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After giving a short description, in terms of action of categories, of some of the structures associated with sl(2) and sl(3) boundary conformal field theories on a torus, we provide tables of dimensions describing the semisimple and co-semisimple blocks of the corresponding weak bialgebras (quantum groupoids), tables of quantum dimensions and orders, and tables describing induction -restriction. For reasons of size, the sl(3) tables of induction are only given for theories with self-fusion (existence of a monoidal structure).

Introduction

Our main and original purpose was to gather tables giving characteristic numbers for sl(3) boundary conformal field theories on a torus: dimensions of the blocks of the associated weak bialgebras, quantum dimensions, orders ("quantum mass"), induction tables, etc. a material that is hitherto scattered in a number of publications or unavailable. Our tables contain known results, that we have checked, but they also contain many new explicit formulae. The same is true for the expressions given in the last section, just before the tables. The corresponding data for sl [START_REF] Böhm | A coassociative C * -quantum group with non-integral dimensions[END_REF] does not use much space, and we could easily summarize it, but the situation is different with sl(3): to keep the size of this paper reasonable, we had sometimes to restrict ourselves to the case of Di Francesco -Zuber graphs with self-fusion (other cases will be described in [18]) and give only partial results for induction tables. Because we also needed a short introductory section discussing the underlying algebraic structures and giving our notations, we decided to describe boundary conformal field theories on a torus in terms of module categories (action of a monoidal category on a category) mostly adapting the relevant material from [START_REF] Ostrik | Module categories, weak Hopf algebras and modular invariants[END_REF], while adding few things like the construction of weak bialgebras in terms of Hom spaces, or the description of the bimodule structure A × O × A → O, where A is the fusion algebra and O is the Ocneanu algebra of quantum symmetries. Independently of the interest of our tables of results, we hope that this presentation will provide a bridge between several mathematical or physical communities interested in those topics.

The stage

In this paper A k is the fusion category of the affine algebra sl(2), or sl [START_REF] Di Francesco | Conformal Field Theory[END_REF], at level k, or equivalently, the category of representations with non-zero q-dimension for the quantum groups SL(2) q or SL(3) q at roots of unity (set q = exp(iπ/κ), with κ = k + 2 for sl [START_REF] Böhm | A coassociative C * -quantum group with non-integral dimensions[END_REF] and κ = k + 3 for sl [START_REF] Di Francesco | Conformal Field Theory[END_REF]). This category is additive (existence of ⊕), monoidal (existence of ⊗ : A k × A k → A k , with associativity constraints, unit object, etc.), tensorial (⊗ is a bifunctor), complex-linear, rigid (existence of duals), finite (finitely many irreducible objects), and semisimple, with irreducible unit object. It is also modular (braided, with invertible S-matrix) and ribbon (in particular balanced -or tortile). We refer to the literature [START_REF] Lane | Categories for the Working Mathematician[END_REF], [START_REF] Joyal | Braided tensor categories[END_REF], [START_REF] Bakalov | Lectures on tensor categories and modular functors[END_REF] for a detailed description of these structures. The Grothendieck ring of this monoidal category comes with a special basis (corresponding to simple objects), it is usually called the fusion ring, or the Verlinde algebra. The corresponding structure constants, encoded by the so -called fusion matrices (N n ) p q , are therefore non -negative integers: NIM-reps in CFT terminology. The rigidity property of the category implies that (N n ) pq = (N n ) qp , where n refers to the dual object i.e., in our case, to the conjugate representation, so that the fusion ring is automatically a based Z + ring in the sense of [START_REF] Ostrik | Module categories, weak Hopf algebras and modular invariants[END_REF] (maybe it would be better to call it "rigid"). In the case of sl [START_REF] Böhm | A coassociative C * -quantum group with non-integral dimensions[END_REF], this is a ring with one generator (corresponding to the fundamental representation), and fusion matrices are symmetric, because n = n. In the case of sl [START_REF] Di Francesco | Conformal Field Theory[END_REF], it is convenient to use two generators that are conjugate to one another; they correspond to the two fundamental representations. Multiplication by the chosen generator is encoded by a particular fusion matrix N 1 ; it is a finite size matrix of dimension r × r, with r = k + 1 for sl(2) and r = k(k + 1)/2 for sl [START_REF] Di Francesco | Conformal Field Theory[END_REF]. Since its elements are non negative integers, it can be interpreted as the adjacency matrix of a graph, which is the Cayley graph of multiplication by this generator, that we call the McKay graph of the category. Edges are non oriented in the case of sl(2) (rather, they carry both orientations) and are oriented in the case of sl [START_REF] Di Francesco | Conformal Field Theory[END_REF]. Irreducible representations are denoted by λ p , with p ≥ 0, in the first case, and λ pq , with p, q ≥ 0 in the next. Notice the shift of indices: the unit 1l of the category corresponds to λ 0 or to λ 00 . One should certainly keep in mind the distinction between the monoidal category, with its objects and morphisms, and its Grothendieck ring, but they will often be denoted by the same symbol. Actually, the Mckay graph itself is also denoted A k . In the sl(2) case, it can be identified with the Coxeter -Dynkin diagram A r , with r = k + 1. In both sl [START_REF] Böhm | A coassociative C * -quantum group with non-integral dimensions[END_REF] and sl(3) cases, it is a truncated Weyl chamber at level k (a Weyl alcove). It is often useful to think of A k as a category of representations of a would-be quantum object, that can be also denoted by the same symbol, although this may be quite misleading.

The next ingredient is a category E, not necessarily monoidal, but we suppose that it is additive, semisimple and indecomposable, on which the previous one A k (which is monoidal) acts. Action of a monoidal category on a category has been described, under the name "module categories" by [START_REF] Etingof | Finite tensor categories[END_REF], and, in our context, by [START_REF] Ostrik | Module categories, weak Hopf algebras and modular invariants[END_REF]. Using a slightly shorter description, we may say that we have such an action when we are given a (monoidal) functor from A k to the (monoidal) category of endofunctors of E. The reader can think of this situation as being an analogue of the action of a group on a given space. Actually, it may be sometimes interesting to think that E can be acted upon in more than one way, so that we can think of the action of A k as a particular "enrichment" of E. The word "module" being used in so many different ways, we prefer to say that we have an action, or that E is an actegory (another nice substantive coined by R. Street), and we shall freely use both terminologies. Irreducible objects of E are boundary conditions for the corresponding Conformal Field Theory specified by A k . It is useful to assume, from now on, that the category E is indecomposable (it is not equivalent to the direct sum of two non trivial categories with A k action). Since E is additive, we have a Grothendieck group, also denoted by the same symbol. Because of the existence of an action, this (abelian) group has to be a module over the Grothendieck ring of A k , and it is automatically a Z + module: the structure constants of the module, usually called annulus coefficients in string theory articles, or in [START_REF] Fuchs | TFT construction of RCFT correlators I: Partition functions[END_REF], and described by (annular) matrices F n = (F n ) ab , are non negative integers. Let us consider the class of a particular simple object of A k , namely the generator n = 1, for sl [START_REF] Böhm | A coassociative C * -quantum group with non-integral dimensions[END_REF] or n = (1, 0) for sl(3) (one of the two conjugated fundamental irreps). We interpret F 1 (or F (1,0) ) as the adjacency matrix of a graph, called the McKay graph of the category E. The rigidity property of A k implies that the module E is rigid (or based [START_REF] Ostrik | Module categories, weak Hopf algebras and modular invariants[END_REF]). In other words: (F n ) ab = (F n ) ba .

