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1.

Abstract. In arecent papems[[ZO] Serre has presented some decidiainieg conditions
QA,p..>A,>4,,, Of arbitrarily high finite Borel complexity for games on fieigraphs or on push-
down graphs.

We answer in this paper several questions which were raig&iye in @0].

We study classe€,(A), defined in [2p], and show that these classes are includeteiclass of
non-ambiguous context freelanguages. Moreover from the study of a larger cla$A) we infer
that the complements of language{Jp(A) are also non-ambiguous context fredanguages. We
conclude the study of class€s,(A) by showing that they are neither closed under union nor under
intersection.

We prove also that there exists pushdown games, equippédwirining conditions in the form
Q4,>4,, Where the winning sets are not deterministic context famgliages, giving examples of
winning sets which are non-deterministic non-ambiguoustext free languages, inherently am-
biguous context free languages, or even non context fregitages.

Keywords: Pushdown automata; infinite two-player games; pushdowregawinning conditions;
Borel complexity; context free-languages; closure under boolean operations; set of agrposi-
tions.

Introduction

Two-player infinite games have been much studied in setyteut in particular in Descriptive Set The-
ory. Martin’s Theorem states that every Gale Stewart g&ifi¢), whereA is a Borel set, is determined,
i.e. that one of the two players has a winning strat¢gl [14].

Address for correspondence: E Mail: finkel@logique.jussie
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In Computer Science, the conditions of a Gale Stewart ganyebmaeen as a specification of a reactive
system, where the two players are respectively a non tetimineeactive program and the “environ-
ment”. Then the problem of the synthesis of winning straegds of great practical interest for the prob-
lem of program synthesis in reactive systems. Buchi-Laiukw Theorem states that in a Gale Stewart
gameG(A), whereA is a regulatw-language, one can decide who is the winner and compute anginn
strategy given by a finite state transducer.

In [R3,[16] Thomas asked for an extension of this result toemptayed on pushdown graphs. Walukiewicz
firstly showed in [2B] that one can effectively construct miitg strategies in parity games played on
pushdown graphs and that these strategies can be compupegitgown transducers.

Several authors have then studied pushdown games equipthedtier decidable winning conditions,
[d,B,[17 [11]. Cachat, Duparc and Thomas have presentedshédtidable winning condition at tfg
level of the Borel hierarchyf[6]. Bouquet, Serre and Walukiz have studied winning conditions which
are boolean combinations of a Biichi condition and of theoundedness condition which requires the
stack to be unbounded] [3].

Recently Serre has given a family of decidable winning cboils of arbitrarily high finite Borel rank
[L9, 20]. A game between two players Adam and Eve on a pushdpaph, is equipped with a win-
ning condition in the formf) 4, >4, >4,,, WhereAy, ..., A, are deterministic pushdown automata,
the stack alphabet aofi; being the input alphabet ofl;,;, and A, is a deterministic pushdown
automaton with a Bichi or a parity acceptance condition.eriThan infinite play is won by Eve iff
during this play the stack istrictly unboundedthat is converges to an infinite wordand its limit
xeL(Ai>...0 Ay > Apyq), WwhereL( Ay > ... > A, > A, +1) is anw-language defined as follows.
Awordagisin L(A; > ...> A, > A,11) iff: forall 1 <i <n,whenA, readsw;_; its stack isstrictly
unboundedand the limit of the stack contents is anword «;; and A,,,1 acceptsx,. Serre proved
that for these winning conditions one can decide the winner pushdown game and that the winning
strategies are effective.

We solve in this paper several questions which are raisefidrjq0]. We first study the class€s,(A)
which contain languages in the forb{ A, > . . .> A, > A,,+1), whereA is the input alphabet ofl;. We
show that these classes are included in the class of norgamis context free-languages. Moreover
from the study of a larger clasd)(A) we infer that the complements of languagesCip(A) are also
non-ambiguous context freelanguages. We conclude the study of clag8ggA) by showing that they
are neither closed under union nor under intersection.

For all previously studied decidable winning conditionsgashdown games the set of winning positions
for any player had been shown to be regular. [l [19, 20] Sewesn that every deterministic context
free language may occur as a winning set for Eve in a pushd@amregquipped with a winning con-
dition in the formQ 3, whereB is a deterministic pushdown automaton. The exact naturbesit sets
remains open and the question is raised ih [1P, 20] whetleee txists a pushdown game equipped with
a winning condition in the fornd) 4, ..~ 4,>.4,,, such that the set of winning positions for Eve is not a
deterministic context free language. We give a positivavango this question, giving examples of win-
ning sets which are non-deterministic non-ambiguous cofitee languages, or inherently ambiguous
context free languages, or even non context free languages.

The paper is organized as follows. In section 2 we recall digfits and results about pushdown au-
tomata, context free.)-languages, pushdown games, and winning conditions fotheQ 4, . >4, >4, -
In section 3 are studied the clas€gg(A). Results on sets of winning positions are presented in @ecti
4.
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2. Recall of previous definitions and results

2.1. Pushdown automata

We assume the reader to be familiar with the theory of fornaplénguages[[29, 21, 112]. We shall use
usual notations of formal language theory.

When A is a finite alphabet, aon-empty finite wordver A is any sequence = a;...a; , Where
a; € Afori =1,...,k,andk is an integer> 1. Thelengthof z is k, denoted bylz|. Theempty
word has no letter and is denoted By its length is0. Forz = a;...ag, we writez(i) = a; and
z[i] = x(1)...z(i) fori < kandz[0] = . A* is theset of finite wordgincluding the empty word) over
AandAT = A* — {\}.

Thefirst infinite ordinalis w. An w-word over A is anw-sequence; ... a, ..., where for all integers
i > 1, a; € A. Wheno is anw-word overA, we writec = o(1)o(2)...0(n)..., where for all
i, 0(i) € A,ando[n] = o(1)o(2)...0(n) foralln > 1 ando[0] = A.

The prefix relationis denoted=: a finite wordw is a prefix of a finite wordv (respectively, an infinite
word v), denotedu C v, if and only if there exists a finite word (respectively, an infinite worab),
such thaty = u.w. Theset of w-wordsover the alphabetl is denoted byA“. An w-languageover an
alphabetA is a subset ofi~.

In [f[9, [20] deterministic pushdown automata are defined Withrestrictions. It is supposed that there
are no\-transitions, i.e. the automata aeal time Moreover one can push at most one symbol in the
pushdown stack using a single transition of the automaton.

We now define pushdown automata, keeping this second tasiriout allowing the existence of-
transitions; and we define also the non deterministic versfgppushdown automata.

A pushdown automatofPDA) is a 6-tupled = (Q,T', A, L, gin,0), WhereQ is a finite set of stateg;
is a finite pushdown alphabed, is a finite input alphabet|. is the bottom of stack symba};,, € Q is
the initial state, and is the transition relation which is a mapping frapnx (AU {\}) x I to subsets of

{skip(q), pop(q), push(q,v) | ¢ € Q,y €' = {L}}

The bottom symbol appears only at the bottom of the stacksanehier popped thus for ajl ¢ € Q and
a € A, it holds thatpop(¢') ¢ d(q, a, L).

