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SEMIGROUPS FOR GENERAL TRANSPORT EQUATIONS WITH ABSTRACT
BOUNDARY CONDITIONS

L. ARLOTTI, J. BANASIAK & B. LODS

ABSTRACT. We investigate®y-semigroup generation properties of the Vlasov equatidh gen-
eral boundary conditions modeled by an abstract boundagyatqr /. For multiplicative bound-
ary conditions we adapt technigues frdmi[14] and in the césermservative boundary conditions
we show that there is an extensidn of the free streaming operat@f; which generates -
semigroup(Ve (t)):>0 in L*. Furthermore, following the ideas dfl[4], we precisely dé=e its
domain and provide necessary and sufficient conditionsrngsthat (Vi (t)):>0 is stochastic.

1. INTRODUCTION

Let us consider the general transport equation

%f(x,t) FFX) Ve f( ) =0 (x€Q, > 0), (1.1a)
supplemented by the abstract boundary condition
f\l",(y;t) = H(f\FJr)(yat)a (y el_,t> 0)7 (11b)

and the initial condition

f(x,0) = fo(x), (x € Q). (1.1c)
Here 2 is a smooth open subset BfY endowed with a positive Radon measdre(-), I's. are
suitable boundaries of the phase space and the boundatapgris a linearboundedoperator
between trace spacds, corresponding to the boundari€s. (see Section 2 for details). The
transport coefficient is atime independentector fieldF : Q — R satisfying the following
general assumptions:

AssumptionH;) F : @ — R" is Lipschitz-continuousvith Lipschitz constant > 0, i.e.
| F(x1) — F(x2)| < Klx1 — %2 for any x;,x; € Q.
Assumption Hy) The fieldF is divergence-freavith respect tqu in the sense that

[ F60- TG 0
Q

for any Lipschitz continuous functiofi with compact support of®.

Keywords:Transport equation, Boundary conditioki%,-semigroups, Characteristic curves.
AMS subject classifications (2008)7D06, 47D05, 47N55, 35F05, 82C40.
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2 L. ARLOTTI, J. BANASIAK & B. LODS

A typical example of such a transport equation is the sadalllasov equation for which:

i) The phase spad@ is given by the cylindrical domaif2 = D x V' ¢ R® whereD is a smooth
open subset dR?, referred to as thposition spacgandV is a closed subset &3, referred
to as thevelocity space The measurely is given bydu(x) = dzdf(v) whereds(-) is a
suitable Radon measure &h

i) Foranyx = (z,v) e DxV,

F(x) = (v,F(z,v)) € R® (1.2)

whereF = (Fy, Fy, F3) is a time independent force field ovBrx V' such thai;) andHy)
are fulfilled.

The existence of solution to the transport equation{1sa)dassical matter when considering
the whole spac& = RY. In particular, the concept of renormalized solutionswadido con-
sider irregular transport coefficierft(-) (see[9] and the recent contributions [1] 13]) which is of
particular relevance in fluid mechanics.

On the other hand, there are few results addressing thalihitundary value probleni(1.1),
possibly due to difficulties created by the boundary coadgi[T.IE). We mention here the seminal
works by C. Bardos[]6], and by R. Beals and V. Protopopestydeé alsol[[12]). Let us also
mention more recent contributioris [15] which also inclutiee-dependent transport coefficient,
and [24[T4] dealing with the force-fre@ (= 0) Vlasov equation[{1]2).

ForF +# 0, the method of Beals and Protopopesddu [7] provides the existand a very precise
description of aCjy-semigroup governind{(1.1) fdfH| < 1 while, for nonnegative boundary
operatorH with |H|| = 1, it ensures the existence of(#-semigroup related td(1.1) without
describing its generator. The method [df [7] leaves totgigrothe multiplicative casgH || > 1.
We also mention that the existing theories introduce IEstd assumptions on the characteristics
of the equation. Forinstance, fields with 'too many’ peratilajectories create serious difficulties.
They are however covered in a natural way by the theory pteddrere.

On the other hand, in the force-free cdse- 0, the case of conservative boundary conditions
|H|| = 1 has been solved inl[4], while the multiplicative case hasladressed irL[14]. The
results of [4/14] are based upon a relatively simple remitasien, inspired by the fundamental
work of [1€], of the resolvent of the free-streaming operdity; (whose domain includes the
boundary conditiond{T].c)) as a strongly convergent serie

The main objective of this work is to generalize the resultffpand [14] to the general case
F # 0. Here again, the key ingredient is the derivation of a sietedpresentation of the resolvent
of the free-streaming operat@ty, see Theoreri 3.5 and Propositlonl 3.9. We point out that the
proof of Theoreni 315 relies on a generalization of the resoih [7,[12] which allows to compute
integrals over2 via integration along the integral curves8f-) coming from the boundary(?2,
and which is free from some restrictive assumptiongpfit. In particular, we present a new proof
of the Green formula which clarifies some points of the praofg, 14].

The organization of the paper is as follows. In the followsggtion (Section 2), we introduce
the main tools used throughout the paper and present thenaéotioned new results concerning
integration over the characteristic curved F. Section 3 is dealing with various preliminary
results. In particular, the question of the existence afdnaesults is addressed in Section 3.1. In
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Section 3.2, we establish some basic existence results|yr@értaining tostationary versions

of (L) and, as a consequence, we derive a new pro@reén formula generalizing that of

[} [12]. Section 3.3 is concerned with teetting of the problerand with the representation of the
resolvent of the free-streaming operaiy; as a strongly convergent series. In Section 4, we are
dealing with the transport equatidn{ll.1) foultiplicative boundary conditiongyeneralizing the
results of [14]. Finally, in Section 5, we consider the deécquestion o€onservative boundary
conditions We employ a strategy already used [ih [4], borrowing somésttm the so—called
additive perturbation theory of substochastic semigrdbhs

Notations: We shall adopt the following notations throughout this pager any unbounded
operatorA, the domain of4 shall be denoted by (A) whereass,(A), o,(A), o.(A) ando(A)

will denote respectively the point spectrum, the residpaictrum, the continuous spectrum and
the resolvent set ofl. For A\ € p(A), the resolvent ofd will be denoted by eithegzZ(\, A) or

(A — A)~1. For any Banach space$ andY, %#(X,Y) denotes the space of bounded linear
operators formX to Y whereas’#(X) = (X, X).

2. INTEGRATION ALONG THE CHARACTERISTICS

2.1. Characteristic curves. A crucial role in our study is played by the characteristicves
associated to the field

F:xeQr— F(x)eRY,
Precisely, for ank € 2 and¢ € R, consider the initial-value problem

%X(s) — F(X(s)), (s€R),

X(t) = x.

(2.1)

SinceF is Lipschitz-continuous o2, Eqg. [Z1) has a unique solution and this allows to define
the mapping® : 2 x R x Ix; — Q, Ix; C R, such that, fo(x, t) € © x R, the mapping:

X(:) 1 s € Ixy— P(x,t,5)

is the only solution of EqL{211). Note that, in genelis only defined on a suitable neighborhood
I, of the initial timet, which also depends aa This leads to the definition of existence times
of the characteristic curves:

Definition 2.1. For anyx € €2, define
7+ (x) = inf{s > 0; ®(x,0,*s) ¢ Q},
with the convention thahf & = oo, and setr(x) = 74 (x) + 7— (x).

To shorten notation we put, = Ix o. In other words/x = (—7_(x), 74 (x)) is the maximal
interval for which®(x, 0, s) lies in Q2 for any s € I and7(x) is the length of the interval.
Notice that) < 74 (x) < oo. Thus, for anyt € R, the function® is well-defined on the set

{(x,t,8);x€eQ,teR, se(t —17-(x),t+74(x)) }.

Note that here welo not assume that the length of the intenfal = (—7_(x), 74(x)) is finite.
In particular,Iy = R for any stationary poink of F, i.e. F(x) = 0. If 7(x) is finite, then the
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functionX : s € I, — ®(x,0, s) is bounded sincé is Lipschitz-continuous of2. Moreover,
still by virtue of the Lipschitz-continuity ofF on €, the only case when, (x) is finite is when
®(x,0,+s) reaches the bounda®)f2. Then, we definab(x,0, 74 (x)) € 0N as the following
limit

®(x,0,7L(x)) = lim ®(x,0,s).

s—t74(x)

We note that, sincé can be extended to a Lipschitz field (at least locally) aroeach point of
002, the points of the sety € 0Q; F(y) = 0} (introduced in[[¥|-12]) are equilibrium points of
the extended field and cannot be reached in finite time.

Remark 2.2. We emphasize that periodic trajectories which do not mestbtbundaries have
7+ = oo and thus are treated as infinite though geometrically theytamunded. Of course, in this
case, the limitim,_, ; -, ) ®(x,0, s) does not exist for any.

We finally mention that it is not difficult to prove that the npapgs 7+ : @ — R™ are lower
semicontinuous and therefore measurable, seel€.g., [B1p. 3

The flow ®(x,t,s) defines, at each instanf a mapping of the phase spafeinto itself.
Through this mapping, to each poixtthere corresponds the poirt ; = ®(x,¢,s) reached at
time s by a point which was in ink at the "initial” time ¢. This mapping isone—to—oneand
measure-preserving.iouville’s Theorem). More precisely, one can check tiaflow®, defined
on its maximal domain, has the following properties:

Proposition 2.3. Letx € © andt € R be fixed. Then,
i) ®(x,t,t) =x.
iy ®(®(x,t,51),81,82) = P(x,t,52), Vs1,82 € (t —7-(x),t + 74(x)).
i) ®(x,t,s) =P(x,t—s5,0) = P(x,0,s — 1), Vs e (t —1—(x),t + 74(x)).
V) |®(x1,t,5) — ®(x2,t,5)| < exp(k|t — s|)|x1 — x2| foranyx;,xs € 2, s —t € Ix, N Ix,.
v) For anyt, s € R, the transformatiorx € 2 — ®(x,t,s) € 2 is measure-preserving with
respect tqu (Liouville’s Theorem).