In the case of sl(2), Z + modules for fusion rings at level k have been classified by [START_REF] Di Francesco | SU (N ) -lattice integrable models associated with graphs[END_REF] and [START_REF] Etingof | Representations of tensor categories and Dynkin diagrams[END_REF]; McKay graphs are all the Coxeter -Dynkin diagram, plus some diagrams with loops (tadpoles), and F 1 = 2 Cartan matrix-1l. The rigidity condition in the case of sl(2) implies that the matrix F 1 is symmetric; this condition implies that non simply laced diagrams B r , C r , F 4 and G 2 should be rejected (so they do not fit in the presented framework but it is possible that they could fit in a framework of CFT where the SL(2, Z) invariance constraint is weakened, see also [START_REF] Coquereaux | On quantum symmetries of the non -ADE graph F 4[END_REF] and references therein): we are therefore left with the ADE diagrams and the tadpoles. A detailed analysis of the situation ( [36], [START_REF] Ostrik | Module categories, weak Hopf algebras and modular invariants[END_REF]) shows that the tadpole graphs do not give rise to any category endowed with an action of the monoidal categories of type sl [START_REF] Böhm | A coassociative C * -quantum group with non-integral dimensions[END_REF]. As already mentioned, the category E is not required to be monoidal, but there are cases where it is, so that it has a tensor product, compatible with the A k action. In another terminology, one says that the corresponding graphs have self -fusion (this is also related to the concept of flatness), or that they define "quantum subgroups" of sl(2), whereas the others are only "quantum modules". Like in the classical situation, we have a restriction functor A k → E and an induction functor E → A k . The cases where E is monoidal correspond to the graphs A r (with k = r -1), D even , with k = 0 mod4, E 6 , with k = 10, and E 8 , with k = 28. This was already known, at the level of rings, in [START_REF] Pasquier | Two-dimensional critical systems labelled by Dynkin diagrams[END_REF], [START_REF] Di Francesco | SU (N ) -lattice integrable models associated with graphs[END_REF] and was proved, at the categorical level, by [28]. The cases D odd , with level k = 2 mod 4, and E 7 , at level 16, are non monoidal actegories. A k is always modular, but the corresponding actegories are not, even when they happen to be monoidal; however, they always contain a subcategory which is modular (we shall come back to it). At the level of graphs, the D diagrams (even or odd) are Z 2 orbifolds of the A diagrams at the same level.

In the case of sl(3), the classification of Z + modules over the corresponding fusion rings at level k is not tractable (or not useful), however there is another route stemming from the classification of sl(3) modular invariants [START_REF] Gannon | The classification of affine su(3) modular invariant partition functions[END_REF]. The graphs encoding all sl(3) module categories are called the Di Francesco -Zuber diagrams [START_REF] Di Francesco | SU (N ) -lattice integrable models associated with graphs[END_REF]. Existence of the corresponding categories was shown by A. Ocneanu [START_REF] Ocneanu | The Classification of subgroups of quantum SU(N), Lectures at Bariloche Summer School[END_REF], actually one of the candidates had to be discarded, very much like the tadpole graphs of sl [START_REF] Böhm | A coassociative C * -quantum group with non-integral dimensions[END_REF]. Several sl(3) actegories have monoidal structure (graphs with selffusion), namely: A k itself, the D k , whose McKay diagrams are Z 3 orbifolds of those of A k , when k is divisible by 3, and three exceptional cases called E 5 , E 9 and E 21 , at levels 5, 9 and 21. The other actegories (not monoidal) are: the series A c k , for which the number of simple objects is equal to the number of self dual simple objects in A k , the D k series, when k = 1 or 2 mod 3, the series D c k , for all k, two modules of exceptionals called E 5 /3, E 9 /3, and finally the exceptional case D t 9 (a generalization of E 7 that can be obtained from D 9 by using an exceptional twist), along with a "conjugated case" called D 9 tc . Some of the graphs of that system have double lines, like E 9 , so that it is not appropriate to say that Di Francesco -Zuber diagrams are the "simply laced" diagrams of type sl(3): better to call them "higher ADE". In all cases however, with self-fusion or not, the rigidity property implied by A k holds (the condition (F n ) ab = (F n ) ba does not forbid double lines). Taking quotients of the above diagrams by discrete groups gives higher analogues of the non ADE Dynkin diagrams which define modules over the Grothendieck ring of A k , but the rigidity condition is not satisfied and the corresponding category should not exist (see however the comment that was made for sl(2)). Classification of sl(4) module categories is also claimed to be completed [START_REF] Ocneanu | The Classification of subgroups of quantum SU(N), Lectures at Bariloche Summer School[END_REF].

Let us pause to develop a tentative pedagogical analogy that should make natural the next result. Consider a finite group, a subgroup, and the corresponding homogenous space (the space of right cosets, for example). The group can be fibered as a principal bundle over the coset space, the structure group being the chosen subgroup. This subgroup has representations, in particular irreducible ones. For any such, let us say a, one can build an associated vector bundle, and consider the space Γ a of its sections. It carries a representation of the big group, although not irreducible (theory of induced representations). For the particular choice of the trivial representation of the small group, call it 0, the space of sections Γ 0 is an algebra, namely the space of functions F on the coset. Moreover every space of sections, say Γ a , is a module over the algebra F . In our case we have a non commutative geometry which is still, in a sense, finite, but the situation is similar. Simple objects, labelled by a, of the module category E can be thought as points of a graph, as irreducible representations of a would-be quantum subgroup of su(2) or su(3) at some root of unity, or as spaces of sections Γ a above a quantum space determined by the pair (A k , E), i.e., as modules over some algebra F which is an algebra in a monoidal category (A k in our case), and right modules over F form an additive category M od A k (F ). Reciprocally, we have the following theorem proved in [START_REF] Ostrik | Module categories, weak Hopf algebras and modular invariants[END_REF] under actually weaker assumptions than those listed previously for the action of A k on E: there exists a semisimple indecomposable algebra F , belonging to the set of objects of A k such that the module categories E and M od A k (F ) are equivalent. It is shown in [28] that E is monoidal (self-fusion) if and only if F is commutative (terminological warning: in [28] this property was required, and such algebras were called rigid, this requirement and terminology was abandoned in [START_REF] Ostrik | Module categories, weak Hopf algebras and modular invariants[END_REF]). Later, we shall give the simple summands of F (they play the role of quantum Klein invariants) for all sl(2) and sl(3) actegories, in particular for those that are monoidal. The object F is a monoid in A, but since we shall not use the previous equivalence, we shall not describe its structure as a monoid (in particular we shall neither give nor study its multiplication). The same algebra F , called Frobenius algebra, or Frobenius monoid, plays a prominent role in the approach of [START_REF] Fuchs | TFT construction of RCFT correlators I: Partition functions[END_REF]. Notice that module categories associated with ADE Dynkin diagrams for sl(2), or with Di Francesco -Zuber diagrams for sl(3) are never modular (unless E = A itself) but they contain a subcategory J, also denoted M od 0 A k (F ) which is modular. When E is monoidal, the subring of its Grothendieck ring associated with this modular subcategory is called the modular subring (or subalgebra) and is also denoted J.

