7+ (x) = inf{s > 0;O(x,0, £s) ¢ Q},
with the convention thahf & = oo, and setr(x) = 74 (x) + 7—(x).

To shorten notation we put, = Ix . In other words /i = (—7_(x), 74(x)) is the maximal
interval for which®(x, 0, s) lies in Q for any s € Iy and7(x) is the length of the intervaly.
Notice that) < 74 (x) < oo. Thus, for anyt € R, the function® is defined on the set

{(x,t,8);x€eQ,teR, se(t —7-(x),t+74(x)) }.

Note that here welo not assume that the length of the intenfal = (—7_(x), 74(x)) is finite.
In particular, Iy = R for any stationary poink of F, i.e. F(x) = 0. If 7(x) is finite, then the
functionX : s € Iy — O(x,0, s) is bounded sincé is Lipschitz-continuous of2. Moreover,
still by virtue of the Lipschitz-continuity ofF on Q, the only case when. (x) is finite is when
O(x,0,+s) reaches the boundaff2. Then, we defin@®(x,0, 7+ (x)) € N as the following
limit

O(x,0,7+(x)) = lim ©O(x,0,s).

s—t74(x)

We note that, sincé& is Lipschitz around each point 6f2, the points of the sdty € 02 ; F(y) =
0} (introduced in 8, 13]) are equilibrium points of the extended field and cannotdsched in
finite time.

Remark 2.2. We emphasize that periodic trajectories which do not mestbttundaries have
7+ = oo and thus are treated as infinite though geometrically theytamunded. Of course, in this
case, the limitim,_, ;- () ©(x, 0, 5) does not exist for any.

We finally mention that it is not difficult to prove that the npapgs 7+ : 2 — R™ are lower
semicontinuous and therefore measurable, see &, ., B01]

The flow ©(x,t, s) defines, at each instant a mapping of the phase spafeinto itself.
Through this mapping, to each poirtthere corresponds the poirf ; = ©(x,t,s) reached at
time s by a point which was in ink at the "initial” time ¢. This mapping isone—to—oneand
measure-preserving.iouville’s Theorem). More precisely, one can check thatflow®, defined
on its maximal domain, has the following properties:
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Proposition 2.3. Letx € © andt € R be fixed. Then,
i) Ox,t,t) =x.
i)y O(O(x,t,s1),s1,82) = O(x,t,82), Vs1,82 € (t —7-(x),t + 74(x)).
i) O(x,t,s) =0O(x,t —s5,0) = O(x,0,s — ), Vs e (t —1—(x),t + 74(x)).
V) |®(x1,t,s) — O(x2,t,s)| < exp(k|t — s|)|x1 — x| foranyx;,xs € Q, s —t € Ix, N Ix,.
v) For anyt,s € R, the transformationx € Q — ®(x,t,s) € Q is measure-preserving
(Liouville's Theorem).

Proof. We only prove Liouville’s Theorem, the other four propestieeing easily checked. Ac-
tually, Liouville’s Theorem is a classical result;if is absolutely continuous with respect to the
Lebesgue measure. We have not been able to find a complateneddor general Radon measure
w and give it here. Let us denote py the image of. through the transformatior — ©(x,¢,0).

It is clearly sufficient, from the pointiii) of Prop.2.3, to prove thag, = p for anyt > 0. For any

d > 0, definep = xqa,p WwhereQs = {x € Q; 7..(x) > ¢}. Defineyi, the image ofz through
the transformatiox — ©(x,t,0), i.e

/jt = @(, t7 O)#ﬁ7

where we adopt the notations &] ffor the push—forward measugg. Then, applying 2, Lemma
8.1.6],t — ¢ is a distributional solution of the measure-valued corntynequation in(0, §)

Oie +V - (Frug) = 0, ft=0 = [ (2.2)
in the sense that,

)
/Iy/waw+f@ymwmdﬁm®=o Vo € GHQ x (0,5))
0 Q
and

g%memwzkwﬂmw, v € 61().

Moreover, sinceF is divergence free with respect to(Assumption2), it is easy to see that the
constant mag — p is also a distributional solution oR(2). On the other hand, sincg is
Lispchitz, one gets from2, Proposition 8.1.7], the uniqueness of the distributics@lltion of
(2.2,i.e.

e = i, VO <t <. (2.3)
Let As; be the family of all measurable subsetf © such thatnf{ry(x); x € A} > ¢ > 0.
We see thati(A) = 1(A) forany A € As. Moreover, it is easily seen that(A) = 1:(A) for any
A e Asand any) < t < 6/2. Therefore, Eq.2.3) leads to

ue(A) = p(A), VAe As, YO<t<d/2.

From the semigroup propertyi), one gets thati;(A) = n(A) for any A € As and anyt > 0.
This achieves the proof sinée> 0 is arbitrary. O

An important consequence ofi) above is tha®(x,0,s) = O(x,—s,0) for anyx € €,
0 < s < 74(x). Therefore, from now on, to shorten notations we shall denote

®(x,t) = O(x,0,1), vVt € R,
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so that®(x, —t) = O(x,t,0), t € R. We define the incoming and outgoing part of the boundary
02 through the flowd:

Definition 2.4. The incomind’_ and the outgoing™, parts of the boundarg(2 are defined by:
'y ={ycd;Ix e 2, 7.(x) < coandy = ®(x,+7+(x)) }. (2.4)

Properties ofb and ofry. imply thatI'y. are Borel sets. It is possible to extend the definition of
T+ toT'1 as follows. Ifx € I'_ then we put—_(x) = 0 and denote— (x) the length of the integral
curve havingx as its left end—point; similarly ik € I, then we put—(x) = 0 and denote_ (x)
the length of the integral curve havingas its right end—point. For technical reasons, we need to
introduce the following assumption on the measijie

Assumption 3. The set of integral curves hitting_ N T is of zerou-measure, i.e.

du<{x €0 Te(x) <oo; B(x,71(x)) €' mF+}> = 0.

Using Sard’s theorem and arguing as #, [one can prove that Assumptidhis fulfilled if
du(-) is absolutely continuous with respect to the Lebesgue measerR" . Note however that,
since the fieldF (-) is only Lipschitz continuous, one has to invoke a generdlizsion of Sard’s
theorem for Holder maps (see e.§, Theorem 1.4]). In the same way, Assumptis satisfied
by suitable Hausdorff measures over manifold®df (see P)).

The main aim of the present discussion is to repre$gras a collection of characteristics
running between points df_ andI"; so that the integral ove® can be split into integrals over
I'_ (orI'}) and along the characteristics. However, we cannot dortrasarecise way now since,
in general, the setE, andI'_ do not provide a partition od€2. In spite of assumptiods),
there still may be too many characteristics which extenafioity on either side. Since we have
not assumed? to be bounded]'_ or I'y may be empty and also we may have characteristics
running from—oo to +oco such as periodic ones. Thus, in general characteristigigtrom ' _
or ending afi’;. would not fill the whole€2 and, to proceed, we have to construct an auxiliary set
by extending(2 into the time domain and use the approach8pffhich is explained below.

2.2. Integration along characteristics. For any0 < T' < oo, we define the domain
QT = x (O, T)
and the measuréur = du ® dt on Q7. Consider the vector field ovéd:

0
Y:E—Ff(x)-vx:d(g)-Vg

for any¢ = (x,t). We can define the characteristic curvess0fas the
s)) to the system(;ig(s) =/ (&(s)), i.e.
S

where7 (¢) = (F(x),1
solutioné(s) = (X(s), 6

—~ ~—

—l(s) =1, (s e R),
with
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It is clear that the solutiof(s) to such a system is given by
X(s) = ®(x,5),  0(s) =s+1,

and we can define the flow of solutidn(¢, s) = (®(x, s), s+t) associated te7 and the existence
times of the characteristic curves Yfare defined, for ang = (x,¢) € Qp, as

04 (&) =inf{s > 0,(®(x,£s),£s +1t) & Qr}.

The flow W (-, -) enjoys,mutatis mutandisthe properties listed in Propositi@i3. Moreover, since
<7 is clearly Lipschitz continuous of27, no characteristic 0¥ can escape to infinity in finite
time. In other words, all characteristic curvesYoinow have finite lengths. Indeed, ¥ (x, +s)
does not reachs?, then the characteristic cur¥(¢, +s) enters or leave€ through the bottom
Q x {0}, or through the to§2 x {T'} of it. Precisely, it is easy to verify that fgr= (x,¢) € Qp
we have
(&) =) A (T —1) and (_(§) =7_(x) At,

whereA denotes minimum. This clearly implieap{/. (&) ; £ € Qp } < T. Define now

Yy = {C € 0Qp; 3¢ € Qp such that = ¥ (£, +04(€))}.