The pushdown automatad is deterministicif for all ¢ € Q, a € AandZ € T, the seti(q,a, Z)
contains at most one element; moreover if for seme @ andZ € T, 4(q, A, Z) is non-empty then for
all a € A the set(q, a, Z) is empty.

If o € I't describes the pushdown store content,rthetmost symboWill be assumed to ben “top”
of the store A configuration of the pushdown automatdris a pair(q, o) whereq € @ ando € I'*.
Fora € AU{\},c eI andZ €I

if (skip(q'))isind(q,a,Z), then we writea : (q,0.2) — 4 (¢',0.2);
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if (pop(q'))isind(q,a,Z), then we writen : (¢,0.2) — 4 (¢, 0);
if (push(q’,v))isind(q,a,Z), then we writen : (¢,0.Z) — 4 (¢',0.Z.7).

% is the transitive and reflexive closureref4. (The subscripi will be omitted whenever the meaning
remains clear).

Letz = ajaz...a, be afinite word overd. A finite sequence of configurations= (g;, vi)1<i<p IS
called a run of4 on z, starting in configuratioriq, ), iff:

1 (C]h%) = (q,r}/)
2. foreachi, 1 <i < (p—1), there exist$; € AU {\} satisfyingb; : (¢, Vi) — 4 (¢i+1,7Vi+1)
3. a1a ...0an = b1b2 .. .bp_1

Arunr of A onz, starting in configuratiotg;,, L), will be simply called “a run of4 onz”.

Letz = ajasz...a, ... be anw-word overA. An infinite sequence of configuratioms= (g;,;)i>1 IS
called a run of4 onz, starting in configuratioriq, ), iff:

1 (C]h%) = (q,r}/)
2. for eachi > 1, there exist$; € A U {\} satisfyingb; : (¢i,v:) —a (qi+1, Vi+1)

3. either ajas...a, ... =biby... b, ...
or biby...b,...is afinite prefix of ajas...ay, ...

The runr is said to be complete whenas ... a, ... = biby... b, ...
A complete run- of A on z, starting in configuratiorig;,,, L), will be simply called “a run of4 onz”.

If the pushdown automatad is equipped with a set of final statésC @,
the finitary languageccepted by(A, F) is :

LI (A, F) = {z € A*| there exists a run = (g;,7;)1<i<p Of A onz such thay, € F}

The classC F'L of context free languagés the class of finitary languages which are accepted by push-
down automata by final states.

Notice that other accepting conditions by PDA have been shtovbe equivalent to the acceptance con-
dition by final states. Let us citd|[1]: (a) acceptance by ®§refrage, (b) acceptance by final states and
empty storage, (c) acceptance by topmost stack letter,cpsance by final states and topmost stack
letter.

The classDCF L of deterministic context free languagesthe class of finitary languages which are
accepted by deterministic pushdown automata (DPDA) by §itzdés.

Notice that for DPDA, acceptance by final states is not edginao acceptance by empty storage: this
is due to the fact that a language accepted by a DPDA by emptyget must berefix-freewhile this is

not necessary in the case of acceptance by final sfates [1].
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Thew-languageBiichi accepted by A, F) is :
L(A,F) = {x € A¥ | there exists a run of A onz such thatin(r) N F # 0}

wherelIn(r) is the set of all states entered infinitely often during run

If instead the pushdown automatohis equipped with a set of accepting sets of stafes. 29, the
w-languageMuller accepted by A, F) is :

L(A,F) = {z € A¥ | there exists a run of A onx such thatin(r) € F}

The classC F'L,, of context free w-languagess the class ofv-languages which are Biichi or Muller
accepted by pushdown automata.

Another usual acceptance condition éawords is the parity condition. In that case a pushdown aatom
ton A= (Q,T', A, L, qn, ) is equipped with a functionol from @ to a finite set of color€’ C N. The
w-language accepted By, col) is:

L(A,col) = {x € A* | there exists a run of A onx such thatsc(r) is even}

wheresc(r) is the smallest color appearing infinitely often in the run

It is easy to see that a Bichi acceptance condition can bessgd as a parity acceptance condition
which itself can be expressed as a Muller condition.

Thus the class af-languages which are accepted by pushdown automata withta @eceptance con-
dition is still the class”' FL,,.

Consider nowdeterministicpushdown automata. Wl is a deterministic pushdown automaton, then for
everyo € A%, there exists at most one rurof A on o determined by the starting configuration. The
pushdown automaton has the continuity property iff for gvee A, there exists a unique run gf on

o and this run is complete. Itis shown i} [8] that eaclanguage accepted by a deterministic Biichi (re-
spectively, Muller) pushdown automaton can be accepteddaterministic Blichi (respectively, Muller)
pushdown automaton with the continuity property. The sanvefpwvorks in the case of deterministic
pushdown automata with parity acceptance condition.

The class ofu-languages accepted by deterministic Blichi pushdowmaatiis a strict subclass of the
classDCF'L,, of w-languages accepted by deterministic pushdown autométeaviiluller condition.
One can easily show thd@C F'L,, is also the class ab-languages accepted by DPDA with a parity
acceptance condition.

Eachw -language inDCF'L,, can be accepted by a deterministic pushdown autontseimg the con-
tinuity propertywith parity (or Muller) acceptance condition. One can thieovg that the clas®CF L,,

is closed under complementation.

The notion of ambiguity for context free-languages has been firstly studied[in [10]. A context fsee
language is non ambiguous iff it is accepted by a Biichi orldfwushdown automaton such that every
w-word on the input alphabet has at most one accepting ruricé\tbtat we consider here that two runs
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are equal iff they go through the same infinite sequence dfgumationsand \-transitions occur at the
same steps of the computations.

The classN A — CF'L,, is the class of non ambiguous context fee¢anguages.

The inclusionDCFL,, € NA— CFL,, will be useful in the sequel. We shall denégte— NA—CFL,,
the class of complements of non ambiguous contextdrésnguages.

2.2. Pushdown games

Recall first that pushdown procesway be viewed as a PDA without input alphabet and initialestaAt
pushdown process is a 4-tupfe= (Q,T', L,d), whereQ is a finite set of stateg; is a finite pushdown
alphabet,L is the bottom of stack symbol, aids the transition relation which is a mapping frapx I"
to subsets of

{skip(q), pop(q), push(q,v) | ¢ € Q,y €T = {L}}

Configurations of a pushdown process are defined as for PDAnfguration of the pushdown process
P is a pair(q, o) whereqg € Q ando € T'*.

To a pushdown proce$3 = (Q,T', L, ¢) is naturally associated a pushdown grépk- (V, —) which is
a directed graph. The set of verticEsis the set of configurations . The edge relatior- is defined
as follows:(q,0) — (¢, o’) iff the configuration(q’, o) can be reached in one transition®ffrom the
configuration(q, o).

