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2 Place Jussieu 75251 Paris cedex 05, France.

finkel@logique.jussieu.fr

Abstract. In a recent paper [19, 20] Serre has presented some decidablewinning conditions
ΩA1⊲...⊲An⊲An+1

of arbitrarily high finite Borel complexity for games on finite graphs or on push-
down graphs.
We answer in this paper several questions which were raised by Serre in [19, 20].
We study classesCn(A), defined in [20], and show that these classes are included in the class of
non-ambiguous context freeω-languages. Moreover from the study of a larger classCλ

n
(A) we infer

that the complements of languages inCn(A) are also non-ambiguous context freeω-languages. We
conclude the study of classesCn(A) by showing that they are neither closed under union nor under
intersection.
We prove also that there exists pushdown games, equipped with winning conditions in the form
ΩA1⊲A2

, where the winning sets are not deterministic context free languages, giving examples of
winning sets which are non-deterministic non-ambiguous context free languages, inherently am-
biguous context free languages, or even non context free languages.

Keywords: Pushdown automata; infinite two-player games; pushdown games; winning conditions;
Borel complexity; context freeω-languages; closure under boolean operations; set of winning posi-
tions.

1. Introduction

Two-player infinite games have been much studied in set theory and in particular in Descriptive Set The-
ory. Martin’s Theorem states that every Gale Stewart gameG(A), whereA is a Borel set, is determined,
i.e. that one of the two players has a winning strategy [14].
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In Computer Science, the conditions of a Gale Stewart game may be seen as a specification of a reactive
system, where the two players are respectively a non terminating reactive program and the “environ-
ment”. Then the problem of the synthesis of winning strategies is of great practical interest for the prob-
lem of program synthesis in reactive systems. Büchi-Landweber Theorem states that in a Gale Stewart
gameG(A), whereA is a regularω-language, one can decide who is the winner and compute a winning
strategy given by a finite state transducer.
In [23, 16] Thomas asked for an extension of this result to games played on pushdown graphs. Walukiewicz
firstly showed in [25] that one can effectively construct winning strategies in parity games played on
pushdown graphs and that these strategies can be computed bypushdown transducers.
Several authors have then studied pushdown games equipped with other decidable winning conditions,
[4, 5, 17, 11]. Cachat, Duparc and Thomas have presented the first decidable winning condition at theΣ3

level of the Borel hierarchy [6]. Bouquet, Serre and Walukiewicz have studied winning conditions which
are boolean combinations of a Büchi condition and of the unboundedness condition which requires the
stack to be unbounded, [3].
Recently Serre has given a family of decidable winning conditions of arbitrarily high finite Borel rank
[19, 20]. A game between two players Adam and Eve on a pushdowngraph, is equipped with a win-
ning condition in the formΩA1⊲...⊲An⊲An+1

, whereA1, . . . ,An are deterministic pushdown automata,
the stack alphabet ofAi being the input alphabet ofAi+1, andAn+1 is a deterministic pushdown
automaton with a Büchi or a parity acceptance condition. Then an infinite play is won by Eve iff
during this play the stack isstrictly unbounded, that is converges to an infinite wordx and its limit
x ∈ L(A1 ⊲ . . . ⊲An ⊲An+1), whereL(A1 ⊲ . . . ⊲An ⊲An+1) is anω-language defined as follows.
A word α0 is in L(A1 ⊲ . . . ⊲An ⊲An+1) iff: for all 1 ≤ i ≤ n, whenAi readsαi−1 its stack isstrictly
unboundedand the limit of the stack contents is anω-word αi; andAn+1 acceptsαn. Serre proved
that for these winning conditions one can decide the winner in a pushdown game and that the winning
strategies are effective.
We solve in this paper several questions which are raised in [19, 20]. We first study the classesCn(A)
which contain languages in the formL(A1 ⊲ . . .⊲An ⊲An+1), whereA is the input alphabet ofA1. We
show that these classes are included in the class of non-ambiguous context freeω-languages. Moreover
from the study of a larger classCλ

n(A) we infer that the complements of languages inCn(A) are also
non-ambiguous context freeω-languages. We conclude the study of classesCn(A) by showing that they
are neither closed under union nor under intersection.
For all previously studied decidable winning conditions for pushdown games the set of winning positions
for any player had been shown to be regular. In [19, 20] Serre proved that every deterministic context
free language may occur as a winning set for Eve in a pushdown game equipped with a winning con-
dition in the formΩB, whereB is a deterministic pushdown automaton. The exact nature of these sets
remains open and the question is raised in [19, 20] whether there exists a pushdown game equipped with
a winning condition in the formΩA1⊲...⊲An⊲An+1

such that the set of winning positions for Eve is not a
deterministic context free language. We give a positive answer to this question, giving examples of win-
ning sets which are non-deterministic non-ambiguous context free languages, or inherently ambiguous
context free languages, or even non context free languages.
The paper is organized as follows. In section 2 we recall definitions and results about pushdown au-
tomata, context free (ω)-languages, pushdown games, and winning conditions in theformΩA1⊲...⊲An⊲An+1

.
In section 3 are studied the classesCn(A). Results on sets of winning positions are presented in Section
4.
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2. Recall of previous definitions and results

2.1. Pushdown automata

We assume the reader to be familiar with the theory of formal (ω)-languages [22, 21, 12]. We shall use
usual notations of formal language theory.

WhenA is a finite alphabet, anon-empty finite wordover A is any sequencex = a1 . . . ak , where
ai ∈ A for i = 1, . . . , k , andk is an integer≥ 1. The lengthof x is k, denoted by|x|. Theempty
word has no letter and is denoted byλ; its length is0. For x = a1 . . . ak, we write x(i) = ai and
x[i] = x(1) . . . x(i) for i ≤ k andx[0] = λ. A⋆ is theset of finite words(including the empty word) over
A andA+ = A⋆ − {λ}.

Thefirst infinite ordinal is ω. An ω-word overA is anω-sequencea1 . . . an . . ., where for all integers
i ≥ 1, ai ∈ A. Whenσ is anω-word overA, we writeσ = σ(1)σ(2) . . . σ(n) . . ., where for all
i, σ(i) ∈ A, andσ[n] = σ(1)σ(2) . . . σ(n) for all n ≥ 1 andσ[0] = λ.

Theprefix relationis denoted⊑: a finite wordu is aprefix of a finite wordv (respectively, an infinite
word v), denotedu ⊑ v, if and only if there exists a finite wordw (respectively, an infinite wordw),
such thatv = u.w. Theset of ω-wordsover the alphabetA is denoted byAω. An ω-languageover an
alphabetA is a subset ofAω.

In [19, 20] deterministic pushdown automata are defined withtwo restrictions. It is supposed that there
are noλ-transitions, i.e. the automata arereal time. Moreover one can push at most one symbol in the
pushdown stack using a single transition of the automaton.
We now define pushdown automata, keeping this second restriction but allowing the existence ofλ-
transitions; and we define also the non deterministic version of pushdown automata.

A pushdown automaton(PDA) is a 6-tupleA = (Q,Γ, A,⊥, qin, δ), whereQ is a finite set of states,Γ
is a finite pushdown alphabet,A is a finite input alphabet,⊥ is the bottom of stack symbol,qin ∈ Q is
the initial state, andδ is the transition relation which is a mapping fromQ× (A∪{λ})×Γ to subsets of

{skip(q), pop(q), push(q, γ) | q ∈ Q, γ ∈ Γ − {⊥}}

The bottom symbol appears only at the bottom of the stack and is never popped thus for allq, q′ ∈ Q and
a ∈ A, it holds thatpop(q′) /∈ δ(q, a,⊥).

The pushdown automatonA is deterministicif for all q ∈ Q, a ∈ A andZ ∈ Γ, the setδ(q, a, Z)
contains at most one element; moreover if for someq ∈ Q andZ ∈ Γ, δ(q, λ, Z) is non-empty then for
all a ∈ A the setδ(q, a, Z) is empty.