The definition of> 7 is analogous td'; with the understanding that the charateristic curves
now correspond to the vector fiele. In other wordsX_ 7 (resp. X, 7) is the subset 0dQ 7
consisting of all left (resp. right) limits of characteitsturves ofe7 in Qp wheread™ _ (resp.T"y)

is the subset of<2 consisting of all left (resp. right) limits of characteristurves ofF in Q2. The
main difference (and the interest of such a lifting2@) is the fact thaeach characteristic curve of
</ does reach the boundariés;  in finite time The above formulae allow us to extend functions
/4 to X4 7 in the same way as we extended the functiepdo I'.. With these considerations,
we can represent, up to a set of zero measure, the phase(3pae

Qr ={¥(,s); €l 1,0<s <l ()}
={¥(¢ —s); €l r,0<s<l_(§}.
With this realization one can prove the following:

(2.5)

Proposition 2.5. LetT" > 0 be fixed. There are unique positive Borel measdreson > 7 such
thatdur = dvy ® ds = drv_ ® ds.

Proof. For anyé > 0, define.#; as the set of all bounded Borel subsétof ¥_ 7 such that
0, (&) > éforanyé € E. Let us nowfix E € .Z;. For all0 < o < 6 put

E,={¥(,s); €€ E,0<s< o}

Clearly E, is a measurable subset@fr. Define the mapping : o € (0,6] — h(o) = ur(E,)
with 2(0) = 0. If o7 ando are two positive numbers such that+ o, < 6, then

Eoitoy \Esy ={¥({,5); (€ E,01 <s<o1+o02} ={¥(n,01);n€ E,,}.

The properties of the flowr (see Propositior2.3) ensure that the mapping — W(n,01) IS
one-to-one and measure preserving, so that

b1 (Egytoy \ Eoy) = pr(Esy) = h(02).



8 L. ARLOTTI, J. BANASIAK & B. LODS

SinceEy, 15, = Eo, U (Ey 10, \ Eo, ), we immediately obtain
h(oy + 02) = h(o1) + h(o2) for any o1, o9 > 0 with o + o9 < 6. (2.6)

This is the well-known Cauchy equation, though defined onhao interval of the real line. It can
be solved in a standard way using non negativity instead mtirnaity, yielding:

h(o) = cgo forany 0<o<d

wherecr = h(d)/d. We definev_(E) = cg. Itis not difficult to see that, with the above
procedure, the mapping_(-) defines a positive measure on the rigg = | J;- o -#5 of all the
Borel subsets oE_ 1 on which the functior/ (¢) is bounded away fromfi. Such a measure_
can be uniquely extended to thealgebra of the Borel subsets Bf r (see e.g. 14, Theorem
A, p. 54]). Consider now a Borel subsktof ¥_ ;- and a Borel subselt of R*, such that for all
¢ € Fands € T we have) < s < £, (£). Then

ExI={¥¢s);{€Esel}CQr.

Thanks to the definition af_(-), we can state thatr(E x I) = v_(E)meas(I) where mead)
denotes the Borel measure bfZ R. This shows thatl = dv_ ® ds. Similarly we can define
a measure,y on X, 7 and prove thatlur = dvy ® ds. The uniqueness of the measurks. is
then obvious. O

Remark 2.6. Note that the above construction of the Borel measdresdiffers from that 0{13,
Lemmas XI.3.1 & 3.2][8, Propositions 7 & 8]

Next, by the cylindrical structure &27, the measuregr.. can be written advy = du+ ® dt
wheredyu+ are Borel measures dny. [13, p. 408]. This leads to the following

Lemma 2.7. There are unique positive Borel measuigs,. on I'. such that, for anyf €
LY(Qr, dur)

T T_(y)At
£, )dpur(x, 1) / at / dus (y) / T (@(y—s) t — s)ds
Qr 0 I, 0 @2.7)

T_(x)AT
—i—/ﬂdu(x)/o f(®(x,—s),T — s)ds,

and

T T+ (y)N(T 1)
/ £, )dpur(x, 1) = / at / du(y) / T @y, s),t 4 s)ds
Qr 0 - 0 (2.8)

+ /Q du(x) /O T @, 5),5)ds.

The above fundamental result allows to compute integral theecylindrical phase-spade
through integration along the characteristic curves. lsshow generalize it to the phase space
Q. Here the main difficulty stems from the fact that the chamastic curves of the vector field
F are no longer assumed to be of finite length. In order to extemdma2.7 to possibly infinite
existence times, first we prove the following:
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Lemma 2.8. LetT" > 0 be fixed. Thenz(x) < T for anyx € Q if and only if7_(x) < T for
anyx € Q.

Proof. Assume thafl’ > 7, (x) for anyx € €2 and that there iz € © such thatr_(z) > T.
One can assume without loss of generality thatz) > 7. Indeed, ifr_(z) = T, sinceQ2
is open, the orbit passing throughcan be continued beyond ensuring the existencg af
with 7_(z') > T. Now, if 7_(z) > T, foranyT < t < 7_(z),y = ®(z,—t) € Q and
®(y,s) = P(z,t—s) € Qforall 0 < s < t. This leads to the contradiction that (z) >t > T.
We proceed in the same way for the converse implication. O

The above lemma allows to prove a representation formulanfegral of the typefQ fdu
in terms of integrals ovel'y. Hereafter, the support of a measurable functfodefined on2
is defined asSuppf = ©Q \ w wherew is the maximal open subset 6f on which f vanishes
du—almost everywhere.

Proposition 2.9. Let f € L'(€,du). Assume that there exists > 0 such thatr.(x) < T for
anyx € Supp(f). Then,

T (y)
/ F()dp(x) = / A (y) / f (@(y, —s)) ds
« I+ 0 (2.9)

=/ dp—(y) /OT+(Y)f(¢’(y,8))d8-

Proof. For anyT > 79, define the domaif2y = €© x (0,7). SinceT < oo, it is clear that
f € LY (Qp,dudt) and, by @.7), we get

7 [ reodue) = [ Ca / Anty) / Y @ty st

[ aneo) [ " @ 9)ds.

Since the formula is valid for any" > 7, differentiating with respect td@" leads to the first
assertion. The second assertion is proved in the same wasitty formula 2.8). O

To drop the finiteness assumption 9a(x), first we introduce the sets
Qp ={x€Q;7u(x) <oo},  Quo={x€Q;7e(x) =00},
and
Tioo ={y €T's; m¢(y) = oo}
One gets

Proposition 2.10. Let f € L'(£2,dy). Then

”f:F(Y)
F)du(x) = /F i () /O F (@(y, Fs) ds, (2.10)

Qi
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and

/ﬂimnm f(x)dp(x) :/Fioo dui(}’)/o f(®(y,Fs))ds. (2.11)

Proof. Assume firstf > 0. Let us fixT' > 0. Itis clear thatx € Q satisfiesry (x) < T if and
only if x = ®(y, s,0),withy € T'y and0 < s < T A 7—(y). Then, by Propositioi2.9,

TrT(y)
/ fx)du(x) = [ dps(y) / f(®(y, —s))ds.
{7+ (x)<T} T 0

Sincef > 0, the inner integral is increasing withand, using the monotone convergence theorem,
we letT — oo to get

T—(¥)
[ 760au00 = /F ) /0 £ (®@(y, —s))ds

which coincides withZ.10. We proceed in the same way integrationlan and get the second
part of 2.10. Next we consider the set

A={xeQ;x=P(y,—5),y € Dy, 0<s<T}.
Proposition2.9 asserts that
T
[ sedue0 = [ dusty) [ @ -o)ds
A Qoo 0
Letting againl” — oo, we get 2.11). We extend the results to arbitrafyby linearity. O

Finally, with the following, we show that it is possible tairsfer integrals over_ to I',.:

Proposition 2.11. For anyy € LY(I'_,du_),

[ i = [ @ @) ), 2.12)
A\l oo P\l oo
Proof. For anye > 0, let f. be the function defined of2; N Q_ by

Ye(x) = {T’Z)(‘I,(X7 =0 it 7 (x) +7(x) > ¢

7 () + 7 (%)
0 else

Sincey. € LY(Q NQ_,du), Egs. .10 and @.11) give

+(y) ds
/ﬂmﬂ vl = /{T+<y>>e}\roo du_(y)/o w(y)u(y)

Y(y)dp-(y).