We shall consider in the sequel infinite games between twemanamed Eve and Adam on such push-
down graphs.

So we shall assume that the gebf states of a pushdown process is partitioned in two@etandQ 4.

A configuration(q, o) isin Vg iff ¢isin Qg and itis inVy iff ¢ isin Q4 so(Vg, Vy4) is a partition of
the set of configuration¥'.

The game graplVg, V4, —) is called gpushdown game graph

A play from a vertexv; of this graph is defined as follows. #f € Vg, Eve chooses a vertex such that

v1 — vg; otherwise Adam chooses such a vertex. If there is no sudbxver the play stops. Otherwise
the play may continue. lf, € Vg, Eve chooses a vertex such that, — v3; otherwise Adam chooses
such a vertex. If there is no such vertexthe play stops. Otherwise the play continues in the same way.
So a play starting from the vertex is afinite or infinitesequence of verticag v,vs . . . such that for all

iv; — viy1. We may assume, as ih [19] 20], that in fact all plays are iefini

A winning conditionfor Eve is a sef2 C V“. An infinite two-player pushdown game is a 4-tuple
(Vi,Va,—,Q), where(Vg, V4, —) is a pushdown game graph aftdC V¢ is a winning condition for
Eve.

In a pushdown game equipped with the winning condifipicve wins a playvavs . . . iff vivgvs ... €

Q.

A strategyfor Eve is a partial functionf : V*.Vp — V such that, for alle € V* andv € Vg,

v — f(z.w).

Eve uses the strategyin a playvivevs . . . iff for all v; € Vi, vip1 = f(vive ... v;).



Olivier Finkel/ On Winning Conditions of High Borel Compigxn Pushdown Games 7

A strategyf is awinning strategyfor Eve from some position; iff Eve wins all plays starting from,
and during which she uses the stratggy

A vertexv € V is awinning positionfor Eve iff she has a winning strategy from it.

The notions of winning strategy and winning position arertgdifor the other player Adam in a similar
way.

The set of winning positions for Eve and Adam will be respedyi denoted byiVy andWy.

2.3.  Winning condition 4,5 4, 54,41

We first recall the definition ob-languages in the formk(A; &> ... > A, > A,,+1) which are used in
(L9, 23] to define the winning condition® 4, >4, >4, -

We shall need the notion of limit of an infinite sequence ottéimvords over some finite alphahét
Let then(5,,),>0 be an infinite sequence of words € A*. The finiteor infinite word lim,,¢,, 3, iS
determined by the set of its (finite) prefixes: foraih A*,

v C limpey, By < INVp >n Bp[lv|] = v.

Letnow A = (Q,I', A, L, qin,6) be a pushdown automaton reading words over the alphalaeid let
a € A“. The pushdown stack o is said to bestrictly unboundediuring a run- = (g¢;, vi)i>1 of A on
aiff limy,>1 5, is infinite.

We define noww-languages.(A; > ... > A, > A,1) in a slightly more general case than [n][20],
because this will be useful in the next section. Notice thdRl], thesev-languages are only defined
in the case wherely, ..., A,, arereal-time deterministic pushdown automata, adg. ; is areal-time
deterministic pushdown automaton equipped with a parity Biichi acceptance condition.

Let n be an integer> 0 and A;, As, ... A,, be some deterministic pushdown automata (in the case
n = 0 there are not any such automata).

Let (A,,+1,C) be a pushdown automaton equipped with a Buchi or a paritymance condition.

The input alphabet ofl; is denotedd and we assume that, for each integer [1, n], the input alphabet

of A, is the stack alphabet of;.

We define inductively the-languagel(A; > ... > A, > A, 1) C A by:

1. fn=0 LA >...0> A, > Apt1) = L(An+1,C) is thew-language accepted by, with
acceptance conditiof.

2. fn>0,L(A1>...> A, > A1) is the set ofv-wordsa € A“ such that:

e When4, readsy, the stack of4; is strictly unbounded hence the sequence of stack contents
has an infinite limito; .

° aleL(AQD...DAnD.AnH).

Let now (Vg, V4, —) be a pushdown game graph associated with a pushdown prBceAs infinite
play vivaus . .., wherev; = (g;, i), isinthe sef) 4, b A, 4,4, iff:
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1. The pushdown stack @ is strictly unboundedluring the play, i.elim,,>1 v, is infinite, and

2. limy>1 v, € L(A1 > ... > Ay > Apya).

3. Classe<,(A)

3.1. Classe£, (A) and context freew-languages

For each integer. > 0 and each finite alphabet the classC,,(4) is defined in [2D] as the class
of w-languages in the fornk(A; > ... > A, > A,4+1), where A, ..., A,, arereal-time determin-
istic pushdown automata, the input alphabet4f being A, and A, is areal-time deterministic
pushdown automaton equipped with a parity acceptance tiomdilt is easy to see that we obtain the
same clas€,,(A) if we restrict the definition to the case ifal-time deterministic pushdown automata
A1, ..., An, Ani1, having thecontinuity property

We shall denoteC)) (A) the class obtained in the same way except that the detetimipisshdown au-
tomataA,, ..., A,, A,1, having still the continuity property, may hawetransitions, i.e. may be non
real time.

In the sequel of this paper when we consider languages imthef(A; > ...> A, > A, 1), we shall
always implicitely assume that the pushdown autorvdta . . , A,,, A,,+1, have thecontinuity property
and that, for each integérc [1, n], the input alphabet afl;,  is the stack alphabet of;.

In order to prove that classé,(A), C)(A), are included in the class of context fredanguages we
first state the following lemma.

Lemma 3.1. Let A; = (Q1,T1, A1, 11,44, 01) be a deterministic pushdown automaton afsl =
(Q2,T'9,T1, Lo, ¢2,52) be a pushdown automaton equipped with a set of final sfatesQ,. Then the
w-languagel(.A; > A) is a context freev-language.

Proof. Let A; = (Q1,T1, Ay, L1, qé, 1) be a deterministic pushdown automaton ahd= (Q2, ', I'1,
1o, q%, d2) be a pushdown automaton equipped with a set of final statesq)s.

Recall that anv-word o € A isin L(A; > Ay) iff:

e WhenA; readsqa, the stack ofA; is strictly unbounded hence the sequence of stack contasts h
an infinite limit o;.

® (o € L(.AQ,F).

We can decompose the reading ofwamword o € L(A; > Ay) by the pushdown automatod#; in the
following way.

When readingy, A; goes through the infinite sequence of configurationsy;):>1. The infinite se-
quence of stack contents;);>1 has limita; thus for each integef > 1, there is a smallest integer;

such that, for all integers> n;, a1 [j] = vi[j].
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The worda can then be decomposed in the form
a=01.02...0p ...
where for all integerg > 1, 0; € A7 and
0j t (any> ald]) =2y (Gngyr> i + 1)) = (@40, 0 li].01(G + 1))

Notice thatn; = 1, ¢1 = ¢3 anda;[1] = L henceo : (g3, L1) =%, (gny, 1[2]).