The third and final needed ingredient is the centralizer category of E with respect to the action of A k . It is sometimes called the "dual category" (not a very good name) and is defined as the category of module functors from E to itself: these endofunctors should be functors F "commuting" with the action of A k , i.e., such that F (λ n ⊗ λ a ) is isomorphic with λ n ⊗ F (λ a ), for λ n ∈ Ob(A k ) and λ a ∈ Ob(E), via a family of morphisms c λn,λm obeying triangular and pentagonal constraints. We simply call O = F un A k (E, E) this centralizer category1 , but one should remember that its definition involves both A k and E. Because of the previous compatibility property, if E is a left actegory over A k , it is probably better to consider it as a right actegory over O (actually over its opposite, since we are permuting the two factors). The category O is additive, semi-simple in our case, and monoidal (use composition of functors as tensor product). E is therefore both a module category over A k and over O. The Grothendieck group of E is therefore not only a Z + module over the fusion ring, but also a Z + module over the Grothendieck ring of O, called the Ocneanu ring (or algebra) of quantum symmetries and denoted by the same symbol. Structure constants of the ring of quantum symmetries are encoded by matrices O x , called "matrices of quantum symmetries"; structure constants of the module, with respect to the action of quantum symmetries, are encoded by the so called "dual annular matrices" S x . The next problem is to find a way to describe explicitly this centralizer category. The solution lies in the construction of a finite dimensional weak bialgebra B, which is going to be such that the monoidal category A k can be realized as Rep(B), and also such that the monoidal category O can be realized as Rep( B) where B is the dual of B. These two algebras are finite dimensional (actually semisimple in our case) and one algebra structure (say B) can be traded against a coalgebra structure on its dual. B is a weak bialgebra, not a bialgebra, because ∆1l = 1l⊗1l, where ∆ is the coproduct in B, and 1l is its unit. Actually, in our cases, it is not only a weak bialgebra but a weak Hopf algebra (we can define an antipode, with the expected properties [START_REF] Böhm | A coassociative C * -quantum group with non-integral dimensions[END_REF], [START_REF] Nikshych | Finite quantum groupoïds and their applications[END_REF], [START_REF] Nikshych | Invariant of knots and 3-manifolds from quantum groupoids[END_REF], [START_REF] Nill | Axioms for weak bialgebras[END_REF]). One categorical construction of B is given in [START_REF] Ostrik | Module categories, weak Hopf algebras and modular invariants[END_REF]. We propose another one that should lead to the same bialgebra, and may be simpler. Label irreducible objects λ -of categories A k by m, n, . . ., of E by a, b, . . ., and of O by x, y, . . .. Call H m ab = Hom(λ n ⊗ λ a , λ b ), the "horizontal space of type n from a to b" (also called space of essential paths of type n from a to b, space of admissible triples, or triangles. . .) Call V x ab = Hom(λ a ⊗ λ x , λ b ) the "vertical space of type x from a to b". We just take these horizontal and vertical spaces as vector spaces and consider the graded sums H m = ab H m ab and V x = ab V x ab . To construct the weak bialgebra, we take the (graded) endomorphism algebras B = m End(H m ) and B = x End(V x ). For obvious reasons, B and B are sometimes called "algebra of double triangles". Existence of the bialgebra structure (compatibility) rests on the properties of the pairing, or, equivalently, on the properties of the coefficients2 (Ocneanu cells) obtained by pairing two bases of matrix units3 for the two products. Being obtained by pairing double triangles, Ocneanu cells (generalized 6J symbols) are naturally associated with tetrahedra with two types (black "b", or white "w") of vertices, so that edges bb, bw or ww refer to labels n, a, x of A, E and O. Using the two product and coproduct structures4 one can obtain representation categories Rep(B) and Rep( B) respectively equivalent to A k and O. As already discussed, the character ring of the first (the fusion algebra) is always described by a (generalized) Dynkin diagram of type A. The character ring of the next (the algebra of quantum symmetries) is not always commutative, it has two generators, called chiral, in the case of sl(2), together with their complex conjugated in the case of sl(3). The Cayley graph of multiplication by the two chiral generators (two types of lines), called the Ocneanu graph of E, encodes the structure. As already mentioned, B is weak. This should not be a surprise since not any monoidal category arises as representation category of a bialgebra, however (at least when the category is semisimple and has finitely many simple objects, and this is our case), it can be realized as the category of representations of a weak bialgebra. In the next paragraph, we shall see that the knowledge of a modular invariant is sufficient to reconstruct the character rings of A k (that we already know), of O, and the semisimple and co semisimple structure of B. The A k × O module corresponding to E itself can be recovered from the study of the source and target subalgebras of B. Results obtained in operator algebra by [36] and [START_REF] Böckenhauer | Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors[END_REF][START_REF] Böckenhauer | Modular invariants, graphs and α induction for nets of subfactors II[END_REF][START_REF] Böckenhauer | Chiral structure of modular invariants for subfactors[END_REF] have been translated to a categorical language by [START_REF] Ostrik | Module categories, weak Hopf algebras and modular invariants[END_REF]: choice of a braiding or of the opposite braiding in the category A k can be used to construct two tensor functors from (A k ) to O, called α L,R ("alpha induction" in the language of [START_REF] Böckenhauer | Modular invariants, graphs and α induction for nets of subfactors II[END_REF]). Here our presentation differs from [START_REF] Ostrik | Module categories, weak Hopf algebras and modular invariants[END_REF], because we find easier to think that there exists a functor

A k × O × A k → O, so that the previous α L,R are obtained as particular cases (1l A × 1l O × A k or to A k × 1l O × 1l A ).
At the level of Grothendieck rings, we have a bimodule property, that reads (we only use labels to denote the corresponding irreducible objects): m x n = y (W xy ) mn y, where m, n refer to irreducible objects of A k , x, y to irreducible objects of O, and where W xy constitute a family of so -called toric matrices, with matrix elements (W xy ) mn , again non negative integers. When both x and y refer to the unit object (that we label 0), one recovers the modular invariant partition function Z = W 00 of conformal field theory. As explained in [START_REF] Petkova | The many faces of Ocneanu cells[END_REF], when one or two indices x and y are non trivial, toric matrices are interpreted as partition functions on a torus, in a conformal theory of type A k , with boundary conditions specified by E, but with defects (one or two) specified by x and y. Only Z is modular invariant (it commutes with the generator S and T of SL(2, Z) in the Hurwitz -Verlinde representation). Toric matrices were first introduced and calculated by Ocneanu (unpublished). Various methods to compute or define them can be found in [START_REF] Coquereaux | Notes on the quantum tetrahedron[END_REF], [START_REF] Fuchs | TFT construction of RCFT correlators I: Partition functions[END_REF], [START_REF] Petkova | The many faces of Ocneanu cells[END_REF]. Ref. [START_REF] Coquereaux | Twisted partition functions for ADE boundary conformal field theories and Ocneanu algebras of quantum symmetries[END_REF] gives explicit expressions for all W x0 , for all members of the sl(2) family. The modular invariant partition functions themselves have been known for many years: we have the ADE classification of [START_REF] Cappelli | The ADE classification of minimal and A (1) 1 conformal invariant theories[END_REF] for sl(2), and the classification [START_REF] Gannon | The classification of affine su(3) modular invariant partition functions[END_REF] for sl(3), encoded by Di Francesco -Zuber diagrams. Left and right associativity constraints (m(nxp)q) = (mn)x(pq) for the A × A bimodule structure of O can be written in terms of fusion and toric matrices; a particular case of this equation reads x (W 0x ) λµ W x0 = N λ Z N tr µ , called "equation of modular splitting", was presented by A.Ocneanu in Bariloche (2000). Given fusion matrices N p (known in general) and a modular invariant matrix Z = W 00 , solving this equation, i.e., finding the W x0 , allows one to reconstruct the character ring of O. A practical method to solve this equation is given in [START_REF] Isasi | From modular invariants to graphs: the modular splitting method[END_REF], with several sl(3) examples. Left and right chiral categories O L,R are defined, using alpha-induction functors, as additive and monoidal subcategories of O whose objects are direct summands of α LR (λ), for all λ in A k . They are not braided but their intersection, the ambichiral subcategory J is. When E is monoidal, the Grothendieck ring of J , called ambichiral, is isomorphic with the modular subalgebra J already defined.