B /{T+<y>>e}\roo
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In the same way,

d - d —(¥) >
/ﬂ o Ye(x)dp(x) = /{ e 1+ (y) /0 V(@ (y, —T_(y)))T_(y)

Y(@(y, —7-(y)))dp—(y),

/{T (¥)>eN\t oo
which leads to
Y(®(y, —7-(¥))dp+(y) = / Y(y)dp—(y)

{r()>e\M o
for anye > 0. Passing to the limit as — 0 we get the conclusion. O

/{T (¥)>eN\ oo

3. TRACE OPERATORS AND BASIC EXISTENCE RESULTS

3.1. The maximal transport operator and trace results. Now we define the transport operator
Tmax ONX = L' (Q,dpu) by the following: the domair? (T . of Ty is the set of functions
f € X for which there exists a functiop=: T\, f in X such that

/(—f(X)’Vw(X))f(X)dM(X) =—/ 9(X)p(x)du(x)
Q Q

holds for anyy € €(£2). Note that the functio € X unique, i.e.T ., is well-defined. The
graph norm orZ (T ,ax) is defined by:

Ifllz =[Ifllx +lgllx,  Vf€ P (Tmax)  With g =Thaf

Note also that, forf € 2(Tnax), One has the following weak representatidh,.. f: for any
v €6 (Q)
[ T f0G0dtx) = tim s~ [ (1@ x,Fs) ~ ) 0)dn(x). @)
Indeed, it is clear from the definition & .., f that
[ Tt GeG0(x) = [ (F) - Violx) F0dn(x)
— s~ [ (p(@(xF) — () fdulx
becausep is regular. Now, this last expression equals
tim s~ [ (F(®075) = £(0) o)l
since the flow is measure preserving.
At this point, we have to make the following assumption:

Assumption 4. The measurg: and the fieldF are such that¢! (2) N Z(Thax) is dense in
(Z(Tmax), | - 2)-
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Remark 3.1. Itis a classical matter (see e.fp, Proposition 10.13]that Assumptiod is fulfilled
wheny is the Lebesgue measure oY. More generally, it can be shown thanks to Friedrich’s
lemma that Assumptiois satisfied ifdu(x) = h(x)dx where there exist constants, c; > 0
such thatey < h(x) < ¢ foranyx € Q.

Before stating trace results, one recall thatf;ifand f> are two functions defined ovée, we
write f1 ~ fo if p{x € Q fi(x) # fa(x)} = 0, i.e. whenf(x) = fa(x) for p-almost every
x € Q2. We will set then thaff, is a representative gf;. One can state the following trace result:

Proposition 3.2. Let f € Z(Thax)- Then there is a representatiyé of f such that the limit
Jim @y, ~9))

exists for almost every € T';.. Similarly, lim,_o1 f.(®(y,s)) exists for almost every € T'_
where f, is some suitable representative fof

Proof. Let (f,,)n C €1 (Q) N P(Twmax) be such thal f,, — f|| — 0. Then Eq. 2.10) yields
(¥)
[ ) [ 1@ -9) - f(@ ()l ds
Iy 0

7 (¥)
[ ) [ (@ —) — Toa (@0, —5)|ds — 0
Iy 0

sinceT .« f andT .« fr, both belong taX. Consequently, for almost eveyyc ' and anys €
(0,7—(y)) (up to a subsequence, still denoted/hywe get the following pointwise convergences:

fn(®(y,s)) — f(®(y,s))
Tmaxfn(q)(}’> _3)) — Tmaxf((I’(Y7 _8))

asn — oo. Therefore, there is a representative of the functigns) — f(®(y,—s)) and a
representative of the functiofy, s) — Taxf(®(y, —s)) such that the convergences océor
all y,s € Q x (0,7—(y)). From the continuity of®(-,-), the first representative is of the form
f*(®(y,s)) where f* is a representative of. One shows then, from formul&.Q), that the
representative ofy, s) — Taxf(®(y, —s)) is nothing butT .. f*(®(y, —s), so that

{fn@(y,s)) — (®(y,))
Tmaxfn(q)(ya _S)) B Tmaxf*(q)(ya _S))7 Vy € F-i-a s € (077——(}’))7
asn — oQ.

For anysg € (0,7_(y), one has then

Fo(®(y,—5)) — fu(®(y. —50)) = / T fl(@(y, —r))dr s € (0,7_(y).

S0
Since the right-hand-side has a limitias— oo,

S

@y, —s)) = @[y, —s0)) + / T ) (@ (y, —r))dr (3.2)

S0
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As a direct direct consequence, the limits .o f*(®(y, —s)) exists and equals

S0

[ (@(y, —50)) —/ [T ax f](®(y, —7))dr.

0
It is easy to check that this limit does not dependsgnThe existence of a representatifesuch
thatlims_.o+ f«(®(y, s)) for aimost every € I'_ follows by the same argument. 0

The above proposition allows to define the trace operators.
Definition 3.3. For any f € 2(Twax), define the traceB* f by
BYf(y):= lim [*(®(y,=s))  and B [f(y):= lim fi(®(y,s))

for anyy € I' 1 for which the limits exist, the representativgsand f, being provided by Propo-
sition 3.2

Note that, as we saw in the proof of PropositRa, for any f € 2(T.x) and a.ez € T,
t

BT f(z) = f*(®(z, —t)) —/ [Tmaxf*](®(z, —s))ds, vVt € (0,7_(z))

0
where f* is a suitable representative ¢f In the same way, there exists a representafjvef f
such that, fora.ey € I'_

Biﬂy)=f4@oaww+1ijwﬂM¢oa@ﬁm, vt € (0,74 (y)).

Note that the above representation allows us to reprébgnt, as the derivation along the
characteristics.

Proposition 3.4. Let f € Z(Thax). Then, there is a representati\ﬁaof f such that, for any
x € 4, one has

Ty f(x) = lim 57 (F(@(x,55)) = fx)) (3.3)
where the limit exists ifX'.

Proof. Let x € Q. and lety = ®(x,74(x)). Using Formula 8.2), with so = 7 (x) and
s =t+ 7+(x), one has

[ (@(x,—t) = f(x) +/0 [Tmaxf YR, —r))dr (=7 (x) <t <7-(x)).

Therefore, the |imiEIiI(I)1 tHF(®(x, 1) — f(x) = th%l 1 /t[TmaXf](i’(x, —r))dr exists
o+ ot 0

in X and is equal td'y,,,x f(x). One proceeds in the same way to prove the result wher(2_,
for which

f(@(x,1) = f(x) —/0 [Tomax [l (@, 7))dr (=7 (x) <t <7 (%)),

sothatlim ¢t~ (f(®(x,t)) — f(x)) = Tmaxf(X). O

t—0t+
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Lemma2.7 provides the existence of Borel measudes. on ' which allow us to define the
natural trace spaces associated to Problked),(namely,

LY = L'(Tx,dpus).
We note, however, that fof € X, the tracey € 'y —— B* f(y) not necessarily belong tb..

3.2. Basic existence resultsLet Ty be the free streaming operator witlh re—entry boundary
conditions

T0¢ = Tmaxw for any1/1 S 9(T0)7
where the domaiw (T)) is defined by

P2(To) ={v € Z(Thax); B ¢ =0}.
We state the following generation result, whose proof iggmsed to the Appendix of this paper:

Theorem 3.5. The operator(Ty, Z(Ty)) is the generator of a nonnegativ€,-semigroup of
contractions(Up (t)):>0 in X given by

Uo(t) f(x) = f(R(x, =) Xt<r 23 (X), (X €K, fEX),
wherey 4 denotes the characteristic function of a gkt

One can now state the following result.

Theorem 3.6. Letu € L! andg € X be given. Then the function

(%)
f(x)= /o exp(—At) g(®(x, —t))dt + X{r_(x)<oo} EXP(—AT_ (X)) u(®(x, —7-(X)))
is theunique solution f € Z(Tax) Of the boundary value problem:

{()‘__ Tmax)f =g (34)
B f=u

whereX > 0. MoreoverB* f € L! and
IBT £l +Allfllx < llullzr +llgllx- (3.5)
Furthermore, ifg > 0 andu > 0, then(3.5) turns into equality.
Proof. Let us writef = f1 + fo with f1(x) = [~ exp(—At) g(®(x, —t))d¢, and
fo(%) = X{r_(x)<o0) EXP(=AT-(X))u(®(x, —7-(x))),  (x € Q).

According to Theoren3.5, fi = (A — To) " 'g, i.e. fi € Z(Tmax) With (A — Tray) f1 = g and
B~ f1 = 0. Therefore, to prove thatis a solution of 8.4) it suffices to check thaf; € Z(T.x),
(A — Thax)fo = 0 andB~ fo = u. Arguing as in the proof of Theore®.5 (see Appendix), we
easily see that

f2(®(y,t)) = exp(—=At)u(y), (yel-, 0<t<7i(y)): (3.6)
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Then Propositior2.3yields
/ T fo dp = / F2(2)F(x) - Vib(x)dpu(x) = / F2(%)F(x) - Vb (x)dpa(x0)
Q Q Q_

T+ (y)
= [ du / @y, ) F(@(y, 1)) - V(@ (y, £))dt
Ir_ 0

T+(y)
- [ uvan-) /0 Y eNE@(y.1)) - V(B(y. 1)t

Again, as in the proof of Theore®5, we get that

T+(¥y)
/Q 4 o fodit = A / ) /0 e (@(y, 1)t = A /Q Fabdp.

