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Abstract. In a recent paper [19, 20] Serre has presented some decidable winning conditions

ΩA1⊲...⊲An⊲An+1
of arbitrarily high finite Borel complexity for games on finite graphs or on push-

down graphs.

We answer in this paper several questions which were raised by Serre in [19, 20].

We study classes Cn(A), defined in [20], and show that these classes are included in the class of

non-ambiguous context free ω-languages. Moreover from the study of a larger class C
λ
n(A) we infer

that the complements of languages in Cn(A) are also non-ambiguous context free ω-languages. We

conclude the study of classes Cn(A) by showing that they are neither closed under union nor under

intersection.

We prove also that there exists pushdown games, equipped with winning conditions in the form

ΩA1⊲A2
, where the winning sets are not deterministic context free languages, giving examples of

winning sets which are non-deterministic non-ambiguous context free languages, inherently am-

biguous context free languages, or even non context free languages.

Keywords: Pushdown automata; infinite two-player games; pushdown games; winning conditions;

Borel complexity; context free ω-languages; closure under boolean operations; set of winning posi-

tions.

1. Introduction

Two-player infinite games have been much studied in set theory and in particular in Descriptive Set The-

ory. Martin’s Theorem states that every Gale Stewart game G(A), where A is a Borel set, is determined,

i.e. that one of the two players has a winning strategy [14].
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In Computer Science, the conditions of a Gale Stewart game may be seen as a specification of a reactive

system, where the two players are respectively a non terminating reactive program and the “environ-

ment”. Then the problem of the synthesis of winning strategies is of great practical interest for the prob-

lem of program synthesis in reactive systems. Büchi-Landweber Theorem states that in a Gale Stewart

game G(A), where A is a regular ω-language, one can decide who is the winner and compute a winning

strategy given by a finite state transducer.

In [23, 16] Thomas asked for an extension of this result to games played on pushdown graphs. Walukiewicz

firstly showed in [25] that one can effectively construct winning strategies in parity games played on

pushdown graphs and that these strategies can be computed by pushdown transducers.

Several authors have then studied pushdown games equipped with other decidable winning conditions,

[4, 5, 17, 11]. Cachat, Duparc and Thomas have presented the first decidable winning condition at the Σ3

level of the Borel hierarchy [6]. Bouquet, Serre and Walukiewicz have studied winning conditions which

are boolean combinations of a Büchi condition and of the unboundedness condition which requires the

stack to be unbounded, [3].

Recently Serre has given a family of decidable winning conditions of arbitrarily high finite Borel rank

[19, 20]. A game between two players Adam and Eve on a pushdown graph, is equipped with a win-

ning condition in the form ΩA1⊲...⊲An⊲An+1
, where A1, . . . ,An are deterministic pushdown automata,

the stack alphabet of Ai being the input alphabet of Ai+1, and An+1 is a deterministic pushdown

automaton with a Büchi or a parity acceptance condition. Then an infinite play is won by Eve iff

during this play the stack is strictly unbounded, that is converges to an infinite word x and its limit

x ∈ L(A1 ⊲ . . . ⊲An ⊲An+1), where L(A1 ⊲ . . . ⊲An ⊲An+1) is an ω-language defined as follows.

A word α0 is in L(A1 ⊲ . . .⊲An ⊲An+1) iff: for all 1 ≤ i ≤ n, when Ai reads αi−1 its stack is strictly

unbounded and the limit of the stack contents is an ω-word αi; and An+1 accepts αn. Serre proved

that for these winning conditions one can decide the winner in a pushdown game and that the winning

strategies are effective.

We solve in this paper several questions which are raised in [19, 20]. We first study the classes Cn(A)
which contain languages in the form L(A1 ⊲ . . .⊲An ⊲An+1), where A is the input alphabet of A1. We

show that these classes are included in the class of non-ambiguous context free ω-languages. Moreover

from the study of a larger class C
λ
n(A) we infer that the complements of languages in Cn(A) are also

non-ambiguous context free ω-languages. We conclude the study of classes Cn(A) by showing that they

are neither closed under union nor under intersection.

For all previously studied decidable winning conditions for pushdown games the set of winning positions

for any player had been shown to be regular. In [19, 20] Serre proved that every deterministic context

free language may occur as a winning set for Eve in a pushdown game equipped with a winning con-

dition in the form ΩB, where B is a deterministic pushdown automaton. The exact nature of these sets

remains open and the question is raised in [19, 20] whether there exists a pushdown game equipped with

a winning condition in the form ΩA1⊲...⊲An⊲An+1
such that the set of winning positions for Eve is not a

deterministic context free language. We give a positive answer to this question, giving examples of win-

ning sets which are non-deterministic non-ambiguous context free languages, or inherently ambiguous

context free languages, or even non context free languages.

The paper is organized as follows. In section 2 we recall definitions and results about pushdown au-

tomata, context free (ω)-languages, pushdown games, and winning conditions in the form ΩA1⊲...⊲An⊲An+1
.

In section 3 are studied the classes Cn(A). Results on sets of winning positions are presented in Section

4.
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2. Recall of previous definitions and results

2.1. Pushdown automata

We assume the reader to be familiar with the theory of formal (ω)-languages [22, 21, 12]. We shall use

usual notations of formal language theory.

When A is a finite alphabet, a non-empty finite word over A is any sequence x = a1 . . . ak , where

ai ∈ A for i = 1, . . . , k , and k is an integer ≥ 1. The length of x is k, denoted by |x|. The empty

word has no letter and is denoted by λ; its length is 0. For x = a1 . . . ak, we write x(i) = ai and

x[i] = x(1) . . . x(i) for i ≤ k and x[0] = λ. A⋆ is the set of finite words (including the empty word) over

A and A+ = A⋆ − {λ}.

The first infinite ordinal is ω. An ω-word over A is an ω-sequence a1 . . . an . . ., where for all integers

i ≥ 1, ai ∈ A. When σ is an ω-word over A, we write σ = σ(1)σ(2) . . . σ(n) . . ., where for all

i, σ(i) ∈ A, and σ[n] = σ(1)σ(2) . . . σ(n) for all n ≥ 1 and σ[0] = λ.

The prefix relation is denoted ⊑: a finite word u is a prefix of a finite word v (respectively, an infinite

word v), denoted u ⊑ v, if and only if there exists a finite word w (respectively, an infinite word w),

such that v = u.w. The set of ω-words over the alphabet A is denoted by Aω. An ω-language over an

alphabet A is a subset of Aω.

In [19, 20] deterministic pushdown automata are defined with two restrictions. It is supposed that there

are no λ-transitions, i.e. the automata are real time. Moreover one can push at most one symbol in the

pushdown stack using a single transition of the automaton.

We now define pushdown automata, keeping this second restriction but allowing the existence of λ-

transitions; and we define also the non deterministic version of pushdown automata.

A pushdown automaton (PDA) is a 6-tuple A = (Q,Γ, A,⊥, qin, δ), where Q is a finite set of states, Γ
is a finite pushdown alphabet, A is a finite input alphabet, ⊥ is the bottom of stack symbol, qin ∈ Q is

the initial state, and δ is the transition relation which is a mapping from Q× (A∪{λ})×Γ to subsets of

{skip(q), pop(q), push(q, γ) | q ∈ Q, γ ∈ Γ − {⊥}}

The bottom symbol appears only at the bottom of the stack and is never popped thus for all q, q′ ∈ Q and

a ∈ A, it holds that pop(q′) /∈ δ(q, a,⊥).

The pushdown automaton A is deterministic if for all q ∈ Q, a ∈ A and Z ∈ Γ, the set δ(q, a, Z)
contains at most one element; moreover if for some q ∈ Q and Z ∈ Γ, δ(q, λ, Z) is non-empty then for

all a ∈ A the set δ(q, a, Z) is empty.

If σ ∈ Γ+ describes the pushdown store content, the rightmost symbol will be assumed to be on “top”

of the store. A configuration of the pushdown automaton A is a pair (q, σ) where q ∈ Q and σ ∈ Γ⋆.