Remark 2.4. Note that Liouville’s Theorem is equivalent to assumptiés) above. For in-
stance, whenly is the Lebesgue measure ot, then assumptiod,) means precisely that
div(F(x)) = 0 for anyx € £ or, equivalently, that, for any, s € R x I, the Jacobian of the
transformationx — ®(x, ¢, s) equals one .

We define the incoming and outgoing part of the bound¥ythrough the flow®:

Definition 2.5. The incomind’_ and the outgoing™, parts of the boundarg(2 are defined by:
'y ={yed;IxeQ, 7.(x) <ooandy = ®(x,0, +7+(x)) } . (2.2)

Properties ofb and ofry. imply thatI'y. are Borel sets. Itis possible to extend the definition of
7+ toT'1 as follows. Ifx € I'_ then we put—_(x) = 0 and denote— (x) the length of the integral
curve havingx as its left end—point; similarly ik € 'y then we put— (x) = 0 and denote—_ (x)
the length of the integral curve havingas its right end—point. For technical reasons, we need to
introduce the following assumption on the measijie
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Assumption H3) The set of integral curves hitting_ N T';. is of zerou-measure, i.e.

d,u({x €N 71(x) <o0; B(x,0,7L(x)) €T mr+}> =0.

Using Sard’s theorem and arguing aslih [6], one can proveAkatimptionH3) is fulfilled
if du(-) is absolutely continuous with respect to the Lebesgue measterR”. Note however
that, since the fieldr(-) is only Lipschitz continuous, one has to invoke a generdlizersion of
Sard’s theorem for Holder maps (see e.g. [8, Theorem lIrihe same way, Assumptidds) is
satisfied by suitable Hausdorff measures over manifold o{see [8]).

The main aim of the present discussion is to repre$grds a collection of characteristics
running between points df _ andT", so that the integral ove® can be split into integrals over
I'_ (orT'y) and along the characteristics. However, we cannot dorttasarecise way now since,
in general, the setE, andT'_ do not provide a partition 0f€2. In spite of assumptiods),
there still may be too many characteristics which extenafioity on either side. Since we have
not assumed? to be boundedl"_ or I'; may be empty and also we may have characteristics
running from—oo to +o0o such as periodic ones. Thus, in general characteristigingt&romI" _
or ending afi";. would not fill the whole2 and, to proceed, we have to construct an auxiliary set
by extendingf2 into the time domain and use the approach_bf [7] which is énpthbelow.

2.2. Integration along characteristics. For any0 < T' < oo, we define the domain
QT =Q x (O, T)
and the measuréur = du ® dt on Qp. Consider the vector field ovéR:

9
Y = =+ F(x) - Vx = () - Ve

wheresZ (§) = (1, F(x)) for any¢ = (¢,x). We can define the characteristic curvesz0fas the
: d :
solution&(s) = (t(s), X(s)) to the system&g(s) =/ (£(s)), i.e.

d d
—t(s) =1, —X(s) = F(X(s)),  (s€R),
with
t(0)=t, X(0)=x.
It is clear that the solutiof(s) to such a system is given by
t(s) =s+t, X(s) = ®(x,0,s),

and we can define the flow of soluticki(,0,s) = (s + ¢, ®(x,0, s)) associated te7 and the
existence times of the characteristic curve¥ ddre defined, for any = (¢,x) € 1, as

04 (&) =inf{s >0, (£s +t,®(x,0,+£s)) ¢ Qr}.

The flow ¥ (-, -, -) enjoys,mutatis mutandisthe properties listed in Proposition 2.3. Moreover,
since«/ is clearly Lipschitz continuous of2r, no characteristic o¥” can escape to infinity in
finite time. In other words, all characteristic curvesofnow have finite lengths. Indeed, if
®(x,0,+s) does not reaclds?, then the characteristic curv@® (&, 0, +s) enters or leave$dr
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through the botton§2 x {0}, or through the tof2 x {7’} of it. Precisely, it is easy to verify that
for £ = (t,x) € Qr we have
() =T (x)A(T—t) and (_(€) =7_(x) AL,

whereA denotes minimum. This clearly implieap{/.. () ; € € Qr } < T. Define now

Y17 ={C€0Qr; 3 € Qr suchthat{ = ¥(£,0,+£04(£))}.
The definition of> 7 is analogous td'; with the understanding that the charateristic curves
now correspond to the vector fiele. In other wordsX_ 7 (resp. X, 7) is the subset 0dQ7
consisting of all left (resp. right) limits of characteitsturves ofe7 in Qp wheread™_ (resp.T'y)
is the subset of<2 consisting of all left (resp. right) limits of characteristurves ofF in Q2. The
main difference (and the interest of such a lifting2@) is the fact thaeach characteristic curve of
</ does reach the boundariés;  in finite time The above formulae allow us to extend functions

/4 to X4 7 in the same way as we extended the functiepdo I'.. With these considerations,
we can represent, up to a set of zero measure, the phasef3pae

QT = {l:[l(£>073)a g € E—,T» 0<s< E-‘r(g)}
= {l:[l(g’s’[))’ g € E—F,T? 0<s< E—(g)}
With this realization one can prove the following:

(2.3)

Proposition 2.6. LetT" > 0 be fixed. There are unique positive Borel measdieson X . 7 such
thatdur = dvy ® ds = dv_ ® ds.

Proor For anyd > 0, define.#; as the set of all bounded Borel subsétof X_ r such that
0, (&) > éforanyé € E. Let us nowfix E € .Z;. Forall0 < o < 6 put
E, ={¥(,0,s); £ € E,0<s<o}.

Clearly E,, is a measurable subset@fr. Define the mapping : o € (0,6] — h(o) = ur(E,)
with 2(0) = 0. If o7 ando are two positive numbers such that+ o, < 6, then

Eo 40y \EUl ={¥(£,0,s); § € E,o01 <s< o1 +o2f ={¥(n,0,01);n€ E02}'

The properties of the flowr (see Propositioh2.3) ensure that the mappjng> ¥ (7,0, 01) is
one-to-one and measure preserving, so that

11 (Eoi 05 \ Eoy) = pr(Eqyy) = h(o2).
SinceE,, 15, = Ey, U (Es 40, \ Eos, ), Wwe immediately obtain
h(o1 + 02) = h(o1) + h(o2) for any o1, o9 > 0 with o + o9 < 6. (2.4)

This is the well-known Cauchy equation, though defined onlp interval of the real line. It can
be solved in a standard way using non negativity instead mtirnaity, yielding:

h(o) = cgo forany 0<o <94

wherecry = h(0)/§. We definev_(E) = cg. Itis not difficult to see that, with the above
procedure, the mapping_(-) defines a positive measure on the rigg = J;., %5 of all the
Borel subsets oE_ 7 on which the functior?. (¢) is bounded away from. Such a measure_
can be uniquely extended to thealgebra of the Borel subsets Bf 1 (see e.g.[110, Theorem
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A, p. 54]). Consider now a Borel subsktof ¥_ ;- and a Borel subselt of R™, such that for all
¢ € Fands € T we have) < s < £, (£). Then

ExI={¥(¢,0,s);{€E,sel}CQr.

Thanks to the definition af_(-), we can state thatr(E x I) = v_(E)meas(I) where mead)
denotes the Borel measure bfZ R. This shows thatlur = dv_ ® ds. Similarly we can define
a measure,y on X 7 and prove thatlur = dvy ® ds. The uniqueness of the measurks. is
then obvious. O

Remark 2.7. Note that the above construction of the Borel measdresdiffers from that ofiL2,
Lemmas XI.3.1 & 3.2][[7, Propositions 7 & 8]

Next, by the cylindrical structure &, the measuredv.. can be written adv = duy ® dt
wheredu are Borel measures dn,. [12, p. 408]. This leads to the following

Lemma 2.8. There are unique positive Borel measus. on I'. such that, for anyf €
LY(Qr,dur)

T T_(y)At
f(x, t)dpr(x,t) :/ dt/ du+(y)/ Y f(®(y,s,0),t —s)ds
Qr 0 r, 0 2.5)

T_(x)ANT
—|—/Qd/L(X)/O f((I,(XvaO)vT_ S)d87

and

T T+ (y)NT—t)
| st = [ [ aue) [T f@0.0.9. 0+ 5)ds
Qr 0 _ 0 (2.6)

T+ (xX)A\T
[t [T s 0,9

The above fundamental result allows to compute integral theecylindrical phase-spade
through integration along the characteristic curves. lsehow generalize it to the phase space
Q2. Here the main difficulty stems from the fact that the chamastic curves of the vector field
JF are no longer assumed to be of finite length. In order to extemdmalZB to possibly infinite
existence times, first we prove the following:

Lemma 2.9. LetT > 0 be fixed. Thenry(x) < T for anyx € Q if and only if7_(x) < T for
anyx € €.