Let now, for eacly, ¢’ € Q1 anda, b € Ty, the language, » 4.5 be the set of words € A7 such that:

o : (g,a) —%, (¢';a.b). This language of finite words ovet; is accepted by the pushdown automaton
A, with the following modifications: the initial configuratias (¢, «) and the acceptance is by final state
¢’ and by final stack content.b. It is easy to see that this language is also accepted by ardeistic
pushdown automaton by final states so it is in the clag&'L.

Then each word ; belongs to the deterministic context free language

ﬁ(an,an+17a1(j),a1(j+1)) - {U € A)lk ’ 0. ((qnjval(j)) '—>f41 (Qle+17a1(j)'a1(j + 1))}

In order to describe the-languagelL(.A; > As) from thew-languageL(.As, F') and the deterministic
context free languages, ; 4.1, for g, ¢ € Q1 anda,b € 'y, we now recall the notion of substitution.

A substitutionis a mappingf : ¥ — 2", whereX andI are two finite alphabets. & = {a;,...,a,},
then for all integers € [1;n], f(a;) = L; is a finitary language over the alphalbet
Now this mapping is extended in the usual manner to finite wofdr all lettersa;,,...,a;, € %,

flag, ...ai,) = f(a;,) ... f(ai,), and to finitary languages C ¥*: f(L) = Uzerf(z).
If for each lettera € X, the languagé (a) does not contain the empty word, then the substitution & sai
to be \-free and the mapping may be extended to-words:

and to w-languaged. C ¥“ by settingf (L) = Uzer f(z) C .

If the substitution is noh-free we can defing (L) in the same way fol. C 3¢ but this timef(L) C
I*urv, i.e. f(L) may contain finiteor infinite words.

The substitutionf is said to be a context free substitution iff for alle X the finitary languagg (a) is
context free.

Recall that Cohen and Gold proved [ih [7] thatlifis a context freev-language and is a context free
substitution thery (L) N T and f (L) N T are context free.

We define now a new alphabet
A ={L(¢.¢,a.b) | ¢, € Q1 anda,b € T'1}
and we consider the substitutién: I'; — 22 defined, for alb € T'y, by:

h(b) = {L(¢,q',a,b) | ¢,¢' € Q1 anda € T';}
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Applying this substitution to the-languageL (A, F') C I'Y, we geth(L(Asz, F)). The substitutiorn
is \-free thush(L(As, F')) is aw-language oveA. Moreover for eaclh € T'; the seth(b) is finite hence
context free. Thug(L(As, F')) C A¥ is a context freev-language because( As, F') is a context free
w-language and the substitutiéns a context free substitution.

Let now R C A¥ be thew-language defined as follows. Amword 2 € R has its first letter in the set
{L(g},q'sL1,b) | ¢ € Q1 andb € Ty}, and each letteE(q, ¢, a,b), for ¢,¢' € Q1 anda,b € T'y,inx

is followed by a letter in the sdtL(q’, ¢",b,¢) | ¢’ € Q1 andc € Ty }.

Thew-languageR is regular thusi(L(Aq, F)) N R C A% is a context freev-language because the class
CFL, is closed under intersection with regulalanguages[]7].

Consider now the substitutid® : A — 241 defined, for all letter.(q, ¢’, a,b) € A, by©(L(q, ¢, a,b)) =
L ) The substitutior® is context free thus
O[h(L(As, F)) N R] N AY

is a context freev-language and so is;.( O[h(L(Az, F)) N RN AY ). By construction thiso-language
is L(.Al > ./42) ]

9,9’ ,a,b

We can in fact obtain a refined result if the languddels, F') is non ambiguous.

Lemma3.2. Let A; = (Q1,T1, A1, 11,¢4,01) be a deterministic pushdown automaton afg =
(Q2,T2,T1, La,¢3,52) be a pushdown automaton equipped with a set of final states Q». If the
w-languagel Az, F') is non ambiguous theh(A; > As) € NA — CFL,,.

Proof. LetA; = (Q1,T'1, 41, L1, 44, 1) be adeterministic pushdown automaton atd= (Q9, ', Ty,
19,¢2,52) be a pushdown automaton equipped with a set of final sfatesQs.

We assume thal.(. Ay, F') is non ambiguous so we can assume, without loss of genertiay the
pushdown automatods itself is non ambiguous.

We are going to explain informally the construction of a nambiguous Biichi pushdown automatgn
accepting thev-languagel (A; > As).

We refer now to the proof of the preceding lemma. We have densd the reading of an-word
a € L(A; > As) by A;, and we have shown that the wakdtan then be decomposed in the form

Q4 =01.02...0p...
where for all integerg > 1, o; belongs to the deterministic context free language

Loty s G +1) = {0 € AT 102 (G 01(7)) 2%, (@ 01 ()01 + 1))

We can see that the integets were defined in a unique way. However there may exist seveaird-
positions of thev-word « into words of languages ; ¢ 4.4)-

In order to ensure a uniqgue decomposition we are going tatslignodify the definition of these lan-
guages.

For eachy, ¢’ € Q, anda,b € T'y, the languageé{ is the set of words € A} such that:

4,9’ ,a,b)
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(@ o:(g,a) =%, (¢,a.b) and

(b) If for someo’ C o ands € Q, o’ : (g,a) —7, (s,a.b) then there is a word € A} and a state
t € Q,suchthav’.u C o andu : (s,a.b) =% (t,a).

(c) If there is a run(g;, v;)1<i<p Of A1 on o such that(gi,v1) = (¢,a) and(gp,vp) = (s,a.b) for
somes € @, s # ¢, then either there is an integgef < p such that(g;, v;)1<i<, iS a run of
Aiono and (g, vy) = (¢';a.b) or it holds that) : (s,a.b) —% (s',a) for somes’ € @ and
A (s a) =7, (4 ab).

It is easy to see that the languaddg , . are also in the clas®CFL and that, for eacly, ¢’ €
@)1 anda,b € T'y, it holds thaﬂ/[(%q/’a’b) - ﬁ(q,q/,a,b)-

We can see that, in the above decompositioa o;.05 ... 0, ... of thew-word «, for all integersj > 1,
the wordo; belongs in fact to the deterministic context free Iangdaggj 1501 (), (G4+1))

The rest of the proof of Lemnfa 8.1 can be pursued, replacmguiagesC , , ..») by languages( , ,/ o1)-

But now we have a unique decompositionnoin the form

!/

/ /

where for all integerg > 1, the wordo—;. belongs to some Ianguag%i,tj,aj,bi) satisfying: (1)s; = ¢{,
a; = 14, (2) for allintegersj > 1,t; = s;4+1 andb; = a;j41.