If σ ∈ Γ+ describes the pushdown store content, therightmost symbolwill be assumed to beon “top”
of the store. A configuration of the pushdown automatonA is a pair(q, σ) whereq ∈ Q andσ ∈ Γ⋆.
Fora ∈ A ∪ {λ}, σ ∈ Γ⋆ andZ ∈ Γ:
if (skip(q′)) is in δ(q, a, Z), then we writea : (q, σ.Z) 7→A (q′, σ.Z);
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if (pop(q′)) is in δ(q, a, Z), then we writea : (q, σ.Z) 7→A (q′, σ);
if (push(q′, γ)) is in δ(q, a, Z), then we writea : (q, σ.Z) 7→A (q′, σ.Z.γ).

7→⋆
A is the transitive and reflexive closure of7→A. (The subscriptA will be omitted whenever the meaning

remains clear).

Let x = a1a2 . . . an be a finite word overA. A finite sequence of configurationsr = (qi, γi)1≤i≤p is
called a run ofA onx, starting in configuration(q, γ), iff:

1. (q1, γ1) = (q, γ)

2. for eachi, 1 ≤ i ≤ (p − 1), there existsbi ∈ A ∪ {λ} satisfyingbi : (qi, γi) 7→A (qi+1, γi+1)

3. a1a2 . . . an = b1b2 . . . bp−1

A run r of A onx, starting in configuration(qin,⊥), will be simply called “a run ofA onx”.

Let x = a1a2 . . . an . . . be anω-word overA. An infinite sequence of configurationsr = (qi, γi)i≥1 is
called a run ofA onx, starting in configuration(q, γ), iff:

1. (q1, γ1) = (q, γ)

2. for eachi ≥ 1, there existsbi ∈ A ∪ {λ} satisfyingbi : (qi, γi) 7→A (qi+1, γi+1)

3. either a1a2 . . . an . . . = b1b2 . . . bn . . .
or b1b2 . . . bn . . . is a finite prefix of a1a2 . . . an . . .

The runr is said to be complete whena1a2 . . . an . . . = b1b2 . . . bn . . .
A complete runr of A onx, starting in configuration(qin,⊥), will be simply called “a run ofA onx”.

If the pushdown automatonA is equipped with a set of final statesF ⊆ Q,
the finitary languageaccepted by(A, F ) is :

Lf (A, F ) = {x ∈ A⋆ | there exists a runr = (qi, γi)1≤i≤p of A onx such thatqp ∈ F}

The classCFL of context free languagesis the class of finitary languages which are accepted by push-
down automata by final states.
Notice that other accepting conditions by PDA have been shown to be equivalent to the acceptance con-
dition by final states. Let us cite, [1]: (a) acceptance by empty storage, (b) acceptance by final states and
empty storage, (c) acceptance by topmost stack letter, (d) acceptance by final states and topmost stack
letter.
The classDCFL of deterministic context free languagesis the class of finitary languages which are
accepted by deterministic pushdown automata (DPDA) by finalstates.
Notice that for DPDA, acceptance by final states is not equivalent to acceptance by empty storage: this
is due to the fact that a language accepted by a DPDA by empty storage must beprefix-freewhile this is
not necessary in the case of acceptance by final states [1].
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Theω-languageBüchi accepted by(A, F ) is :

L(A, F ) = {x ∈ Aω | there exists a runr of A onx such thatIn(r) ∩ F 6= ∅}

whereIn(r) is the set of all states entered infinitely often during runr.

If instead the pushdown automatonA is equipped with a set of accepting sets of statesF ⊆ 2Q, the
ω-languageMuller accepted by(A,F) is :

L(A,F) = {x ∈ Aω | there exists a runr of A onx such thatIn(r) ∈ F}

The classCFLω of context free ω-languagesis the class ofω-languages which are Büchi or Muller
accepted by pushdown automata.

Another usual acceptance condition forω-words is the parity condition. In that case a pushdown automa-
tonA = (Q,Γ, A,⊥, qin, δ) is equipped with a functioncol from Q to a finite set of colorsC ⊂ N. The
ω-language accepted by(A, col) is:

L(A, col) = {x ∈ Aω | there exists a runr of A onx such thatsc(r) is even}

wheresc(r) is the smallest color appearing infinitely often in the runr.
It is easy to see that a Büchi acceptance condition can be expressed as a parity acceptance condition
which itself can be expressed as a Muller condition.
Thus the class ofω-languages which are accepted by pushdown automata with a parity acceptance con-
dition is still the classCFLω.

Consider nowdeterministicpushdown automata. IfA is a deterministic pushdown automaton, then for
everyσ ∈ Aω, there exists at most one runr of A on σ determined by the starting configuration. The
pushdown automaton has the continuity property iff for every σ ∈ Aω, there exists a unique run ofA on
σ and this run is complete. It is shown in [8] that eachω-language accepted by a deterministic Büchi (re-
spectively, Muller) pushdown automaton can be accepted by adeterministic Büchi (respectively, Muller)
pushdown automaton with the continuity property. The same proof works in the case of deterministic
pushdown automata with parity acceptance condition.

The class ofω-languages accepted by deterministic Büchi pushdown automata is a strict subclass of the
classDCFLω of ω-languages accepted by deterministic pushdown automata with a Muller condition.
One can easily show thatDCFLω is also the class ofω-languages accepted by DPDA with a parity
acceptance condition.
Eachω -language inDCFLω can be accepted by a deterministic pushdown automatonhaving the con-
tinuity propertywith parity (or Muller) acceptance condition. One can then show that the classDCFLω

is closed under complementation.

The notion of ambiguity for context freeω-languages has been firstly studied in [10]. A context freeω-
language is non ambiguous iff it is accepted by a Büchi or Muller pushdown automaton such that every
ω-word on the input alphabet has at most one accepting run. Notice that we consider here that two runs
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are equal iff they go through the same infinite sequence of configurationsand λ-transitions occur at the
same steps of the computations.
The classNA − CFLω is the class of non ambiguous context freeω-languages.
The inclusionDCFLω ⊆ NA−CFLω will be useful in the sequel. We shall denoteCo−NA−CFLω

the class of complements of non ambiguous context freeω-languages.

2.2. Pushdown games

Recall first that apushdown processmay be viewed as a PDA without input alphabet and initial state. A
pushdown process is a 4-tupleP = (Q,Γ,⊥, δ), whereQ is a finite set of states,Γ is a finite pushdown
alphabet,⊥ is the bottom of stack symbol, andδ is the transition relation which is a mapping fromQ×Γ
to subsets of

{skip(q), pop(q), push(q, γ) | q ∈ Q, γ ∈ Γ − {⊥}}

Configurations of a pushdown process are defined as for PDA. A configuration of the pushdown process
P is a pair(q, σ) whereq ∈ Q andσ ∈ Γ⋆.

To a pushdown processP = (Q,Γ,⊥, δ) is naturally associated a pushdown graphG = (V,→) which is
a directed graph. The set of verticesV is the set of configurations ofP. The edge relation→ is defined
as follows:(q, σ) → (q′, σ′) iff the configuration(q′, σ′) can be reached in one transition ofP from the
configuration(q, σ).

We shall consider in the sequel infinite games between two players named Eve and Adam on such push-
down graphs.
So we shall assume that the setQ of states of a pushdown process is partitioned in two setsQE andQA.
A configuration(q, σ) is in VE iff q is in QE and it is inVA iff q is in QA so (VE , VA) is a partition of
the set of configurationsV .

The game graph(VE , VA,→) is called apushdown game graph.
A play from a vertexv1 of this graph is defined as follows. Ifv1 ∈ VE, Eve chooses a vertexv2 such that
v1 → v2; otherwise Adam chooses such a vertex. If there is no such vertex v2 the play stops. Otherwise
the play may continue. Ifv2 ∈ VE , Eve chooses a vertexv3 such thatv2 → v3; otherwise Adam chooses
such a vertex. If there is no such vertexv3 the play stops. Otherwise the play continues in the same way.
So a play starting from the vertexv1 is afinite or infinitesequence of verticesv1v2v3 . . . such that for all
i vi → vi+1. We may assume, as in [19, 20], that in fact all plays are infinite.