This proves thafs € Z(Tnax) and(A — Thax) fo = 0. Consequentlyf is a solution t0 8.4). To
prove that the solution is unique, it is sufficient to provattthe only solution) € (T ax) tO

(>\ - Tmax)¢ =0, B7¢=0

is ¢ = 0. This follows from the fact that such a solutignactually belongs t@(T,) while A €
o(Ty). Finally, it remains to prove3(5). For simplicity, we still denote by, its representatives
provided by Propositior8.2 Using @.6) and the fact thaf; vanishes orf2_ ., we infer from
(2.10 that

3 b= [ ipldn = [ i) /OW) e Ju(y)|dt
— [ @)l (1) du-y)

(3.7)

Defineh : y € I'_ — h(y) = |u(y)|e=*™®)_ Itis clear thath vanishes of'_ ., andh(y) <
lu(y)| fora.e.y € I'_. In particular,h € L' and, according to212),

[ o= [ o ) = / M ) o)
— [ OBl @)ldns (2)
F\lyoo
= [ 18" 2@l (@) = [ el

Combining this with 8.7) leads to

Allf2llx + 1B fall 2 = flulle - (3.8)
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Now, let us show thaB™ f; € L and B fi]l,1 + Allfllx < llgllx. Foranyy € I'y and
0 <t<71_(y),we see, as above, that

T (y)—t
£1(®(y,1,0)) = /0 exp(—As)g(B(y, —s — £))ds

T-(¥)
- / exp(—A(s — 1)g(@(y, —s))ds.

This shows thaB™ f1(y) = lim,_+ f1(®(y,—t)) = fOT’(Y) exp(—As))g(®(y, —s))ds. Ac-
cording to Propositior2.10,

—(¥)
. du+(y)/0 lg(@(y, —8))Id~9=/Q+ lgldu

which, sinceexp(—A(s — t))|g(®(y, —s))| < |g(®(y,—s))|, impliesB* f; € L!. Let us now
assumey > 0. Thenf; > 0,

A|f1\|=A/f1du=A/ fldum/ fldum/ fdu.
Q Q. 2Ny oo Qoo N oe

Using similar arguments to those used in the study,pfve have

T—(y)
Moofde= [ dusy) / 9(®(y, 1)) (1 — exp(—At)) dt,
Q. r, 0

which, by Propositior2.10, implies

A flduz/ gdu—/ B f1dpus.

Similar argument shows that

A / Sidp = / gdp,
Q_NQ4 Q_NQ4

while the equality

A Sidp = / gdpu,
Qfoomﬂ+oo 9700094»00

follows since this case behaves as the whole space case.sfidvs that\ |f||x = |gllx —
|]B+f|]L1+ for g > 0. In general, defining

7—(x)
Fi(x) = /0 exp(—As) |g(®(x,—s)|ds, (x € ),

we obtain|]B+f1HL1+ + A f1llx < HBJfFlHLl+ + A |F1]|x = |lgl|lx, which combined with&.8),
gives @.5). O
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Let us note that, with the notation of Theoré&®, we have

/F+B+fd,u++/\/nfd,u:/rud,u_—l—/ﬂgd,u. (3.9)

Indeed, for nonnegative and g, (3.5) turns out to be an identity which is preciseB.9). Then,
for arbitraryu € L' andg € X, we get 8.9) by splitting functions into positive and negative
parts. This leads to the following generalization of Gredarmula:

Proposition 3.7(Green’s formula). Let f € 2(Tmax) be suchthaB~ f € L. ThenB* f € L1

and
| Towsttn= [ B sau - [ Btrap.
Q _ r,

Proof. For given f € 2(Twax), We obtain the result by setting = B~f € L! andg =
(A= Thax)f € X inEq. 3.9. O

Remark 3.8. If du is the Lebesgue measure BA’, the above formula leads to a better under-
standing of the measurek:... Indeed, comparing it to the classical Green’s formula (segp
[7]), one sees that the restriction @f..- on the set L = {y € 02 ; £ F(y) - n(y) > 0} is equal

to

dpss, = (£F(y) - nly)) dv(y)
whered~(-) is the surface Lebesgue measurejsa.

We conclude this section with a result similar to Theo&8 Precisely, for the boundary value
problem with data given oh,, we have the following generalization & [Lemma 2.2]

Proposition 3.9. Givenh € LY, let

T_ (X)e_T+ (X)

h(@(X’TJF(x))m if 7_(x)+ 74(x) < 00,
f(x)= h(@(x,7+(x))€_T+(x) if 7_(x) =o00andr;(x) < oo,
0 if 7(x) = oo.

Then,f € Z(Tmax), B™f =0, andB* f = h, with || f]|x < [[2[|2 and || Tof|lx < [IAllL: -

Proof. Let us first show thaf € 2(Tax) and

_ x, T4 (x €_T+(X)L_(X)
h(®(x, 74 (x))) T_(x) + 74 (x)

Thaxf(x) = —h(®(x, 74 (x))) e T+ if 7_(x) = ocandry(x) < oo,
0 if 7 (x) = oc.

if 7_(x) + 74 (x) < 0,
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Let o € €4 (2) be a suitable test function. According to the integratiomfala ¢.10), one has

7_(2)
/ (F(x) - Vo)) F(x)du(x) = / Ay (2) / (F(B(2,—s) - Vp(®(z —5)) x
QN0 T\ oo 0

h(z

T

(( _(z) — s)e_s) ds

+x 2 X))

fr oo [ (e
=— p+(z (z,—s
Fi\loo ! 0 ds”

)@
h(z) d
ds
_I_
)+

7_(2)
[t [ e

)
— [ h@br ) el )
QN0

One proceeds in the same way ﬁg{ na_ . (F(x) - Ve(x)) f(x)du(x) leading to the desired
result. Next we shovj f|| x < HhHL1 andHTmaXfHX HhHL1 . First we notice that

/ﬂ (0 du(x) = /Q LCIICE /ﬂ o G010 + /ﬂ o 600,

sincef(x) = 0 wheneverr,(x) = co. Now, according to the integration formula.10),

7_(x)e T+ ()

L et = [ @ ) S

B T,(Z)M B e

- /F Lt /0 o (2) — e = /F o It
< /F o i)

In the same way, according to EQ.1J),

[ elneo = [t [T ioleas= [ hlane o

One obtains thus that

Il = [ 1760lutx) < [ L eante) + | h@lduta) = al.

One proceeds in the same way to show thiBit,.. f||x < \|h||L1+. Sincef € Z(Tmax), let

us denote byf* and f, the representatives ¢f provided by Propositior3.2 Lety € I"_ and
0 <t<74(y). Since

T (@(y.t) =t,  whie T (B(y,t) = 7i(y) ~t
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we have
tet_7—+ (y)

fo(@(y,t) = h(®(y, 7+(y))) )

andB~ f(y) = limy—o f4«(®(y,t)) = 0 fora.e.y € T'_. In the same way, given € '} and
0 <t < 7(z), we have

T4 (®(z,—t)) =1, while T_(®(z,—t)) =7_(2) — 1.

X{ry (y)<oo} (3.10)

Consequently,
N 7_(z) —t)et _
f(®(z 1) = h(z) %szkw} € X ()=}
so thatB™ f(z) = lim;—¢ f*(®(z, —t)) = h(z) for a.e.z € T';.. This ends the proof. O

3.3. Transport equations with abstract boundary conditions. For any(linear) bounded bound-
ary operatorH € (L., L), defineTy as
Tpy = Thax? for any¢ S .@(TH),
where
P2(Th)={¢ € D(Tmax); BT € L B ¢ = HB 9} .
For anyA > 0, we define the operators:
M, : L' — L%
ur— [Myu] (y) = u(®(y, —7-(y))) exp (=AT_(¥)) X{r_(y)<oc}> (¥ €T4);

{EA Ll X
u— [Exu] (x) = u(P(x, =7 (%)) exp (= AT (X)) X{r_(x)<oc}> (X € Q) ;

Gy: X — Lﬂ_
7_(2)
{ frefofl@= [ f@ s em(-Asds, (@)

and
{C’A X — X

T— (%)
fr—[C\f](x) = /0 f(®(x,—s))exp(—As)ds, (x € Q).

