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. Another stretching theorem of Finkel and Ressayre implies that one can decide, for a given local sentence ϕ and an ordinal α < ω ω , whether ϕ has a model of order type α. This result is very similar to Büchi's one who proved that the monadic second order theory of the structure (α, <), for a countable ordinal α, is decidable. It is in fact an extension of that result, as shown in [Fin01] by considering the expressive power of monadic sentences and of local sentences over languages of words of length α. The aim of this paper is twofold. We wish first to attract the reader's attention on these powerful decidability results proved using methods of model theory and which should find some applications in computer science and we prove also here several additional results on local sentences. The first one is a new decidability result in the case of local sentences whose function symbols are at most unary: one can decide, for every regular cardinal ω α (the α-th infinite cardinal), whether a local sentence ϕ has a model of order type ω α . Secondly we show that this result can not be extended to the general case. Assuming the consistency of an inaccessible cardinal we prove that the set of local sentences having a model of order type ω 2 is not determined by the axiomatic system ZF C + GCH, where GCH is the generalized continuum hypothesis. Next we prove that for all integers n, p ≥ 1, if n < p then the local theory of ω n , i.e. the set of local sentences having a model of order type ω n , is recursive in the local theory of ω p and also in the local theory of α where α is any ordinal of cofinality ω n .

Introduction

A local sentence is a first order sentence which is equivalent to a universal sentence and satisfies some semantic restrictions: closure in its models takes a finite number of steps. Ressayre introduced local sentences in [START_REF] Ressayre | Formal Languages defined by the Underlying Structure of their Words[END_REF] and established some remarkable links between the finite and the infinite model theory of these sentences given by some stretching theorems. Assuming that a binary relation symbol belongs to the signature of a local sentence ϕ and is interpreted by a linear order in every model of ϕ, the stretching theorems state that the existence of some well ordered models of ϕ is equivalent to the existence of some finite model of ϕ, generated by some particular kind of indiscernibles, like special, remarkable or monotonic ones. Another stretching theorem of Finkel and Ressayre establishes the equivalence between the existence of a model of order type α (where α is an infinite ordinal < ω ω ) and the existence of a finite model (of another local sentence ϕ α ) generated by N ϕα semi-monotonic indiscernibles (where N ϕα is a positive integer depending on ϕ α ) [START_REF] Finkel | Stretchings[END_REF]. This theorem provides some decision algorithms which show the decidability of the following problem: (P ) "For a given local sentence ϕ and an ordinal α < ω ω , has ϕ a model of order type α ?" This last result is very similar to Büchi's one who proved that the monadic second order theory of the structure (α, <), for a countable ordinal α, is decidable, [START_REF] Büchi | On a Decision Method in Restricted Second Order Arithmetic, Logic Methodology and Philosophy of Science[END_REF][START_REF] Thomas | Automata on Infinite Objects[END_REF][START_REF] Büchi | The Monadic Second Order Theory of All Countable ordinals, Decidable Theories 2[END_REF]. Büchi obtained some decision algorithms by proving firstly that, for α-languages (languages of infinite words of length α) over a finite alphabet, definability by monadic second order sentences is equivalent to acceptance by finite automata where a transition relation is added for limit steps. We can compare the expressive power of monadic sentences and of local sentences, considering languages defined by these sentences. For each ordinal α < ω ω , an α-language over a finite alphabet Σ is called local in [START_REF] Ressayre | Formal Languages defined by the Underlying Structure of their Words[END_REF][START_REF] Finkel | Stretchings[END_REF] (or also locally finite in [START_REF] Finkel | Locally Finite Languages[END_REF][START_REF] Finkel | Closure Properties of Locally Finite Omega Languages[END_REF][START_REF] Finkel | Topological Complexity of Locally Finite ω-Languages[END_REF]) iff it is defined by a second order sentence in the form ∃R 1 . . . ∃R k ϕ, where ϕ is local in the signature S(ϕ) = {<, R 1 , . . . R k , (P a ) a∈Σ }, R 1 , . . . R k are relation or function symbols, and, for each a ∈ Σ, P a is a unary predicate symbol. The class LOC α of local α-languages, for ω ≤ α < ω ω , is a strict extension of the class REG α of regular α-languages, defined by monadic second order sentences [START_REF] Finkel | Locally Finite Languages[END_REF]. Moreover this extension is very large. This can be seen by considering the topological complexity of α-languages and firstly of ω-languages. It is well known that all regular ω-languages are boolean combinations of Σ 0 2 Borel sets hence ∆ 0 3 Borel sets, [START_REF] Thomas | Automata on Infinite Objects[END_REF][START_REF] Perrin | Infinite Words, Automata, Semigroups, Logic and Games[END_REF]. On the other hand the class LOC ω meets all finite levels of the Borel hierarchy, contains some Borel sets of infinite rank and even some analytic but non Borel sets, [START_REF] Finkel | Topological Complexity of Locally Finite ω-Languages[END_REF]. Thus the decision algorithm for local sentences provides in fact a very large extension, for α < ω ω , of Büchi's result about the decidability of the monadic second order theory of (α, <). Moreover, at least for α = ω, the algorithm for local sentences is of much lower complexity than the corresponding algorithm for monadic second order sentences [START_REF] Finkel | Topological Complexity of Locally Finite ω-Languages[END_REF]. We think that these powerful decidability results proved using methods of model theory should find some applications in computer science and that the study of local sentences could become an interdisciplinary subject for both model theory and computer science communities. So the aim of this paper is twofold: firstly to attract the reader's attention on these good properties of local sentences and their possible further applications; secondly to prove several new results on local sentences, described below. Büchi showed that for every ordinal α < ω 2 , where ω 2 is the second uncountable cardinal, the monadic theory of (α, <) is decidable. This result cannot be extended to ω 2 . Assuming the existence of a weakly compact cardinal (a kind of large cardinal) Gurevich, Magidor and Shelah proved that the monadic theory of (ω 2 , <) is not determined by the set theory axiomatic system ZF C. They proved even much more: for any given S ⊆ ω there is a model of ZFC where the monadic theory of (ω 2 , <) has the Turing degree of S; in particular it can be non-recursive [START_REF] Gurevich | The Monadic Theory of ω 2[END_REF]. Ressayre asked similarly for which ordinals α it is decidable whether a given local sentence ϕ has a model of order type α. The question is solved in [START_REF] Finkel | Stretchings[END_REF] for α < ω ω but for larger ordinals the problem was still open. We firstly consider local sentences whose function symbols are at most unary. We show that these sentences satisfy an extension of the stretching theorem implying new decidability properties. In particular, for each regular cardinal ω α (hence in particular for each ω n where n is a positive integer), it is decidable whether a local sentence ϕ has a model of order type ω α . To know that this restricted class LOCAL(1) of local sentences has more decidability properties is of interest because it has already a great expressive power. Sentences in LOCAL(1) can define all regular finitary languages [START_REF] Ressayre | Formal Languages defined by the Underlying Structure of their Words[END_REF], and all the quasirational languages forming a large class of context free languages containing all linear languages [START_REF] Finkel | Locally Finite Languages[END_REF]. If we consider their expressive power over infinite words, sentences in LOCAL(1) can define all regular ω-languages [START_REF] Finkel | Locally Finite Languages[END_REF], but also some Σ 0 n -complete and some Π 0 n -complete Borel sets for every integer n ≥ 1, [START_REF] Finkel | Topological Complexity of Locally Finite ω-Languages[END_REF]. Next we show that this decidability result can not be extended to local sentences having n-ary function symbols for n ≥ 2. Assuming the consistency of an inaccessible cardinal, we prove that the local theory of ω 2 (the set of local sentences having a model of order type ω 2 ) is not determined by the system ZF C + GCH, where GCH is the generalized continuum hypothesis. This is also extended to many larger ordinals. This result is obtained by showing that there is a local sentence which has a model of order type ω 2 if and only if there is a Kurepa tree, i.e. a tree of height ω 1 whose levels are countable and which has more than ω 1 branches of length ω 1 . Kurepa trees have been much studied in set theory and their existence has been shown to be independent of ZF C + GCH, via the consistency of ZF C + " there is an inaccessible cardinal". It is remarkable that our proof needs only the consistency of an inaccessible cardinal which is still a large cardinal but a very smaller cardinal than a weakly compact cardinal. This gives another indication of the great expressive power of local sentences with regard to that of monadic sentences. We could still expect, as Shelah did in [START_REF] Shelah | The Monadic Theory of order[END_REF] about the possible monadic theories of ω 2 , that there are only finitely many possible local theories of ω 2 , and that each of them is decidable. But it seems more plausible that the situation is much more complicated, as it is shown to be the case for monadic theories of ω 2 in [START_REF] Gurevich | The Monadic Theory of ω 2[END_REF]: there are in fact continuum many possible monadic theories of ω 2 (in different universes of set theory); moreover, for every set of positive integers S ⊆ ω, there is a monadic theory of ω 2 , in some world, which is as complex as S.