3 Notations and miscellaneous results

Notations (summary)

From now on we shall work at the level of Grothendieck groups, or rings, but use for them the same notation as for the categories themselves. So, we have a commutative and associative algebra A with5 a base λ n , structure constants (N n ) pq , an associative algebra O, with a base o x , structure constants (O x ) yz , a vector space E with a base σ a which is a module over A and O, with structure constants (F n ) ab and (S x ) ab . When E has self fusion, its structure constants are (E a ) bc . The ring O is a A bimodule with structure coefficients (W xy ) m,n . The modular invariant partition function is Z = W 00 . Like before, the notation E refers to a generic example, unless it denotes an exceptional case (the context should be clear). E being chosen, the numbers of irreducible objects in categories A, E and O are respectively denoted r A , r = r E and r O . They are the number of vertices of the associated graphs. In the case of sl(2) k , r A = k + 1. In the case of sl(3) k , r A = (k + 1)(k + 2)/2. The script notation using the level k as an index can be generalized to all sl(N ) theories but it is incompatible with the traditional notation for sl(2) (the Dynkin diagrams), where the index refers to the rank. We have the identifications:

E 6 = E 10 , E 7 = D t 16 (and sometimes E 16 ), E 8 = E 28 , A r = A k=r-1 , D s+2 = D k=2s .
There are no D cases with odd level in the sl(2) family. Notations for higher ADE diagrams of type sl(3) were given in the previous section. Generalized Coxeter numbers (altitudes) are κ = k + N for members of sl(N ) family at level k. More generally, if g is a Lie algebra with dual Coxeter number h, we would write κ = k + h for all members of the higher ADE system associated with the affine Lie algebra g at level k.

Modular blocks

Call Z = W 00 the modular invariant. It is a matrix Z mn indexed by (classes of) irreducible objects m, n ∈ Irr(A). It can also be written as a sesquilinear quadratic form mn χ m Z mn χ n (the partition function). The following results are attributed to [36] and [START_REF] Böckenhauer | Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors[END_REF][START_REF] Böckenhauer | Modular invariants, graphs and α induction for nets of subfactors II[END_REF][START_REF] Böckenhauer | Chiral structure of modular invariants for subfactors[END_REF]:

r E = T r(Z) r O = T r(ZZ t )
The Grothendieck ring of A is commutative but the one of O, which is not necessarily commutative, is isomorphic to the direct sum of matrix algebras of sizes Z mn . For example, take sl(2) at level 8; if we are given

Z = |χ 0 + χ 8 | 2 + |χ 2 + χ 6 | 2 + 2 |χ 4 | 2 ,
we know a priori that r A = 9, r E = 6, r O = 12, and that the algebra of quantum symmetries is isomorphic with

x=8 x=1 C x ⊕ M (2, C
). Actually this is the D 6 module of A 9 . The collection K of those irreducible objects λ n of A that appear on the diagonal of Z, with multiplicity Z nn , is called the multiset6 of exponents of Z (or exponents of E). Forgetting multiplicities, the matrix Z defines a partition on this set: two exponents m, n are in the same modular block iff Z mn = 0. For instance, at level 10, in the case of E 6 , we have

Z = |χ 0 + χ 6 | 2 + |χ 3 + χ 7 | 2 + |χ 4 + χ 10 | 2 and therefore a partition of K = {0, 6, 3, 7, 4, 10} into three subsets {0, 6}, {3, 7}, {4, 10}. At level 17, in the case of E 7 , we have Z = |χ 0 + χ 16 | 2 + |χ 4 + χ 12 | 2 + |χ 6 + χ 10 | 2 + |χ 8 | 2 + (χ 8 )(χ 2 + χ 14 ) + (χ 2 + χ 14 )χ 8 ,
so we have a partition of K = {0, 16, 4, 12, 6, 10, 8} into four subsets {0, 16}, {4, 12}, {6, 10}, {8}. The modular block of the origin (containing 0) is denoted K 0 . We observe that when E is monoidal (self-fusion), Z is a sum of squares and there is a one to one correspondence between modular blocks K a and the modules Γ a relative to the irreducible objects a belonging to the modular subalgebra J of the Grothendieck ring of E. For instance the first modular block K 0 = {0, 6} of E 6 corresponds to the algebra F = Γ 0 = λ 0 ⊕ λ 6 . This is not so when there is no self-fusion: the first modular block

K 0 of E 7 is {0, 16} although F = Γ 0 = λ 0 ⊕ λ 8 ⊕ λ 16 .

Dimensions of horizontal and vertical spaces H and V , dimension of the weak Hopf algebra B

The horizontal space H = n H n , coming in the construction of the first algebra structure on the weak Hopf algebra B was defined before, in terms of categorical data. In the sl(2) case H can be realized as the (Ocneanu) vector space of essential paths on ADE graphs but also as the vector space underlying the Gelfand-Ponomarev preprojective algebra associated with the corresponding unoriented quiver. In the first realization H n is defined as a particular subspace of the space P aths of all paths on the graph E, whereas in the second construction it is defined as a quotient. Identification stems, for instance, from the fact that dimensions of these finite dimensional vector spaces, calculated according to the two definitions, are equal. In the case of sl(3), the grading label of the horizontal space H n refers to a pair of integers (n 1 , n 2 ), specifying an irreducible representation (it can also be seen as a Young tableau), this suggests a generalization of the notion of preprojective algebras associated with quivers.

In the case of sl(2), dimensions

d n = dimH n , d H = n d n and d B = n d 2 n
, where n runs in the set of irreducible objects of A k , and

d x = dimV x , d V = x d x and d B = x d 2
x , where x runs in the set of irreducible objects of O have been calculated first by [36], then by [START_REF] Coquereaux | Notes on the quantum tetrahedron[END_REF], [START_REF] Petkova | The many faces of Ocneanu cells[END_REF], [START_REF] Coquereaux | Twisted partition functions for ADE boundary conformal field theories and Ocneanu algebras of quantum symmetries[END_REF]. In the case of sl(3), they have been calculated by [36], [START_REF] Coquereaux | Determination of quantum symmetries for higher ADE systems from the modular T matrix[END_REF], [START_REF] Schieber | L'algèbre des symétries quantiques d'Ocneanu et la classification des systèmes conformes à 2D[END_REF] and [START_REF] Hammaoui | Géométrie quantique d'Ocneanu des graphes de Di Francesco -Zuber associés aux modèles conformes de type su(3)[END_REF]. One check, of course, that d B = d B in all cases, since the underlying vector space is the same. Surprisingly, one also observes 7 that d H = d V in most cases. The collection of known results giving d H for all sl(2) cases can be condensed into a closed formula by using a recent result obtained by [START_REF] Malkin | Quiver varieties and Lusztig's algebra[END_REF] for the dimensions of preprojective algebras associated with ADE quivers8 . To compute d n , the pedestrian approach, that works in all cases, is to calculate the annular matrices F n , describing the module action of A k on E, using recursion formulae giving irreps of sl(2) or sl(3), then to sum over all matrix elements, since H m ab = Hom(λ n ⊗ λ a , λ b ). To compute d x , one has first to determine O, for instance by solving the modular splitting equation, then the dual annular matrices S x describing the module action of O on E, and finally to sum over all matrix elements, since V x ab = Hom(λ a ⊗ λ x , λ b ).

sl(2)

We shall give the values of d n , d x , d H , d V and d B in tables, but thanks to the above identification with the vector space underlying the preprojective algebra of quiver theories, we have a closed formula for d H that work for all sl(2) cases, namely

d H = κ(κ + 1)r 6 
Recall that k is the level, r = k + 1 is the rank (the number of vertices), and κ = k + 2 is the Coxeter number. In terms of the dimension dim(E) of the Lie group corresponding to the chosen ADE diagram, and using the Kostant formula dim(E) = (κ + 1)r, we can also write

d H = κ dim(E)