This unique decomposition is crucial in the constructiothef non ambiguous Biichi PDA accepting
L(A; > Az). We shall explain informally the behaviour of this autonmato

For eachg,¢’ € Qpanda,b € T'y, the language((, , .5 iS accepted by a deterministic pushdown
automaton3(¢:7-%b) whose stack alphabet is denoté@-4-*? . We can assume that all these alphabets
are disjoint and that they are also disjoint frdi, the stack alphabet off;. The stack alphabet oft

will be
M =r,u U r(a.4",a.b)
q¢,9'€Q1 and a,bel

When reading amw-word o« € L(A; > As) the pushdown automatad will guess, using the non
determinism, theiniqgue decomposition ofv in the form

/

!/ /

where for all integerg > 1, the wordo—;- belongs to some languagg, . ;. 4, »,) satisfying: (1)s; = @,
a; = 14, (2) for allintegersj > 1,t; = s;4+1 andb; = a;j41.
In addition.A will simulate the reading of the-word a;; = ajasas . .. by the PDAA,.

During a run ofA the stack content is always a word in the fodm..v where L is the bottom symbol
of A, u € (T'1 — {L})* andv is in (I'(@:4%Y))* for someg, ¢’ € Q; anda,b € I';.

After having read the initial segment.o; ... 0} of a, the content of the stack ofl is equal to the
content of the stack ofl, after having readas ... a;.
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Then A guesses that the next word in the decomposition belongs to SOMe&/(s. ., ¢, a;41,b;51)- It
uses the stack alphabBtsi+1-ti+1.95+1:bi+1) on the top of the stack to simulate the readingrg)ﬂ[1 by
Blsi+titnai+1,b+1)  Then when it has guessed that it has completely read theaiyqu it erases letters

of D(si+1ti+1.0541.041) from the stack, and simulates the reading of the letfer by As, and so on.
A Biichi acceptance condition is then used to simulate tbeeance ofv; by As.

The Buchi PDA( A2, F') is non ambiguous and the above cited decompositiamisfunique so there is
a unique accepting run of the Buchi PDAon a.
Finally we have proved thdi(A; > As) € NA — CFL,,. O

Proposition 3.3. Letn be an integep 1, A1, Ao, ... A,, be some deterministic pushdown automata and
(An+1,C) be a pushdown automaton equipped with a Biichi acceptameiitiom. The input alphabet of
A, is denoted4 and we assume that, for each integer [1, n], the input alphabet afl;; is the stack
alphabet of4;. ThenL(A; > ... > A, > A, 41) € CFL,. Moreover if L(A,,+1,C) is non ambiguous
thenL(A; > ... A, > A1) € NA—CFL,,.

Proof. We reason by induction on the integer
Forn = 1 the result is stated in the above Lemrha$ 3.1[arid 3.2.

Assume now that the result is true for some integer 1.

Let Ay, Ag, ... A,, A,4+1, be some deterministic pushdown automata @Ad,»,C) be a pushdown
automaton equipped with a Buchi acceptance condition thaththe languagé,(A; > ... > A, 41 >
Ani2) C A% is well defined.

By induction hypothesis the languagéA,>...> A, 1> A,,42) is a context freev-language accepted
by a Buchi pushdown automatdml, F).

But by definition of the languagé(A; > ... > A, 11 > A,42) it holds that

L(Al >...>A > An+2) = L(.Al > .A)

thus Lemmd 3]1 implies thdt(A; > ... > Ay41 > Ayi0) € CFL,,.

Assume now thaL(A,1,C) is non ambiguous. Reasoning as above but applying Lepnha&eaid
of Lemma[3.l we infer thak (A; > ... > Ap 41 > Apy2) iSiNNA — CFL,,. O

In particular, Propositiop 3.3 implies the following resul
Corollary 3.4. For each integer > 0, the following inclusions hold:
Cn(A) CCH(A) CNA-CFL,

We shall later get a stronger result (see Corollary 3.8) ftbenstudy of closure properties of classes
Cn(A), CA(A).
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3.2. Closure properties of classe§,,(A), CN(A)

We first state the following lemma.

Lemma 3.5. The classC; (A) is closed under complementation.

Proof. LetA; = (Q1,T1, 41, 11,44, 61) be adeterministic pushdown automaton édd = (Q2, T2, 'y,
L9,¢2,82), coly) be a deterministic pushdown automaton equipped with aypaciteptance condition.
Recall that anv-word o € AY is in L(A; > Ap) iff: when A; readsa, the stack ofA; is strictly
unbounded and the sequence of stack contents has an infimiter] € L(.Az, cols).

Thus anw-word o € AY is in the complement oL (A; > A») iff one of the two following conditions
holds:

(1) WhenA; readsa, the stack of4; is strictly unbounded and the limit; of stack contents is in the
complement of(.As, cols).

(2) WhenA; reads, the stack of4; is not strictly unbounded

The classDCF'L,, is closed under complementation thus the complemerii(gfs, cols) is equal to
L(As, cols), for some deterministic pushdown automatdg equipped with a parity acceptance condi-
tion.

The languagd.(A; > As3) is the set ofv-wordsa € AY such that, whemd,; readsa, the stack of4;

is strictly unbounded and the limit; of stack contents is i (As, cols). So we see that, in order to get
the complement of.(A; > Ay) we have to add td.(A; > A3) the setB of all w-wordsa € A{ such
that, whenA; readsu, the stack ofA; is not strictly unbounded

To do this we are going first to modify the automatdn in such a way that, when readingwords in
B, the stack will bestrictly unbounded

We now explain informally the behaviour of the new pushdowtomatonA). The stack alphabet of}
isT'; UT}, wherel} = {y/ | v € T'1 } is just a copy ofl";, such thaf’; N T} = 0.

The essential idea is that] will simulate .4, but it has the additional following behaviour. Using
transitions it pushes in the stack lettersIgf always keeping the information about the content of the
stack ofA;.

More precisely, if at some step while readinguafwvord o € A by A; the stack content is a finite word
Y = 1,7, -.-7;, Where eachy; is a letter ofl’;, then the corresponding stack content4dfwill be in
the form%.y;”wg.y;’” . .yj.y;"j, wheren,no, ..., n;, are positive integers.

If when A; readsa the stack is strictly unbounded and the limit of the stackieots is anv-word o,
then whenA reads the same wordits stack will be also strictly unbounded and the limit of stack
contents will be aw-word o} . Moreover it will hold that(«} /T"}) = a1, where(« /T is the worde/
from which are removed all letters Iry.

On the other hand if wherl; readsa the stackis not strictly unboundedhe limit of the stack contents
being a finite wordy;, then when4 reads the same wordits stackwill be strictly unboundednd its
limit will be an w-word o) such that o} /T)) = «;.
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Notice that the stack content of] will always be in the formL.(L})* or u.Z.(Z')" for someu €
14.(TyUTY))*, Z € T'y, Z' being the copy of in T}, andn > 0 being an integer.

The behaviour of the deterministic pushdown automat¢nreading anv-word, will be the same as the
behaviour of4; but with the following modifications.

(a) Between any two transitions g, is added a\-transition of.A} which simply pushes in the stack,
when the topmost stack letter @f) is Z € I'; or Z’ € T}, an additional lette?’.