For a ∈ A ∪ {λ}, σ ∈ Γ⋆ and Z ∈ Γ:

if (skip(q′)) is in δ(q, a, Z), then we write a : (q, σ.Z) 7→A (q′, σ.Z);
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if (pop(q′)) is in δ(q, a, Z), then we write a : (q, σ.Z) 7→A (q′, σ);
if (push(q′, γ)) is in δ(q, a, Z), then we write a : (q, σ.Z) 7→A (q′, σ.Z.γ).

7→⋆
A is the transitive and reflexive closure of 7→A. (The subscript A will be omitted whenever the meaning

remains clear).

Let x = a1a2 . . . an be a finite word over A. A finite sequence of configurations r = (qi, γi)1≤i≤p is

called a run of A on x, starting in configuration (q, γ), iff:

1. (q1, γ1) = (q, γ)

2. for each i, 1 ≤ i ≤ (p − 1), there exists bi ∈ A ∪ {λ} satisfying bi : (qi, γi) 7→A (qi+1, γi+1)

3. a1a2 . . . an = b1b2 . . . bp−1

A run r of A on x, starting in configuration (qin,⊥), will be simply called “a run of A on x”.

Let x = a1a2 . . . an . . . be an ω-word over A. An infinite sequence of configurations r = (qi, γi)i≥1 is

called a run of A on x, starting in configuration (q, γ), iff:

1. (q1, γ1) = (q, γ)

2. for each i ≥ 1, there exists bi ∈ A ∪ {λ} satisfying bi : (qi, γi) 7→A (qi+1, γi+1)

3. either a1a2 . . . an . . . = b1b2 . . . bn . . .
or b1b2 . . . bn . . . is a finite prefix of a1a2 . . . an . . .

The run r is said to be complete when a1a2 . . . an . . . = b1b2 . . . bn . . .
A complete run r of A on x, starting in configuration (qin,⊥), will be simply called “a run of A on x”.

If the pushdown automaton A is equipped with a set of final states F ⊆ Q,

the finitary language accepted by (A, F ) is :

Lf (A, F ) = {x ∈ A⋆ | there exists a run r = (qi, γi)1≤i≤p of A on x such that qp ∈ F}

The class CFL of context free languages is the class of finitary languages which are accepted by push-

down automata by final states.

Notice that other accepting conditions by PDA have been shown to be equivalent to the acceptance con-

dition by final states. Let us cite, [1]: (a) acceptance by empty storage, (b) acceptance by final states and

empty storage, (c) acceptance by topmost stack letter, (d) acceptance by final states and topmost stack

letter.

The class DCFL of deterministic context free languages is the class of finitary languages which are

accepted by deterministic pushdown automata (DPDA) by final states.

Notice that for DPDA, acceptance by final states is not equivalent to acceptance by empty storage: this

is due to the fact that a language accepted by a DPDA by empty storage must be prefix-free while this is

not necessary in the case of acceptance by final states [1].
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The ω-language Büchi accepted by (A, F ) is :

L(A, F ) = {x ∈ Aω | there exists a run r of A on x such that In(r) ∩ F 6= ∅}

where In(r) is the set of all states entered infinitely often during run r.

If instead the pushdown automaton A is equipped with a set of accepting sets of states F ⊆ 2Q, the

ω-language Muller accepted by (A,F) is :

L(A,F) = {x ∈ Aω | there exists a run r of A on x such that In(r) ∈ F}

The class CFLω of context free ω-languages is the class of ω-languages which are Büchi or Muller

accepted by pushdown automata.

Another usual acceptance condition for ω-words is the parity condition. In that case a pushdown automa-

ton A = (Q,Γ, A,⊥, qin, δ) is equipped with a function col from Q to a finite set of colors C ⊂ N. The

ω-language accepted by (A, col) is:

L(A, col) = {x ∈ Aω | there exists a run r of A on x such that sc(r) is even }

where sc(r) is the smallest color appearing infinitely often in the run r.

It is easy to see that a Büchi acceptance condition can be expressed as a parity acceptance condition

which itself can be expressed as a Muller condition.

Thus the class of ω-languages which are accepted by pushdown automata with a parity acceptance con-

dition is still the class CFLω.

Consider now deterministic pushdown automata. If A is a deterministic pushdown automaton, then for

every σ ∈ Aω, there exists at most one run r of A on σ determined by the starting configuration. The

pushdown automaton has the continuity property iff for every σ ∈ Aω, there exists a unique run of A on

σ and this run is complete. It is shown in [8] that each ω-language accepted by a deterministic Büchi (re-

spectively, Muller) pushdown automaton can be accepted by a deterministic Büchi (respectively, Muller)

pushdown automaton with the continuity property. The same proof works in the case of deterministic

pushdown automata with parity acceptance condition.

The class of ω-languages accepted by deterministic Büchi pushdown automata is a strict subclass of the

class DCFLω of ω-languages accepted by deterministic pushdown automata with a Muller condition.

One can easily show that DCFLω is also the class of ω-languages accepted by DPDA with a parity

acceptance condition.

Each ω -language in DCFLω can be accepted by a deterministic pushdown automaton having the con-

tinuity property with parity (or Muller) acceptance condition. One can then show that the class DCFLω

is closed under complementation.

The notion of ambiguity for context free ω-languages has been firstly studied in [10]. A context free ω-

language is non ambiguous iff it is accepted by a Büchi or Muller pushdown automaton such that every

ω-word on the input alphabet has at most one accepting run. Notice that we consider here that two runs
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are equal iff they go through the same infinite sequence of configurations and λ-transitions occur at the

same steps of the computations.

The class NA − CFLω is the class of non ambiguous context free ω-languages.

The inclusion DCFLω ⊆ NA−CFLω will be useful in the sequel. We shall denote Co−NA−CFLω

the class of complements of non ambiguous context free ω-languages.

2.2. Pushdown games

Recall first that a pushdown process may be viewed as a PDA without input alphabet and initial state. A

pushdown process is a 4-tuple P = (Q,Γ,⊥, δ), where Q is a finite set of states, Γ is a finite pushdown

alphabet, ⊥ is the bottom of stack symbol, and δ is the transition relation which is a mapping from Q×Γ
to subsets of

{skip(q), pop(q), push(q, γ) | q ∈ Q, γ ∈ Γ − {⊥}}

Configurations of a pushdown process are defined as for PDA. A configuration of the pushdown process

P is a pair (q, σ) where q ∈ Q and σ ∈ Γ⋆.

To a pushdown process P = (Q,Γ,⊥, δ) is naturally associated a pushdown graph G = (V,→) which is

a directed graph. The set of vertices V is the set of configurations of P . The edge relation → is defined

as follows: (q, σ) → (q′, σ′) iff the configuration (q′, σ′) can be reached in one transition of P from the

configuration (q, σ).

We shall consider in the sequel infinite games between two players named Eve and Adam on such push-

down graphs.

So we shall assume that the set Q of states of a pushdown process is partitioned in two sets QE and QA.

A configuration (q, σ) is in VE iff q is in QE and it is in VA iff q is in QA so (VE , VA) is a partition of

the set of configurations V .

The game graph (VE , VA,→) is called a pushdown game graph.

A play from a vertex v1 of this graph is defined as follows. If v1 ∈ VE , Eve chooses a vertex v2 such that

v1 → v2; otherwise Adam chooses such a vertex. If there is no such vertex v2 the play stops. Otherwise

the play may continue. If v2 ∈ VE , Eve chooses a vertex v3 such that v2 → v3; otherwise Adam chooses

such a vertex. If there is no such vertex v3 the play stops. Otherwise the play continues in the same way.

So a play starting from the vertex v1 is a finite or infinite sequence of vertices v1v2v3 . . . such that for all

i vi → vi+1. We may assume, as in [19, 20], that in fact all plays are infinite.