6

. For instance, E 6 → 156 = 78 12 6 E 7 → 399 = 133 18 6 E 8 → 1240 = 248 30 6 . For A r graphs, the rank r = k + 1 = κ -1 so that d H (A r ) = (κ -1)κ(κ + 1)/6, this can be obtained directly from the fact that d n = (n + 1)(k + 1 -n), the trivial representation being labelled n = 0. Notice that 2κ is the period (in n) of matrices F n . It is interesting to summarize how the general formula for d H is obtained in quiver theories [START_REF] Malkin | Quiver varieties and Lusztig's algebra[END_REF]: one constructs a generating function for the d n (matrix Hilbert series) and obtains the relation X = A -1 .Λ where A is the Cartan matrix of the chosen graph (A = 21l -F 1 ), X is the sum of all annular matrices (X = n F n ), and Λ is the sum of the two annular matrices corresponding to the endpoints of the fusion graph (Λ = F 0 + F k ). This implies m (X) mn = (ρ.Λ) n , where (ρ) p = p (A -1 ) mp is the Weyl vector. In particular, d H = m,n (X mn ) is twice the sum of matrix elements of the inverse of the Cartan matrix. This, in turn, is given by the Frendenthal -de Vries strange formula, which, using Kostant relation, can be written κ(κ + 1)r/12, hence the result.

We also found explicit expressions giving d B for the different series (see tables): in the case of A k+1 , the given formula comes immediately from the fact that we know that d p = (p + 1)(k + 1 -p); for the D cases, the results come from the fact that 2d p (D) -d p (A) is a superposition of two arithmetic sequences (one has to distinguish even and odd cases).

sl(3)

There is no Lie group theory associated with the Di Francesco Zuber diagrams, nevertheless it is natural to call "rank" r, the number of vertices. In particular r = (k + 1)(k + 2)/2 for the A k Weyl alcove. Here again, using generating functions, one obtains the relation X = A -1 .Λ where X is the sum of all annular matrices (X = mn F mn ) and Λ is the sum of the 3(k + 1) matrices corresponding to the boundary points of the fusion graph (Λ =

k m=0 F m,0 + k n=0 F 0,n + k m=0 F m,k-m
, notice that the three corner vertices have multiplicity 2), but now, A = 31l-(F 10 +F 01 )/2. This implies m (X) mn = (ρ.Λ) n , where (ρ) p = p (A -1 ) mp is an higher analogue of the Weyl vector. Those relations hold for all SU (3) cases. Again, d H = m,n (X mn ) and one can show -but for A k diagrams only -that the sum of matrix elements of A -1 is equal to r(κ + 1)(κ + 2)/60. There is no known closed formula giving d H in all cases; these dimensions are later given in tables. We however obtained the following closed result for A k diagrams:

d H = (k + 1)(k + 2)(k + 3)(k + 4)(k + 5)(k 2 + 6k + 14)/1680 or, using κ = k + 3, d H = (κ -2)(κ -1)κ(κ + 1)(κ + 2)(κ 2 + 5)/1680
Still in the A k case, one can show that the recurrence formula d (p q) = d (p+1,q-1) -d (p-q,q-1) + d (p-q,q) holds when p ≥ q + 1 ≥ 2. We did not find any simple generic formula giving the horizontal dimension d n of arbitrary (p, q) blocks of B. However, there are simple enough (distinct) expressions for blocks of type (p, 0), (p, 1), (p, 2), etc, for instance d (p,0) = d (0,p) = (k + 2 -p)(k + 1 -p)(1 + p)(2 + p)/4. This was enough to show that d B , the sum of the d 2 (p,q) , should be a polynomial in k or κ with rational coefficients, and to guess several divisors (the same as for d H ); the coefficients of the conjectured 12th degree polynomial that appears in the sl(3) table were determined from a study of the first cases, but we checked it against direct calculation of d B (i.e., determining all the d n ) for high values of κ.

Quantum dimensions

General relations

As usual, q-integers are denoted [n] = (q n -q -n )/(q -q -1 ) = sin(nπ/k)/ sin(π/k) with q = exp[iπ/κ]. One can define quantum dimensions µ of the vertices of E from the Perron Frobenius eigenvector of its adjacency matrix. If the graph E has self -fusion, they can be calculated from the quantum dimensions of the unit (which is 1) and of the generator, which is Graphs A and O describing fusion and quantum symmetries have self -multiplication, and quantum dimensions µ n = dim A (λ n ) and µ x = dim O (o x ) for their vertices can be obtained in a similar way. In the particular case E = A, the µ n can be obtained from the modular generator S (a unitarizing matrix for the adjacency matrix of the graph): µ n = S 0n /S 00 . For sl(2), µ n = [n + 1]. For sl(3), µ p,q = [p + 1][q + 1][p + q + 2]/ [START_REF] Böhm | A coassociative C * -quantum group with non-integral dimensions[END_REF]. These numbers are called statistical dimensions in the context of subfactor theory. Unitarity of S implies

|A| = n µ 2 n = 1/S 2 00
and several explicit expressions given later in this section. Call e the intertwiner describing induction -restriction between A and E (also called essential matrix relative to the unit vertex). It is a rectangular matrix with r A lines and r E columns. Essential matrices e a are obtained from annular matrices F n as follows: (e a ) nb = (F n ) ab . The intertwiner is e = e 0 . From induction, one obtains dim(Γ a ) = n (e) na µ n . It is convenient to write λ n ↑ Γ a when the space of sections Γ a contains λ n in its reduction, i.e., when the integer (e) na ≥ 1. Possible multiplicities being understood, we shall write

dim(Γ a ) = λn↑Γa µ n
In particular, for the space of functions F over the "discrete non commutative space": A/E, we have dim(Γ 0 ) = n (e) n0 µ n and we shall write (see also [START_REF] Coquereaux | Classical and quantum polyhedra: A fusion graph algebra point of view AIP Conference Proceedings[END_REF]):

|A/E| = dim(Γ 0 ) = dim(F ) = λn↑Γ0 µ n
Then, we have the following result :

dim E (a) = dim Γ a dim Γ 0 = dim Γ a |A/E|
Moreover, |A/E| = |A|/|E|. To obtain the quantum dimensions µ a of vertices of E, and therefore the order |E|, it is therefore enough to know the µ n for A diagrams and the induction rules.

Example: take E = E 6 , and consider the central vertex σ 2 (the triple point). Its quantum dimension can be calculated using Perron Frobenius, or directly, using σ 2 = σ 2 1 -σ 0 :

dim E (σ 2 ) = dim E (σ 1 ) 2 -dim E (σ 0 ) = (2cos(π/12)) 2 -1 = 1 + √ 3
but one can also obtain from A 11 : induction from σ 0 gives Γ 0 = λ 0 ⊕ λ 6 , so that

|A 11 /E 6 | = [1] + [7] = 3 + √ 3, and induction from σ 2 gives Γ 2 = λ 2 ⊕ λ 4 ⊕ λ 6 ⊕ λ 8 , so dim E (σ 2 ) = [3] + [5] + [7] + [9] [1] + [7] = 6 + 4 √ 3 3 + √ 3 = 1 + √ 3, .
Call J the modular subalgebra of E. 