(b) Assume now that at some step of the readingvdfy 4] and.4;, and after the execution of a
A-transition as explained in above itgfa), the topmost stack letter of] is some lettetZ’ € T'.
Recall that the stack content gf; will be in the form L,.(L))™ (if Z' = 1)) oru.Z.(Z")™ for
someu € 11.(I't UT))*, Z € 'y, Z’' being the copy o in I}, andn > 1.

Notice that the corresponding stack contentafwill be L; or (u/T'}).Z.

Suppose now thatl; reads a lettet: € A, or executes a-transition.

If it pushes lettefl" in the stack thepd] would push the same lett&tin its stack.

If .4; would skip (its topmost stack letter beitg), then.4] also skips.

But if A4, reading the letten € A; or executing a\-transition, the topmost stack letter beifg
would pop the letteZ, then A} pops the whole segmetit.(Z’)" at the top of the stack, using
A-transitions.

Notice that we do not detail here the set of statesibf It contains the set of stat€3; of .4; and is
sufficiently enriched, to achieve the goal of simulating bigdaviour of.A;, adding the modifications
cited above.

Assume now that whenl; readsc its stack is strictly unbounded and the limit of the stackteats is
anw-word ;. Then whenA reads the same wordits stack is also strictly unbounded and the limit of
the stack contents will be asrword o) such thato) /T) = «;.

On the other hand if whenl; readsa the stackis not strictly unboundedthen the limit of its stack
contents is a finite word; = a;(1).a1(2) ... ai(|aa]).

In that case whep!) reads the same wordl its stackwill be strictly unboundednd its limit will be an
w-word o in the form

o = an(1)-(aa (1)) a1 (2).(1 (2))™ .. (e (] = 1Y)"en1=" (e (fe ). (eur (o ')

for some integersiy, na, . . ., njq,|—1. In particular it will hold that(a} /T) = a.

It is now easy to modify the pushdown automatdp in such a way that we obtain a deterministic
pushdown automatod; equipped with parity acceptance conditias;, such that the input alphabet of
A% isTUTY, and anw-word o € (I'; UTY)¥ is in L(Aj, coll) iff [ (o) /T)) is afinite word o /)

is infinite and is inL(.As, cols) ].

Thus thew-languageL (A} > Aj) is the complement of (A; > A2) and this ends the proof. O

Proposition 3.6. For each integen > 0, the classC) (A) is closed under complementation.
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Proof. We now reason by induction on the integep> 0.
Forn = 0, Cj(A) = DCFL, is known to be closed under complementatior) [21].
Forn = 1, C{(A) is closed under complementation by Lemma 3.5.

Assume now that we have proved that for every positive imtége n the cIassCﬁ(A) is closed under
complementation.

LetA;, A, ... A,, A,+1, be some deterministic pushdown automata @gl, 2, col) be a deterministic
pushdown automaton equipped with a parity acceptance timmduch that the languadeg(A; > ... >
.An+1 > .An+2) - Ai) is well defined.

An w-word o € AY is in the complement of.(A; > ... > A1 > A,42) iff one the two following
conditions holds:

(1) WhenA; readsa, the stack of4; is strictly unbounded and the limit; of stack contents is in the
complement ofL (A > ... > Ay 1 > Apia)

(2) WhenA; readsa, the stack of4, is not strictly unbounded

By induction hypothesis the complement of thdanguagel (A > ... > A, 11 B> A,p2) iS in CA(A)
soitisinthe formL(Ay > ...> Al > Al ).

We can do similar modifications as in the case= 1, replacing.A;, whose stack alphabet I3, by
another deterministic pushdown automatéy whose alphabet i, U I’} wherel; is a copy ofl';.

If when A; readsa the limit of its stack contents is a finite or infinite word then whenA reads the
same wordy the limit of its stack contents is anrword o} such that} /T) = a4.

Itis now easy to modify the languadg.A5 > ... > A;, ;> A ,) in such a way that we get a language
LAy > ...> Al > Al ,) of w-words overT'; U T containing anu-word o} if and only if: either
(o /T) is afinite word or(a /T") belongs to thes-languagel (A, > ... > A, > Al ).

Thus it holds that (A} > A5 > ...> A7 > A7) is the complement of (A > ... > Ay 1 > Ay o).
U

Remark 3.7. In[L9, 0] Serre defined winning conditiofsy, i~...> 4,4, , fOr pushdown games using
languages in classés,(A). He then showed that these winning conditions lead to decigiocedures
to decide the winner in pushdown games. The question nowallgtarises whether the proofs can be
extended to winning conditions defined in the same way framsselsC)\(A). Then the closure under
complementation of these classes would be relevant frommre gmint of view. On the other hand this
closure property provides also some more information abtasgtsesC,,(A), given by next corollary,
which is already important from a game point of view.

Corollary 3.8. For each integer > 0, the following inclusions hold:

Cn(A) CC)(A) CNA-CFL, (| Co— NA-CFL,
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Proof. It follows directly from Corollary[3:4 and Propositign B3.6. O
We now prove that the class€s,(A), C)\(A), are not closed under other boolean operations.

Proposition 3.9. For each integen > 0, the classe€,,(A) andC)\(A) are neither closed under union
nor under intersection.

Proof. Notice first that for each integer > 0, C,,(A) C C,41(A4) andC)(A4) € C),(A).

Thew-languaged.; = {a".b™.cP.d* | n,m,p > 1andn = m} andLy = {a".b™.cP.d* | n,m,p >

1 andm = p}, over the alphabetl = {a, b, ¢,d}, are nDCFL,, and they are in all class&s,(A) and
C)(A). But their intersection i€; N Ly = {a"™.b".c".d* | n > 1}. Thisw-language is not context free
because the finitary language™.b™.c" | n > 1} is not context free[J1] and an-language in the form
L.d*, with L C {a,b,c}*, is context free iff the finitary language is context free[[7]. Thus.; N Ly
cannot be in any clasg, (A) andC))(A) because these classes are included .

On the other hand consider thelanguageslLs = {a".b".c?.d* | n,m,p > landn # m} and
Ly = {a".b™.cP.d” | n,m,p > 1andm # p}. Thesew-languages are iWC'F'L,, and in every class
C,(A) or C)(A). If the languagd.3 U L, was in some clasg,,(A) or C)(A), then by Propositiop 3.6
its complement; would be also ifC)(A) and it would be a context free-language. This would imply
that Ls Na™.bT.cT.d¥ is context free because the cla&ss' L, is closed under intersection with regular
w-languages. Buts; Nat.b".c™.d¥ = {a™.b".c".d* | n > 1} is not context free thus for each integer
n > 0, the classe€,,(A), C)(A) are not closed under union.

Notice that the unionJ,,>oC)(A) is also neither closed under intersection nor under union. O

4. Winning sets in a pushdown game

Recall that it is proved if[19] that every deterministic o free language may occur as a winning set
for Eve in a pushdown game equipped with a winning conditiothe form{2z, wherel5 is a determin-
istic pushdown automaton.