Thanks to Holder’s inequality, all these operators arended on their respective spaces. Note
that=, is a lifting operator which, to a givem € L! associates a functiofi= Zyu € Z(Tmax)
whose trace ori'_ is exactlyu (Theorem3.6). The operatorM, transfers functions defined
on I'_ to functions defined o’ and, using Theorem.5, it is easy to see thaf', coincides
with the resolvent ofTy, i.e. Oyf = (A — To)~f forany f € X, A > 0. In particular,
RankC)) C Z2(Tmax). Moreover, still using Theorer.6, we see that, f = BTC, f for any

f € X andMyu = BT=Zyu for anyu € L}r. Finally, we see that, is surjectivefor any A > 0.
Indeed, according to Propositid9, we have that for any € Ll , there is anf € 2(Tmax),
such thatB*f = g andB~f = 0. The latter property means thgt € 2(Ty) so that, for
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any A > 0, there isyy € X such thatf = Z(\, Ty)v. In this caseg = BT f = G,y and
1V)lx < Alfllx + ITofllx < (1+ N)|gllx. The above operators allow to solve the boundary-
value problem

{(/\ - Tmax)f =g (311)

B~f=HB"f
whereg € X and\ > 0. Precisely, we have

Proposition 3.10.Letg € X be given. Assume that for sotkg> 0 the seriesy "> (M, H)"G), g
converges i} . Then the function

n=0

f: C>\Og+E)\OH (Z(M}\OH)"G)\OQ> (312)

is a solution of(A\g — Tx)f = g. If, moreover,H > 0, then the thesis is valid for all > .

ProoF. DefineSy,g = Yo% (M), H)"G,g. By assumptionsS,,g € L} so thatHS,,g € L!.
Then, as we have already seen, b6ty g and=,,HS),g belong toZ(T.x). This shows that
[ =Cx\9+ExHS\ g € Z(Tnax). Furthermore,

B_f = B_CAOQ + B_EAOHS)\OQ = HS)\Og
sinceCy,g € 2(To) andB~Zy,u = u forallu € LL. In a similar way,

[e.e]
B+f = B+C)\og + B+E)\0H‘S>\og = G)\o.g + M)\()HS)\()g = Z(M)\OH)”GAOQ = S)\Og7
n=0
so thatB~f = HBTf,i.e. f € 9(Tg). Finally, Theorems.5and 3.6 assert respectively that
(Ao — Thax)Cro9 = g and (Ao — Tax)=x,u = 0 for anyu € Lﬁr so thatf solves 8.11) with
A = Ag. The statement foff > 0 follows from the fact that\/, andG, decrease with and thus
the series in3.12 converges for any geq\o. O

As a consequence, one gets the following generation rasutbhtractive boundary operators
already stated ing, 13:
Theorem 3.11. Assumé to be strictly contractive, i'euHH&?(LLLE) < 1. ThenTy generates
a Cp-semigroup of contractionf/(t)):>o and the resolventh — Tx)~! is given by

A—Ty) ' =C\+E\H <Z(MAH)"GA> forany A >0 (3.13)

n=0
where the series is convergentd#(X).
PROOF It is easy to see thatM, || < 1 for any A > 0. In particular,||MyH|| < 1 foranyA > 0

and the serie3_>° (M, H)"G, converges in4(X, L1 ). Fixnowg € X and letf € X be given
by (3.12. Proposition3.10ensures thaf is a solution of 8.11) while (3.5) implies that

Mllx < llgllx +1B7 fllr = BT £l -
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Since|[B=/ll1 = || HB*fllx < |B*f];1., we geth| f]lx < |lgllx or, equivalently,

[A=Tu)fllx = Alfllx-

ThereforeTy is a densely defined dissipative operator (recall thél';;) contains the set of
compactly supported continuous functions)’6f Moreover, the range i\ — Ty ) is exactly X
according to PropositioB.10so that the Lumer-Phillips Theorem leads to the generagsalt.
Now, the O

Remark 3.12. Hadamard’s criterion ensures that the serie{®13 converges in(X) for any
A > 0 and any boundary operatdil such that-,(M\H) < 1.

4. MULTIPLICATIVE BOUNDARY CONDITIONS

In this section, we consider the general CM]@(LLLD > 1, and we provide, in the spirit of
[17], a sufficient condition o ensuring thal';; generates &'y-semigroup inX. Let y. denote
the following multiplication operator inLEr:

_July) if 7_(y) <e
[xeul (y) = {0 else

for anyu € L}r and anye > 0. Our main result is the following

Theorem 4.1.LetH € #(LL LY). If

lim sup | xel 1 1) <1, (4.1)
thenT i generates &y-semigroup(Vg (t)):>0 in X such that
| H | t 1 — || Hx
VeI € +—rg—exp |—-log | ——— (t=0), (4.2)
1—[[Hx £ |H ||

for anye > 0 such that| H x| < 1.

The strategy to prove this result is adapted frdid] [and consists in performing a suitable
change of the unknown function if.Q) (similar to that used in13, Chapter XllII]) so that the
new unknown satisfies an equivalent evolution probldm) (but with a boundary operator which
is contractive, provided the assumptichl) holds. More precisely, for ang < 0, define the
multiplication operator in_? :

Ma : LY 5w [Mou] (y) = exp{a(r_(y) A k) bu(y) € LL,
wherek is a positive real number to be fixed later. L£{ be defined by
Zo 0 X3 [ [Zaf] (%) = expla(r—(x) AR)}f(x) € X.

SinceM,, € #(L), itis possible to define the free streaming operdgr,,, associated to the
boundary operatoH M,, € #(L!, L}r) and theabsorption operator

Apoth(x) = Tam, (%) — axir_x)<y¥(X), ¥ € Z(Apna),
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where

P(Ana) = 2(Trm.) = { € D(Tmax); B € LY, B¢ = HM B ¢} .
The unbounded operatois; andA 7, are related by the following lemma.
Lemma4.2. Forany0 < a <1, Z;'2(Ty) = 2(Ans) andTy = Z,An o 25t

Proof. Let 0 < o < 1 be fixed. One sees easily th&f, is a continuous bijection fronX” onto
itself. Its inverse is given by

Z7 feX s 27N f(x) = exp{—alt_(x) Nk)}f(x) € X.

Note thatZ;! € #(X) becauseup{r_(x) Ak ; x € 2} < k. Now, letf € 2(Ty) and
g = 2,1 f. Firstwe show thay € Z(Tax). From @.3),onthese{x € Q; 7 (x) <k} C Q_,

Traxg(x) = lim 57" (9(®(x, —5)) — 9(x))

— lim s~} (e—a(T,(@(x,—s))Ak)f(‘I,(X’ —8)) _ e—om:(x)f(x)) ]

s—0

Sincer_ (®(x, —s)) = 7_(x) — s forany0 < s < 7_(x), we get
Trnaxg(x) = €709 Tim 571 (5 f(@(x, —3)) — (x)
= ¢ 09 (@ f (%) + Trnax f(x))
for anyx € Q with 7_(x) < k. Since
9(x) = e X (X)X w<ry T € FUF (X)X 0>k}
we 0btainT maxg(x) = e~ =) (0 f(x)X1r <k} + Tmaxf (X)), L€

TmaxZo_zlf = Zojl (Oé fX{T,Sk} + Tmaxf) (43)

so thaty € 2(Tuax). Still denoting byf andg their corresponding representatives provided by
Proposition3.2, one sees that, sinee (y) A k = 0 foranyy € I'_,

B7g(y) = lim g(®(y,s)) = lim exp(—sa)f(®(y,s)) =B~ f(¥).

S—

Now, for anyz € I', using that—_ (®(z, —s)) = 7_(z) — s for any0 < s < 7_(z), we have
BYg(z)) = lim g(®(z,~s)) = lim exp (~a((r-(z) A k) = 5)) [(2(2,5))
= exp (—a (7-(z) A k) BT f(2),

i.e. Btg = MZ'Btf. ConsequenthB*g ¢ L} andB~g = HM,BTg. This proves that
g€ Z2(Ana)ie. 2;'92(Ty) C P(Apn.). The converse inclusion is proved similarly. Finally,
forany f € 2(Ty), 4.3 readsTum, 2, f = 27" (axir_ <y f + Tuf). e

ZoAp o2 f =Tuf VfeD(Ty)

which completes the proof. O
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Remark 4.3. Note that the characteristic functiogy,_;, in the definition ofA ; , is missing
in the force-free case studied 7] but has to be considered if one wishes to take into account
characteristic curves with infinite length.

The above lemma shows that the evolution problem
O f(x,t) + F(x) - Vi f(x,1) + axir_x)<hy f(x,1) =0
B~f=HM.BTf (4.4)
f(x,0) = exp{—a(r-(x) A k)}go(x), (x€Q)
is equivalent, by the change of variables, to probldni)( Consequently, to prove thaty is
a generator of &y-semigroup(Vy (t)):>0 in X, it suffices to show thaA y , generates &'y-

semigroup(Vu,«(t)),~, in X (for some negative1). Moreover, by Theorer.11, it is enough
to find a negativey such that| I M, || < 1. We are now in position to prove Theorefril

PROOF OFTHEOREM4.1: Define@ = {a < 0; ||[HM,| < 1}. As explained above, Lemn#a2
and Theoren8.11imply that if Q@ # @, thenT iy generates &/p-semigroup(Vy (t)):>0 such that

Vi(t) = ZuViaa(t) 2 (20, a€Q), (4.5)
where (Vi o (t ))t>0 is a Cyp-semigroup inX with generatorA g, (o € Q). Using assumption
(4.2), let us fixe > 0 S0 that||Hx.|| < 1 and chooseé: to be larger thare. Then, for any
0<a<l,

[HMa |l < [[Hxe Mall + [[H (I = xe) Mall < [[HXe]| + [H {|( = xe) Mall-
Moreover
(I = xe)Ma|| = sup {expla(r—(y) A k)] s y € I'y and(7—(y) A k) = €}

< exp(eq) (a <0).