A winning conditionfor Eve is a setΩ ⊆ V ω. An infinite two-player pushdown game is a 4-tuple
(VE , VA,→,Ω), where(VE , VA,→) is a pushdown game graph andΩ ⊆ V ω is a winning condition for
Eve.
In a pushdown game equipped with the winning conditionΩ, Eve wins a playv1v2v3 . . . iff v1v2v3 . . . ∈
Ω.
A strategy for Eve is a partial functionf : V ⋆.VE → V such that, for allx ∈ V ⋆ and v ∈ VE ,
v → f(x.v).
Eve uses the strategyf in a playv1v2v3 . . . iff for all vi ∈ VE , vi+1 = f(v1v2 . . . vi).
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A strategyf is awinning strategyfor Eve from some positionv1 iff Eve wins all plays starting fromv1

and during which she uses the strategyf .
A vertexv ∈ V is awinning positionfor Eve iff she has a winning strategy from it.
The notions of winning strategy and winning position are defined for the other player Adam in a similar
way.
The set of winning positions for Eve and Adam will be respectively denoted byWE andWA.

2.3. Winning condition ΩA1⊲...⊲An⊲An+1

We first recall the definition ofω-languages in the formL(A1 ⊲ . . . ⊲ An ⊲ An+1) which are used in
[19, 20] to define the winning conditionsΩA1⊲...⊲An⊲An+1

.

We shall need the notion of limit of an infinite sequence of finite words over some finite alphabetA.
Let then(βn)n≥0 be an infinite sequence of wordsβn ∈ A⋆. The finiteor infinite word limn∈ω βn is
determined by the set of its (finite) prefixes: for allv in A⋆,
v ⊑ limn∈ω βn ↔ ∃n∀p ≥ n βp[|v|] = v.

Let nowA = (Q,Γ, A,⊥, qin, δ) be a pushdown automaton reading words over the alphabetA and let
α ∈ Aω. The pushdown stack ofA is said to bestrictly unboundedduring a runr = (qi, γi)i≥1 of A on
α iff limn≥1 γn is infinite.

We define nowω-languagesL(A1 ⊲ . . . ⊲ An ⊲ An+1) in a slightly more general case than in [20],
because this will be useful in the next section. Notice that in [20], theseω-languages are only defined
in the case whereA1, . . . ,An, arereal-time deterministic pushdown automata, andAn+1 is areal-time
deterministic pushdown automaton equipped with a parity ora Büchi acceptance condition.

Let n be an integer≥ 0 andA1, A2, . . .An, be some deterministic pushdown automata (in the case
n = 0 there are not any such automata).
Let (An+1, C) be a pushdown automaton equipped with a Büchi or a parity acceptance condition.
The input alphabet ofA1 is denotedA and we assume that, for each integeri ∈ [1, n], the input alphabet
of Ai+1 is the stack alphabet ofAi.

We define inductively theω-languageL(A1 ⊲ . . . ⊲ An ⊲ An+1) ⊆ Aω by:

1. If n = 0, L(A1 ⊲ . . . ⊲ An ⊲ An+1) = L(An+1, C) is theω-language accepted byAn+1 with
acceptance conditionC.

2. If n > 0, L(A1 ⊲ . . . ⊲ An ⊲ An+1) is the set ofω-wordsα ∈ Aω such that:

• WhenA1 readsα, the stack ofA1 is strictly unbounded hence the sequence of stack contents
has an infinite limitα1.

• α1 ∈ L(A2 ⊲ . . . ⊲ An ⊲ An+1).

Let now (VE , VA,→) be a pushdown game graph associated with a pushdown processP. An infinite
play v1v2v3 . . ., wherevi = (qi, γi), is in the setΩA1⊲...⊲An⊲An+1

iff:
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1. The pushdown stack ofP is strictly unboundedduring the play, i.e.limn≥1 γn is infinite, and

2. limn≥1 γn ∈ L(A1 ⊲ . . . ⊲ An ⊲ An+1).

3. ClassesCn(A)

3.1. ClassesCn(A) and context freeω-languages

For each integern ≥ 0 and each finite alphabetA the classCn(A) is defined in [20] as the class
of ω-languages in the formL(A1 ⊲ . . . ⊲ An ⊲ An+1), whereA1, . . . ,An, arereal-time determin-
istic pushdown automata, the input alphabet ofA1 being A, andAn+1 is a real-time deterministic
pushdown automaton equipped with a parity acceptance condition. It is easy to see that we obtain the
same classCn(A) if we restrict the definition to the case ofreal-time deterministic pushdown automata
A1, . . . ,An,An+1, having thecontinuity property.
We shall denoteCλ

n(A) the class obtained in the same way except that the deterministic pushdown au-
tomataA1, . . . ,An,An+1, having still the continuity property, may haveλ-transitions, i.e. may be non
real time.

In the sequel of this paper when we consider languages in the formL(A1 ⊲ . . . ⊲An ⊲An+1), we shall
always implicitely assume that the pushdown automataA1, . . . ,An,An+1, have thecontinuity property,
and that, for each integeri ∈ [1, n], the input alphabet ofAi+1 is the stack alphabet ofAi.

In order to prove that classesCn(A), C
λ
n(A), are included in the class of context freeω-languages we

first state the following lemma.

Lemma 3.1. Let A1 = (Q1,Γ1, A1,⊥1, q
1
0 , δ1) be a deterministic pushdown automaton andA2 =

(Q2,Γ2,Γ1,⊥2, q
2
0, δ2) be a pushdown automaton equipped with a set of final statesF ⊆ Q2. Then the

ω-languageL(A1 ⊲ A2) is a context freeω-language.

Proof. LetA1 = (Q1,Γ1, A1,⊥1, q
1
0, δ1) be a deterministic pushdown automaton andA2 = (Q2,Γ2,Γ1,

⊥2, q
2
0 , δ2) be a pushdown automaton equipped with a set of final statesF ⊆ Q2.

Recall that anω-wordα ∈ Aω
1 is in L(A1 ⊲ A2) iff:

• WhenA1 readsα, the stack ofA1 is strictly unbounded hence the sequence of stack contents has
an infinite limitα1.

• α1 ∈ L(A2, F ).

We can decompose the reading of anω-word α ∈ L(A1 ⊲ A2) by the pushdown automatonA1 in the
following way.
When readingα, A1 goes through the infinite sequence of configurations(qi, γi)i≥1. The infinite se-
quence of stack contents(γi)i≥1 has limitα1 thus for each integerj ≥ 1, there is a smallest integernj

such that, for all integersi ≥ nj, α1[j] = γi[j].
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The wordα can then be decomposed in the form

α = σ1.σ2 . . . σn . . .

where for all integersj ≥ 1, σj ∈ A⋆
1 and

σj : (qnj
, α1[j]) 7→

⋆
A1

(qnj+1
, α1[j + 1]) = (qnj+1

, α1[j].α1(j + 1))

Notice thatn1 = 1, q1 = q1
0 andα1[1] = ⊥1 henceσ1 : (q1

0,⊥1) 7→
⋆
A1

(qn2
, α1[2]).

Let now, for eachq, q′ ∈ Q1 anda, b ∈ Γ1, the languageL(q,q′,a,b) be the set of wordsσ ∈ A⋆
1 such that:

σ : (q, a) 7→⋆
A1

(q′, a.b). This language of finite words overA1 is accepted by the pushdown automaton
A1 with the following modifications: the initial configurationis (q, a) and the acceptance is by final state
q′ and by final stack contenta.b. It is easy to see that this language is also accepted by a deterministic
pushdown automaton by final states so it is in the classDCFL.

Then each wordσj belongs to the deterministic context free language

L(qnj
,qnj+1

,α1(j),α1(j+1)) = {σ ∈ A⋆
1 | σ : ((qnj

, α1(j)) 7→
⋆
A1

(qnj+1
, α1(j).α1(j + 1))}

In order to describe theω-languageL(A1 ⊲ A2) from theω-languageL(A2, F ) and the deterministic
context free languagesL(q,q′,a,b), for q, q′ ∈ Q1 anda, b ∈ Γ1, we now recall the notion of substitution.