Trigonometric identities

Let Z be a modular invariant matrix of an sl(N ) system at level k, with or without self-fusion. Its matrix elements (Z) m,n are indexed by a pair of irreps λ m and λ n . For sl(N ), these are of course multi-indices. Calling, as before, µ m the quantum dimension of λ m , we know that the vector µ of quantum dimensions is proportional to the first row of the S matrix since µ m = S 0m /S 00 . Therefore, one obtains the following (known) identity:

m,n µ m (Z) m,n µ n = m µ 2 m
Indeed, the left hand side is proportional to (S.Z. S) 00 , which is equal to (Z.S. S) 00 by modular invariance, and the result follows from unitarity of S and the fact that Z 00 = 1.

The right hand side of this identity |A k | can be calculated from the modular matrix S.

|A| = κ 2 1 sin 2 π κ for sl(2), with κ = k + 2 |A| = 3 256 κ 2 1 sin 6 π κ 1 cos 2 π κ for sl(3), with κ = k + 3
Using known expressions for the quantum dimensions µ n and the above values for the order |A|, the previous identity involving the partition function Z leads, after simplification by a non trivial common denominator, to a set of trigonometric identities. ADE trigonometric identities, i.e., identities of sl(2) type, read9 r m,n=1

(Z) m,n sin(m π/κ) sin(n π/κ) = κ/2
Higher ADE trigonometric identities of sl(3) type read 9 :

n=(n 1 ,n 2 ) m=(m 1 ,m 2 ) (Z) m,n sin(m 1 π κ ) sin(m 2 π κ ) sin((m 1 +m 2 ) π κ ) sin(n 1 π κ ) sin(n 2 π κ ) sin((n 1 +n 2 ) π κ ) = 3κ 2 /64

Products of quantum dimensions

Products of quantum dimensions are also of interest. In the sl(2) case at level k, the general expression is easy to obtain. In the sl(3) cases, or for other Lie algebras, they can be obtained as a by -product of a discriminant formula recently discovered by [START_REF] Gepner | Galois groups in Rational Conformal Field Theory II. The Discriminant[END_REF]. Define:

D = ( λn∈A µ 2 n ) r / λn∈A µ 2 n
where r is the total number of irreps of the fusion algebra, r = k+1 for sl(2), r = (k+1)(k+2)/2! for sl(3). In the case of sl(2), using previous results for λn∈A µ 2 n and a classical trigonometric identity giving

λn∈A µ 2 n = [2 -(κ-1) κ (Sin(π/κ)) -(κ-1) ] 2
where results are written in terms of the Coxeter number κ, one finds

D = 2 κ-1 κ κ-3 for sl(2)
More generally, it was shown recently in [START_REF] Gepner | Galois groups in Rational Conformal Field Theory II. The Discriminant[END_REF], that D is the square of the determinant of the matrix S mn /S m0 (this is the matrix of "quantum conjugacy classes") which, in the case of sl(2)

could also be defined as the discriminant of the characteristic polynomial of the adjacency matrix of the graph A r . Example: Take A 11 of the sl(2) system, the characteristic polynomial of the adjacency matrix is -s 11 +10s 9 -36s 7 +56s 5 -35s 3 +6s and its discriminant is 10567230160896, indeed equal to 2 11 12 9 . General expressions for D, which is always an integer, are obtained in the quoted reference. For sl(2), one recovers the previous expression, whereas [START_REF] Gepner | Galois groups in Rational Conformal Field Theory II. The Discriminant[END_REF] gives 2) for sl [START_REF] Di Francesco | Conformal Field Theory[END_REF] where κ = k + 3. Since |A k | is already known, one can use this Gepner formula for D to provide an efficient way for obtaining the square product of quantum dimensions. For sl(3) we find:

D = 3 (κ-2)(κ-1)/2 κ (κ-4)(κ-
λn∈A µ 2 n = 16 -(κ-2)(κ-1) κ 3(κ-2) cos π κ sin 3 π κ -(κ-2)(κ-1)

Methodological remarks

When the McKay graph of the category E, i.e., the matrix F 1 , is known, all annular matrices are obtained from the sl(2) or sl(3) recurrence formulae (see for instance [START_REF] Coquereaux | Comments about quantum symmetries of SU (3) graphs[END_REF]). This determines the horizontal dimensions d n and therefore the block structure of the associated quantum groupoid B for the multiplication •. This also gives, by induction, the quantum dimensions µ a of irreducible objects and the order |E|.

In most cases the graph of E is not known a priori: one has to start from a given modular invariant, i.e., the partition function Z, and solve the modular splitting equation (see for instance [START_REF] Isasi | From modular invariants to graphs: the modular splitting method[END_REF]). This determines the Ocneanu quantum symmetries, i.e., the ring corresponding to the centralizer category O, and therefore the vertical dimensions d x describing the block structure of B, for the multiplication •. Usually the McKay graph of E is itself obtained as a by product of this calculation, from the requirement that the vector space spanned by its vertices should be a module on both the fusion ring and the ring of quantum symmetries.

There is a huge number of structure constants (cells) of different kinds for B, respectively associated with tetrahedra with black and white vertices. The above method bypasses their calculation, and this is fortunate because they are only known explicitly when E = A k , in the sl(2) case. Their determination in the other cases would anyway involve non canonical choices (bases in horizontal or vertical spaces).

Given a graph, candidate to be the McKay graph of an sl(3) actegory E, there is a method, due to A. Ocneanu [START_REF] Ocneanu | The Classification of subgroups of quantum SU(N), Lectures at Bariloche Summer School[END_REF], that allows one to see whether or not it is so. The condition is that the graph should carry an sl(3) self-connection, i.e., a family of complex numbers (one for every oriented triangle) obeying two sets of conditions known as the "small pocket" and the "large pocket" equations. If these conditions fail, either the corresponding category does not exist, or if it exists, it is not an sl(3) actegory. Self -connections (that can also be used to define sl(3)or higher -analogues of preprojective algebras) have been determined for all sl(3) cases by [START_REF] Ocneanu | [END_REF]. These calculations, that we have later reproduced in some cases, are not given in the tables.

As mentioned in the first section, another possibility to obtain E is to define an algebra F in the category A k . Our methods tell us what F is, as an object of A k , and this information appears in our sl(3) tables (and of course for sl(2) as well), but we neither give nor study the multiplication map F ⊗ F → F. In many sl(3) cases, and like for sl(2), it could be obtained from the study of conformal embeddings of affine algebras. In particular the three exceptional sl( 3) examples with self-fusion (monoidal structure), namely E 5 , E 9 and E 21 correspond to the embeddings of A 2 , at levels k = 5, 9, 21 into A 5 , E 6 and E 7 respectively, at level 1, and the D 3 example to an embedding into spin [START_REF] Coquereaux | Notes on the quantum tetrahedron[END_REF]. The above four embeddings have been studied in the context of subfactor theory by [START_REF] Xu | New braided endomorphisms from conformal inclusions[END_REF]. See also [START_REF] Wassermann | Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators[END_REF]. We remind the reader that for a given Lie algebra g and a given level k, the conformal charge is c = dim(g) k k+h where h is the dual Coxeter number of g, not to be confused with the generalized Coxeter number or altitude κ = k + h of a graph (or an actegory) associated with g at level k. In particular, c = 3k/(k + 2) for sl(2) and c = 8k/(k + 3) for sl(3).