Proor. Assume thafl’ > 7, (x) for anyx € Q and that there ig € © such thatr_(z) > T.
One can assume without loss of generality thatz) > 7'. Indeed, ifr_(z) = T, sincef? is
open, the orbit passing throughcan be continued beyond ensuring the existencg ef 2 with
7_(Z') > T. Now, if 7_(z) > T, foranyT <t < 7_(z),y = ®(z,t,0) = ®(2,0,—t) € Q and
®(y,0,s) = ®(z,t,s) = ®(z,t —5,0) € Qforall0 < s < ¢. This leads to the contradiction
thatr, (z) >t > T. We proceed in the same way for the converse implication. O
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The above lemma allows to prove a representation formulantegral of the typefQ fdu
in terms of integrals ovel'y. Hereafter, the support of a measurable functfodefined on(2
is defined asSuppf = © \ w wherew is the maximal open subset 6f on which f vanishes
du—almost everywhere.

Proposition 2.10. Let f € L'(£2,du). Assume that there exists > 0 such thatry (x) < 7 for
anyx € Supp(f). Then,

T—(y)
/ F)dp(x) = / dus (y) / £ (@(y,5,0))ds
Q@ T+ 0 2.7)

T+(y)
= du—(y)/ f(®(y,0,s))ds.
r_ 0

Proor For anyT > Ty, define the domaif2r = Q x (0,7). SinceT < oo, it is clear that
f € LY(Qr,dudt) and, by [Z5), we get

7 [ reodut) = [ Ca / ) / T (s, 0)) s

/ﬂ du(x) /O e F(®(x, 5,0))ds.

Since the formula is valid for any§" > 7, differentiating with respect t@" leads to the first
assertion. The second assertion is proved in the same wasify formula [Z5). O
To drop the finiteness assumption on(x), first we introduce the sets
D ={x€Q;7e(x) <o},  Dioo ={x€Q; 71(x) =00},
and
IMNiew={yels; TJF(Y) = 00}.
One gets

Proposition 2.11. Let f € L*(£2,dy). Then

T+(y)
F(0)dpu(x) = /F Qi (y) /0 " F(@(y,0,F5)) ds, (2.8)

Qyr
and

/ﬂ . fx)dp(x) = /F . dp(y) /0 f(®(y,0,Fs))ds. (2.9)

Proor. Assume firstf > 0. Let us fixT" > 0. Itis clear thatx € Q satisfiesr; (x) < 7' if and
only if x = ®(y, s,0),withy € 'y and0 < s < T'A 7_(y). Then, by Proposition 210,

TAT—(y)
/{T+(x)<T} f(x)du(x) = /F+ du+(}’)/0 F(®(y, s,0))ds.
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Sincef > 0, the inner integral is increasing withand, using the monotone convergence theorem,
we letT — oo to get

7(¥)
FOodu0 = [ duly) [ 1 (@(.5.0)ds
Q. Iy 0
which coincides with[{ZI8) sinc@(y, s,0) = ®(y, 0, —s). We proceed in the same way integra-
tion onT'_ and get the second part & {R.8). Next we consider the set
A={xeQ;x=®(y,s0),y € Qic, 0< s < T}
Propositio 2110 asserts that

T
[ 100 = [ ) [ @50
A Qoo 0
Letting againl” — oo, we get[ZD). We extend the results to arbitrérgy linearity. O
Finally, with the following, we show that it is possible tairsfer integrals ovar_ to I',.:
Proposition 2.12. For anyy € LY(I'_,du_),
f )= [ v @).0)du ), (2.10)

F\lMyoo
ProoF. For anye > 0, let f. be the function defined of2. N Q2_ by

{w@(x,T(x),o» i

e gy vy T_(X) + 74(x) > €,

0 else

e (X) =

Sincey. € LY(Q NQ_,du), Egs. [ZB) and(29) give

T+ (y) ds
/“+”“ Hb = AT+(Y)>6}\FOO =) /0 e

Y(y)dp—(y).

- /{u<y>>e}\rm
In the same way,

du(x) = d ) P 0
I g 90 = /{T(y)x}\% ) [ @ 3).0)

Y(®(y, 7-(y),0))du—(y),

/{T (¥)>eN\ oo
which leads to
/ VB ()0 ) = [ () ()
{T—(¥)>e\ oo {4+ ()>e N\ Moo
for anye > 0. Passing to the limit as— 0 we get the conclusion. O
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3. TRACE OPERATORS AND BASIC EXISTENCE RESULTS

3.1. The maximal transport operator and trace results. Now we define the transport operator
onX = L'(Q,du) by
Thax: Z2(Thax) CX — X
{ f = T (%) = =F(x) - V()
with domainZ(Thax) = {f € X; Tmaxf € X} whereT,,. IS to be understood in the sense

of distributions. It is a classical matter (see €.§. [5, Bsion 10.13]) that™ () N 2(Tax) iS
dense iNZ(Tmax), || - ||2) where|| - || 7 is the graph norm. Let us state the following trace result:

Proposition 3.1. Let f € Z(Tmax). Then the limit

Jim f(2(y,s,0))
exists for almost every € I",.. Similarly,lim,_.o4 f(®(y,0, s)) exists for almost every € I"_.
PROOF. Let (f,,)n C €1(Q) N P(Tmax) be such that f,, — f|| — 0. Then Eq. [ZB) yields

7—(¥y)
/ dus (y) / (@ (y.5,0)) — F((y.5,0))|ds
r, 0

(¥)
[ ) [ T (8(5.5.0) ~ T f (5. 0)] ds — 0
+

since T f and Ty fr, DOth belong taX. Consequently, for almost evegy € T', (up to a
subsequence, still denoted lfy) we get

fn((I,(yv 70)) B f(i’(Y> ) 0))
Toacfn(®(y,,0)) — Toacf(®(y,-,0)) in  LY(0,7_(y)),ds)

asn — oo. Letus fixy € ', for which this holds. Passing again to a subsequence, we siay a
sume thatf,,(®(y, s,0)) converges (pointwise) tH(®(y, s,0)) for almost every € (0, 7—(y)).
Let us fix such a&g. Then,

S

fo(®(y,5,0)) = fu(®(y, 50,0)) =/ [Tmax fol(®(y, 7, 0))dr Vs € (0,7-(y)).

S0
Now, the right-hand-side has a limit as— oo so that the first term on the left-hand side also
must converge as — oo. Thus, for anys € (0,7_(y)), we have

Jim_fu(®(y,5,0)) = f(®(y,5,0)
and

s

F@(y.5.0) = F(®(7,50.0) + | [T (@570 (3.1)
80
As a direct direct consequence, the limits o f(®(y, s,0)) exists and equals

F(®(y,50,0)) /030 T f1(® (3, 7, 0))dr
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It is easy to check that this limit does not dependspnThe existence dfim,_.g+ f(®(y,0, s))
for almost everyy € I"_ follows by the same argument. d

The above proposition allows to define the trace operators.
Definition 3.2. For any f € 2(Tmax), define the traceB* f by
BXf(v) = lim f(@(y,+5,0)) = lim f(®(y,0,%s))
for anyy € I'y for which the limits exist.

Note that, as we saw in the proof of Propositiod 3.1, for iry 2(T1,.x) and a.ez € T,

BT f(z) = f(®(z,t,0)) — /0 [Thaxf](®(z,s,0))ds, vVt € (0,7_(z)).

In the same way, fora.ez € I'_

B f(y) = f(®(y.0,1)) + /O T f(@(y,0,5)ds, ¥t € (0,74 ().

Note that the above representation allows us to repreéFgnt, as the derivation along the
characteristics.

Proposition 3.3. Let f € Z(Twax). Then, for any € €2, one has

Trmasef (%) = lim 571 (f(®(x, %£5,0)) = f(x)), 3.2)
where the limit exists X .
PrROOF. Letx € Q4 and lety = ®(x,0,7+(x)). Using Formulal(3]1), witksy = 74 (x) and
s =t + 74(x), one has

f(@(x,1,0)) = f(®(x)) +/0 [Tmax fI(®(x,7,0))dr  (=7-(x) <t <7-(x)).

t
Therefore, the Iimi'[lim+ 7L (F(®(x,1,0) — f(x)) = lim+ t_l/ [Tmax f](®(x,7,0))dr ex-
t—0 t—0 0

ists in X and is equal tdI'y,.xf(x). One proceeds in the same way to prove the result when
x € Q_, for which

J"(‘I’(T’QUJ))=f(‘1>(><))—/O [Trax fI(®(x,0,r))dr  (=7-(x) <t < 7-(x)),

sothat lim ¢! (f(®(x,0,t)) — f(x)) = Tmaxf(X). O

t—0t

LemmaZB provides the existence of Borel measdyes on ' which allow us to define the
natural trace spaces associated to Problenh (1.1), namely,

LY =LY (Ty,dpw).

We note, however, that fof € X, the tracey € I'y — B¥ f(y) not necessarily belong tbZ..
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3.2. Basic existence resultsLet Ty be the free streaming operator witlh re—entry boundary
conditions

Top = Thaxy foranyy € 2(Ty),
where the domai¥ (T)) is defined by
P(To) = { € D(Tumax); B~ = 0}.
We state the following generation result, whose proof idgmsed to the Appendix of this paper:

Theorem 3.4. The operator(Ty, Z(Ty)) is the generator of a nonnegativ&,-semigroup of
contractions(Up(t)):>o in X given by

UO(t)f(X) = f(‘I’(th7O))X{t<T, (x)}(x)7 (X € 97 f € X)>
wherey 4 denotes the characteristic function of a skt
One can now state the following result.