A substitutionis a mappingf : Σ → 2Γ⋆

, whereΣ andΓ are two finite alphabets. IfΣ = {a1, . . . , an},
then for all integersi ∈ [1;n], f(ai) = Li is a finitary language over the alphabetΓ.
Now this mapping is extended in the usual manner to finite words: for all lettersai1, . . . , ain ∈ Σ,
f(ai1 . . . ain) = f(ai1) . . . f(ain), and to finitary languagesL ⊆ Σ⋆: f(L) = ∪x∈Lf(x).
If for each lettera ∈ Σ, the languagef(a) does not contain the empty word, then the substitution is said
to beλ-free and the mappingf may be extended toω-words:

f(x(1) . . . x(n) . . .) = {u1 . . . un . . . | ∀i ≥ 1 ui ∈ f(x(i))}

and to ω-languagesL ⊆ Σω by settingf(L) = ∪x∈Lf(x) ⊆ Γω.
If the substitution is notλ-free we can definef(L) in the same way forL ⊆ Σω but this timef(L) ⊆
Γ⋆ ∪ Γω, i.e. f(L) may contain finiteor infinite words.
The substitutionf is said to be a context free substitution iff for alla ∈ Σ the finitary languagef(a) is
context free.
Recall that Cohen and Gold proved in [7] that ifL is a context freeω-language andf is a context free
substitution thenf(L) ∩ Γ⋆ andf(L) ∩ Γω are context free.

We define now a new alphabet

∆ = {L(q, q′, a, b) | q, q′ ∈ Q1 anda, b ∈ Γ1}

and we consider the substitutionh : Γ1 → 2∆ defined, for allb ∈ Γ1, by:

h(b) = {L(q, q′, a, b) | q, q′ ∈ Q1 anda ∈ Γ1}
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Applying this substitution to theω-languageL(A2, F ) ⊆ Γω
1 , we geth(L(A2, F )). The substitutionh

is λ-free thush(L(A2, F )) is aω-language over∆. Moreover for eachb ∈ Γ1 the seth(b) is finite hence
context free. Thush(L(A2, F )) ⊆ ∆ω is a context freeω-language becauseL(A2, F ) is a context free
ω-language and the substitutionh is a context free substitution.

Let nowR ⊆ ∆ω be theω-language defined as follows. Anω-word x ∈ R has its first letter in the set
{L(q1

0 , q
′,⊥1, b) | q′ ∈ Q1 andb ∈ Γ1}, and each letterL(q, q′, a, b), for q, q′ ∈ Q1 anda, b ∈ Γ1, in x

is followed by a letter in the set{L(q′, q′′, b, c) | q′′ ∈ Q1 andc ∈ Γ1}.
Theω-languageR is regular thush(L(A2, F ))∩R ⊆ ∆ω is a context freeω-language because the class
CFLω is closed under intersection with regularω-languages [7].

Consider now the substitutionΘ : ∆ → 2A⋆
1 defined, for all lettersL(q, q′, a, b) ∈ ∆, byΘ(L(q, q′, a, b)) =

L(q,q′,a,b). The substitutionΘ is context free thus

Θ[h(L(A2, F )) ∩ R] ∩ Aω
1

is a context freeω-language and so is⊥1.( Θ[h(L(A2, F ))∩R]∩Aω
1 ). By construction thisω-language

is L(A1 ⊲ A2). �

We can in fact obtain a refined result if the languageL(A2, F ) is non ambiguous.

Lemma 3.2. Let A1 = (Q1,Γ1, A1,⊥1, q
1
0 , δ1) be a deterministic pushdown automaton andA2 =

(Q2,Γ2,Γ1,⊥2, q
2
0, δ2) be a pushdown automaton equipped with a set of final statesF ⊆ Q2. If the

ω-languageL(A2, F ) is non ambiguous thenL(A1 ⊲ A2) ∈ NA − CFLω.

Proof. LetA1 = (Q1,Γ1, A1,⊥1, q
1
0, δ1) be a deterministic pushdown automaton andA2 = (Q2,Γ2,Γ1,

⊥2, q
2
0 , δ2) be a pushdown automaton equipped with a set of final statesF ⊆ Q2.

We assume thatL(A2, F ) is non ambiguous so we can assume, without loss of generality, that the
pushdown automatonA2 itself is non ambiguous.

We are going to explain informally the construction of a non ambiguous Büchi pushdown automatonA
accepting theω-languageL(A1 ⊲ A2).

We refer now to the proof of the preceding lemma. We have considered the reading of anω-word
α ∈ L(A1 ⊲ A2) by A1, and we have shown that the wordα can then be decomposed in the form

α = σ1.σ2 . . . σn . . .

where for all integersj ≥ 1, σj belongs to the deterministic context free language

L(qnj
,qnj+1

,α1(j),α1(j+1)) = {σ ∈ A⋆
1 | σ : ((qnj

, α1(j)) 7→
⋆
A1

(qnj+1
, α1(j).α1(j + 1))}

We can see that the integersnj were defined in a unique way. However there may exist several decom-
positions of theω-wordα into words of languagesL(q,q′,a,b).
In order to ensure a unique decomposition we are going to slightly modify the definition of these lan-
guages.
For eachq, q′ ∈ Q1 anda, b ∈ Γ1, the languageU(q,q′,a,b) is the set of wordsσ ∈ A⋆

1 such that:
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(a) σ : (q, a) 7→⋆
A1

(q′, a.b) and

(b) If for someσ′ ⊏ σ ands ∈ Q, σ′ : (q, a) 7→⋆
A1

(s, a.b) then there is a wordu ∈ A⋆
1 and a state

t ∈ Q, such thatσ′.u ⊑ σ andu : (s, a.b) 7→⋆
A1

(t, a).

(c) If there is a run(qi, γi)1≤i≤p of A1 on σ such that(q1, γ1) = (q, a) and(qp, γp) = (s, a.b) for
somes ∈ Q, s 6= q′, then either there is an integerp′ < p such that(qi, γi)1≤i≤p′ is a run of
A1 on σ and(qp′ , γp′) = (q′, a.b) or it holds thatλ : (s, a.b) 7→⋆

A1
(s′, a) for somes′ ∈ Q and

λ : (s′, a) 7→⋆
A1

(q′, a.b).

It is easy to see that the languagesU(q,q′,a,b) are also in the classDCFL and that, for eachq, q′ ∈
Q1 anda, b ∈ Γ1, it holds thatU(q,q′,a,b) ⊆ L(q,q′,a,b).
We can see that, in the above decompositionα = σ1.σ2 . . . σn . . . of theω-wordα, for all integersj ≥ 1,
the wordσj belongs in fact to the deterministic context free languageU(qnj

,qnj+1
,α1(j),α1(j+1)).

The rest of the proof of Lemma 3.1 can be pursued, replacing languagesL(q,q′,a,b) by languagesU(q,q′,a,b).

But now we have a unique decomposition ofα in the form

α = σ′
1.σ

′
2 . . . σ′

n . . .

where for all integersj ≥ 1, the wordσ′
j belongs to some languageU(sj ,tj ,aj ,bj) satisfying: (1)s1 = q1

0,
a1 = ⊥1, (2) for all integersj ≥ 1, tj = sj+1 andbj = aj+1.

This unique decomposition is crucial in the construction ofthe non ambiguous Büchi PDAA accepting
L(A1 ⊲ A2). We shall explain informally the behaviour of this automaton.
For eachq, q′ ∈ Q1 anda, b ∈ Γ1, the languageU(q,q′,a,b) is accepted by a deterministic pushdown

automatonB(q,q′,a,b) whose stack alphabet is denotedΓ(q,q′,a,b). We can assume that all these alphabets
are disjoint and that they are also disjoint fromΓ1, the stack alphabet ofA1. The stack alphabet ofA
will be

ΓA = Γ1 ∪
⋃

q,q′∈Q1 and a,b∈Γ1

Γ(q,q′,a,b)

When reading anω-word α ∈ L(A1 ⊲ A2) the pushdown automatonA will guess, using the non
determinism, theunique decomposition ofα in the form

α = σ′
1.σ

′
2 . . . σ′

n . . .

where for all integersj ≥ 1, the wordσ′
j belongs to some languageU(sj ,tj ,aj ,bj) satisfying: (1)s1 = q1

0,
a1 = ⊥1, (2) for all integersj ≥ 1, tj = sj+1 andbj = aj+1.
In additionA will simulate the reading of theω-wordα1 = a1a2a3 . . . by the PDAA2.