Tables

The sl(2) family

There are three tables. Notations should be clear. Most results are hardly new. In particular, the dimensions d n and d v given in table 1 were obtained already in [36], [START_REF] Coquereaux | Notes on the quantum tetrahedron[END_REF], [START_REF] Petkova | The many faces of Ocneanu cells[END_REF] and [START_REF] Coquereaux | Twisted partition functions for ADE boundary conformal field theories and Ocneanu algebras of quantum symmetries[END_REF]. The compact expression for d H can be seen in [START_REF] Malkin | Quiver varieties and Lusztig's algebra[END_REF], but it is obtained there as the solution of a problem given in the context of quivers theory. Several quantum dimensions and orders given in table 2 can also be found in [START_REF] Coquereaux | Twisted partition functions for ADE boundary conformal field theories and Ocneanu algebras of quantum symmetries[END_REF] and [START_REF] Schieber | L'algèbre des symétries quantiques d'Ocneanu et la classification des systèmes conformes à 2D[END_REF]. Nevertheless, both tables contain new entries and explicit generic formulae, for instance the closed expressions giving d B . We also list the well known partition functions Z, but to save space, we use short notations like | . . . + [n] + . . . | 2 where [n] = (n-1), stands for the sl(2) characters χ n . The same remarks hold for sl(3) partition functions (also well known) recalled in the next tables.

The sl(3) family

Many results concerning individual sl(3) graphs can be found in the original article [START_REF] Di Francesco | SU (N ) -lattice integrable models associated with graphs[END_REF] and in the book [START_REF] Di Francesco | Conformal Field Theory[END_REF], chap.17. Other aspects of members of this system, in particular their quantum symmetries, are described in [START_REF] Ocneanu | The Classification of subgroups of quantum SU(N), Lectures at Bariloche Summer School[END_REF], [START_REF] Hammaoui | Higher Coxeter graphs associated to affine su(3) modular invariants[END_REF], [START_REF] Coquereaux | Comments about quantum symmetries of SU (3) graphs[END_REF], [START_REF] Isasi | From modular invariants to graphs: the modular splitting method[END_REF] and [START_REF] Hammaoui | Géométrie quantique d'Ocneanu des graphes de Di Francesco -Zuber associés aux modèles conformes de type su(3)[END_REF]. Here we are mostly interested in giving tables describing the block structure of the quantum groupoid B, i.e., dimensions d n , d x , quantum dimensions µ n and orders. Many such results were certainly obtained by [36], and several examples are studied in [START_REF] Coquereaux | Determination of quantum symmetries for higher ADE systems from the modular T matrix[END_REF] and [START_REF] Schieber | L'algèbre des symétries quantiques d'Ocneanu et la classification des systèmes conformes à 2D[END_REF]. Results presented here are complete only for the cases with self -fusion, for which we also give tables describing induction rules; the other cases should be made available in [18] and [START_REF] Hammaoui | Géométrie quantique d'Ocneanu des graphes de Di Francesco -Zuber associés aux modèles conformes de type su(3)[END_REF]. Some of these results already appeared in [START_REF] Coquereaux | Determination of quantum symmetries for higher ADE systems from the modular T matrix[END_REF]. In both sl(2) and sl(3) tables, cases with self-fusion (monoidal structure) are underlined. 
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Graph κ = k + 2 r E , r A , r O Z F A k = A r=k+1 k + 2 k + 1, k + 1, k + 1 k+1 i=1 |i| 2 λ 0 D k = D reven = k 2 +2 2r -2 k 2 + 2, k + 1, k + 4 k 2 -1 i odd=1 |i + (k + i)| 2 + 2| k 2 + 1| 2 λ 0 ⊕ λ k D k = D r odd = k 2 +2 2r -2 k 2 + 2, k + 1, k + 1 k+1 i odd=1 |i| 2 + | k 2 + 1| 2 + k 2 -1 i even=2 i(k + i) + (k + i)i λ 0 ⊕ λ k E 10 = E 6 12 
| A k k + 3 r E = r A = r O = (k+1)(k+2) 2 (κ-2)(κ-1)κ(κ+1)(κ+2)(κ 2 +5) 1680 0 d B (A k ) 3 κ 2 csc 6 (π/κ)sec 2 (π/κ) 256 1 |A k | A c 1 4 1, 3, 3 3 0 3 1 3 |A 1 | A c 2 5 2,
|A 7 | A c k≥1 k + 3 ⌈ k+1 2 ⌉, r A , r A    (κ-2)κ 2 (κ+2)(κ 2 +4) 1280 k odd (κ-1)(κ+1)((κ-1) 2 +4)((κ+1) 2 +4) 1280 k even 0 . . . |A k | D 1 4 
1, 3, 3 

1 3 r A , r A , r A 1 3 d H (A k ) 0 1 9 d B(A k ) 1 3 |A k | 3 |A k | D c 1 4 3, 3, 3 3 d H (A c 1 ) = 9 0 9 d B (A c 1 ) = 27 3 1 |A 1 | D c 2 5 6, 6, 6 3 d H (A c 2 ) = 45 0 9 d B (A c 2 ) = 351 3 2 (5 - √ 5 
(A c 5 ) = 612 0 9 d B (A c 5 ) = 21 384 12 4(3 + 2 √ 2) |A 5 | D c k=1,2mod3 k + 3 3r A c , r A , r A 3 d H (A c k ) 0 9 d B (A c k ) 3|A c k | . |A k | D 3 6 
D k=0mod3 k + 3 r A -1 3 + 3, r A , 3r E . . . 1 3 |A k | 3 1 3 |E| = 1 9 |A k | D c 3 6 
D c k=0mod3 k + 3 3r A c , r A , r O (D k ) 3 d H (A c k ) . 9 d B (A c k ) 3|A c k | . 1 9 |A k |
Table 4: Dimensions and quantum masses for sl(3) cases : A, D and conjugated. 

d B (A k ) = (κ-2)(κ-1)κ 2 (κ+1)(κ+2)(1052+325κ 2 +58κ 4 +5κ 6 ) 4435200 Graph κ r E , r A , r O d H d V -d H d B = d B |E| |A/
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Z = |[1, 1] + [3, 3]| 2 + |[1, 3] + [4, 3]| 2 + |[2, 3] + [6, 1]| 2 + |[4, 1] + [1, 4]| 2 + |[3, 2] + [1, 6]| 2 + |[3, 1] + [3, 4]| 2 with [a, b] = (a -1, b -1). F = λ (0,0) ⊕ λ 2,
1 0 1 4 1 1 1 3 1 5 1 2 2 1 2 0 2 3 2 4 2 2 2 5 q-dim E 5 ←֓ A 5 [1] = 1 1 0 ←֓ (0, 0), (2, 2) [1] 1 1 ←֓ (0, 2), (3, 2) [1] 1 2 ←֓ (1, 2), (5, 0) [1] 1 3 ←֓ (3, 0), (0, 3) [1]
1 4 ←֓ (2, 1), (0, 5) [START_REF] Bakalov | Lectures on tensor categories and modular functors[END_REF] 1 5 ←֓ (2, 0), (2, 3) 0 ←֓ (0, 0), (4, 4), [START_REF] Coquereaux | On bialgebras associated with paths and essential paths on ADE graphs[END_REF][START_REF] Bakalov | Lectures on tensor categories and modular functors[END_REF], [START_REF] Bakalov | Lectures on tensor categories and modular functors[END_REF][START_REF] Coquereaux | On bialgebras associated with paths and essential paths on ADE graphs[END_REF], [START_REF] Böckenhauer | Chiral structure of modular invariants for subfactors[END_REF][START_REF] Böckenhauer | Chiral structure of modular invariants for subfactors[END_REF], [START_REF] Coquereaux | Classical and quantum polyhedra: A fusion graph algebra point of view AIP Conference Proceedings[END_REF][START_REF] Böckenhauer | Chiral structure of modular invariants for subfactors[END_REF], [START_REF] Böckenhauer | Chiral structure of modular invariants for subfactors[END_REF][START_REF] Coquereaux | Classical and quantum polyhedra: A fusion graph algebra point of view AIP Conference Proceedings[END_REF], [START_REF] Coquereaux | On quantum symmetries of ADE graphs[END_REF][START_REF] Böckenhauer | Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors[END_REF], [START_REF] Böckenhauer | Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors[END_REF][START_REF] Coquereaux | On quantum symmetries of ADE graphs[END_REF], [START_REF] Coquereaux | On bialgebras associated with paths and essential paths on ADE graphs[END_REF][START_REF] Coquereaux | On bialgebras associated with paths and essential paths on ADE graphs[END_REF], (21, 0), (0, 21)