A winning condition for Eve is a set Ω ⊆ V ω. An infinite two-player pushdown game is a 4-tuple

(VE , VA,→, Ω), where (VE , VA,→) is a pushdown game graph and Ω ⊆ V ω is a winning condition for

Eve.

In a pushdown game equipped with the winning condition Ω, Eve wins a play v1v2v3 . . . iff v1v2v3 . . . ∈
Ω.

A strategy for Eve is a partial function f : V ⋆.VE → V such that, for all x ∈ V ⋆ and v ∈ VE ,

v → f(x.v).
Eve uses the strategy f in a play v1v2v3 . . . iff for all vi ∈ VE , vi+1 = f(v1v2 . . . vi).
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A strategy f is a winning strategy for Eve from some position v1 iff Eve wins all plays starting from v1

and during which she uses the strategy f .

A vertex v ∈ V is a winning position for Eve iff she has a winning strategy from it.

The notions of winning strategy and winning position are defined for the other player Adam in a similar

way.

The set of winning positions for Eve and Adam will be respectively denoted by WE and WA.

2.3. Winning condition ΩA1⊲...⊲An⊲An+1

We first recall the definition of ω-languages in the form L(A1 ⊲ . . . ⊲ An ⊲ An+1) which are used in

[19, 20] to define the winning conditions ΩA1⊲...⊲An⊲An+1
.

We shall need the notion of limit of an infinite sequence of finite words over some finite alphabet A.

Let then (βn)n≥0 be an infinite sequence of words βn ∈ A⋆. The finite or infinite word limn∈ω βn is

determined by the set of its (finite) prefixes: for all v in A⋆,

v ⊑ limn∈ω βn ↔ ∃n∀p ≥ n βp[|v|] = v.

Let now A = (Q,Γ, A,⊥, qin, δ) be a pushdown automaton reading words over the alphabet A and let

α ∈ Aω. The pushdown stack of A is said to be strictly unbounded during a run r = (qi, γi)i≥1 of A on

α iff limn≥1 γn is infinite.

We define now ω-languages L(A1 ⊲ . . . ⊲ An ⊲ An+1) in a slightly more general case than in [20],

because this will be useful in the next section. Notice that in [20], these ω-languages are only defined

in the case where A1, . . . ,An, are real-time deterministic pushdown automata, and An+1 is a real-time

deterministic pushdown automaton equipped with a parity or a Büchi acceptance condition.

Let n be an integer ≥ 0 and A1, A2, . . .An, be some deterministic pushdown automata (in the case

n = 0 there are not any such automata).

Let (An+1, C) be a pushdown automaton equipped with a Büchi or a parity acceptance condition.

The input alphabet of A1 is denoted A and we assume that, for each integer i ∈ [1, n], the input alphabet

of Ai+1 is the stack alphabet of Ai.

We define inductively the ω-language L(A1 ⊲ . . . ⊲ An ⊲ An+1) ⊆ Aω by:

1. If n = 0, L(A1 ⊲ . . . ⊲ An ⊲ An+1) = L(An+1, C) is the ω-language accepted by An+1 with

acceptance condition C.

2. If n > 0, L(A1 ⊲ . . . ⊲ An ⊲ An+1) is the set of ω-words α ∈ Aω such that:

• When A1 reads α, the stack of A1 is strictly unbounded hence the sequence of stack contents

has an infinite limit α1.

• α1 ∈ L(A2 ⊲ . . . ⊲ An ⊲ An+1).

Let now (VE , VA,→) be a pushdown game graph associated with a pushdown process P . An infinite

play v1v2v3 . . ., where vi = (qi, γi), is in the set ΩA1⊲...⊲An⊲An+1
iff:
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1. The pushdown stack of P is strictly unbounded during the play, i.e. limn≥1 γn is infinite, and

2. limn≥1 γn ∈ L(A1 ⊲ . . . ⊲ An ⊲ An+1).

3. Classes Cn(A)

3.1. Classes Cn(A) and context free ω-languages

For each integer n ≥ 0 and each finite alphabet A the class Cn(A) is defined in [20] as the class

of ω-languages in the form L(A1 ⊲ . . . ⊲ An ⊲ An+1), where A1, . . . ,An, are real-time determin-

istic pushdown automata, the input alphabet of A1 being A, and An+1 is a real-time deterministic

pushdown automaton equipped with a parity acceptance condition. It is easy to see that we obtain the

same class Cn(A) if we restrict the definition to the case of real-time deterministic pushdown automata

A1, . . . ,An,An+1, having the continuity property.

We shall denote C
λ
n(A) the class obtained in the same way except that the deterministic pushdown au-

tomata A1, . . . ,An,An+1, having still the continuity property, may have λ-transitions, i.e. may be non

real time.

In the sequel of this paper when we consider languages in the form L(A1 ⊲ . . . ⊲An ⊲An+1), we shall

always implicitely assume that the pushdown automata A1, . . . ,An,An+1, have the continuity property,

and that, for each integer i ∈ [1, n], the input alphabet of Ai+1 is the stack alphabet of Ai.

In order to prove that classes Cn(A), C
λ
n(A), are included in the class of context free ω-languages we

first state the following lemma.

Lemma 3.1. Let A1 = (Q1,Γ1, A1,⊥1, q
1
0, δ1) be a deterministic pushdown automaton and A2 =

(Q2, Γ2, Γ1,⊥2, q
2
0, δ2) be a pushdown automaton equipped with a set of final states F ⊆ Q2. Then the

ω-language L(A1 ⊲ A2) is a context free ω-language.

Proof. Let A1 = (Q1,Γ1, A1,⊥1, q
1
0, δ1) be a deterministic pushdown automaton andA2 = (Q2,Γ2, Γ1,

⊥2, q
2
0, δ2) be a pushdown automaton equipped with a set of final states F ⊆ Q2.

Recall that an ω-word α ∈ Aω
1 is in L(A1 ⊲ A2) iff:

• When A1 reads α, the stack of A1 is strictly unbounded hence the sequence of stack contents has

an infinite limit α1.

• α1 ∈ L(A2, F ).

We can decompose the reading of an ω-word α ∈ L(A1 ⊲ A2) by the pushdown automaton A1 in the

following way.

When reading α, A1 goes through the infinite sequence of configurations (qi, γi)i≥1. The infinite se-

quence of stack contents (γi)i≥1 has limit α1 thus for each integer j ≥ 1, there is a smallest integer nj

such that, for all integers i ≥ nj , α1[j] = γi[j].
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The word α can then be decomposed in the form

α = σ1.σ2 . . . σn . . .

where for all integers j ≥ 1, σj ∈ A⋆
1 and

σj : (qnj
, α1[j]) 7→

⋆
A1

(qnj+1
, α1[j + 1]) = (qnj+1

, α1[j].α1(j + 1))

Notice that n1 = 1, q1 = q1
0 and α1[1] = ⊥1 hence σ1 : (q1

0,⊥1) 7→
⋆
A1

(qn2
, α1[2]).

Let now, for each q, q′ ∈ Q1 and a, b ∈ Γ1, the language L(q,q′,a,b) be the set of words σ ∈ A⋆
1 such that:

σ : (q, a) 7→⋆
A1

(q′, a.b). This language of finite words over A1 is accepted by the pushdown automaton

A1 with the following modifications: the initial configuration is (q, a) and the acceptance is by final state

q′ and by final stack content a.b. It is easy to see that this language is also accepted by a deterministic

pushdown automaton by final states so it is in the class DCFL.

Then each word σj belongs to the deterministic context free language

L(qnj
,qnj+1

,α1(j),α1(j+1)) = {σ ∈ A⋆
1 | σ : ((qnj

, α1(j)) 7→
⋆
A1

(qnj+1
, α1(j).α1(j + 1))}

In order to describe the ω-language L(A1 ⊲ A2) from the ω-language L(A2, F ) and the deterministic

context free languages L(q,q′,a,b), for q, q′ ∈ Q1 and a, b ∈ Γ1, we now recall the notion of substitution.