During a run ofA the stack content is always a word in the form⊥.u.v where⊥ is the bottom symbol
of A, u ∈ (Γ1 − {⊥})⋆ andv is in (Γ(q,q′,a,b))⋆ for someq, q′ ∈ Q1 anda, b ∈ Γ1.

After having read the initial segmentσ′
1.σ

′
2 . . . σ′

j of α, the content of the stack ofA is equal to the
content of the stack ofA2 after having reada1a2 . . . aj .
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ThenA guesses that the next word in the decomposition ofα belongs to someU(sj+1,tj+1,aj+1,bj+1). It

uses the stack alphabetΓ(sj+1,tj+1,aj+1,bj+1) on the top of the stack to simulate the reading ofσ′
j+1 by

B(sj+1,tj+1,aj+1,bj+1). Then when it has guessed that it has completely read the wordσ′
j+1, it erases letters

of Γ(sj+1,tj+1,aj+1,bj+1) from the stack, and simulates the reading of the letteraj+1 by A2, and so on.
A Büchi acceptance condition is then used to simulate the acceptance ofα1 by A2.

The Büchi PDA(A2, F ) is non ambiguous and the above cited decomposition ofα is unique so there is
a unique accepting run of the Büchi PDAA onα.
Finally we have proved thatL(A1 ⊲ A2) ∈ NA − CFLω. �

Proposition 3.3. Letn be an integer≥ 1,A1,A2, . . .An, be some deterministic pushdown automata and
(An+1, C) be a pushdown automaton equipped with a Büchi acceptance condition. The input alphabet of
A1 is denotedA and we assume that, for each integeri ∈ [1, n], the input alphabet ofAi+1 is the stack
alphabet ofAi. ThenL(A1 ⊲ . . . ⊲ An ⊲ An+1) ∈ CFLω. Moreover ifL(An+1, C) is non ambiguous
thenL(A1 ⊲ . . . ⊲ An ⊲ An+1) ∈ NA − CFLω.

Proof. We reason by induction on the integern.
Forn = 1 the result is stated in the above Lemmas 3.1 and 3.2.

Assume now that the result is true for some integern ≥ 1.
Let A1, A2, . . .An, An+1, be some deterministic pushdown automata and(An+2, C) be a pushdown
automaton equipped with a Büchi acceptance condition suchthat the languageL(A1 ⊲ . . . ⊲ An+1 ⊲

An+2) ⊆ Aω is well defined.
By induction hypothesis the languageL(A2 ⊲ . . .⊲An+1⊲An+2) is a context freeω-language accepted
by a Büchi pushdown automaton(A, F ).
But by definition of the languageL(A1 ⊲ . . . ⊲ An+1 ⊲ An+2) it holds that

L(A1 ⊲ . . . ⊲ An+1 ⊲ An+2) = L(A1 ⊲ A)

thus Lemma 3.1 implies thatL(A1 ⊲ . . . ⊲ An+1 ⊲ An+2) ∈ CFLω.

Assume now thatL(An+1, C) is non ambiguous. Reasoning as above but applying Lemma 3.2 instead
of Lemma 3.1 we infer thatL(A1 ⊲ . . . ⊲ An+1 ⊲ An+2) is in NA − CFLω. �

In particular, Proposition 3.3 implies the following result.

Corollary 3.4. For each integern ≥ 0, the following inclusions hold:

Cn(A) ⊆ C
λ
n(A) ⊆ NA − CFLω

We shall later get a stronger result (see Corollary 3.8) fromthe study of closure properties of classes
Cn(A), C

λ
n(A).
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3.2. Closure properties of classesCn(A), Cλ
n(A)

We first state the following lemma.

Lemma 3.5. The classCλ
1(A) is closed under complementation.

Proof. LetA1 = (Q1,Γ1, A1,⊥1, q
1
0 , δ1) be a deterministic pushdown automaton and(A2 = (Q2,Γ2,Γ1,

⊥2, q
2
0, δ2), col2) be a deterministic pushdown automaton equipped with a parity acceptance condition.

Recall that anω-word α ∈ Aω
1 is in L(A1 ⊲ A2) iff: when A1 readsα, the stack ofA1 is strictly

unbounded and the sequence of stack contents has an infinite limit α1 ∈ L(A2, col2).

Thus anω-word α ∈ Aω
1 is in the complement ofL(A1 ⊲ A2) iff one of the two following conditions

holds:

(1) WhenA1 readsα, the stack ofA1 is strictly unbounded and the limitα1 of stack contents is in the
complement ofL(A2, col2).

(2) WhenA1 readsα, the stack ofA1 is not strictly unbounded.

The classDCFLω is closed under complementation thus the complement ofL(A2, col2) is equal to
L(A3, col3), for some deterministic pushdown automatonA3 equipped with a parity acceptance condi-
tion.
The languageL(A1 ⊲ A3) is the set ofω-wordsα ∈ Aω

1 such that, whenA1 readsα, the stack ofA1

is strictly unbounded and the limitα1 of stack contents is inL(A3, col3). So we see that, in order to get
the complement ofL(A1 ⊲ A2) we have to add toL(A1 ⊲ A3) the setB of all ω-wordsα ∈ Aω

1 such
that, whenA1 readsα, the stack ofA1 is not strictly unbounded.
To do this we are going first to modify the automatonA1 in such a way that, when readingω-words in
B, the stack will bestrictly unbounded.

We now explain informally the behaviour of the new pushdown automatonA′
1. The stack alphabet ofA′

1

is Γ1 ∪ Γ′
1, whereΓ′

1 = {γ′ | γ ∈ Γ1} is just a copy ofΓ1, such thatΓ1 ∩ Γ′
1 = ∅.

The essential idea is thatA′
1 will simulateA1 but it has the additional following behaviour. Usingλ-

transitions it pushes in the stack letters ofΓ′
1, always keeping the information about the content of the

stack ofA1.
More precisely, if at some step while reading anω-wordα ∈ Aω

1 byA1 the stack content is a finite word
γ = γ1, γ2, . . . γj, where eachγi is a letter ofΓ1, then the corresponding stack content ofA′

1 will be in

the formγ1.γ
′n1

1 γ2.γ
′n2

2 . . . γj.γ
′nj

j , wheren1, n2, . . . , nj, are positive integers.
If whenA1 readsα the stack is strictly unbounded and the limit of the stack contents is anω-word α1,
then whenA′

1 reads the same wordα its stack will be also strictly unbounded and the limit of thestack
contents will be anω-wordα′

1. Moreover it will hold that(α′
1/Γ

′
1) = α1, where(α′

1/Γ
′
1) is the wordα′

1

from which are removed all letters inΓ′
1.

On the other hand if whenA1 readsα the stackis not strictly unbounded, the limit of the stack contents
being a finite wordα1, then whenA′

1 reads the same wordα its stackwill be strictly unboundedand its
limit will be an ω-wordα′

1 such that(α′
1/Γ

′
1) = α1.
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Notice that the stack content ofA′
1 will always be in the form⊥1.(⊥

′
1)

⋆ or u.Z.(Z ′)n for someu ∈
⊥1.(Γ1 ∪ Γ′

1)
⋆, Z ∈ Γ1, Z ′ being the copy ofZ in Γ′

1, andn ≥ 0 being an integer.

The behaviour of the deterministic pushdown automatonA′
1, reading anω-word, will be the same as the

behaviour ofA1 but with the following modifications.

(a) Between any two transitions ofA1 is added aλ-transition ofA′
1 which simply pushes in the stack,

when the topmost stack letter ofA′
1 is Z ∈ Γ1 or Z ′ ∈ Γ′

1, an additional letterZ ′.