Theorem 3.5. Letu € L' andg € X be given. Then the function

T_ (%)
fx) = /0 exp(=At) g(@(x,1,0))dt + X{r_(x)<oo} EXP(=AT-(X))u(P(x, 7 (x),0))

is theunique solution f € Z(Tyax) Of the boundary value problem:

B f=u '
where) > 0. Moreover,B* f € L! and
BT £l +Allfllx < llullze +llgllx- (3.4)

Furthermore, ifg > 0 andu > 0, then@.4)turns into equality.

PROOF Letus writef = f1 + fo with f1(x) = [T~ ™) exp(—At) g(®(x, t,0))dt, and

f2(X) = X{r_ (x) <00} EXP(—AT_ (%)) u(®(x, 7 (%), 0)), (x € Q).

According to Theorerid4f; = (A — To) 'g, i.e. fi € Z(Tmax) With (A — Tray) f1 = g and
B~ f1 = 0. Therefore, to prove thatis a solution of[(3B) it suffices to check théte 2(Tax),

(A — Thax)f2 = 0 @andB~ fo = w. Arguing as in the proof of Theorem 8.4 (see Appendix), we
easily see that

f2(@(y,0,1)) = exp(=At)u(y), (yel-, 0<t<T1(y)) (3.5)
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Then Propositiof 213 yields
| 0 Thodn = | ) Voldut) = | AP - Volxda)
Q Q Q_

T+(¥)
= [ 4w /0 Fo(B(y. 0.6) F(®(y,0,1)) - Vi(@(y, 0, 1))t

T+(y)
- [ utvan-) /0 eNE@(y,0,8) - V(@ (y,0,6)dt,

Again, as in the proof of Theoreln_B.4, we get that

T+ (y) N
/ O Toacfodu = A [ uly)du_(y) / (@ (y, 0, 6))dt = A / fatbdp,
Q 0 Q

T

13

This proves thafs € Z(Tnax) and(A — Thax) fo = 0. Consequentlyf is a solution to[(313). To

prove that the solution is unique, it is sufficient to provattthe only solution) € 2(Tax) tO
()\ - Tmax)w = 07 B_¢ =0

is ¢ = 0. This follows from the fact that such a solutiahactually belongs t@Z(T) while

A € o(Ty). Finally, it remains to provd (3.4). Using(3.5) and the fiett /> vanishes orf2_ .,
we infer from [Z.8) that

T+(y)
_ _ —At
A/Q | foldp = A/ﬂ | foldp = A/F du—(y)/0 e Mu(y)|dt

(3.6)
= /F u(y)] (1= W) du(y).

Defineh : y € T'_ +—— h(y) = |u(y)|e ™). Itis clear thath vanishes of'_ ., andh(y) <
lu(y)| for a.e.y € I'_. In particular,h € L' and, according td{210),

/ h(y)dp—(y) :/F\r h(y)du—(y) =/F . h(®(z,7_(z),0))dp (2)
- [ @ @).0) i (o)
P\l oo
— [ 1B a)dns () = 18 folls.

Combining this with[[(316) leads to

Afallx + 1B fall = [lullz - 3.7
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Now, let us show thaB™ f; € L1 and B fi]l,1 + Allfllx < llgllx. Foranyy € I'y and
0 <t<7_(y), we see, as above, that

T (y)-t
f1(®(y,1,0)) = /0 exp(—As)g(@(y. s + £,0))ds

—(¥)
= /t exp(—A(s —t))g(®(y, s,0))ds.

This shows thaB™ fi(y) = lim;_,g+ f1(®(y,t,0)) = fOT’(y) exp(—As))g(®(y,s,0))ds. Ac-
cording to Propositioh 211,

|t | gt s olas= [ lglan

Q4

which, sinceexp(—A(s —t))|g(®(y, s,0))| < |g(®(y,s,0))|, impliesBT f; € L. . Let us now
assumey > 0. Thenf; > 0,

A|f1\|=A/f1du=A/ fldum/ fldum/ fdu.
Q Q. Q_NDp oo Qoo

Using similar arguments to those used in the study,ofve have

7—(y)
N T / 9(®(y.1,0) (1 — exp(—At)) dt,
Q. r, 0

which, by Propositiol 211, implies

A flduz/ gdu—/ BF f1dpus.

Similar argument shows that

A / Sidp = / gdp,
Q_NQ4 Q_NQ4

while the equality

A fidp = / gdp,
Qfoomﬂ+oo 9700094»00

follows since this case behaves as the whole space case.sfidvs that\ |f||x = |gllx —
|]B+f|]L1+ for g > 0. In general, defining

)
Fl(x):/o exp(—\s) |g(B(x,5,0)|ds,  (x € Q),

we obtain|]B+f1HL1+ + A f1llx < HBJfFlHLl+ + A |F1]lx = |lgllx, which combined with[(3]7),
gives [3.4). O
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Let us note that, with the notation of TheorEml 3.5, we have

/F+ B+fdu++)\/ﬂfd,u:/udu_+/ﬂgdu. (3.8)

Indeed, for nonnegative and g, (3.4) turns out to be an identity which is precisdly13.8hef,
for arbitraryu € L' andg € X, we get [3.B) by splitting functions into positive and négat
parts. This leads to the following generalization of Gredarmula:

Proposition 3.6(Green’s formula). Let f € 2(Tmax) be suchthaB~ f € L. ThenB* f € L

and
/ T feljt = / B~ fdu_ — / BYfdus
Q _ r,

ProOF. For givenf € 2(Tpax), We obtain the result by setting = B~ f € L' andg =
(A= Thax)f € X in Eq. (33). O

Remark 3.7. If du is the Lebesgue measure B, the above formula leads to a better under-
standing of the measurek:.. Indeed, comparing it to the classical Green’s formula (sep
[6]), one sees that the restriction @f..- on the setL = {y € 02 ; £ F(y) - n(y) > 0} is equal

to

dpss, = (£F(y) - nly)) dv(y)
whered~(-) is the surface Lebesgue measurej§a.
We conclude this section with a result similar to Theokem Brecisely, for the boundary value
problem with data given oh, we have the following generalization i [4, Lemma 2.2]
Proposition 3.8. Givenh € LY, let

T_ (X) e_TJr (X)

h(‘I’(X,O,T.;.(X))m
f(x) = h(®(x,0, 74 (x))e" ™) if 7_(x)=o0candry(x) < oo,
0 if 74(x) = o0.

Then,f € Z(Tmax), B™f =0, andB* f = h, with || f]|x < [|2[|1 and || Tof|lx < [|AllL: -

if 7_(x) + 74 (x) < o0,

PrROOF. Lety € I'_ and0 < ¢t < 74(y). Since
T—(q)(y7 07 t)) =1, while T+((b(y7 07 t)) = T—l-(y) —t

we have
tet—m+ ()

f(®(y,0,1)) = h(2(y,0,7+(¥))) ENCE

andB~ f(y) = lim¢—¢ f(®(y,0,t)) = 0 fora.e.y € I'_. In the same way, givema € ', and
0 <t < 74(z), we have

7 (®(2,1,0) =t,  while 7 (B(z,t0)) =7_(z) - t.

X{ry (y)<oo} 3.9)
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Consequently,
(r—(z) —t)e™
7(2)

so thatB™ f(z) = lim;_o f(®(z,t,0)) = h(z) for a.e. z € I',. Now, Eq. [3R) yieldsf €
P (Tmax) and

f(®(z,,0)) = h(z) X{r_(z)<o0} T € Xfr_(m)=c0} | »

B %. 0. 7. (x 6—7’+(X)L—(X)
h(®(x,0,74(x))) 7_(x) + 74 (x)

Tunaf () =4 _p(@ (x, 0,7 (x))) =+ if 7 (x) = 0 andr (x) < oo,
0 if 74(x) = 0.

if 7_(x) 4+ 74 (x) < o0,

Next we show| f||x < HhHLl+ and || Thax fllx < Hh|]L1+. First we notice that

/glf(XHdu(X)==/£+|f(XHdu(X)==/£+ﬁnIf(XHdu(X)+—J/ 10 (),

QiN2_
since f(x) = 0 wheneverr; (x) = co. Now, according to the integration formul@a{p.8),

7_(x)e T+ ()

L relaneo = [ @0, ) S s
_ @ |n(z)| =S5 e e @ 41 (2) -1
= [ [ weas= [ ht) )

<[ Ih@lduta).
F\lyoo
In the same way, according to Ef.(2.9),

A%mlWU&WM@JZA;MMM&XAwm@Wf%s:ﬁ;wW@WMA@-

One obtains thus that

umxzévwwmw<é\rrmmww+/’vmwmnzmmg

Tyoo

One proceeds in the same way to show tfBf,.x f || x < ||h\|L1+. O

3.3. Transport equations with abstract boundary conditions. For any(linear) bounded bound-
ary operatorH € #(L., L), defineTy as

Tre = Thaxp foranyp € 2(Ty),

where
Q(TH) = {1/} € @(Tmax)§ B+7/} € L BTy = HB+¢} .
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For any\ > 0, we define the operators:
My : L' — 1L
ur— [Myu] (y) = uw(®(y, 7-(¥),0)) exp (=AT—(¥)) X{r_(y)<cc}, (¥ €T'4);

{EA . Ll X
u— [Exu] (x) = u(®(x,7-(x),0)) exp (—AT_(X)) X{r_(x)<c0}, (X EQ);

{GA: X—>Li_

T—(2)
J s [Gaf] (2) = /0 f(®(z,5,0)) exp(—As)ds, (z€T);

and
{C’)\ X — X

(%)
fr—[C\f](x) = /0 f(®(x,s,0)) exp(—As)ds, (x € Q).