A substitution is a mapping f : Σ → 2Γ⋆

, where Σ and Γ are two finite alphabets. If Σ = {a1, . . . , an},

then for all integers i ∈ [1;n], f(ai) = Li is a finitary language over the alphabet Γ.

Now this mapping is extended in the usual manner to finite words: for all letters ai1 , . . . , ain ∈ Σ,

f(ai1 . . . ain) = f(ai1) . . . f(ain), and to finitary languages L ⊆ Σ⋆: f(L) = ∪x∈Lf(x).
If for each letter a ∈ Σ, the language f(a) does not contain the empty word, then the substitution is said

to be λ-free and the mapping f may be extended to ω-words:

f(x(1) . . . x(n) . . .) = {u1 . . . un . . . | ∀i ≥ 1 ui ∈ f(x(i))}

and to ω-languages L ⊆ Σω by setting f(L) = ∪x∈Lf(x) ⊆ Γω.

If the substitution is not λ-free we can define f(L) in the same way for L ⊆ Σω but this time f(L) ⊆
Γ⋆ ∪ Γω, i.e. f(L) may contain finite or infinite words.

The substitution f is said to be a context free substitution iff for all a ∈ Σ the finitary language f(a) is

context free.

Recall that Cohen and Gold proved in [7] that if L is a context free ω-language and f is a context free

substitution then f(L) ∩ Γ⋆ and f(L) ∩ Γω are context free.

We define now a new alphabet

∆ = {L(q, q′, a, b) | q, q′ ∈ Q1 and a, b ∈ Γ1}

and we consider the substitution h : Γ1 → 2∆ defined, for all b ∈ Γ1, by:

h(b) = {L(q, q′, a, b) | q, q′ ∈ Q1 and a ∈ Γ1}
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Applying this substitution to the ω-language L(A2, F ) ⊆ Γω
1 , we get h(L(A2, F )). The substitution h

is λ-free thus h(L(A2, F )) is a ω-language over ∆. Moreover for each b ∈ Γ1 the set h(b) is finite hence

context free. Thus h(L(A2, F )) ⊆ ∆ω is a context free ω-language because L(A2, F ) is a context free

ω-language and the substitution h is a context free substitution.

Let now R ⊆ ∆ω be the ω-language defined as follows. An ω-word x ∈ R has its first letter in the set

{L(q1
0, q

′,⊥1, b) | q′ ∈ Q1 and b ∈ Γ1}, and each letter L(q, q′, a, b), for q, q′ ∈ Q1 and a, b ∈ Γ1, in x
is followed by a letter in the set {L(q′, q′′, b, c) | q′′ ∈ Q1 and c ∈ Γ1}.

The ω-language R is regular thus h(L(A2, F ))∩R ⊆ ∆ω is a context free ω-language because the class

CFLω is closed under intersection with regular ω-languages [7].

Consider now the substitution Θ : ∆ → 2A⋆
1 defined, for all letters L(q, q′, a, b) ∈ ∆, by Θ(L(q, q′, a, b)) =

L(q,q′,a,b). The substitution Θ is context free thus

Θ[h(L(A2, F )) ∩ R] ∩ Aω
1

is a context free ω-language and so is ⊥1.( Θ[h(L(A2, F ))∩R]∩Aω
1 ). By construction this ω-language

is L(A1 ⊲ A2). ¤

We can in fact obtain a refined result if the language L(A2, F ) is non ambiguous.

Lemma 3.2. Let A1 = (Q1,Γ1, A1,⊥1, q
1
0, δ1) be a deterministic pushdown automaton and A2 =

(Q2, Γ2, Γ1,⊥2, q
2
0, δ2) be a pushdown automaton equipped with a set of final states F ⊆ Q2. If the

ω-language L(A2, F ) is non ambiguous then L(A1 ⊲ A2) ∈ NA − CFLω.

Proof. Let A1 = (Q1,Γ1, A1,⊥1, q
1
0, δ1) be a deterministic pushdown automaton andA2 = (Q2,Γ2, Γ1,

⊥2, q
2
0, δ2) be a pushdown automaton equipped with a set of final states F ⊆ Q2.

We assume that L(A2, F ) is non ambiguous so we can assume, without loss of generality, that the

pushdown automaton A2 itself is non ambiguous.

We are going to explain informally the construction of a non ambiguous Büchi pushdown automaton A
accepting the ω-language L(A1 ⊲ A2).

We refer now to the proof of the preceding lemma. We have considered the reading of an ω-word

α ∈ L(A1 ⊲ A2) by A1, and we have shown that the word α can then be decomposed in the form

α = σ1.σ2 . . . σn . . .

where for all integers j ≥ 1, σj belongs to the deterministic context free language

L(qnj
,qnj+1

,α1(j),α1(j+1)) = {σ ∈ A⋆
1 | σ : ((qnj

, α1(j)) 7→
⋆
A1

(qnj+1
, α1(j).α1(j + 1))}

We can see that the integers nj were defined in a unique way. However there may exist several decom-

positions of the ω-word α into words of languages L(q,q′,a,b).

In order to ensure a unique decomposition we are going to slightly modify the definition of these lan-

guages.

For each q, q′ ∈ Q1 and a, b ∈ Γ1, the language U(q,q′,a,b) is the set of words σ ∈ A⋆
1 such that:
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(a) σ : (q, a) 7→⋆
A1

(q′, a.b) and

(b) If for some σ′ ⊏ σ and s ∈ Q, σ′ : (q, a) 7→⋆
A1

(s, a.b) then there is a word u ∈ A⋆
1 and a state

t ∈ Q, such that σ′.u ⊑ σ and u : (s, a.b) 7→⋆
A1

(t, a).

(c) If there is a run (qi, γi)1≤i≤p of A1 on σ such that (q1, γ1) = (q, a) and (qp, γp) = (s, a.b) for

some s ∈ Q, s 6= q′, then either there is an integer p′ < p such that (qi, γi)1≤i≤p′ is a run of

A1 on σ and (qp′ , γp′) = (q′, a.b) or it holds that λ : (s, a.b) 7→⋆
A1

(s′, a) for some s′ ∈ Q and

λ : (s′, a) 7→⋆
A1

(q′, a.b).

It is easy to see that the languages U(q,q′,a,b) are also in the class DCFL and that, for each q, q′ ∈
Q1 and a, b ∈ Γ1, it holds that U(q,q′,a,b) ⊆ L(q,q′,a,b).

We can see that, in the above decomposition α = σ1.σ2 . . . σn . . . of the ω-word α, for all integers j ≥ 1,

the word σj belongs in fact to the deterministic context free language U(qnj
,qnj+1

,α1(j),α1(j+1)).

The rest of the proof of Lemma 3.1 can be pursued, replacing languagesL(q,q′,a,b) by languages U(q,q′,a,b).

But now we have a unique decomposition of α in the form

α = σ′
1.σ

′
2 . . . σ′

n . . .

where for all integers j ≥ 1, the word σ′
j belongs to some language U(sj ,tj ,aj ,bj) satisfying: (1) s1 = q1

0 ,

a1 = ⊥1, (2) for all integers j ≥ 1, tj = sj+1 and bj = aj+1.

This unique decomposition is crucial in the construction of the non ambiguous Büchi PDA A accepting

L(A1 ⊲ A2). We shall explain informally the behaviour of this automaton.

For each q, q′ ∈ Q1 and a, b ∈ Γ1, the language U(q,q′,a,b) is accepted by a deterministic pushdown

automaton B(q,q′,a,b) whose stack alphabet is denoted Γ(q,q′,a,b). We can assume that all these alphabets

are disjoint and that they are also disjoint from Γ1, the stack alphabet of A1. The stack alphabet of A
will be

ΓA = Γ1 ∪
⋃

q,q′∈Q1 and a,b∈Γ1

Γ(q,q′,a,b)

When reading an ω-word α ∈ L(A1 ⊲ A2) the pushdown automaton A will guess, using the non

determinism, the unique decomposition of α in the form

α = σ′
1.σ

′
2 . . . σ′

n . . .

where for all integers j ≥ 1, the word σ′
j belongs to some language U(sj ,tj ,aj ,bj) satisfying: (1) s1 = q1

0 ,

a1 = ⊥1, (2) for all integers j ≥ 1, tj = sj+1 and bj = aj+1.