(b) Assume now that at some step of the reading ofα by A′
1 andA1, and after the execution of a

λ-transition as explained in above item(a), the topmost stack letter ofA′
1 is some letterZ ′ ∈ Γ′

1.
Recall that the stack content ofA′

1 will be in the form⊥1.(⊥
′
1)

n (if Z ′ = ⊥′
1) or u.Z.(Z ′)n for

someu ∈ ⊥1.(Γ1 ∪ Γ′
1)

⋆, Z ∈ Γ1, Z ′ being the copy ofZ in Γ′
1, andn ≥ 1.

Notice that the corresponding stack content ofA1 will be ⊥1 or (u/Γ′
1).Z.

Suppose now thatA1 reads a lettera ∈ A1 or executes aλ-transition.
If it pushes letterT in the stack thenA′

1 would push the same letterT in its stack.
If A1 would skip (its topmost stack letter beingZ), thenA′

1 also skips.
But if A1, reading the lettera ∈ A1 or executing aλ-transition, the topmost stack letter beingZ,
would pop the letterZ, thenA′

1 pops the whole segmentZ.(Z ′)n at the top of the stack, using
λ-transitions.

Notice that we do not detail here the set of states ofA′
1. It contains the set of statesQ1 of A1 and is

sufficiently enriched, to achieve the goal of simulating thebehaviour ofA1, adding the modifications
cited above.

Assume now that whenA1 readsα its stack is strictly unbounded and the limit of the stack contents is
anω-wordα1. Then whenA′

1 reads the same wordα its stack is also strictly unbounded and the limit of
the stack contents will be anω-wordα′

1 such that(α′
1/Γ

′
1) = α1.

On the other hand if whenA1 readsα the stackis not strictly unbounded, then the limit of its stack
contents is a finite wordα1 = α1(1).α1(2) . . . α1(|α1|).
In that case whenA′

1 reads the same wordα its stackwill be strictly unboundedand its limit will be an
ω-wordα′

1 in the form

α′
1 = α1(1).(α1(1)

′)n1 .α1(2).(α1(2)
′)n2 . . . (α1(|α1| − 1)′)n|α1|−1.(α1(|α1|).(α1(|α1|)

′)ω

for some integersn1, n2, . . . , n|α1|−1. In particular it will hold that(α′
1/Γ

′
1) = α1.

It is now easy to modify the pushdown automatonA3 in such a way that we obtain a deterministic
pushdown automatonA′

3 equipped with parity acceptance conditioncol′3 such that the input alphabet of
A′

3 is Γ1∪Γ′
1, and anω-wordα′

1 ∈ (Γ1∪Γ′
1)

ω is in L(A′
3, col

′
3) iff [ (α′

1/Γ
′
1) is a finite word or(α′

1/Γ
′
1)

is infinite and is inL(A3, col3) ].
Thus theω-languageL(A′

1 ⊲ A′
3) is the complement ofL(A1 ⊲ A2) and this ends the proof. �

Proposition 3.6. For each integern ≥ 0, the classCλ
n(A) is closed under complementation.
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Proof. We now reason by induction on the integern ≥ 0.

Forn = 0, C
λ
0(A) = DCFLω is known to be closed under complementation [21].

Forn = 1, C
λ
1(A) is closed under complementation by Lemma 3.5.

Assume now that we have proved that for every positive integer k ≤ n the classCλ
k(A) is closed under

complementation.

LetA1, A2, . . .An, An+1, be some deterministic pushdown automata and(An+2, col) be a deterministic
pushdown automaton equipped with a parity acceptance condition such that the languageL(A1 ⊲ . . . ⊲

An+1 ⊲ An+2) ⊆ Aω
1 is well defined.

An ω-word α ∈ Aω
1 is in the complement ofL(A1 ⊲ . . . ⊲ An+1 ⊲ An+2) iff one the two following

conditions holds:

(1) WhenA1 readsα, the stack ofA1 is strictly unbounded and the limitα1 of stack contents is in the
complement ofL(A2 ⊲ . . . ⊲ An+1 ⊲ An+2)

(2) WhenA1 readsα, the stack ofA1 is not strictly unbounded.

By induction hypothesis the complement of theω-languageL(A2 ⊲ . . . ⊲ An+1 ⊲ An+2) is in C
λ
n(A)

so it is in the formL(A′
2 ⊲ . . . ⊲ A′

n+1 ⊲ A′
n+2).

We can do similar modifications as in the casen = 1, replacingA1, whose stack alphabet isΓ1, by
another deterministic pushdown automatonA′

1, whose alphabet isΓ1 ∪ Γ′
1 whereΓ′

1 is a copy ofΓ1.
If whenA1 readsα the limit of its stack contents is a finite or infinite wordα1 then whenA′

1 reads the
same wordα the limit of its stack contents is anω-wordα′

1 such that(α′
1/Γ

′
1) = α1.

It is now easy to modify the languageL(A′
2 ⊲ . . .⊲A′

n+1 ⊲A′
n+2) in such a way that we get a language

L(A′′
2 ⊲ . . . ⊲ A′′

n+1 ⊲ A′′
n+2) of ω-words overΓ1 ∪ Γ′

1 containing anω-word α′
1 if and only if: either

(α′
1/Γ

′
1) is a finite word or(α′

1/Γ
′
1) belongs to theω-languageL(A′

2 ⊲ . . . ⊲ A′
n+1 ⊲ A′

n+2).

Thus it holds thatL(A′
1 ⊲A′′

2 ⊲ . . .⊲A′′
n+1 ⊲A′′

n+2) is the complement ofL(A1 ⊲ . . .⊲An+1 ⊲An+2).
�

Remark 3.7. In [19, 20] Serre defined winning conditionsΩA1⊲...⊲An⊲An+1
for pushdown games using

languages in classesCn(A). He then showed that these winning conditions lead to decision procedures
to decide the winner in pushdown games. The question now naturally arises whether the proofs can be
extended to winning conditions defined in the same way from classesCλ

n(A). Then the closure under
complementation of these classes would be relevant from a game point of view. On the other hand this
closure property provides also some more information aboutclassesCn(A), given by next corollary,
which is already important from a game point of view.

Corollary 3.8. For each integern ≥ 0, the following inclusions hold:

Cn(A) ⊆ C
λ
n(A) ⊆ NA − CFLω

⋂
Co − NA − CFLω
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Proof. It follows directly from Corollary 3.4 and Proposition 3.6. �

We now prove that the classesCn(A), C
λ
n(A), are not closed under other boolean operations.

Proposition 3.9. For each integern ≥ 0, the classesCn(A) andC
λ
n(A) are neither closed under union

nor under intersection.

Proof. Notice first that for each integern ≥ 0, Cn(A) ⊆ Cn+1(A) andC
λ
n(A) ⊆ C

λ
n+1(A).

Theω-languagesL1 = {an.bm.cp.dω | n,m, p ≥ 1 andn = m} andL2 = {an.bm.cp.dω | n,m, p ≥
1 andm = p}, over the alphabetA = {a, b, c, d}, are inDCFLω and they are in all classesCn(A) and
C

λ
n(A). But their intersection isL1 ∩ L2 = {an.bn.cn.dω | n ≥ 1}. Thisω-language is not context free

because the finitary language{an.bn.cn | n ≥ 1} is not context free [1] and anω-language in the form
L.dω, with L ⊆ {a, b, c}⋆, is context free iff the finitary languageL is context free [7]. ThusL1 ∩ L2

cannot be in any classCn(A) andC
λ
n(A) because these classes are included inCFLω.

On the other hand consider theω-languagesL3 = {an.bm.cp.dω | n,m, p ≥ 1 andn 6= m} and
L4 = {an.bm.cp.dω | n,m, p ≥ 1 andm 6= p}. Theseω-languages are inDCFLω and in every class
Cn(A) or Cλ

n(A). If the languageL3 ∪ L4 was in some classCn(A) or Cλ
n(A), then by Proposition 3.6

its complementL5 would be also inCλ
n(A) and it would be a context freeω-language. This would imply

thatL5 ∩ a+.b+.c+.dω is context free because the classCFLω is closed under intersection with regular
ω-languages. ButL5 ∩ a+.b+.c+.dω = {an.bn.cn.dω | n ≥ 1} is not context free thus for each integer
n ≥ 0, the classesCn(A), C

λ
n(A) are not closed under union.