Consequently,
[HMall < [H x|l + [ H|| exp(ec)

1—||Hxe

Therefore,@ # @ and Ty is a generator of &y-semigroup(Veg(t)):>0 in X. On the other
hand, sincA o9 = Tum,g9 — @ xyr_<kyg foranyg € Z(Ap ), and sincel' o4, generates
a Cp-semigroup of contractions, we see that

Vi (t)]] < exp (—ta) (>0, ac@).

anda € @ provided

Next, we see that
IZol <1 and |21 < exp(—ka), (a€Q),

hence 4.5 implies ||V (t)|| < exp(—(k + t)a) for anyt > 0 and anya € Q. Noting that the set
Q is independent of (actually it depends only onand H through é.6)), we may letk go toe so
that

Ve (t)| < exp(—(g+1t)a) (t=>0, a€Q).
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Now, for any fixeds > 0, optimizing the free parameterin (4.6) we obtain 4.2). O
The estimate4.2) on ||V (t)|| certainly is not optimal and can be improved for some geome-
tries of the phase space. One such case is described in tiilagobelow.

Corollary 4.4. Assume thatnf{7_(y);y € '} = £y > 0. Then, for any boundary operator
H e (L, L), Ty generates &y-semigroup(Vz (t)):>o in X such that

Ve ()| < max{1, [|H|[} exp (max{0,log | H[[}t/fo) (£ >0).

Proof. According to Theoren3.11, it suffices to prove the result foi//|| > 1. Noting that

0 if0<e<{
H =

we immediately see that

(1 (1 uHxau> } log | ]
infq—log| ——=— ] ||Hx| <1p =— .
{e g( ) ¢ Il %

The proof becomes now a straightforward application of Téaet.1 O

This corollary shows that € is a phase space in which the lengthes of characteristiesamne
bounded away frond, then the general transport equatidnlf is well-posed for any bounded
boundary operator H € (L., L!). Let us illustrate the above result with a few examples.

Example 4.5. In the first example we consider the force—free Vlasov equaditi a slab of thick-
ness2a, (a > 0). In such acase? = {x = (z,v) € R?; ~a < x < a, -1 < v < 1} and
F(x) = (v,0). Itis not difficult to see (see for instanck7, Section 4.1]) that the above Corollary
applies in this case sindef{7_(y); y € I'+} = 2a > 0.

Consider now an example of the Vlasov equation with a noratrierce term for which Corol-
lary 4.4 still applies.

Example 4.6. Let us consider the following two-dimensional phase space:
Q={x=(z,y) eR?;2°+y’<2and -1 <y <1}

with the field 7 (x) = (—y,x) for anyx = (z,y) € Q. In such a case, the characteristic curves
arecircular, namely

P(x,s) = (rcoss —ysins,xsins + ycos s), x = (z,y), seR.
In particular, for anyx = (x,y) € € such thatz? + y? < 1, one has+(x) = co. Moreover,
My ={(z,-1); -1<tzx<0}U{(z,1); 0 <tz <1}

In this case, one can easily check thef{r_(y); y € 'y} = 7/2.
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5. CONSERVATIVE BOUNDARY CONDITIONS

In this section we consider the case of conservative boyraanditions. Note that such bound-
ary conditions arise naturally in the study of gas dynami@&} &nd are typically associated to a
boundary operatof such that

[Hp = Il forany ¢ e L}, ¢ >0.
Theoremd.1does not apply to such boundary operators since
|Hxe = llxe| =1 forany e > 0.

Therefore to deal with the generation properties of theatpet ;;, we shall proceed in a different
way adapting techniques used 5} [n the force-free case. From now on, we adopt the following
assumptions, which are more specific than the conditioneabov

Assumption 5.

(@) The boundary operatall € (L, L) is positive.
(b) [|H| =1.

(c) If f € L! is non-negative and? f = 0, thenf = 0.

Under these hypotheses we can prove the existence reseiit igivi heoren®.l This result,
with different proof, can be found irB]. A less general version of it has been obtained also in
[5, Theorem 2.8]. The proof in the case including the force fi¢ldvhich we present below for
self-consistency of the paper, is the same a$jrsince it only uses the series representation of
the resolvent of'; and the generation result for contractive boundary opesdiitheorens.11).

For any0 < r < 1, let (V,.(t))i=0 be theCy-semigroup ofX generated byI',y (whose
existence is given by Theoregll).

Theorem 5.1. Let H satisfy Assumptiols). Then, for anyt > 0 and anyf € X the limit
Vu(t)f = lim, ~ V,.(t)f exists inX and defines a substochastic semigraif;(t)):>o. If
(A, 2(A)) is the generator of Vi (t)):>0, then its resolvent is given by

A= A)'f =Chf + D EH(M\H)"GAf foranyf e X, A >0, (5.1)
n=0

where the series converges.in

Proor According to Theoren3.11, for any0 < r < 1 and any fixed\ > 0, the resolvent of,. iy
is given by

()\ — TrH)_l =C\+ ZT’H—HB)\H(M)\H)TLG)\
n=0
with supgc,<1 [|(A — Trr) Y| < AL Then, for anyf > 0, the functionr € (0,1) — (A —
T,y) ! f is non-negative and non-decreasing so that the following kxists

EN)f = liHi(A —Tou) ' f=Caf + Z ENH(M\H)"G\f

v/ n=0
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where the series converges absolutely because of the nmenodovergence theorem. Itis easy to
check thatf| Z(\) f|| < A7 f|l. Now, for f = f+—f—, we defineZ(\) f = Z(\) fH—%(\) f~

so that# () is a linear and bounded operatorinwith ||22(\)|| < A~!. Furthermore, the range
of Z()\) is dense inX since it contains th& > (£2). Indeed, iff € €5°(Q2), then(A — T, ) f =

(A —Tpy)f = gisindependent of < r < 1, so thatA — T,y)"'g = f — Z(\)g asr / 1.
Now, thanks to Trotter-Kato Theorem, there exists an opefat, Z(A )) which generates &-
semigroup(Vy (t))i=o in X and such thatZ(\) = (A — A)~! forany A > 0 andVy(t)f =
lim, -~ V;.(t)f, for anyt > 0. O

Remark 5.2. We note that the expressi¢h.1) implies that(V (t)):>0 does not depend on the
choice of the approximating sequence of semigrdipst)):>o. Indeed, for any sequence of non-
negative boundary operatof#,,), C Z(L%, L") with H,f / H f asn — oo for any nonneg-
ative f € L1, one can check thaty, (t) converges strongly to7 (¢).

Remark 5.3. Note that, in contrast to what happens in the force-free ¢as@heorem 2.8jwe
cannot say at this moment thgA, Z(A)) is an extension of T, Z(Tx)). This, however, will
become clear by Theorem?.

Remark 5.4. Note that, arguing as if5, Corollary 2.10] we can show that, for any > 0, the
series) °  E,H(M,H)" defines a bounded linear operator frab} to X whose norm is less
than (or equal toY A + 1)/\.

5.1. Characterization of Z(A). In this section we characterize the domaindoby adapting the
extensions techniques used & Hection 3] in the force-free case. Such extension tecksique
similar to those introduced ] in a different context (see als@]). Precisely, let us denote by
E_ the set of all measurable functions defined(bn,dy_ ) taking values in the extended set of
realsR U {+oo}. Itis clear thatL! C E_. In the sequel we shall dendfe:= =; € Z(L!, X).
Throughz=, we define the sdét_ C E_ as follows: f € F_ if and only if for any non-negative and
non-decreasing sequengg,),, C L', satisfyingsup,, f, = |f| we havesup, Zf, € X. Such a
sequence will be called&-approximating sequence gf.

Definition 5.5. Forany f € F_, f > 0, we defind1f := sup,, Z2f,, € X, for any=—approximating
sequencéf,), of f. If f = fy — f_,wedefind1fasNf=Nf, —Nf_.