In addition A will simulate the reading of the ω-word α1 = a1a2a3 . . . by the PDA A2.

During a run of A the stack content is always a word in the form ⊥.u.v where ⊥ is the bottom symbol

of A, u ∈ (Γ1 − {⊥})⋆ and v is in (Γ(q,q′,a,b))⋆ for some q, q′ ∈ Q1 and a, b ∈ Γ1.

After having read the initial segment σ′
1.σ

′
2 . . . σ′

j of α, the content of the stack of A is equal to the

content of the stack of A2 after having read a1a2 . . . aj .
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Then A guesses that the next word in the decomposition of α belongs to some U(sj+1,tj+1,aj+1,bj+1). It

uses the stack alphabet Γ(sj+1,tj+1,aj+1,bj+1) on the top of the stack to simulate the reading of σ′
j+1 by

B(sj+1,tj+1,aj+1,bj+1). Then when it has guessed that it has completely read the word σ′
j+1, it erases letters

of Γ(sj+1,tj+1,aj+1,bj+1) from the stack, and simulates the reading of the letter aj+1 by A2, and so on.

A Büchi acceptance condition is then used to simulate the acceptance of α1 by A2.

The Büchi PDA (A2, F ) is non ambiguous and the above cited decomposition of α is unique so there is

a unique accepting run of the Büchi PDA A on α.

Finally we have proved that L(A1 ⊲ A2) ∈ NA − CFLω. ¤

Proposition 3.3. Let n be an integer ≥ 1, A1, A2, . . .An, be some deterministic pushdown automata and

(An+1, C) be a pushdown automaton equipped with a Büchi acceptance condition. The input alphabet of

A1 is denoted A and we assume that, for each integer i ∈ [1, n], the input alphabet of Ai+1 is the stack

alphabet of Ai. Then L(A1 ⊲ . . . ⊲ An ⊲ An+1) ∈ CFLω. Moreover if L(An+1, C) is non ambiguous

then L(A1 ⊲ . . . ⊲ An ⊲ An+1) ∈ NA − CFLω.

Proof. We reason by induction on the integer n.

For n = 1 the result is stated in the above Lemmas 3.1 and 3.2.

Assume now that the result is true for some integer n ≥ 1.

Let A1, A2, . . .An, An+1, be some deterministic pushdown automata and (An+2, C) be a pushdown

automaton equipped with a Büchi acceptance condition such that the language L(A1 ⊲ . . . ⊲ An+1 ⊲

An+2) ⊆ Aω is well defined.

By induction hypothesis the language L(A2 ⊲ . . .⊲An+1 ⊲An+2) is a context free ω-language accepted

by a Büchi pushdown automaton (A, F ).
But by definition of the language L(A1 ⊲ . . . ⊲ An+1 ⊲ An+2) it holds that

L(A1 ⊲ . . . ⊲ An+1 ⊲ An+2) = L(A1 ⊲ A)

thus Lemma 3.1 implies that L(A1 ⊲ . . . ⊲ An+1 ⊲ An+2) ∈ CFLω.

Assume now that L(An+1, C) is non ambiguous. Reasoning as above but applying Lemma 3.2 instead

of Lemma 3.1 we infer that L(A1 ⊲ . . . ⊲ An+1 ⊲ An+2) is in NA − CFLω. ¤

In particular, Proposition 3.3 implies the following result.

Corollary 3.4. For each integer n ≥ 0, the following inclusions hold:

Cn(A) ⊆ C
λ
n(A) ⊆ NA − CFLω

We shall later get a stronger result (see Corollary 3.8) from the study of closure properties of classes

Cn(A), C
λ
n(A).
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3.2. Closure properties of classes Cn(A), C
λ
n(A)

We first state the following lemma.

Lemma 3.5. The class C
λ
1(A) is closed under complementation.

Proof. Let A1 = (Q1, Γ1, A1,⊥1, q
1
0, δ1) be a deterministic pushdown automaton and (A2 = (Q2, Γ2,Γ1,

⊥2, q
2
0, δ2), col2) be a deterministic pushdown automaton equipped with a parity acceptance condition.

Recall that an ω-word α ∈ Aω
1 is in L(A1 ⊲ A2) iff: when A1 reads α, the stack of A1 is strictly

unbounded and the sequence of stack contents has an infinite limit α1 ∈ L(A2, col2).

Thus an ω-word α ∈ Aω
1 is in the complement of L(A1 ⊲ A2) iff one of the two following conditions

holds:

(1) When A1 reads α, the stack of A1 is strictly unbounded and the limit α1 of stack contents is in the

complement of L(A2, col2).

(2) When A1 reads α, the stack of A1 is not strictly unbounded.

The class DCFLω is closed under complementation thus the complement of L(A2, col2) is equal to

L(A3, col3), for some deterministic pushdown automaton A3 equipped with a parity acceptance condi-

tion.

The language L(A1 ⊲ A3) is the set of ω-words α ∈ Aω
1 such that, when A1 reads α, the stack of A1

is strictly unbounded and the limit α1 of stack contents is in L(A3, col3). So we see that, in order to get

the complement of L(A1 ⊲ A2) we have to add to L(A1 ⊲ A3) the set B of all ω-words α ∈ Aω
1 such

that, when A1 reads α, the stack of A1 is not strictly unbounded.

To do this we are going first to modify the automaton A1 in such a way that, when reading ω-words in

B, the stack will be strictly unbounded.

We now explain informally the behaviour of the new pushdown automaton A′
1. The stack alphabet of A′

1

is Γ1 ∪ Γ′
1, where Γ′

1 = {γ′ | γ ∈ Γ1} is just a copy of Γ1, such that Γ1 ∩ Γ′
1 = ∅.

The essential idea is that A′
1 will simulate A1 but it has the additional following behaviour. Using λ-

transitions it pushes in the stack letters of Γ′
1, always keeping the information about the content of the

stack of A1.

More precisely, if at some step while reading an ω-word α ∈ Aω
1 by A1 the stack content is a finite word

γ = γ1, γ2, . . . γj , where each γi is a letter of Γ1, then the corresponding stack content of A′
1 will be in

the form γ1.γ
′n1

1 γ2.γ
′n2

2 . . . γj .γ
′nj

j , where n1, n2, . . . , nj , are positive integers.

If when A1 reads α the stack is strictly unbounded and the limit of the stack contents is an ω-word α1,

then when A′
1 reads the same word α its stack will be also strictly unbounded and the limit of the stack

contents will be an ω-word α′
1. Moreover it will hold that (α′

1/Γ′
1) = α1, where (α′

1/Γ′
1) is the word α′

1

from which are removed all letters in Γ′
1.

On the other hand if when A1 reads α the stack is not strictly unbounded, the limit of the stack contents

being a finite word α1, then when A′
1 reads the same word α its stack will be strictly unbounded and its

limit will be an ω-word α′
1 such that (α′

1/Γ′
1) = α1.
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Notice that the stack content of A′
1 will always be in the form ⊥1.(⊥

′
1)

⋆ or u.Z.(Z ′)n for some u ∈
⊥1.(Γ1 ∪ Γ′

1)
⋆, Z ∈ Γ1, Z ′ being the copy of Z in Γ′

1, and n ≥ 0 being an integer.

The behaviour of the deterministic pushdown automaton A′
1, reading an ω-word, will be the same as the

behaviour of A1 but with the following modifications.

(a) Between any two transitions of A1 is added a λ-transition of A′
1 which simply pushes in the stack,

when the topmost stack letter of A′
1 is Z ∈ Γ1 or Z ′ ∈ Γ′

1, an additional letter Z ′.