Serre asked also whether there exists a pushdown game edwiiin a winning condition in the form
Qa>..>A.>4,., SUCh that the set of winning positions for Eve is not a deteistic context free lan-
guage.

We are going to prove in this section that such pushdown gaxist giving examples of winning sets
which are non-deterministic non-ambiguous context fregul@ages, or inherently ambiguous context
free languages, or even non context free languages.

The exact form of the winning sets remains open. Serre comt in [18] that one could prove that,
for n > 0, the winning sets for Eve in pushdown games equipped withnaiwg condition in the form
Q.. >A.>A4,41, fOrm a class of languages at level and that forn = 0 the winning sets could be
deterministic context free languages.

So we think that, in order to better understand what is theteiwam of the winning sets, it is useful to
see different examples of winning sets of different comitilex, and not only of the greatest complexity
we have got, i.e. a non context free language.
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Moreover the techniques, involving Duparc’s eraser operatsed to prove Propositign .3 below, are
interesting by their own and are useful to understand hovgémees go on.

In order to present the first example we begin by recallingdperationz — x* which has been
introduced by Duparc in his study of the Wadge hierar¢hyvi8iere it works also on infinite words, and
is also considered by Serre [n]19].

For afinite wordu € (X U {«})*, whereX is a finite alphabet, the finite word" is inductively defined
by:

AT =,

and for a finite wordw € (X U {«})*:

(u.c) =u“.c,ifcey,

(u. «) = u* with its last letter removed ifu“"| > 0,

e (u. «) " =u"(1)u(2)...u (Ju| = 1)if [u*| >0,
(u. «) = Xif [u“| =0,

Notice that forr € (X U {«})*, z*" denotes the string, once every— occuring inz, used as an eraser,
has been “evaluated” to the back space operation, proaggé&dim left to right insidex. In other words
+*“~ = x from which every interval of the forrfic « 7 (c € X) is removed.

Foralanguag® C ¥*wesetV™ = {z € (RU{«})* |z e V}.

Lemma4.l. Let L = {a".b" | n > 1}. ThenL™ is a non ambiguous context free language which can
not be accepted by ardeterministic pushdown automaton

Proof. Let L be the context free language™.b™ | n > 1}. The languagéd. is a deterministic, hence non
ambiguous, context free language. Thus by Theorem 6.1/60btlie languagd.™ is a non ambiguous
context free language.

It remains to show thak™ can not be accepted by adgterministic pushdown automaton

The idea of the proof is essentially the same as in the pradfttie context free languade™.b" | n >

1} U {a™.b®" | n > 1} can not be accepted by adgterministic pushdown automata can be found

in [[l, Proof of Proposition 5.3] or if [12, Exercise 6.4.4 pa&p1].

Towards a contradiction assume that the languayes accepted by a deterministic pushdown automaton
A. All words o™.b"™, for n > 1, are in the languagé™. Then one could show that there exists a pair
(n, k), with n, k& > 0, such that the accepting configurations.4feadinga™.b” or a"+*.b"*+* are the
same. Consider now the word'.b”. «2" .a.b. It belongs toL™ and the valid computation oft
readinga™.b"™ should be the beginning of the valid computationdfeadinga™.b”. «2" .a.b. Thus the
pushdown automatod would also accepts™*.b" %, «2" 4.b which is clearly not inL.™. O

Lemma 4.2. Let L C X* be a deterministic context free language. Then there exjstshdown process
P =(Q,T,L,0), apartitionQ = Qr U Q 4, two deterministic pushdown automaty, 4., and a state

q € @ such that, in the induced pushdown game equipped with theimgrcondition(2 4, ~ 4,, one has

{u]| (¢q,u) € Wg} = L"™.
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Proof. Let? = ({p,q},T = ¥ U {L,«,#},1,d) be a pushdown process whe¥éas defined by:
push(p,#) € 0(q,c) for all lettersc € ¥ U {_L, «} andpush(p, #) € 6(p, #).

So the pushdown proce$3 is deterministic and its behaviour is very similar to the d@bur of the
pushdown process given in the proof of Proposition 44 df.[20¢an only push the lette# on the top
of a given configuration.

Q = Qg U Q4 is any patrtition of@.

For each configuratiofy, u.c), forc € ¥ U { L, «} andu € T'*, there is a unique infinite play starting
from (¢, u.c), during which the pushdown stack &f is strictly unbounded, and the limit of the stack
contents isu.c.#“.

The deterministic pushdown automat@n reads words over the alphaliét= ¥ U { L, «, #} and its
stack alphabet iF; = X U { 1,}. Its behaviour is described as follows:

Consider first the reading of anword in the form L.u.#“, whereu € (X U {«})*.

After having read the bottom symbadl, the content of its stack is stilL;. Then when the pushdown
automatonA; reads a letter € ¥ it pushes the same letter in the stack. Butif reads the symbot
and the topmost stack symbol is nbf (so it is inX) then it pops the letter at the top of its stack.

So, after having read the initial segmehtu, of 1.u.#*, the stack content ofl; is L;.u*“". Next the
PDA A, pushes a lettet in the stack for each lette¥ read. Thus, whenl; reads thes-word L.u.#%,
its stack is strictly unbounded and the limit of the stackteats isL.u“".#>.

In addition, it is easy to ensure that, whei reads anv-word which is not inL.(X U {«})*.#“ U
1.(3U{«})v, then its stacks not strictly unboundedif there is a letterl after the first letter of the
word or if A; reads a letter ifc U {«} after some lette##, then the stack content remains undefinitely
unchanged.

On the other hand4, is a deterministic pushdown automaton equipped with aypadteptance condi-
tion which accepts the-languagel ;. L.#*.

Consider now a given configuratidg, 1 .u) of the pushdown proced8 for someu € (X U {«, #})*,
the last letter of: being not#. There is a unique infinite play starting from this positidimne stack ofP
is strictly unbounded during this play and the limit of stacktents isL.u.#“.

WhenA; reads thev-word L .u.# its stack is strictly unbounded iff € (X U {«})* and then the limit
of stack contents ig ;.u*“".#~.

Thew-word L1.u*“".#* is accepted by, iff u*~ € L.

Thus the configuratiofg, L.«) is a winning position for Eve in the induced pushdown gameijpmzed
with the winning conditior2 4, ~ 4, , if and only ifu € L™. O

We can now state the following result which follows diredtigm Lemmaq4]1 and 4.2.