Note that, from b, Lemma 3.1], the operatdt is well-defined fromF_ to X in the sense that
the value ofl1 does not depend on the choice of B@pproximating sequence ¢f

In the same way, we define the &t > L1 to be the set of all extended real-valued measurable
functions defined oril";,du ). Now, through the boundary operatff, we construct a subset
F of E. as the set of all functiong € E such thasup,, Hi,, € F_ for any non-negative and
nondecreasing sequen@g, ),, of L1 such thatup,, ¢, = |¢|. Such a sequence will be called an
H-approximating sequence af. We have the following definition

Definition 5.6. Foranyy € F, ¢ > 0, defineHvy := sup,, Hy,, € F_, for any H-approximating
sequencéi), ) of . If p = ¢, — ¢, we defineHy asHy = Hy — Hip_.

Here again, the above operator is well-defined by virtuespL.emma 3.4]. We are now in
position to precisely describe the domainAof
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Theorem 5.7. Let Assumption 5 be satisfied. Thep € 2(A) if and only if
(1) RS -@(Tmax)’ Bi(ﬂ S F:I:1
(2) BT =HBTp
(3) limy, o0 ||MH(MH)"BT || x = 0.

Moreover, for anyy € Z(A), Ap = Thaxe.

Proor. We refer the reader tdb] Theorem 3.6] for the proof of the above Theorem. Actually,
the main ingredient of the proof is the representation fdan(d.13) whereas the explicit expres-
sions of the operators/,, =, C, andG) do not play any role in the proof. Note that, though
the range oM is E;. & F, it can be check that, for any satisfying 1) and 2), the sequence
(MH(MH)"B*),, is well-defined. O

An important consequence of the above characterizatidratsttexplains the link between the
domains ofT' iz and that ofA.

Proposition 5.8. Letp € Z(A) be such thatpp, € LL. Theny € 9(Tpg), ie. or_ =
H(¢pir, )- More preciselyy € 2(Tg) ifand only ifp € 2(A) and the seried "~ (M1 H)"G f
is convergent irﬁr wheref = (1—A)e. Inparticular, A = Ty ifand only ify_>° (M1 H)"G, f
converges i’} forany f € X.
PROOF. Let p € Z(A). According to Theoren.7, B~ = HBT ¢y which, sinceB~¢ € L!,
readspr_ = H (o, ). Sincep € Z(Tmax), itis then clear thap € 2(Ty).

Assume now thap € Z(Ty). As abovey € Z(A) andpr, € LY. Let f = (1 — A)p and
let ¢, = ZI&(MlH)’“Glf for n > 0. Assume for a while thaf > 0. We can show that

sup ¢, = BTy € L}F
n

which implies the convergence of the se@%io(MlH)kGlf in L, which extends for arbitrary
f by linearity. Conversely, lep € Z(A) andf = (1 — A)p. If ZZ":O(MlH)’“Glf converges in
L', then we geBTy € L' in the same way and, from the first pagte 2(Ty). O

The above result shows th@A, Z(A)) is an extension of Ty, Z(Ty)). Moreover, if Ty
does not generate@y-semigroup inX, then the set

Z(A)\ 2(Ty) ={f € Z(A); fir, ¢ Li} # 2,

and if Ty is not closed, then there existse 2(Tp) such thatpr, ¢ LL. The main scope
of the following section is to determine the necessary aifffic&nt condition onH ensuring the
stochasticity of Vi (t)):>o0-

5.2. Stochasticity of (Vi (t))i>0. In this section, we assume that, besidessumption 5, H
satisfies conservativeness assumption mentioned at tinbegof this section, i.e.

IH Yl = [9ll,r  foranyy e LY, 4> 0. (5.2)
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In such a case, one expects the semigrdgp(t)):>o to bestochasti¢that is,

[ vasdu= [ fau (rex) (5.3)
Q Q

Indeed, a consequence of Green’s formula (Proposgidnis that
/ Trfdu=0 forany f € 2(Tq).
Q

Since%VH(t)f = AVg(t)f foranyt > 0 and anyf € 2(A), (5.3 should be true at least when
A = Ty (see 19)). In this section we give necessary and sufficient conaitiensuringg.3) to
hold. Foranyf € X, f > 0, we define

B(f):= lim [ (M H)"Gy1f(y)dps(y) = 0. (5.4)

n—oo F+

This limit exists sincd|M; H|| < 1 so that the the right-hand-side &.4) is a decreasing numeri-
cal sequence. For arbitrafyc X, 3(f) is defined by linearity. We have

Theorem 5.9. The Cy-semigroup(Vy (t)):>o is stochastic in X if and only if 3(f) = 0 for any
feX.

PROOF. Letusfixf € X, f > 0andlety = (1 — A)~!f. For anyn > 1, define

on =%, To)f +> EHMH) G\ f =21, To)f +EH Y (MiH)*G .
k=0 k=0
According to 6.1), we havep,, — ¢ in X andy,, € Z(Tyax) With Thaxen + f = ¢, for any
n > 1. Now, set

n n+1
up =Y H(MH)"Gif € L, and v, => (M{H)*G,f € L}.
k=0 k=0

Then it is clear that),, = BTy, andy, = Z(1,Ty)f + Zu,. Consequently, Green’s formula
(Proposition3.7) yields

/ ondp = / fdu+ / updp— — [ Ypdpg. (5.5)
Q Q r_ Iy
Sinceu,, = H,—1 andy,, > 0, (5.2) yields

/Q‘Pnd/‘ = /Qfle' /F+(7/)n—1 — n)dp.

Now, using thatp,, — 1,1 = (M1 H)"*1G f and passing to the limit as — oo, we obtain

/Q pdp = /ﬂ Fdu— 6(7). (5.6)

Consequentlyg(f) = 0 if and only if ||(1 — A)~!f||x = ||f|lx. Now, it is easy to see that the
stochasticity of( Vi (t)):>0 is equivalent to the property thgtl — A)~' f||x = || f|/x for any
nonnegativef € X. 0
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Remark 5.10. Note that, as irf5], forany f € X andp = (1 — A)~1f:

B(f) = /Q Ap(x)dp(x).

Remark 5.11. Since@; is surjective according to Propositio8.9, we haves(f) = 0 for any
f e X itand only if | (M H)"g]| ;1 — 0 foranyg € LY.

Proposition 5.12. Assume thaf{ is conservative. Then, the following are equivalent:
1) (Vi (t))i>o0 is stochastic;

2) A="Ty;
3) / Ap =0foranyy € Z(A).
Q

PrRooF The equivalence betweel and3) is nothing but §.6). Let us prove the implication
1) = 2). Takep € Z(A), the implication is proven if we are able to construct a seqae
(¢n)n C 2(Tx) such that

on — ¢  (n—o0)
{(1 —Ty)en — f=(1—A)p in X. ®.7)

For anyn € N, defineg,, = (M1 H)"G1f € L}r. Then, using PropositioB.9, for anyn > 1,
there exists),, € Z(Tmax) such thaB~«,, = 0 andB™ 1, = g, with ||, || x < ||gn||L1+ and
ITotn|lx < ||gn||L1+. As in [5, Proposition 4.4], we can define

n—1

pn =R, To)f + Y EH(MH)*G: f — )y
k=0

and show thatp,, € Z(Tp). Since(Vy(t))e=o is assumed to be stochastic, from Theore®
we infer that||gn\|L1+ — 0 asn — oo so thaty,, — 0 andTy,, — 0. Then it is easy to see

that (., ), satisfies .7). This proves that) = 2). Finally we explained the idea underlying
the converse implicatio) = 1) at the beginning of this subsection (see the consideratitias
formula 6.3)). We refer to b, Proposition 2.11] for a detailed proof using both Greenisriula
and a density argument. O

Now we discuss spectral propertigs, H which ensure stochasticity ¢V (t)):>0. The proof
of the following can be seen as a simple adaptation of th&i,dftieorem 4.5], where the explicit
expressions of the various operatars M), G, do not play any role but the main idea goes back
to [12] (see also$, Theorem 4.3]).

Theorem 5.13.1) Forany\ > 0,1 ¢ o,(My\H);

2) 1€ o(MyH) for some/allx > 0 if and only if A = Ty;

3) 1€ o.(MyH) for some/all\ > 0if and only if A = Ty # Ty.
4) 1€ o.(MyH) for some/allx > 0 if and only ifA 2 Ty.
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Proor 1) The fact thatl cannot belong to the point spectrum &fyH (A > 0) is a simple
consequence of Assumpti@n(c) and of the inclusiof\ > 0} C o(A).

2) If there exists\ > 0 such thatl € o(M,H), then, since the serie8.13 converges in the
norm topology toq A — Ty)~!, we haveA = Ty. Conversely, assume that = T. Then, for
any f € X, the seriesy_>° (M H)"G, f converges in.! according to PropositioB.8 Now,
sinceG), is surjective, the seriel > (M,H)"g converges inL} for anyg € L. Denoting
by R(\)g the limit, we see from the Banach-Steinhaus Theorem @) € B(L!) and that
RN (1 — MyH) = (1 — My\H)R(X), which proves that € o(M),H).