(b) Assume now that at some step of the reading of α by A′
1 and A1, and after the execution of a

λ-transition as explained in above item (a), the topmost stack letter of A′
1 is some letter Z ′ ∈ Γ′

1.

Recall that the stack content of A′
1 will be in the form ⊥1.(⊥

′
1)

n (if Z ′ = ⊥′
1) or u.Z.(Z ′)n for

some u ∈ ⊥1.(Γ1 ∪ Γ′
1)

⋆, Z ∈ Γ1, Z ′ being the copy of Z in Γ′
1, and n ≥ 1.

Notice that the corresponding stack content of A1 will be ⊥1 or (u/Γ′
1).Z.

Suppose now that A1 reads a letter a ∈ A1 or executes a λ-transition.

If it pushes letter T in the stack then A′
1 would push the same letter T in its stack.

If A1 would skip (its topmost stack letter being Z), then A′
1 also skips.

But if A1, reading the letter a ∈ A1 or executing a λ-transition, the topmost stack letter being Z,

would pop the letter Z, then A′
1 pops the whole segment Z.(Z ′)n at the top of the stack, using

λ-transitions.

Notice that we do not detail here the set of states of A′
1. It contains the set of states Q1 of A1 and is

sufficiently enriched, to achieve the goal of simulating the behaviour of A1, adding the modifications

cited above.

Assume now that when A1 reads α its stack is strictly unbounded and the limit of the stack contents is

an ω-word α1. Then when A′
1 reads the same word α its stack is also strictly unbounded and the limit of

the stack contents will be an ω-word α′
1 such that (α′

1/Γ′
1) = α1.

On the other hand if when A1 reads α the stack is not strictly unbounded, then the limit of its stack

contents is a finite word α1 = α1(1).α1(2) . . . α1(|α1|).
In that case when A′

1 reads the same word α its stack will be strictly unbounded and its limit will be an

ω-word α′
1 in the form

α′
1 = α1(1).(α1(1)′)n1 .α1(2).(α1(2)′)n2 . . . (α1(|α1| − 1)′)n|α1|−1 .(α1(|α1|).(α1(|α1|)

′)ω

for some integers n1, n2, . . . , n|α1|−1. In particular it will hold that (α′
1/Γ′

1) = α1.

It is now easy to modify the pushdown automaton A3 in such a way that we obtain a deterministic

pushdown automaton A′
3 equipped with parity acceptance condition col′3 such that the input alphabet of

A′
3 is Γ1∪Γ′

1, and an ω-word α′
1 ∈ (Γ1∪Γ′

1)
ω is in L(A′

3, col
′
3) iff [ (α′

1/Γ′
1) is a finite word or (α′

1/Γ′
1)

is infinite and is in L(A3, col3) ].

Thus the ω-language L(A′
1 ⊲ A′

3) is the complement of L(A1 ⊲ A2) and this ends the proof. ¤

Proposition 3.6. For each integer n ≥ 0, the class C
λ
n(A) is closed under complementation.
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Proof. We now reason by induction on the integer n ≥ 0.

For n = 0, C
λ
0(A) = DCFLω is known to be closed under complementation [21].

For n = 1, C
λ
1(A) is closed under complementation by Lemma 3.5.

Assume now that we have proved that for every positive integer k ≤ n the class C
λ
k(A) is closed under

complementation.

Let A1, A2, . . .An, An+1, be some deterministic pushdown automata and (An+2, col) be a deterministic

pushdown automaton equipped with a parity acceptance condition such that the language L(A1 ⊲ . . . ⊲

An+1 ⊲ An+2) ⊆ Aω
1 is well defined.

An ω-word α ∈ Aω
1 is in the complement of L(A1 ⊲ . . . ⊲ An+1 ⊲ An+2) iff one the two following

conditions holds:

(1) When A1 reads α, the stack of A1 is strictly unbounded and the limit α1 of stack contents is in the

complement of L(A2 ⊲ . . . ⊲ An+1 ⊲ An+2)

(2) When A1 reads α, the stack of A1 is not strictly unbounded.

By induction hypothesis the complement of the ω-language L(A2 ⊲ . . . ⊲ An+1 ⊲ An+2) is in C
λ
n(A)

so it is in the form L(A′
2 ⊲ . . . ⊲ A′

n+1 ⊲ A′
n+2).

We can do similar modifications as in the case n = 1, replacing A1, whose stack alphabet is Γ1, by

another deterministic pushdown automaton A′
1, whose alphabet is Γ1 ∪ Γ′

1 where Γ′
1 is a copy of Γ1.

If when A1 reads α the limit of its stack contents is a finite or infinite word α1 then when A′
1 reads the

same word α the limit of its stack contents is an ω-word α′
1 such that (α′

1/Γ′
1) = α1.

It is now easy to modify the language L(A′
2 ⊲ . . .⊲A′

n+1 ⊲A′
n+2) in such a way that we get a language

L(A′′
2 ⊲ . . . ⊲ A′′

n+1 ⊲ A′′
n+2) of ω-words over Γ1 ∪ Γ′

1 containing an ω-word α′
1 if and only if: either

(α′
1/Γ′

1) is a finite word or (α′
1/Γ′

1) belongs to the ω-language L(A′
2 ⊲ . . . ⊲ A′

n+1 ⊲ A′
n+2).

Thus it holds that L(A′
1 ⊲A′′

2 ⊲ . . .⊲A′′
n+1 ⊲A′′

n+2) is the complement of L(A1 ⊲ . . .⊲An+1 ⊲An+2).
¤

Remark 3.7. In [19, 20] Serre defined winning conditions ΩA1⊲...⊲An⊲An+1
for pushdown games using

languages in classes Cn(A). He then showed that these winning conditions lead to decision procedures

to decide the winner in pushdown games. The question now naturally arises whether the proofs can be

extended to winning conditions defined in the same way from classes C
λ
n(A). Then the closure under

complementation of these classes would be relevant from a game point of view. On the other hand this

closure property provides also some more information about classes Cn(A), given by next corollary,

which is already important from a game point of view.

Corollary 3.8. For each integer n ≥ 0, the following inclusions hold:

Cn(A) ⊆ C
λ
n(A) ⊆ NA − CFLω

⋂
Co − NA − CFLω
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Proof. It follows directly from Corollary 3.4 and Proposition 3.6. ¤

We now prove that the classes Cn(A), C
λ
n(A), are not closed under other boolean operations.

Proposition 3.9. For each integer n ≥ 0, the classes Cn(A) and C
λ
n(A) are neither closed under union

nor under intersection.

Proof. Notice first that for each integer n ≥ 0, Cn(A) ⊆ Cn+1(A) and C
λ
n(A) ⊆ C

λ
n+1(A).

The ω-languages L1 = {an.bm.cp.dω | n,m, p ≥ 1 and n = m} and L2 = {an.bm.cp.dω | n,m, p ≥
1 and m = p}, over the alphabet A = {a, b, c, d}, are in DCFLω and they are in all classes Cn(A) and

C
λ
n(A). But their intersection is L1 ∩ L2 = {an.bn.cn.dω | n ≥ 1}. This ω-language is not context free

because the finitary language {an.bn.cn | n ≥ 1} is not context free [1] and an ω-language in the form

L.dω, with L ⊆ {a, b, c}⋆, is context free iff the finitary language L is context free [7]. Thus L1 ∩ L2

cannot be in any class Cn(A) and C
λ
n(A) because these classes are included in CFLω.

On the other hand consider the ω-languages L3 = {an.bm.cp.dω | n,m, p ≥ 1 and n 6= m} and

L4 = {an.bm.cp.dω | n,m, p ≥ 1 and m 6= p}. These ω-languages are in DCFLω and in every class

Cn(A) or C
λ
n(A). If the language L3 ∪ L4 was in some class Cn(A) or C

λ
n(A), then by Proposition 3.6

its complement L5 would be also in C
λ
n(A) and it would be a context free ω-language. This would imply

that L5 ∩ a+.b+.c+.dω is context free because the class CFLω is closed under intersection with regular

ω-languages. But L5 ∩ a+.b+.c+.dω = {an.bn.cn.dω | n ≥ 1} is not context free thus for each integer

n ≥ 0, the classes Cn(A), C
λ
n(A) are not closed under union.