Thanks to Holder’s inequality, all these operators arended on their respective spaces. Note
that=, is a lifting operator which, to a givem € L! associates a functiofi= Zyu € Z(Twax)
whose trace oi'_ is exactlyu (TheoremZ33b). The operatdv/, transfers functions defined
onI'_ to functions defined o', and, using Theoref 3.4, it is easy to see thgtcoincides
with the resolvent ofTy, i.e. Cyf = (A — To)~f forany f € X, A > 0. In particular,
RankC)) C 2(Tmax). Moreover, still using Theorein 3.5, we see thgtf = BTC, f for any

f e X andMyu = BTE u for anyu € L}P Finally, we see thaty, is surjectivefor any A > 0.
Indeed, according to Propositien 3.8, we have that for @ry L, there is anf € (T nax),
such thatB*f = g andB~f = 0. The latter property means th#t € %(T) so that, for
any A > 0, there isyy € X such thatf = Z(\, Ty)v. In this caseg = BT f = G,y and
1V)lx < Alfllx + ITofllx < (1+ N)|gllx. The above operators allow to solve the boundary-
value problem

{(/\__ Tmax)f =g (310)
B~f=HB"f

whereg € X and\ > 0. Precisely, we have
Proposition 3.9. Letg € X be given. Assume that for sothg> 0the serie "> (M, H)"Gyg
converges i} . Then the function

[ =0Cx\g+Ex\H (Z(M,\OH)"GA09> (3.11)

n=0
is a solution of(A\g — Tx)f = g. If, moreover,H > 0, then the thesis is valid for all > ).
ProoR DefineSy,g = > o0 (M), H)"G,,g. By assumptionSy,g € L% sothatHS,,g € L.

Then, as we have already seen, boijg and=,,HS),g belong toZ(Tax). This shows that
f=Cxg+ExHS\9 € Z(Tmax)- Furthermore,

B_f = B_C)\Og + B_E)\OHS)\OQ = HS)\Og
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sinceC),g € 2(Ty) andB~Zy,u = u for allu € L!. In a similar way,
B+f = B+C}\og + B+E)\0HS)\09 = G)\og + M)\OHS)\OQ = Z(M)\OH)NG)\OQ = S)\og7
n=0
sothatB~f = HB*f,i.e. f € 2(Tg). Finally, Theorem§314 arld3.5 assert respectively that
(A0 — Tmax)Crog = g and (Ao — Tax)=Ex,u = 0 for anyu € LEF so thatf solves [[3.ID) with
A = )\g. The statement foFf > 0 follows from the fact thafl/, andG, decrease withh and thus
the series in[(3.11) converges for akyeg\g. O

As a conseguence, one gets the following generation rasutbhtractive boundary operators
already stated in 7, 12]
Theorem 3.10. Assumé to be strictly contractive, i-eHHH,%(LL,Lg) < 1. ThenTy generates
a Cp-semigroup of contractionfl/; (t)):>o and the resolvent\ — Ty)~! is given by

e}

AN—Ty) ' =C\+E\H <Z(MAH)"GA> forany A >0 (3.12)

n=0

where the series is convergentdf( X ).

PROOF It is easy to see thaftM, || < 1 for any A > 0. In particular,||MH|| < 1 for any A > 0
and the serie3_>° (M, H)"G, converges in4(X, L1 ). Fixnowg € X and letf € X be given
by (311). Propositiof_319 ensures thfais a solution of [3.710) whild{314) implies that

M7l < llgllx + 1B~ Flls — 1B*llps
Sincel|Bf |1 = [HB* [l < [|B* £, . we geth||f|lx < [lgll or, equivalently

A =Ta)fllx = Al flx-

ThereforeTy is a densely defined dissipative operator (recall tHéT';;) contains the set of
compactly supported continuous functions)6f Moreover, the range ofA — Ty ) is exactly
X according to Propositidn_3.9 so that the Lumer-Phillipsdrieen leads to the generation result.
Now, the representatiof {3]12) is nothing else buf{3.11). O

Remark 3.11. Hadamard’s criterion ensures that the seriefal2)converges inZ(X) for any
A > 0 and any boundary operatdil such that-,(M\H) < 1.

4. MULTIPLICATIVE BOUNDARY CONDITIONS

In this section, we consider the general CM]@(L}HLD > 1, and we provide, in the spirit of

[14], a sufficient condition ol ensuring thafl';; generates &p-semigroup inX. Let x. denote
the following multiplication operator inL}r:

~July) if 7 (y) <e,
[xeul (y) = {0 else

for anyu € L}r and anye > 0. Our main result is the following.
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Theorem 4.1.LetH € #(LY, LY ) with || H| > 1. If

limsup [[Hxell gz 1) <1, 4.1)
e—0
thenT i generates &y-semigroup(Vg (t)):>0 in X such that
| H | t 1 — || Hx
[V ()] < exp |—-log | ————— (t=0), (4.2)
1= [[Hx|l £ [H ||

for anye > 0 such thatl| H x|| < 1.

The strategy to prove this result is adapted frém [14] andsistsm in performing a suitable
change of the unknown function iBZ(1.1) (similar to that ugedl2, Chapter XllI]) so that the
new unknown satisfies an equivalent evolution problem (dud)with a boundary operator which
is contractive, provided the assumpti@ni4.1) holds. Maeeigely, for anyd < ¢ < 1, define the
multiplication operator irL}r:

Mg+ LY 3w [Mgu] (v) = exp{(7—(y) A k) log g}uly) € LL,
wherek is a positive real number to be fixed later. L&t be defined by
Zy 0 X 3¢ [Z40] (x) = exp{(r_(x) A k) log g}o(x) € X.

SinceM,, € %(L}r), it is possible to define the free streaming operdigry(, associated to the
boundary operatoH M, € #(L1, LEF) and theabsorption operator

Ap (%) = Tam, (%) —logq X x<ki¥(X), € D(Any),
where
P2(Ang) = 2(Tam,) = {¢ € Z(Tmax); B¢ € LL, B ¢ = HMB1 9} .
The unbounded operatolsy andA 4 are related by the following lemma.
Lemma 4.2. Forany0 < ¢ < 1, Z,'2(Ty) = Z2(Ang) andTy = Z,Ap 2"

ProOF Let0 < ¢ < 1 be fixed. One sees easily th&} is a continuous bijection fronX onto
itself. Its inverse is given by

Zq_l tpeX — Zq_lgp(x) =exp{—(7—(x) A k) log ¢}p(x) € X.
Note thatZ, ' € #(X) becauseup{r_(x) Ak ; x € Q} < k. Now, lety € 2(Ty) andy =
Z, 1. First we show that) € Z(Tmax). From [32), on the setx € Q; 7_(x) < k} € Q_,
Thaxt(x) = lim s~ (Y(@(x, 5,0)) = P(x))

= lim g1 (e—(ﬂz(@(x,s,(]))/\k) Iqu(,D(‘b(X,S,O)) _ e—ﬂ:(x) logq(p(x)> ]

s—0

Sincer_(®(x,s,0)) = 7_(x) — s forany0 < s < 7_(x), we get

Tonacth(x) = 7= 0% Tim 5= (58 05(@ (x,5,0)) — p(x))

s—0

— e T (x)log g (]Og qu(x) + Tmax(p(x))
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for anyx € Q with 7_(x) < k. Since

P(x) = e NBIp(x) v y<nt + T BIN(X)X ()2}

we obtainT . (x) = e~ (- logd (o0 ¢ O(X)X{r_ (x)<k} T Tmaxp(x)), i.€.

Tmaxzq_lgo = Zq_1 (lOgQSDX{T, <k} + Tmax@) (43)
so thaty) € Z(Tmax). Moreover, since_(y) A k = 0foranyy € I'_, itis clear that

B7y(y) = lim 9 (2(y,0,5)) = lim exp(-slogq)p(®(y,0,5)) =B ¢ (y).
Now, for anyz € I', using that_(®(z, s,0)) = 7_(z) — s for any0 < s < 7_(z), we have
B 1i(z) = lim v(®(z,5,0) = lim exp (— (7-(z) AK) = 5)log ) p(®(2,0,5))

= exp (— (1—(2) A k) log q) BT ¢(2),
i.e. BTy = M !B¥y. ConsequentyB=y € L1 andB~+ = HM,B"¢. This proves that
Ve P(Ang) ie Z,'9(Ty) C Z(An,). The converse inclusion is proved similarly. Finally,
foranyp € 2(Ty), @3) readi[‘HMqu—lgo = Zq_l (logqx{tgk}gp +The), ie.
2AnqZ; ¢ =Ty vy € I(Tp)
which completes the proof. d

Remark 4.3. Note that the characteristic functiog,_y) in the definition ofA ; , is missing
in the force-free case studied fibd] but has to be considered if one wishes to take into account
characteristic curves with infinite length.