Notice that the union∪n≥0C
λ
n(A) is also neither closed under intersection nor under union. �

4. Winning sets in a pushdown game

Recall that it is proved in [19] that every deterministic context free language may occur as a winning set
for Eve in a pushdown game equipped with a winning condition in the formΩB, whereB is a determin-
istic pushdown automaton.
Serre asked also whether there exists a pushdown game equipped with a winning condition in the form
ΩA1⊲...⊲An⊲An+1

such that the set of winning positions for Eve is not a deterministic context free lan-
guage.
We are going to prove in this section that such pushdown gamesexist, giving examples of winning sets
which are non-deterministic non-ambiguous context free languages, or inherently ambiguous context
free languages, or even non context free languages.
The exact form of the winning sets remains open. Serre conjectured in [18] that one could prove that,
for n ≥ 0, the winning sets for Eve in pushdown games equipped with a winning condition in the form
ΩA1⊲...⊲An⊲An+1

, form a class of languages at leveln, and that forn = 0 the winning sets could be
deterministic context free languages.
So we think that, in order to better understand what is the exact form of the winning sets, it is useful to
see different examples of winning sets of different complexities, and not only of the greatest complexity
we have got, i.e. a non context free language.
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Moreover the techniques, involving Duparc’s eraser operator, used to prove Proposition 4.3 below, are
interesting by their own and are useful to understand how thegames go on.

In order to present the first example we begin by recalling theoperationx → xև which has been
introduced by Duparc in his study of the Wadge hierarchy [9],where it works also on infinite words, and
is also considered by Serre in [19].

For a finite wordu ∈ (Σ∪{և})⋆, whereΣ is a finite alphabet, the finite worduև is inductively defined
by:

λև = λ,
and for a finite wordu ∈ (Σ ∪ {և})⋆:
(u.c)և = uև.c, if c ∈ Σ,
(u. և)և = uև with its last letter removed if|uև| > 0,
i.e. (u. և)և = uև(1).uև(2) . . . uև(|uև| − 1) if |uև| > 0,
(u. և)և = λ if |uև| = 0,

Notice that forx ∈ (Σ∪{և})⋆, xև denotes the stringx, once everyև occuring inx, used as an eraser,
has been “evaluated” to the back space operation, proceeding from left to right insidex. In other words
xև = x from which every interval of the form“c և ” (c ∈ Σ) is removed.
For a languageV ⊆ Σ⋆ we setV ∼ = {x ∈ (Σ ∪ {և})⋆ | xև ∈ V }.

Lemma 4.1. Let L = {an.bn | n ≥ 1}. ThenL∼ is a non ambiguous context free language which can
not be accepted by anydeterministic pushdown automaton.

Proof. Let L be the context free language{an.bn | n ≥ 1}. The languageL is a deterministic, hence non
ambiguous, context free language. Thus by Theorem 6.16 of [10] the languageL∼ is a non ambiguous
context free language.
It remains to show thatL∼ can not be accepted by anydeterministic pushdown automaton.

The idea of the proof is essentially the same as in the proof that the context free language{an.bn | n ≥
1} ∪ {an.b2n | n ≥ 1} can not be accepted by anydeterministic pushdown automaton. It can be found
in [1, Proof of Proposition 5.3] or in [12, Exercise 6.4.4 page 251].
Towards a contradiction assume that the languageL∼ is accepted by a deterministic pushdown automaton
A. All words an.bn, for n ≥ 1, are in the languageL∼. Then one could show that there exists a pair
(n, k), with n, k > 0, such that the accepting configurations ofA readingan.bn or an+k.bn+k are the
same. Consider now the wordan.bn. և2n .a.b. It belongs toL∼ and the valid computation ofA
readingan.bn should be the beginning of the valid computation ofA readingan.bn. և2n .a.b. Thus the
pushdown automatonA would also acceptsan+k.bn+k. և2n .a.b which is clearly not inL∼. �

Lemma 4.2. LetL ⊆ Σ⋆ be a deterministic context free language. Then there existsa pushdown process
P = (Q,Γ,⊥, δ), a partitionQ = QE ∪ QA, two deterministic pushdown automataA1,A2, and a state
q ∈ Q such that, in the induced pushdown game equipped with the winning conditionΩA1⊲A2

, one has
{u | (q, u) ∈ WE} = L∼.



18 Olivier Finkel / On Winning Conditions of High Borel Complexity in Pushdown Games

Proof. Let P = ({p, q},Γ = Σ ∪ {⊥,և,#},⊥, δ) be a pushdown process whereδ is defined by:
push(p,#) ∈ δ(q, c) for all lettersc ∈ Σ ∪ {⊥,և} andpush(p,#) ∈ δ(p,#).
So the pushdown processP is deterministic and its behaviour is very similar to the behaviour of the
pushdown process given in the proof of Proposition 42 of [20]. It can only push the letter# on the top
of a given configuration.
Q = QE ∪ QA is any partition ofQ.
For each configuration(q, u.c), for c ∈ Σ ∪ {⊥,և} andu ∈ Γ⋆, there is a unique infinite play starting
from (q, u.c), during which the pushdown stack ofP is strictly unbounded, and the limit of the stack
contents isu.c.#ω.

The deterministic pushdown automatonA1 reads words over the alphabetΓ = Σ ∪ {⊥,և,#} and its
stack alphabet isΓ1 = Σ ∪ {⊥1}. Its behaviour is described as follows:

Consider first the reading of anω-word in the form⊥.u.#ω, whereu ∈ (Σ ∪ {և})⋆.
After having read the bottom symbol⊥, the content of its stack is still⊥1. Then when the pushdown
automatonA1 reads a letterc ∈ Σ it pushes the same letter in the stack. But ifA1 reads the symbolև
and the topmost stack symbol is not⊥1 (so it is inΣ) then it pops the letter at the top of its stack.

So, after having read the initial segment⊥.u of ⊥.u.#ω, the stack content ofA1 is ⊥1.u
և. Next the

PDAA1 pushes a letter# in the stack for each letter# read. Thus, whenA1 reads theω-word⊥.u.#ω,
its stack is strictly unbounded and the limit of the stack contents is⊥1.u

և.#ω.

In addition, it is easy to ensure that, whenA1 reads anω-word which is not in⊥.(Σ ∪ {և})⋆.#ω ∪
⊥.(Σ ∪ {և})ω, then its stackis not strictly unbounded. If there is a letter⊥ after the first letter of the
word or if A1 reads a letter inΣ ∪ {և} after some letter#, then the stack content remains undefinitely
unchanged.

On the other hand,A2 is a deterministic pushdown automaton equipped with a parity acceptance condi-
tion which accepts theω-language⊥1.L.#ω.
Consider now a given configuration(q,⊥.u) of the pushdown processP for someu ∈ (Σ ∪ {և,#})⋆,
the last letter ofu being not#. There is a unique infinite play starting from this position.The stack ofP
is strictly unbounded during this play and the limit of stackcontents is⊥.u.#ω.
WhenA1 reads theω-word⊥.u.#ω its stack is strictly unbounded iffu ∈ (Σ∪{և})⋆ and then the limit
of stack contents is⊥1.u

և.#ω.
Theω-word⊥1.u

և.#ω is accepted byA2 iff uև ∈ L.
Thus the configuration(q,⊥.u) is a winning position for Eve in the induced pushdown game, equipped
with the winning conditionΩA1⊲A2

, if and only if u ∈ L∼. �

We can now state the following result which follows directlyfrom Lemmas 4.1 and 4.2.