Notice that the union ∪n≥0C
λ
n(A) is also neither closed under intersection nor under union. ¤

4. Winning sets in a pushdown game

Recall that it is proved in [19] that every deterministic context free language may occur as a winning set

for Eve in a pushdown game equipped with a winning condition in the form ΩB, where B is a determin-

istic pushdown automaton.

Serre asked also whether there exists a pushdown game equipped with a winning condition in the form

ΩA1⊲...⊲An⊲An+1
such that the set of winning positions for Eve is not a deterministic context free lan-

guage.

We are going to prove in this section that such pushdown games exist, giving examples of winning sets

which are non-deterministic non-ambiguous context free languages, or inherently ambiguous context

free languages, or even non context free languages.

The exact form of the winning sets remains open. Serre conjectured in [18] that one could prove that,

for n ≥ 0, the winning sets for Eve in pushdown games equipped with a winning condition in the form

ΩA1⊲...⊲An⊲An+1
, form a class of languages at level n, and that for n = 0 the winning sets could be

deterministic context free languages.

So we think that, in order to better understand what is the exact form of the winning sets, it is useful to

see different examples of winning sets of different complexities, and not only of the greatest complexity

we have got, i.e. a non context free language.
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Moreover the techniques, involving Duparc’s eraser operator, used to prove Proposition 4.3 below, are

interesting by their own and are useful to understand how the games go on.

In order to present the first example we begin by recalling the operation x → xև which has been

introduced by Duparc in his study of the Wadge hierarchy [9], where it works also on infinite words, and

is also considered by Serre in [19].

For a finite word u ∈ (Σ∪{և})⋆, where Σ is a finite alphabet, the finite word uև is inductively defined

by:

λև = λ,

and for a finite word u ∈ (Σ ∪ {և})⋆:

(u.c)և = uև.c, if c ∈ Σ,

(u. և)և = uև with its last letter removed if |uև| > 0,

i.e. (u. և)և = uև(1).uև(2) . . . uև(|uև| − 1) if |uև| > 0,

(u. և)և = λ if |uև| = 0,

Notice that for x ∈ (Σ∪{և})⋆, xև denotes the string x, once every և occuring in x, used as an eraser,

has been “evaluated” to the back space operation, proceeding from left to right inside x. In other words

xև = x from which every interval of the form “c և ” (c ∈ Σ) is removed.

For a language V ⊆ Σ⋆ we set V ∼ = {x ∈ (Σ ∪ {և})⋆ | xև ∈ V }.

Lemma 4.1. Let L = {an.bn | n ≥ 1}. Then L∼ is a non ambiguous context free language which can

not be accepted by any deterministic pushdown automaton.

Proof. Let L be the context free language {an.bn | n ≥ 1}. The language L is a deterministic, hence non

ambiguous, context free language. Thus by Theorem 6.16 of [10] the language L∼ is a non ambiguous

context free language.

It remains to show that L∼ can not be accepted by any deterministic pushdown automaton.

The idea of the proof is essentially the same as in the proof that the context free language {an.bn | n ≥
1} ∪ {an.b2n | n ≥ 1} can not be accepted by any deterministic pushdown automaton. It can be found

in [1, Proof of Proposition 5.3] or in [12, Exercise 6.4.4 page 251].

Towards a contradiction assume that the language L∼ is accepted by a deterministic pushdown automaton

A. All words an.bn, for n ≥ 1, are in the language L∼. Then one could show that there exists a pair

(n, k), with n, k > 0, such that the accepting configurations of A reading an.bn or an+k.bn+k are the

same. Consider now the word an.bn. և2n .a.b. It belongs to L∼ and the valid computation of A
reading an.bn should be the beginning of the valid computation of A reading an.bn. և2n .a.b. Thus the

pushdown automaton A would also accepts an+k.bn+k. և2n .a.b which is clearly not in L∼. ¤

Lemma 4.2. Let L ⊆ Σ⋆ be a deterministic context free language. Then there exists a pushdown process

P = (Q,Γ,⊥, δ), a partition Q = QE ∪ QA, two deterministic pushdown automata A1,A2, and a state

q ∈ Q such that, in the induced pushdown game equipped with the winning condition ΩA1⊲A2
, one has

{u | (q, u) ∈ WE} = L∼.
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Proof. Let P = ({p, q},Γ = Σ ∪ {⊥,և, #},⊥, δ) be a pushdown process where δ is defined by:

push(p,#) ∈ δ(q, c) for all letters c ∈ Σ ∪ {⊥, և} and push(p,#) ∈ δ(p, #).
So the pushdown process P is deterministic and its behaviour is very similar to the behaviour of the

pushdown process given in the proof of Proposition 42 of [20]. It can only push the letter # on the top

of a given configuration.

Q = QE ∪ QA is any partition of Q.

For each configuration (q, u.c), for c ∈ Σ ∪ {⊥, և} and u ∈ Γ⋆, there is a unique infinite play starting

from (q, u.c), during which the pushdown stack of P is strictly unbounded, and the limit of the stack

contents is u.c.#ω.

The deterministic pushdown automaton A1 reads words over the alphabet Γ = Σ ∪ {⊥, և, #} and its

stack alphabet is Γ1 = Σ ∪ {⊥1}. Its behaviour is described as follows:

Consider first the reading of an ω-word in the form ⊥.u.#ω, where u ∈ (Σ ∪ {և})⋆.

After having read the bottom symbol ⊥, the content of its stack is still ⊥1. Then when the pushdown

automaton A1 reads a letter c ∈ Σ it pushes the same letter in the stack. But if A1 reads the symbol և

and the topmost stack symbol is not ⊥1 (so it is in Σ) then it pops the letter at the top of its stack.

So, after having read the initial segment ⊥.u of ⊥.u.#ω, the stack content of A1 is ⊥1.u
և. Next the

PDA A1 pushes a letter # in the stack for each letter # read. Thus, when A1 reads the ω-word ⊥.u.#ω,

its stack is strictly unbounded and the limit of the stack contents is ⊥1.u
և.#ω.

In addition, it is easy to ensure that, when A1 reads an ω-word which is not in ⊥.(Σ ∪ {և})⋆.#ω ∪
⊥.(Σ ∪ {և})ω, then its stack is not strictly unbounded. If there is a letter ⊥ after the first letter of the

word or if A1 reads a letter in Σ ∪ {և} after some letter #, then the stack content remains undefinitely

unchanged.

On the other hand, A2 is a deterministic pushdown automaton equipped with a parity acceptance condi-

tion which accepts the ω-language ⊥1.L.#ω.

Consider now a given configuration (q,⊥.u) of the pushdown process P for some u ∈ (Σ ∪ {և, #})⋆,

the last letter of u being not #. There is a unique infinite play starting from this position. The stack of P
is strictly unbounded during this play and the limit of stack contents is ⊥.u.#ω.

When A1 reads the ω-word ⊥.u.#ω its stack is strictly unbounded iff u ∈ (Σ∪{և})⋆ and then the limit

of stack contents is ⊥1.u
և.#ω.

The ω-word ⊥1.u
և.#ω is accepted by A2 iff uև ∈ L.

Thus the configuration (q,⊥.u) is a winning position for Eve in the induced pushdown game, equipped

with the winning condition ΩA1⊲A2
, if and only if u ∈ L∼. ¤

We can now state the following result which follows directly from Lemmas 4.1 and 4.2.