The above lemma shows that the evolution problem

0
59X, 1) + F(x) - Vxp(x, 1) +10g ¢ X (o <y (x,) = 0
B~¢ = HM,Bty (4.4)
p(x,0) = exp{—(7-(x) A k)logq}ho(x),  (x€)
is equivalent, by the change of variables, to problEml (1d9nsequently, to prove tha&y is
a generator of &y-semigroup(Vy (t)):>o in X, it suffices to show thaA y , generates &'y-
semigroup(Vi 4(t)), in X (for some0 < ¢ < 1). Moreover, by Theorefi3.1L0, it is enough to
find 0 < ¢ < 1 such that| HM,|| < 1. We are now in position to prove Theoréml4.1.

ProoF OFTHEOREMHEL: DefineQ = {0 < ¢ < 1; ||[HM,| < 1}. As explained above, Lemma
4.2 and Theore 310 imply that@ # @, thenT ;; generates &'-semigroup(V (t)):>0 such
that

Vi (t) = 2,Vnq(t) 2,1 (t>0,q€9Q), (4.5)
where (Vi7,4(1)) >, is aCo-semigroup inX with generatorAp, (¢ € Q). Using assumption
@), let us fixe > 0 so that||Hy.|| < 1 and choosé: to be larger thare. Then, for any
0<q<1,

Mgl < [[Hxe Mgl + [1H (I = xe) Mgl < [[HXell + [[HIHI( = xe) Mql|
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Moreover
(I = xe) Mgl = sup {exp[(T—(y) A k)logq] ; y € Ty and(7—(y) A k) > €}
< exp(elog q) (0<g<1).
Consequently,

|HM,| < [[Hxe|| + || H| exp(elog q)
andg € Q provided

(elogq) < log <%> . (4.6)

Therefore,Q # @ and T is a generator of &-semigroup(Vy (t)):>0 in X. On the other hand,
sinceAy g = Tum, ¥ — logqxir_<ky foranyy € 2(Apn,), and sincel'y v, generates a
Cy-semigroup of contractions, we see that
[Vi,q(t)[] < exp (—t log q) (t>0, g€ Q).
Next, we see that
124l <1 and  [|Z;7] < exp(—klogg), (g€ Q)

hencel(4b) impliegVy (t)|| < exp(—(k + t)log ¢) for anyt > 0 and anyg € Q. Noting that the
setQ is independent of (actually it depends only onand H through [4.5)), we may let go to
€ SO that

Ve (t)]| < exp(—(e +t)log q) (t>0,q€Q).
Now, for any fixeds > 0, optimizing the free parametésg ¢ in (£.8) we obtain[{412). O

The estimate[{4]12) oftV (¢)|| certainly is not optimal and can be improved for some geome-
tries of the phase space. One such case is described in tiilagobelow.

Corollary 4.4. Assume thainf{7_(y);y € I'+.} = ¢y > 0. Then, for any boundary operator
H e B(LY,LY), Ty generates &-semigroup(Vi (t))i=o in X such that

Ve ()] < max{1, [|H|[} exp (max{0,log | H[[}t/fo) (£ >0).
1.

Proor According to Theoreri 310, it suffices to prove the result|ffii| > 1. Noting that
0 if0<e<¥y
[H x| = .
|H| ife> 4o,

we immediately see that
o f1 1—HH><5H> } log || H|
infd—log | ———=—— ] ;|| Hx| <1y = —"F—.
e () b f
The proof becomes now a straightforward application of Taedd]. O
This corollary shows that # is a phase space in which the lengthes of characteristiesame

bounded away frond, then the general transport equatibn(1.1yell-posed for any bounded
boundary operator H € %(L}r, L!). Let us illustrate the above result with a few examples.
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Example 4.5. In the first example we consider the force—free Vlasov equditi a slab of thick-
ness2a, (a > 0). In such acase? = {x = (z,v) € R?; ~a < v < a, -1 < v < 1} and
F(x) = (v,0). Itis not difficult to see (see for instance [14, Section Yithat the above Corollary
applies in this case sindef{7_(y); y € 'y} = 2a > 0.

Consider now an example of the Vlasov equation with a noratrierce term for which Corol-
lary[4.2 still applies.

Example 4.6. Let us consider the following two-dimensional phase space:
Q={x=(z,y) eR*; 2> +y*<2and -1 <y<1}
with the field 7 (x) = (—y,x) for anyx = (z,y) € Q. In such a case, the characteristic curves
arecircular, namely
®(x,0,5) = (rcoss —ysins, rsins + ycos s), x = (z,y), s €R.

In particular, for anyx = (x,y) € € such thatz? + y? < 1, one has+(x) = co. Moreover,

Iy ={(z,-1); - 1<tz <0}U{(z,1); 0 < £z < 1}.
In this case, one can easily check thef{7_(y); y € Tt} = /2.

5. CONSERVATIVE BOUNDARY CONDITIONS

In this section we consider the case of conservative boyratanditions. Note that such bound-
ary conditions arise naturally in the study of gas dynanii@ bnd are typically associated to a
boundary operatol such that

[Hp|| = Il forany ¢ e L}, ¢ >0.
Theoren 41l does not apply to such boundary operators since
[Hxell = lIxell =1 forany e > 0.

Therefore to deal with the generation properties of theatpet';;, we shall proceed in a different
way adapting techniques used|in [4] in the force-free casemmow on, we adopt the following
assumptions, which are more specific than the conditioneabov

Assumption 5.1.

(@) The boundary operatol € %(LL, L1) is positive.
(b) [|H| =1.

(c) If f € L is non-negative and/ f = 0, thenf = 0.

Under these hypotheses we can prove the existence resailt igivT heorenl 5]2. This result,
with different proof, can be found if][7]. A less general vensof it has been obtained also in
[4, Theorem 2.8]. The proof in the case including the forckl fie, which we present below for
self-consistency of the paper, is the same a&lin [4] sincelyt ases the series representation of
the resolvent o' ; and the generation result for contractive boundary opesditheoreni-3.70).

For any0 < r < 1, let (V,.(t)):=0 be theCy-semigroup ofX generated byI',r (whose
existence is given by Theordm-3110).
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Theorem 5.2. Let H satisfy Assumptio@&.). Then, for anyt > 0 and anyf € X the limit
Vu(t)f = lim, ~ V,.(t)f exists inX and defines a substochastic semigralif; (t)):>o. If
(A, 2(A)) is the generator of Vi (t)):>0, then its resolvent is given by

A=A f=Chf+ D _E\HMH)"GAf  foranyfe X, A>0, (5.1)

n=0
where the series converges.in

ProoF. According to Theorer 310, for arly< » < 1 and any fixed\ > 0, the resolvent ofl',
is given by

()\ — TrH)_l =C\+ ZT’H—HB)\H(M)\H)TLG)\

n=0

with supgc, <1 [|(A — Trr) Y| < AL Then, for anyf > 0, the functionr € (0,1) — (A —
T,r)~' f is non-negative and non-decreasing so that the following kxists

RN ] = }i/ni A =Tow) ' f=Cnf + > EXH(MH)"G\f

n=0

where the series converges absolutely because of the rmencoovergence theorem. Itis easy to
check that| Z(\) f|| < A7Y|f|l. Now, for f = f+—f~, wedefineZ(\) f = Z(\) f*—Z(\) f~

so thatZ()\) is a linear and bounded operatorihwith ||Z()\)|| < A~!. Furthermore, the range
of Z () is dense inX since it contains th&>°(£2). Indeed, iff € €5°(Q2), then(A — T, p)f =

(A —Tpy)f = gisindependent of < r < 1, so that\ — T,x) " 'g = f — Z(\)gasr / 1.
Now, thanks to Trotter-Kato Theorem, there exists an ope(a&&, Z(A)) which generates &-
semigroup(Vz (t)):=0 in X and such thatZ(\) = (A — A)~! forany A > 0 and Vg (t)f =
lim, ~ V,.(t)f, foranyt > 0. O

Remark 5.3. We note that the expressi@a.d) implies that(Vy(t)):>o does not depend on the
choice of the approximating sequence of semigrdipst)):>o. Indeed, for any sequence of non-
negative boundary operatof#d,,), C Z(L%, L) with H,f / H f asn — oo for any nonneg-
ative f € L1, one can check thaty, (t) converges strongly to7 (¢).

Remark 5.4. Note that, in contrast to what happens in the force-free ¢dis@heorem 2.8jve
cannot say at this moment thgh, Z(A)) is an extension ofT' s, Z(Tg)). This, however, will
become clear by Theordmb.8.

Remark 5.5. Note that, arguing as ifdl, Corollary 2.10] we can show that, for any > 0, the
seriesy >  E,H(M,H)" defines a bounded linear operator frabi to X whose norm is less
than (or equal toY A + 1)/\.



24 L. ARLOTTI, J. BANASIAK & B. LODS

5.1. Characterization of Z(A). In this section we characterize the domaindoby adapting the
extensions techniques usedlih [4, Section 3] in the foree-fiase. Such extension techniques are
similar to those introduced inl[3] in a different contextdsaso [5]). Precisely, let us denote by
E_ the set of all measurable functions defined(bn,dy_ ) taking values in the extended set of
realsR U {£oo}. Itis clear thatL! C E_. In the sequel we shall dendfe:= =, € Z(L!, X).
Throughz=, we define the sdt_ C E_ as follows: f € F_ if and only if for any non-negative and
non-decreasing sequengg,),, C L', satisfyingsup,, f, = |f| we havesup,, =f, € X. Such a
sequence will be called@&-approximating sequence gf.