[3] = 1 + √ 2 2 0 ←֓ (1, 1), (3, 0), (2, 2), (1, 4) [3] 2 1 ←֓ (1, 0), ( 2 
1 0 ⊗ 1 0 1 4 ⊗ 1 0 1 1 ⊗ 1 0 1 3 ⊗ 1 0 1 5 ⊗ 1 0 1 2 ⊗ 1 0 2 1 ⊗ 1 0 2 0 ⊗ 1 0 2 3 ⊗ 1 0 2 4 ⊗ 1 0 2 2 ⊗ 1 0 2 5 ⊗ 1 0 (12) 
(12) (24)(24) 
1 0 ⊗ 2 0 1 4 ⊗ 2 0 1 1 ⊗ 2 0 1 3 ⊗ 2 0 1 5 ⊗ 2 0 1 2 ⊗ 2 0 2 1 ⊗ 2 0 2 0 ⊗ 2 0 2 3 ⊗ 2 0 2 4 ⊗ 2 0 2 2 ⊗ 2 0 2 5 ⊗ 2 0 (24) 
f f f f f f f x ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ f f f f w f f f ¢ ¢ ¢ ¢ ¢ ¢ ¢ 4 
t t t t t t f f f f f h h h h h h h h ¢ ¢ ¢ ¢ ¢ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ r r r t t t t v v v v v v t t t t t t b b b b r r r r q q q q c c c c t t t t t t f f f f f h h h h h h h h ¢ ¢ ¢ ¢ ¢ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ r r
21 ←֓ (6, 0), (0, 6), [START_REF] Cappelli | The ADE classification of minimal and A (1) 1 conformal invariant theories[END_REF][START_REF] Böckenhauer | Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors[END_REF], (4, 7), [START_REF] Coquereaux | On bialgebras associated with paths and essential paths on ADE graphs[END_REF][START_REF] Böckenhauer | Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors[END_REF], (4, 10), (15, 0), (0, 15), (10, 7), [START_REF] Cappelli | The ADE classification of minimal and A (1) 1 conformal invariant theories[END_REF][START_REF] Coquereaux | On bialgebras associated with paths and essential paths on ADE graphs[END_REF], [START_REF] Coquereaux | On quantum symmetries of the non -ADE graph F 4[END_REF][START_REF] Böckenhauer | Chiral structure of modular invariants for subfactors[END_REF] 

β = [ 2 ]= a µ 2 a

 22 = 2 cos(π/κ) for sl(2) , β = [3] = 1 + 2 cos(2π/κ) for sl(3) , by using the character property of µ. The number β 2 is called the Jones index. Let µ a = dim E (σ a ) the quantum dimension of the vertex σ a . Call also order of E the quantity |E|

  For graphs with self -fusion, we have both |O| = |E| × |E|/|J| and |O| = |A|, so that we have also |A|/|E| = |E|/|J| Using quantum dimensions of E, one can compute |J| = σc∈J⊂E µ 2 c = σc∈J |Γ c | 2 /|Γ 0 | 2 , but the relation for |O| can be written |J| = |A|/|Γ 0 | 2 , so that comparing the two expressions implies |A| = c∈J |Γ c | 2
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 1 28 = E 8(8, 14, 20, 26, 32, 38, 44, 48, 52, 56, 60, 62, 64, 64, 64; sym.) 

Figure 1 :Figure 2 :

 12 Figure 1: The D 3 graph, quantum dimensions and D 3 ←֓ A 3 induction rules.

Figure 4 :

 4 Figure 4: Dimensions d n and d x of the blocks for E 5 .

Figure 6 :

 6 Figure 6: Dimensions d n and d x of the blocks for E 9 .

Figure 8 :

 8 Figure 8: Dimension d n of the blocks labelled by vertices of the A 21 graph for E 21 .

Table 3 :

 3 Complements for sl(2) cases.

			6, 11, 12	|1 + 7| 2 + |4 + 8| 2 + |5 + 11| 2	λ 0 ⊕ λ 6
	E 16 = D t 16 = E 7	18	7, 17, 17	|1 + 17| 2 + |5 + 13| 2 + |7 + 11| 2 + |9| 2 + ((3 + 15) 9 + h.c.)	λ 0 ⊕ λ 8 ⊕ λ 16
	E 28 = E 8	30	8, 29, 32	|1 + 11 + 19 + 29| 2 + |7 + 13 + 17 + 23| 2	λ 0 ⊕ λ 10 ⊕ λ 18 ⊕ λ 28

  )

	D c 4 D c 5	7 8	9, 15, 15 9, 21, 21	3 d H (A c 4 ) = 306 3 d H	0	9 d B (A c 4 ) = 7 182	8.589	1 2 (3 + 12.344 √	5)	|A 2 | |A 4 |

Table 5 :

 5 Dimensions and quantum masses for exceptional sl(3) cases.

	d d d d d d ¡ ¡ ¡ ¡ ¡ ¡ ¡ e e e e e T c s u © e e d E E e e e e e e e e e e e u ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ f

  The E 5 graph, quantum dimensions and E 5 ←֓ A 5 induction rules.

		, 1), (1, 3), (3, 2)
	[3] [3] [3] [3]	2 2 ←֓ (0, 1), (1, 2), (3, 1), (2, 3) 2 3 ←֓ (1, 1), (0, 3), (2, 2), (4, 1) 2 4 ←֓ (0, 2), (2, 1), (4, 0), (1, 3) 2 5 ←֓ (2, 0), (1, 2), (3, 1), (0, 4)
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  Figure 7: The E 21 graph and E 21 ←֓ A 21 induction rules (for vertices ∈ J).
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For sl[START_REF] Böhm | A coassociative C * -quantum group with non-integral dimensions[END_REF], the structure of F unA k (E1, E2), where E1,2 can be distinct module categories was obtained by[36].

Constructions of B, inspired from[START_REF] Ocneanu | Paths on Coxeter diagrams: from Platonic solids and singularities to minimal models and subfactors[END_REF], and using these properties, were given in[START_REF] Petkova | The many faces of Ocneanu cells[END_REF] and[START_REF] Coquereaux | On quantum symmetries of ADE graphs[END_REF].

Definition of cells involve normalization choices: the spaces H m ab are not always one-dimensional, moreover one may decide to use bases made of vectors proportional to matrix units rather than matrix units themselves.

In the operator algebra community, one would usually define a star operation and a scalar product on B, so that both products could be defined on the same underlying vector space[START_REF] Ocneanu | Paths on Coxeter diagrams: from Platonic solids and singularities to minimal models and subfactors[END_REF].

In the previous section, we used the notation λn, λa, λx for λn, σa, ox.

Exponents are conventionally defined as indices n shifted by +1 for sl(2), or by +(1, 1) for sl(3).

When it is not so, in particular when the graph E is a Z2 or Z3 orbifold, one knows how to "correct" this curious linear sum rule, which was first observed in the case of sl(2) by[START_REF] Petkova | The many faces of Ocneanu cells[END_REF].

Warning: the preprojective algebra is a multiplicative structure on H, at least for sl(2) cases, it cannot be identified with either B or B, see also[START_REF] Coquereaux | On bialgebras associated with paths and essential paths on ADE graphs[END_REF].

Warning: In these expressions, we shifted by +(1), or +(1, 1), the indices labelling irreducible representations.
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