Proposition 4.3. There exists a pushdown process P = (Q,Γ,⊥, δ), a partition Q = QE ∪ QA, two

deterministic pushdown automata A1,A2, and a state q ∈ Q such that, in the induced pushdown game

equipped with the winning condition ΩA1⊲A2
, the set {u | (q, u) ∈ WE} is a non-deterministic non

ambiguous context free language.
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Proof. Let L be the language {an.bn | n ≥ 1}. The language L is a deterministic context free language,

thus by Lemma 4.2 there exists a pushdown process P = (Q,Γ,⊥, δ), a partition Q = QE ∪ QA, two

deterministic pushdown automata A1,A2, and a state q ∈ Q such that, in the induced pushdown game

equipped with the winning condition ΩA1⊲A2
, one has {u | (q, u) ∈ WE} = L∼. But by Lemma 4.1

L∼ is a non ambiguous context free language which can not be accepted by any deterministic pushdown

automaton. ¤

Remark 4.4. In the pushdown game given in the proof of Lemma 4.2, there are some plays which are

not infinite. However it is easy to find a pushdown game with the same winning set for Eve but in which

all plays are infinite. The same remark will hold for pushdown games given in the proofs of the two

following propositions.

We are now going to show that the set of winning positions for Eve can also be an inherently ambiguous

context free language. Recall that it is well known that the language V = {an.bm.cp | n,m, p ≥
1 and (n = m or m = p)} is an inherently ambiguous context free language, [1, 12].

Proposition 4.5. There exists a pushdown process P = (Q,Γ,⊥, δ), a partition Q = QE ∪ QA, two

deterministic pushdown automata A1,A2, and a state q ∈ Q such that, in the induced pushdown game

equipped with the winning condition ΩA1⊲A2
, the set {u | (q, u) ∈ WE} is an inherently ambiguous

context free language.

Proof. Let P = ({q, q′, q′′, p}, Γ = {⊥, a, b, c,#},⊥, δ) be a pushdown process where δ is defined by:

{pop(q′), skip(q′′)} ⊆ δ(q, c), pop(q′) ∈ δ(q′, c), push(p, #) ∈ δ(q′, b), push(p,#) ∈ δ(q′′, c), and

push(p, #) ∈ δ(p,#).
We set QE = {q} and QA = {q′, q′′, p}.

Consider now an infinite play from a given configuration (q,⊥.u), for u ∈ {a, b, c,#}⋆. The topmost

stack letter of this initial configuration must be a letter c. Then at most two cases may happen.

1. In the first one are pushed infinitely many letters # on the top of the stack. In this play the stack is

strictly unbounded and the limit of the stack contents is ⊥.u.#ω.

2. In the second case the letter c is popped and all next letters c are popped from the top of the stack

until some letter b is on the top of the stack. From this moment infinitely many letters # are pushed

in the stack. Then the stack is strictly unbounded and the limit of the stack contents is ⊥.u′.b.#ω

if u = u′.b.ck for some integer k > 0. Notice that this second case can only occur if u is in the

form u = u′.b.ck for some integer k > 0.

The deterministic pushdown automaton A1 reads words over the alphabet {⊥, a, b, c,#} and its stack

alphabet is Γ1 = {⊥1, a, b,#}.

It is easy to ensure that the stack of A1 is not strictly unbounded during the reading of an ω-word which

is not in W = ⊥.aω ∪ ⊥.a+.bω ∪ ⊥.a+.b+.#ω ∪ ⊥.a+.b+.cω ∪ ⊥.a+.b+.c+.#ω.

Consider now the reading by A1 of an ω-word which is in W . After having read the bottom symbol ⊥,

the stack content of A1 is still ⊥1. Then it pushes a letter a or b each time it reads the corresponding

letter a or b.

Then when A1 reads an ω-word in the form ⊥.aω (respectively, ⊥.an.bω for n ≥ 1) then its stack is

strictly unbounded and the limit of stack contents is ⊥1.a
ω (respectively, ⊥1.a

n.bω).
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If now A1 reads letters # then it pushes them in the stack. In this case the input word is in the form

⊥.an.bm.#ω, and the limit of stack contents of A1 reading this ω-word is ⊥1.a
n.bm.#ω.

If A1 reads some letters c after an initial segment in the form ⊥.an.bm then it pops a letter b for each

letter c read.

If the number of c is equal to the number of b of the input word, then after having read the segment

⊥.an.bm.cm of the input word the stack content of A1 is simply ⊥1.a
n. Next A1 reads the final seg-

ment #ω and it pushes it in the stack. So the limit of stack contents of A1 reading the input ω-word

⊥.an.bm.cm.#ω is in the form ⊥1.a
n.#ω

If the number of c is not equal to the number of b of the input word (the number of c being finite or

infinite), then, once this has been checked, the stack content remains unchanged so the stack will not be

strictly unbounded.

One can define a deterministic pushdown automaton A2, equipped with a parity acceptance condition,

which accepts the ω-language {⊥1.a
n.bn.#ω | n ≥ 1} ∪ {⊥1.a

n.#ω | n ≥ 1}.

We are now going to determine the winning positions (q,⊥.u) of Eve in the induced pushdown game

equipped with the winning condition ΩA1⊲A2
.

Let (q,⊥.u) be a given configuration of the pushdown process P for some u ∈ {a, b, c,#}⋆, the last

letter of u being c. There are one or two infinite plays starting from this position. When there are two

such plays, they depend on the first choice of Eve and the position (q,⊥.u) is a winning position for Eve

iff one of the two possible infinite plays is winning for her.

In the first play the stack is strictly unbounded and the limit of the stack contents is ⊥.u.#ω.

There is a second play if u = u′.b.ck for some integer k > 0. Then in this play the stack is strictly

unbounded and the limit of the stack contents is ⊥.u′.b.#ω.

When A1 reads the ω-word ⊥.u.#ω, its stack is strictly unbounded iff u is in the form an.bm.cm for

some n,m ≥ 1 (the number of c and of b in u are equal). Then the limit of stack contents is ⊥1.a
n.#ω

and it is in L(A2). So ⊥.u.#ω ∈ L(A1 ⊲ A2).

If u = u′.b.ck for some integer k > 0 and A1 reads the ω-word ⊥.u′.b.#ω then the stack of A1 is strictly

unbounded iff u′ is in the form an.bm−1 for some n,m ≥ 1. In this case the limit of stack contents is

⊥1.a
n.bm.#ω and it is accepted by A2 iff n = m ≥ 1.

Thus the configuration (q,⊥.u) is a winning position for Eve, with the winning condition ΩA1⊲A2
, if and

only if u is in the inherently ambiguous context free language V = {an.bm.cp | n,m, p ≥ 1 and (n =
m or m = p)}. ¤

Proposition 4.6. There exists a pushdown process P = (Q,Γ,⊥, δ), a partition Q = QE ∪ QA, two

deterministic pushdown automata A1,A2, and a state q ∈ Q such that, in the induced pushdown game

equipped with the winning condition ΩA1⊲A2
, the set {u | (q, u) ∈ WE} is a non context free language.

Proof. We define the pushdown process P = (Q,Γ,⊥, δ) as in the proof of preceding Proposition 4.5

except that we set this time QA = {q} and QE = {q′, q′′, p}. The two deterministic pushdown automata
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A1,A2, are also defined in the same way.

Consider now a configuration in the form (q,⊥.an.bm.cp) for some integers n,m, p ≥ 1. There are two

infinite plays starting from this configuration but they depend this time on the first choice of the second

player Adam.

The position (q,⊥.an.bm.cp) is winning for Eve iff these two infinite plays are won by her. This implies

that n = m and m = p.

Thus it holds that

{u | (q, u) ∈ WE} ∩ ⊥.a+.b+.c+ = ⊥.{an.bn.cn | n ≥ 1}

This language is not context free because of the well known non context freeness of the language

{an.bn.cn | n ≥ 1} [1, 12].

This implies that the set {u | (q, u) ∈ WE} itself is not context free. Indeed otherwise its intersection

with the rational language ⊥.a+.b+.c+ would be context free because the class CFL is closed under

intersection with rational languages. ¤

Acknowledgements. Thanks to the anonymous referee for useful comments on a preliminary version of

this paper.
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