Definition 5.6. Forany f € F_, f > 0, we defind1f := sup,, 2f,, € X, for any=—approximating
sequencéf,), of f. If f = fy — f_,wedefind1fasNf=Nf, —Nf_.

Note that, from[[4, Lemma 3.1], the operafdrs well-defined fromF_ to X in the sense that
the value off1 does not depend on the choice of Er@pproximating sequence ¢f

In the same way, we define the &t > L! to be the set of all extended real-valued measurable
functions defined oril";,du ). Now, through the boundary operatff, we construct a subset
F. of E; as the set of all functiong € E. such thasup,, Hy,, € F_ for any non-negative and
nondecreasing sequen@g, ), of L1 such thatup,, ¢, = |¢|. Such a sequence will be called an
H-approximating sequence @f. We have the following definition

Definition 5.7. Foranyy € F4, ¢ > 0, defineHvy := sup,, Hy,, € F_, for any H-approximating
sequencéi), ) of . If p =, — ¢, we defineHy asHy = Hy — Hip_.

Here again, the above operator is well-defined by virtue_pLEimma 3.4]. We are now in
position to precisely describe the domainff

Theorem 5.8. Let Assumptiof 5l 1 be satisfied. Ther 2(A) if and only if
(1) ¢ € Z2(Twuax), Bfp € Fu,
(2) BTp =HBTp
(3) limy, o0 ||MH(MH)"BT || x = 0.

Moreover, for anyy € Z(A), Ap = Thpaxe.

Proor. We refer the reader ta ][4, Theorem 3.6] for the proof of thevabbheorem. Actually,
the main ingredient of the proof is the representation fdanf8.12) whereas the explicit expres-
sions of the operatord/,, =, C\ andG, do not play any role in the proof. Note that, though
the range oM is E;. & F., it can be check that, for any satisfying 1) and 2), the sequence
(MH(MH)"B*),, is well-defined. O

An important consequence of the above characterizatidratsttexplains the link between the
domains ofT' g and that ofA.

Proposition 5.9. Let p € Z(A) be such thatp;p, € LL. Theny € 9(Ty), i.e. or. =
H(ypir, )- More preciselyy € 2(Ty) ifand only ifp € 2(A) and the serie$” (M1 H)"G1 f
is convergent il wheref = (1—A). Inparticular, A = Ty ifand only if}_>° (M H)"G, f
converges im}r forany f € X.
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PROOF. Let o € Z(A). According to Theorei 5.8~ = HBT ¢y which, sinceB~¢ € L!,
readspr_ = H (o, ). Sincep € Z(Tmax), itis then clear thap € 2(Ty).

Assume now thap € Z(Ty). As above € Z(A) andyr, € LY. Let f = (1 — A)p and
let,, = ZI&(MlH)’“Glf for n > 0. Assume for a while thaf > 0. We can show that

sup, = BT e LL
which implies the convergence of the se@%ozo(MlH)’“Glf in L , which extends for arbitrary

f by linearity. Conversely, lep € Z(A) andf = (1 — A)p. If ZZO:O(MlH)’“Glf converges in
L., then we geBTy € L1 in the same way and, from the first paste 2(Ty). O

The above result shows theA, Z(A)) is an extension of T, Z(Tr)). Moreover, if Ty
does not generate@,-semigroup inX, then the set
Z(A)\ 2(Ty) ={f € Z(A); fir, ¢ Li} # 2,

and if Ty is not closed, then there existsc 2(Ty) such thatpr, ¢ LL. The main scope
of the following section is to determine the necessary affiicgnt condition onH ensuring the
stochasticity of Vi (t)):>o0-

5.2. Stochasticity of (Vi (¢)):>0. In this section, we assume that, besides Assumfidn3.1,
satisfies conservativeness assumption mentioned at tienbegof this section, i.e.

|HGl = [0l foranyg e L}, v > 0. (5.2)

In such a case, one expects the semigrdp(t)).>o to bestochasti¢that is,

/wmvwz/Jml (f € X). (5.3)
Q Q

Indeed, a consequence of Green’s formula (PropodiiidniSt&at
/ Trfdu=0 forany f € 2(Ty).
Q

Sinced Vi (t) f = AV (t)f foranyt > 0 and anyf € 2(A), (53) should be true at least when
A = Ty (seel[18]). In this section we give necessary and sufficientlitions ensuring{5l3) to
hold. For anyf € X, f > 0, we define

B(f) = lim [ (M H)"G1f(y)dpi(y) = 0. (5.4)

n—oo Jp,

This limit exists since|M; H|| < 1 so that the the right-hand-side Bf(b.4) is a decreasing nume
cal sequence. For arbitrafyc X, 3(f) is defined by linearity. We have

Theorem 5.10. The Cy-semigroup(Vx (t)):>o is stochastic in X if and only if 3(f) = 0 for any
feX.



26 L. ARLOTTI, J. BANASIAK & B. LODS

PROOF. Letusfixf € X, f > 0andlety = (1 — A)~!f. For anyn > 1, define

on =%, To)f+> EH(MH)G\f =%(1,To)f +EH Y (M H)*G1 .
k=0 k=0

According to [B1l), we have,, — ¢ in X andy,, € Z(Tmax) With Taxen + f = ¢, for any
n > 1. Now, set

n n+1
un =Y H(MH)"Gif € L, and v, => (MiH)G\f € L}.
k=0 k=0

Then it is clear that),, = BTy, andy, = Z(1,Ty)f + Zu,. Consequently, Green’s formula
(Propositior-36) yields

/ ondp = / fdu +/ updp— — / Yndps. (5.5)
Q Q r_ r,
Sinceu,, = Hi,—1 andy,, > 0, (&3) yields

/Qcpndu: /ﬂfdqu/m(qpn_l — ) dps

Now, using thatp,, — ,,_1 = (M1 H)"*1G1 f and passing to the limit as — oo, we obtain

Léwwwiéﬁm—ﬁﬁ) (5.6)

Consequentlyg(f) = 0 if and only if ||(1 — A)~'f||x = ||f|lx. Now, it is easy to see that the
stochasticity of( Vi (t)):>0 is equivalent to the property thgtl — A)~1 f|x = || f|/x for any
nonnegativef € X. g

Remark 5.11. The above proof makes more precise the meaning of the foatfio As we saw
above, for anyf € X andy = (1 — A)~ L f:

mn:LAﬂww@»

Remark 5.12. Since( is surjective according to Propositidn_8.8, we havef) = 0 for any
feXitand only if|| (M, H)"g|| 1 — 0foranyg € LY.
Proposition 5.13. Assume that{ is conservative. Then, the following are equivalent:

1) (Vu(t))i>0 is stochastic;
2) A=Ty;

3) / Ap =0foranyy € Z(A).
Q
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Proor The equivalence betweel) and3) is nothing but[[5F). Let us prove the implication
1) = 2). Takep € Z(A), the implication is proven if we are able to construct a seqee

on— ¢  (n—o0)
{(1 S Tyen— f=(1-A)p  inX. &

For anyn € N, defineg, = (M H)"G1f € L. Then, using Proposition_3.8, for amy > 1,
there exista), € Z(Tmax) such thaB~«,, = 0 andB™ 1, = g, with ||, x < ||gn||L1+ and
ITotn|lx < ||gn||L1+. As in [4, Proposition 4.4], we can define

n—1
on =R, To)f + Y  EH(MH)*G f — )y

k=0
and show thatp,, € 2(Tp). Since(Vy(t)):>o is assumed to be stochastic, from Theofem]5.10
we infer thatHgnHLl+ — 0 asn — oo so thaty,, — 0 andTyy, — 0. Then it is easy to see
that (¢, ),, satisfies[(5l7). This proves thaf = 2). Finally we explained the idea underlying
the converse implicatio) = 1) at the beginning of this subsection (see the consideratifias
formula [523)). We refer td]4, Proposition 2.11] for a d&diproof using both Green’s formula
and a density argument. d

Now we discuss spectral propertigs, H which ensure stochasticity ¢V (t)):>0. The proof
of the following can be seen as a simple adaptation of thé,oFfieorem 4.5], where the explicit
expressions of the various operatarg My, G, do not play any role but the main idea goes back
to [11] (see alsd l5, Theorem 4.3]). We provide it here forghke of completeness.

Theorem 5.14.1) Forany\ > 0,1 ¢ o,(My\H);

2) 1€ o(MyH) for some/all\ > 0 if and only if A = Ty;

3) 1€ o.(MyH) for some/all\ > 0if and only if A = Ty # Tpy.
4) 1€ o.(MyH) for some/allx > 0 if and only ifA 2 Ty.

Proor 1) The fact thatl cannot belong to the point spectrum &fy\H (A > 0) is a simple
consequence of Assumptipnb.1 (c) and of the inclugidn> 0} C o(A).

2) If there exists\ > 0 such thatl € o(M,H), then, since the serieS{3112) converges in the
norm topology tq A — Tx)~!, we haveA = Ty. Conversely, assume that = Ty. Then, for
any f € X, the seriesy >° (M H)"G, f converges in.! according to Propositiond.9. Now,
since G, is surjective, the seriey o> ,(M,H)"g converges inL} for anyg € L}. Denoting
by R()\)g the limit, we see from the Banach-Steinhaus Theorem @) € B(L!) and that
RA\)(1 —MyH) = (1—- MyH)R(X), which proves that € o(M)H).