Proposition 4.3. There exists a pushdown proce8s= (Q,T', L,J), a partition@ = Qr U Q 4, two
deterministic pushdown automat, A-, and a statg € @ such that, in the induced pushdown game
equipped with the winning conditiof 4, > 4,, the set{u | (¢,u) € Wg} is anon-deterministiacnon
ambiguous context free language.
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Proof. Let L be the languagéa™.b™ | n > 1}. The languagd. is a deterministic context free language,
thus by Lemmd 4]2 there exists a pushdown progess (Q, T, L, §), a partitionQ = Qg U Q 4, two
deterministic pushdown automath , A-, and a stateg € @ such that, in the induced pushdown game
equipped with the winning conditiof 4, 4,, one has{u | (¢,u) € Wg} = L™~. But by Lemmd4]1
L™ is a non ambiguous context free language which can not beteetby anydeterministic pushdown
automaton O

Remark 4.4. In the pushdown game given in the proof of Lemma 4.2, theresanee plays which are
not infinite. However it is easy to find a pushdown game withséi®e winning set for Eve but in which
all plays are infinite. The same remark will hold for pushdogames given in the proofs of the two
following propositions.

We are now going to show that the set of winning positions fax Ean also be an inherently ambiguous
context free language. Recall that it is well known that taeguagel” = {a".b™.c? | n,m,p >
1 and(n = m orm = p)} is an inherently ambiguous context free langualdd, 1, 12].

Proposition 4.5. There exists a pushdown proceBs= (Q,T, L,¢), a partition@Q = Qr U Q4, two
deterministic pushdown automath , A,, and a stateg € @ such that, in the induced pushdown game
equipped with the winning conditiof 4, ~ 4,, the set{u | (¢,u) € Wg} is an inherently ambiguous
context free language.

Proof. Let? = ({q,4¢',¢",p}, T = {L,a,b,¢c,#}, L,5) be a pushdown process whéeres defined by:
{pop(q'), skip(q")} C d(q,c), pop(q') € (¢, c), push(p,#) € (¢, b), push(p,#) € 4(¢",c), and
We setQr = {q} and@Q 4 = {¢, ¢", p}.

Consider now an infinite play from a given configuratign L.u), for u € {a,b, c,#}*. The topmost
stack letter of this initial configuration must be a leiteihen at most two cases may happen.

1. Inthe first one are pushed infinitely many lettgr®n the top of the stack. In this play the stack is
strictly unbounded and the limit of the stack contentd is.#%.

2. In the second case the letteis popped and all next lettersare popped from the top of the stack
until some letteb is on the top of the stack. From this moment infinitely mantelst# are pushed
in the stack. Then the stack is strictly unbounded and thi¢ tifrthe stack contents is.u’.b. 4~
if u = u'.b.c* for some integek > 0. Notice that this second case can only occur i§ in the
formu = «’.b.c* for some integek > 0.

The deterministic pushdown automat@n reads words over the alphabjt , a, b, ¢, #} and its stack
alphabet idy = {Li,a,b,#}.

It is easy to ensure that the stack4f is not strictly unbounded during the reading of.atword which
isnotinW = L.a*U L.a™.bYU Lat.bT.#Y U LaaT.bt.c® U L.a™.bT.ct.#%.

Consider now the reading by, of anw-word which is inI¥/. After having read the bottom symbadal,
the stack content q#l; is still 1. Then it pushes a letter or b each time it reads the corresponding
lettera or b.

Then whenA; reads anv-word in the form L.a“ (respectively, | .a™.b* for n > 1) then its stack is
strictly unbounded and the limit of stack contentd isa“ (respectively,l ;.a™.b%).
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If now A; reads letters# then it pushes them in the stack. In this case the input woinl tise form
L.a™.b™.#%, and the limit of stack contents of; reading thisv-word is _L1.a™.0™.#%.

If A; reads some lettersafter an initial segment in the form.a™.6™ then it pops a letteb for each
letter ¢ read.

If the number ofc is equal to the number df of the input word, then after having read the segment
L.a™.b™.c™ of the input word the stack content gf; is simply 11.a™. Next.4; reads the final seg-
ment#“ and it pushes it in the stack. So the limit of stack contentsipfreading the inputs-word
L.a™.b™.c™ #% is in the formL;.a™.#%

If the number ofc is not equal to the number ofof the input word (the number af being finite or
infinite), then, once this has been checked, the stack domerains unchanged so the stack will not be
strictly unbounded.

One can define a deterministic pushdown automatenequipped with a parity acceptance condition,
which accepts the-language{ L;.a™.b".#* | n > 1} U {L;.a™#* |n > 1}.

We are now going to determine the winning positigps_L.u) of Eve in the induced pushdown game
equipped with the winning conditiof 4, > 4, -

Let (¢, L.u) be a given configuration of the pushdown proc®@sfor someu € {a,b, c, #}*, the last
letter of u beingc. There are one or two infinite plays starting from this positiWhen there are two
such plays, they depend on the first choice of Eve and thei@osit, | .«) is a winning position for Eve
iff one of the two possible infinite plays is winning for her.

In the first play the stack is strictly unbounded and the lihithe stack contents is.u.#%.

There is a second play if = «/.b.c* for some integek > 0. Then in this play the stack is strictly
unbounded and the limit of the stack contents is’.b.#%.

When A; reads thev-word 1 .u.#*, its stack is strictly unbounded iif is in the forma™.0".c™ for
somen, m > 1 (the number of: and ofb in u are equal). Then the limit of stack contentslig.a™.#
and itisinL(Az). SoL.u.#¥ € L(A; > As).

If u =« .b.c* for some integet > 0 and.A; reads thev-word L.u/.b.#4* then the stack ofd; is strictly
unbounded iffu’ is in the forma™.6™~! for somen, m > 1. In this case the limit of stack contents is
L1.a™.b™ #% and it is accepted by, iff n = m > 1.

Thus the configuratiofy, L.u) is a winning position for Eve, with the winning conditiéhy, ~ 4, , if and
only if  is in the inherently ambiguous context free langu&ge- {a™.0"".c’ | n,m,p > 1 and(n =
morm=p)}. O

Proposition 4.6. There exists a pushdown proce8s= (Q,T', L,J), a partition@ = Qr U @4, two
deterministic pushdown automat, A-, and a statg € @ such that, in the induced pushdown game
equipped with the winning conditiof? 4, - 4, , the sef{u | (¢, u) € Wg} is a non context free language.

Proof. We define the pushdown proceBs= (Q,T', L, 4) as in the proof of preceding Propositipn]4.5
except that we set this tim@4 = {¢} andQr = {¢, ¢”, p}. The two deterministic pushdown automata
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A1, Ay, are also defined in the same way.

Consider now a configuration in the forfg, L.a™.0™.cP) for some integers, m,p > 1. There are two
infinite plays starting from this configuration but they degehis time on the first choice tfie second
player Adam

The position(q, L.a™.b".cP) is winning for Eve iff thes@wo infinite playsare won by her. This implies
thatn = m andm = p.

Thus it holds that

{u] (q,u) € Wg} N Latbt.ct = L{a"b".c" |n>1}

This language is not context free because of the well knowm cuntext freeness of the language
{a™.b".c" | n > 1} [fl, [L3].

This implies that the sefu | (¢,u) € Wg} itself is not context free. Indeed otherwise its intersecti
with the rational language..a™.b".c™ would be context free because the clés8 L is closed under
intersection with rational languages. O

Acknowledgements.Thanks to the anonymous referee for useful comments onianimaty version of
this paper.
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