Proposition 4.3. There exists a pushdown processP = (Q,Γ,⊥, δ), a partitionQ = QE ∪ QA, two
deterministic pushdown automataA1,A2, and a stateq ∈ Q such that, in the induced pushdown game
equipped with the winning conditionΩA1⊲A2

, the set{u | (q, u) ∈ WE} is a non-deterministicnon
ambiguous context free language.
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Proof. Let L be the language{an.bn | n ≥ 1}. The languageL is a deterministic context free language,
thus by Lemma 4.2 there exists a pushdown processP = (Q,Γ,⊥, δ), a partitionQ = QE ∪ QA, two
deterministic pushdown automataA1,A2, and a stateq ∈ Q such that, in the induced pushdown game
equipped with the winning conditionΩA1⊲A2

, one has{u | (q, u) ∈ WE} = L∼. But by Lemma 4.1
L∼ is a non ambiguous context free language which can not be accepted by anydeterministic pushdown
automaton. �

Remark 4.4. In the pushdown game given in the proof of Lemma 4.2, there aresome plays which are
not infinite. However it is easy to find a pushdown game with thesame winning set for Eve but in which
all plays are infinite. The same remark will hold for pushdowngames given in the proofs of the two
following propositions.

We are now going to show that the set of winning positions for Eve can also be an inherently ambiguous
context free language. Recall that it is well known that the languageV = {an.bm.cp | n,m, p ≥
1 and(n = m or m = p)} is an inherently ambiguous context free language, [1, 12].

Proposition 4.5. There exists a pushdown processP = (Q,Γ,⊥, δ), a partitionQ = QE ∪ QA, two
deterministic pushdown automataA1,A2, and a stateq ∈ Q such that, in the induced pushdown game
equipped with the winning conditionΩA1⊲A2

, the set{u | (q, u) ∈ WE} is an inherently ambiguous
context free language.

Proof. Let P = ({q, q′, q′′, p},Γ = {⊥, a, b, c,#},⊥, δ) be a pushdown process whereδ is defined by:
{pop(q′), skip(q′′)} ⊆ δ(q, c), pop(q′) ∈ δ(q′, c), push(p,#) ∈ δ(q′, b), push(p,#) ∈ δ(q′′, c), and
push(p,#) ∈ δ(p,#).
We setQE = {q} andQA = {q′, q′′, p}.
Consider now an infinite play from a given configuration(q,⊥.u), for u ∈ {a, b, c,#}⋆. The topmost
stack letter of this initial configuration must be a letterc. Then at most two cases may happen.

1. In the first one are pushed infinitely many letters# on the top of the stack. In this play the stack is
strictly unbounded and the limit of the stack contents is⊥.u.#ω.

2. In the second case the letterc is popped and all next lettersc are popped from the top of the stack
until some letterb is on the top of the stack. From this moment infinitely many letters# are pushed
in the stack. Then the stack is strictly unbounded and the limit of the stack contents is⊥.u′.b.#ω

if u = u′.b.ck for some integerk > 0. Notice that this second case can only occur ifu is in the
form u = u′.b.ck for some integerk > 0.

The deterministic pushdown automatonA1 reads words over the alphabet{⊥, a, b, c,#} and its stack
alphabet isΓ1 = {⊥1, a, b,#}.
It is easy to ensure that the stack ofA1 is not strictly unbounded during the reading of anω-word which
is not inW = ⊥.aω ∪⊥.a+.bω ∪ ⊥.a+.b+.#ω ∪ ⊥.a+.b+.cω ∪⊥.a+.b+.c+.#ω.
Consider now the reading byA1 of anω-word which is inW . After having read the bottom symbol⊥,
the stack content ofA1 is still ⊥1. Then it pushes a lettera or b each time it reads the corresponding
lettera or b.
Then whenA1 reads anω-word in the form⊥.aω (respectively,⊥.an.bω for n ≥ 1) then its stack is
strictly unbounded and the limit of stack contents is⊥1.a

ω (respectively,⊥1.a
n.bω).
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If now A1 reads letters# then it pushes them in the stack. In this case the input word isin the form
⊥.an.bm.#ω, and the limit of stack contents ofA1 reading thisω-word is⊥1.a

n.bm.#ω.
If A1 reads some lettersc after an initial segment in the form⊥.an.bm then it pops a letterb for each
letterc read.
If the number ofc is equal to the number ofb of the input word, then after having read the segment
⊥.an.bm.cm of the input word the stack content ofA1 is simply⊥1.a

n. NextA1 reads the final seg-
ment#ω and it pushes it in the stack. So the limit of stack contents ofA1 reading the inputω-word
⊥.an.bm.cm.#ω is in the form⊥1.a

n.#ω

If the number ofc is not equal to the number ofb of the input word (the number ofc being finite or
infinite), then, once this has been checked, the stack content remains unchanged so the stack will not be
strictly unbounded.

One can define a deterministic pushdown automatonA2, equipped with a parity acceptance condition,
which accepts theω-language{⊥1.a

n.bn.#ω | n ≥ 1} ∪ {⊥1.a
n.#ω | n ≥ 1}.

We are now going to determine the winning positions(q,⊥.u) of Eve in the induced pushdown game
equipped with the winning conditionΩA1⊲A2

.

Let (q,⊥.u) be a given configuration of the pushdown processP for someu ∈ {a, b, c,#}⋆, the last
letter ofu beingc. There are one or two infinite plays starting from this position. When there are two
such plays, they depend on the first choice of Eve and the position (q,⊥.u) is a winning position for Eve
iff one of the two possible infinite plays is winning for her.
In the first play the stack is strictly unbounded and the limitof the stack contents is⊥.u.#ω.
There is a second play ifu = u′.b.ck for some integerk > 0. Then in this play the stack is strictly
unbounded and the limit of the stack contents is⊥.u′.b.#ω.

WhenA1 reads theω-word ⊥.u.#ω, its stack is strictly unbounded iffu is in the forman.bm.cm for
somen,m ≥ 1 (the number ofc and ofb in u are equal). Then the limit of stack contents is⊥1.a

n.#ω

and it is inL(A2). So⊥.u.#ω ∈ L(A1 ⊲ A2).

If u = u′.b.ck for some integerk > 0 andA1 reads theω-word⊥.u′.b.#ω then the stack ofA1 is strictly
unbounded iffu′ is in the forman.bm−1 for somen,m ≥ 1. In this case the limit of stack contents is
⊥1.a

n.bm.#ω and it is accepted byA2 iff n = m ≥ 1.

Thus the configuration(q,⊥.u) is a winning position for Eve, with the winning conditionΩA1⊲A2
, if and

only if u is in the inherently ambiguous context free languageV = {an.bm.cp | n,m, p ≥ 1 and(n =
m or m = p)}. �

Proposition 4.6. There exists a pushdown processP = (Q,Γ,⊥, δ), a partitionQ = QE ∪ QA, two
deterministic pushdown automataA1,A2, and a stateq ∈ Q such that, in the induced pushdown game
equipped with the winning conditionΩA1⊲A2

, the set{u | (q, u) ∈ WE} is a non context free language.

Proof. We define the pushdown processP = (Q,Γ,⊥, δ) as in the proof of preceding Proposition 4.5
except that we set this timeQA = {q} andQE = {q′, q′′, p}. The two deterministic pushdown automata
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A1,A2, are also defined in the same way.

Consider now a configuration in the form(q,⊥.an.bm.cp) for some integersn,m, p ≥ 1. There are two
infinite plays starting from this configuration but they depend this time on the first choice ofthe second
player Adam.
The position(q,⊥.an.bm.cp) is winning for Eve iff thesetwo infinite playsare won by her. This implies
thatn = m and m = p.
Thus it holds that

{u | (q, u) ∈ WE} ∩ ⊥.a+.b+.c+ = ⊥.{an.bn.cn | n ≥ 1}

This language is not context free because of the well known non context freeness of the language
{an.bn.cn | n ≥ 1} [1, 12].
This implies that the set{u | (q, u) ∈ WE} itself is not context free. Indeed otherwise its intersection
with the rational language⊥.a+.b+.c+ would be context free because the classCFL is closed under
intersection with rational languages. �

Acknowledgements.Thanks to the anonymous referee for useful comments on a preliminary version of
this paper.
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