3) Let\ > 0 be such that € o.(M\H). Then

(1-MyH)LL =L%. (5.8)

Let o € 2(A) be given and letf € X be such thatp = (A — A)~!f. SinceG,f € L!,
there is a sequend®,,), C L% such that|¢, — MyH¢, — GAfHLl+ — 0. Now, defineg,, =

¢n — MyHo,, — G f. According to Propositior8.9, there existsf,, € 2(Tnax) such that
B* f, = g, andB~ f,, = 0. Moreover,f,, — 0 andT f,, — 0. Now, setting

we see thaty,, ), C 2(Tg) and(A — Tx)e, — f. Furthermore

ExHon =Y EXH(MyH)F (¢ — MyHep) = > ExH(MyH)*(gn + Grf),
k=0 k=0

where both above series are convergent by RerBatk Using again Remark.4, we see that
S0 EAH(My\H)kg, — 0 so thatp, — ¢ and this proves thaA = Tp.

Conversely, assumA = Ty # Ty and letg € LL. Defineg, = >.725 (M, H)*g. Then,
gn € L}F and, clearly(1 — M H)g, = g — (M1 H)"g. SinceB(f) = 0, according to Remark
5.11, one hag|(1 — M1H)g,, — gHLl+ — 0 so that 6.8) holds. SinceA # Ty, one hasl €
o(M1H) \ o,(M,H) which proves that € o.(M; H).

4) The last assertions is now clear since all the possislitiave been exhausted. O

As in [5, Corollary 4.6], we provide here a useful criterion (ség $ection 5] for several
application in the force—free case).

Corollary 5.14. (Vi (t))e>0 is stochastic if and only if ¢ o,((M\H)*) foranyA > 0. Moreover,
if (Viz(t))i=o is not stochastic, then there existman-negative v € (L1)*, v # 0, such that
v = (MxH)*.

APPENDIX A: PROOF OFTHEOREM 3.5

We prove here the TheoreBi5announced in Sectic® 2. The proof is divided into three steps:

e Step 1.Let us first check that the family of operatdiS,(t)):>o is @ nonnegative contractive
Coy-semigroup inX. Thanks to Propositio.3, we can prove that, for any € X and anyt > 0,
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the mappingUs(t)f : @ — R is measurable and the semigroup propertigéd)f = f and
Uo(t)Up(s)f = Up(t + s)f (t,s = 0) hold. Let us now show thatlUy (¢) f|lx < || fllx. We have

1Uo(t) fllx = /Q Uo(t) I + /

Q_NQ4

[Uo(t) fldp +/ Uo(t) f|dye.

Qfooﬁﬂﬁﬁxy

Proposition®2.10and?2.3yield
—(y)
| waosid= [ dut) [ 00 f(@(-5))lds
QL Iy 0

max(0,7— (y)—t)
_ / dus () / F(®(y,—s — 1))ds
Iy 0

max(t,7—(y))
< dusy) / F(®(y, —r)ldr < /Q Fldp.
+

Iy

In the same way we obtain

[, o wosae= [ e [T pps= [

and
/ Uo(t)f|du = / Fldp.
Q0N oo QMoo

This proves contractivity of/y(¢). Let us now show thal/y(¢) f is continuous, i.e.
lim [[To(t)f — fllx = 0.

It is enough to show that this property holds for ghy 4°(€2). In this caselim;_.o Uy (t) f(x) =
f(x) for anyx € Q. Moreover,sup,cq |Up(t) f(x)| < supycq | f(x)| and the support df/y(t) f

is bounded, so that the Lebesgue dominated convergencethéeads to the result. This proves
that (Uy(t)):>0 is aCp-semigroup of contractions iX. Let A, denote its generator.

e Step 2.To show thatZ(Ay) C Z(Ty) let f € Z(Ayp), A > 0andg = (A — Ay) f. Then,

T (%)
flx)= /0 exp(—At) g(P(x, —t))dt, (x € Q).
Lety € I'_and0 < ¢t < 74(y). Noting thatt = 7_ (®(y, t)), by Propositior2.3we obtain
F(@(y.0) = [ exp(=1s) o(@(@(y.1).~s)ds = [ exp(=1s) (@ (y.5 — )ds
= [ exp(=xe = ) g(@(y. )as

Consequentlylim, o+ f(®(y,t)) = 0 ae. y € I'_,i.e. B7f = 0. Next we show that
(Thmax, V) = (Af — g,9) for anyy € €5°(€2), where(-,-) denotes the usual duality product
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of X. Indeed
/ T f djt = / ) F(x) - V() du(x)
Q Q
= [ 10FE) - Ve)du(x) + / FR)F(x) - V() du(x)
Q4 QN2 o0
T / F)F(x) - Vib(x)dp(x)
Q0N oo
= Il + 12 + 13.
Arguing as in Step 1, we observe that, for gng I' . and0 < t < 7_(y),
7—(y)
F(@(y, —t)) = / exp(—A(s — 1)g(@(y, —s))ds,

and, by Propositio2.10,
—(¥)
D= [ Q) [ 5@ )@, 1) Vil ~)dr
Iy 0

T (y)
— [ duiy) / F(®(y, 1)) - V(@ (y, —))dix
i 0

m(y)
< " exp(=A(s — 1))g(B(y, —))ds.
Recall that, according to the definition @f(-, -),
0 (@(y, 1) = ~F(B(y, ~) - Vo((y, 1)),

fora.e.y € I'; and allt > 0, so that

7(¥) s
== [ ) [ a®ly s [ exp(-Ms )5 (0@~

T—(y)
= du+(.v)/0 9(®(y, 5))x

{0 [ expt-as - )@, -0t - vi@ () s

Using again PropositioB.10 we obtain

L= /ﬂ (9(x) — AF()) $(x)dp(x). (A1)
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Let us now computé,. Propositiorn2.10yields

- / dpi(y) / @y, ) F(®(y. 1)) - V(®(y. 1)t

/ / F@(y, 1)) - Vi(B(y, —1)dt x

x /0 exp(—A(t — 5))g(®(y, 5))ds,

and, as above,

I, = —/ du_(y) /000 g(®(y,s))ds /OO exp(—A(t — 3)); (Y(@(y, 1)) dt

- [ ) /0 @y, 5))x

< [ expat - @0 - (@) fas
which results in
L= /Q (060 = A60) (). (A2)

Finally, since

flx)= / exp(—At)g (®(x,—t)) dt forany xe€ Q_. Ny,
0

we argue as above to get

o d
= [ stedne) [ en(- G (@t )

= —/mehw Q(Z)du(z)—i-)\/ﬂoonn+oo g(z)du(z)/o exp(—\t)g(®(z, —t))dt,

which gives

L= / (9(%) — A (%)) $(x)dp(x). (A3)
Q0N oo
Combining A.1)—(A.3) leads to
/ 0 T f dpt = — / (x (%)) dpa(x)

which proves thaf € Z(Tpax) and(A — Thax)f = g. SinceB™ f = 0, we see thaf € 2(Ty)
andAof =Tof =Af —g.

e Step 3.Let us show now the converse inclusianTy) C Z(Ay). Let f € 2(T). For almost
everyy € I'_and any0 < s < sy < 74+ (y) we have

F(@(y.5) ~ f(@(y.50) =~ [ £ 7(@(y.0)do (a9
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Lettingx = ®(y, sg) andt = s — sp € (0,7—(y)), this yields
PG~ = 169 = [ (Tl @)
According to the explicit expression 6f(¢), this means that
0050~ 100 = [ Uulr T 01 (1.5)

holds for anyx € ©2_, andt < 7_(x). In the same way, taking = 0 in (A.4) and setting again
x = ®(y, sp) andt = 5o = 7_(x), we get

0
—f(x) = —/( )(Tmaxf)(<1>(x, —r)dr.

This shows that Eq.A.5) holds true for ank € ©_ and anyt > 7_(x). Now, let us show that
(A.5) is still valid forx € ©_ .. Let us choose a sequengk )r C Z(Tma)NE (Q) converging
to f in the graph norm of',,,.«. It is clear thatf;, fulfills (A.5) foranyx € Q_, i.e

t
Uo(t) fre(x) — fr(x) = /o Uo(r) Tmax fre(x)dr, foranyx e Q_.,t>0, k € N.

Set
G() (%) = |Uo(t) f(x) — F(x) — /0 U (r) T f (x)dr
foranyx € Q_,,,t > 0. We have
[ cmseom / GO(f — fi) () dulx / G(t) fu(x)du(x)

<V (f — fo)llx + 1f — fullx + /0 1Uo(r) Tanax(f — fi)llxdr

Since the right-hand side term goes to zer@ as oo, fﬂm G(t)f(x)du(x) = 0 and therefore

G(t)f(x) = 0 for almost everyx € Q_.,. This shows thatA.5) holds true for almost every
x € Q_, and anyt > 0. Consequentlyf € Z(Ay) with Agf = Taxf-
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