3) Let\ > 0 be such that € o.(My\H). Then

(1-MH)LL = L. (5.8)

Let o € Z(A) be given and letf € X be such thatp = (A — A)~!f. SinceG,f € L.,
there is a sequend®,, ), C L% such that|¢, — MyH¢, — GAfHLl+ — 0. Now, defineg,, =



28 L. ARLOTTI, J. BANASIAK & B. LODS

¢n — M\H¢, — G f. According to Propositiol 3.8, there exists € Z(Twmax) such that
B* £, = g, andB~ f,, = 0. Moreover,f,, — 0 andTyf,, — 0. Now, setting

we see thaty,, ), C 2(Tg) and(A — Tg)p, — f. Furthermore

ExHon =Y ExH(MyH) (¢ — MaHey) =Y ExH(MyH)* (g, + Grf),
k=0 k=0

where both above series are convergent by Rematk 5.5. Ugaig &emarf{5]5, we see that
S 0 EH(MyH)kg, — 0 so thatp, — ¢ and this proves thah = T .

Conversely, assumA = Ty # Ty and letg € L. Defineg, = S7=} (M, H)*g. Then,
gn € L1 and, clearly(l1 — M1H)g,, = g — (M1H)"g. Since3(f) = 0, according to Remark
B2, one ha$(1 — M1H)g, — gHL1+ — 0 so that [&B) holds. SincA # Ty, one hasl €
o(MH) \ o,(M;H) which proves that € o.(M; H).

4) The last assertions is now clear since all the poss#slitiave been exhausted. O

As in [4, Corollary 4.6], we provide here a useful critericgeé¢ [[4, Section 5] for several
application in the force—free case).

Corollary 5.15. (Vi (t)):>0 is stochastic if and only if ¢ o,,((M,H)*) foranyA > 0. Moreover,
if (Vi (t))i>0 is not stochastic, then there existman-negative v € (L})*, v # 0, such that
v = (MyH)*.

APPENDIX A: PROOF OFTHEOREMEBA

We prove here the TheordmB.4 announced in Setfidn 3.2. Boéipdivided into three steps:

e Step 1.Let us first check that the family of operatdiS,(t)):>o is @ nonnegative contractive
Cp-semigroup inX. Thanks to Propositiofd.3, we can prove that, for #iny X and anyt > 0,
the mappingUs(t)f : © — R is measurable and the semigroup propertigd))f = f and
Uo(t)Uo(s)f = Up(t+ s)f (t,s = 0) hold. Let us now show thatlUy(¢) f||x < | f]lx. We have

1Ua(t) /[l = / Uo(t) fldps + / Uo(t) Fldps + / Uo(t) Fldp.

Q. QN2 o Q0N o
Proposition§ 211 arld 2.3 yield

T—(¥)
/Q U001 = / dju (y) /0 Uo(6)F(B(y. 5,0))|ds

ry

max(0,7— (y)—t)
_ / dyis (y) / F@(y. 5 +1,0))|ds
Iy 0

max(t,7—(y))
<[ aw [ f(@ (0Dl < [ 17ld
F+ t Q+
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In the same way we obtain

/nnnm’UO(t)f‘d“:/ dp—(y) /OOO‘Uo(t)f(q)(y,O,s))]dsz/n 1fldu,

I' N2y

and

/ Uo(t)f|dp = / Fldg.
Q0N oo QMoo

This proves contractivity of/y(¢). Let us now show thal/y(¢) f is continuous, i.e.
lim [[Uo(t)f — fllx = 0.
It is enough to show that this property holds for ghg %5°(£2). In this caselim; .o Up(t) f(x) =
f(x) for anyx € €. Moreover,sup,cq |Us(t) f(x)| < supycq | f(x)| and the support af/y(¢) f
is bounded, so that the Lebesgue dominated convergenaethésads to the result. This proves

that (U (t)):>0 is aCp-semigroup of contractions iX. Let A, denote its generator.
e Step 2.To show thatZ(Ay) C Z(Ty) let f € Z(Ayp), A > 0andg = (A — Ay) f. Then,

7 (%)
o= [ oA g@E b0 (xe )
0
Lety e I'_ and0 < ¢t < 74 (y). Noting thatt = 7_ (®(y, 0,¢)), by Propositiol ZI3 we obtain
t t
F(2(5.0.0) = [ exp(-2s) g(B(B(y,0.0).5,0)ds = [ exp(-A5) (@ (3. 0.~ 5))ds
0 0

t
= [ exp(=x(t = 5) 9(@(5.0, ).
Consequentlylim, 5+ f(®(y,0,¢t)) = 0 a.e.y € I'_,i.e. B7f = 0. Next we show that
(Tmax, V) = (A — g,9) foranyy € 65°(€2), where(-, -) denotes the usual duality product of
X. Indeed
| 0Tt dn= [ F00 () V()
Q Q
= | J®)FE)- Vi(x)dux) + / fx)F(x) - Vip(x)dp(x)
Q QN2 oo
+ F(0F(x) - Vir(x)dpu(x)
QfooﬂQJﬁoo
= Il + 12 + 13.

Arguing as in Step 1, we observe that, for gng I' ;. and0 < t < 7_(y),

7—(y)
F(®(y,1,0)) = / exp(—A(s — £)g(®(y, 5,0))ds,
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and, by Propositioh 211,

7—(y)
I - /F dpui (y) /0 F(@(y.1,0)F(®(y,1,0)) - Vi(@(y, 1, 0))dt

T—(¥)
— [ dusy) / F(®(y,1,0)) - Vi(®(y, £, 0))dt x
I, 0

—(y)
<[ (A~ 0)g(@ (35 0)ds.
t
Recall that, according to the definition @f-, -, -),
d

fora.e.y € I'y and allt > 0, so that

() .
I :—/F du+(y)/0 ’ g(@(y,s,O))ds/O eXp(—)\(S—t))%(¢(q’(y7t70)))dt

T—(y)
= du+(y)/0 9(®(y,s,0))x

X {A/O exp(—A(s — t))y(®(y,t,0))dt — 1/1(‘1>(y,s,0))} ds.
Using again Propositidn 2111, we obtain
B=— [ (g0) = A7) wx)du(x). (A1)
Q4
Let us now computds. Propositio 2111 yields

I = /F di_(y) /0 " (@(y,0,6)F(®(y.0.1)) - Vi(@(y,0,1))ds
-] ww " F(@(y,1,0)) - Vi(@(y, 1,0))dt x

x /O exp(=A(t — 5))g(®(y, 0,5))ds,

and, as above,

= [ ) [ o0, [T epiae ) @@i.0.0)
=/ du-(y) /Ooog(‘l>(y70=3))><

—o0

X {)\ /OO eXp(_/\(t - 8))¢((I)(yv 07 t))dt - ¢((I)(yv 07 S))} dS,
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which results in
h== [ (g0 = A Bx)dux) (A.2)
QN0
Finally, since
flx) = /OO exp(—At)g (®(x,t,0))dt forany xe Q_. N,
0

we argue as above to get

o0 d
= [ smadne) [ el G (@t 0.0) d

-/ o(2)du(z) + A / 9(z)dp(z) / " exp(— ) g(®(z 1,0)dr,
Q00N oo Q00N oo 0

which gives

h—- [ (9(x) = AF(x)) ¥(x)du(x). (A.3)

QN oo

Combining [A)-(AB) leads to

[ 9Tt di == [ (90x) = A7) dux)

Q Q

which proves thaf € 2(Tax) and(A — Thax)f = g. SinceB~ f = 0, we see thaf € 2(Ty)
andAgf = Tof = Af — g.

e Step 3.Let us show now the converse inclusian(Ty) C Z(Ay). Let f € 2(Ty). For almost
everyy € I'_and any0 < s < sy < 74+(y) we have

F(@(y,0,5) — F(@(y,0,50)) / f(®(y,0,0) (A4)
Lettingx — ®(y, 0, 50) andt — s — so € (0, 7_(y)), this yields
PG 10) = £ = [ (T (0001
According to the explicit expression o%(¢), this means that
(1)) = £0) = [ Vol T F ) (a5)

holds for anyx € Q_, and¢ < 7_(x). In the same way, taking = 0 in (A.4) and setting again
x = ®(y,0,s0) andt = sp = 7_(x), we get

0
—f(x) = —/ " (Taxf)(®(x,7,0)dr.
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This shows that Eq[T{AI5) holds true for arye €2_ and anyt > 7_(x). Now, let us show that
(&) is still valid forx € ©_ .. Let us choose a sequengk )r C Z(Tma )% (Q) converging
to f in the graph norm ofl' ... Itis clear thatf;, fulfills (B5) for anyx € Q_, i.e

Uo(t) fre(x) — fr(x) = /Ot Uo(r) Tmaxfre(x)dr, foranyx e Q_..,t>0, k € N.
Set .
O(t) () = ‘Uo(t)f(X) ~ 160 [ () e ()

foranyx € Q_,, ¢t > 0. We have

G(t)f(x) / GO)(f — fi) () dulx / G(t) fo(x)du(x)

Qoo

<V — fo)llx +11f — fullx + /0 Vo) Tom (f — fi)l[x

Since the right-hand side term goes to zer@ as oo, fn,w G(t) f(x)du(x) = 0 and therefore

G(t)f(x) = 0 for almost everyx € Q_,,. This shows thaf{Al5) holds true for almost every
x € Q_ and anyt > 0. Consequentlyf € 2(Ag) with Agf = Taxf-
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