We then extend the above results by proving that for all integers n, p ≥ 1, if n < p then the local theory of ω n is recursive in the local theory of ω p and also in the local theory of α where α is any ordinal of cofinality ω n . Some of these new results are seemingly far from problems arising in concrete applications studied in computer science. However our main result is obtained by encoding (Kurepa) trees in models of a local sentence and methods used here for such coding might be very useful for problems arising in computer science where (finite or infinite) trees are a widely used tool.

The paper is organized as follows. In section 2 we review some previous definitions and results about local sentences. In section 3 we prove new decidability results. Our main result on the local theory of ω 2 is proved in section 4. Some results on the local theories of ω n , n ≥ 1, are stated in section 5.

Review of previous results

In this paper the (first order) signatures are finite, always contain one binary predicate symbol = for equality, and can contain both functional and relational symbols.

When M is a structure in a signature Λ, |M| is the domain of M. If f is a function symbol (respectively, R is a relation symbol, a is a constant symbol) in Λ, then f M (respectively, R M , a M ) is the interpretation in the structure M of f (respectively, R, a).
Notice that, when the meaning is clear, the superscript M in f M , R M , a M , will be sometimes omitted in order to simplify the presentation.

For a structure M in a signature Λ and X ⊆ |M|, we define:

cl 1 (X, M) = X ∪ {f n-ary function of Λ } f M (X n ) ∪ {a constant of Λ } a M cl n+1 (X, M) = cl 1 (cl n (X, M), M) for an integer n ≥ 1 and cl(X, M) = n≥1 cl n (X, M) is the closure of X in M.
The signature of a first order sentence ϕ, i.e. the set of non logical symbols appearing in ϕ, is denoted S(ϕ). As usual M |= ϕ means that the sentence ϕ is satisfied in the structure M, i.e. that M is a model of ϕ.

Definition 2.1 A first order sentence ϕ is local if and only if:

(a) M |= ϕ and X ⊆ |M| imply cl(X, M) |= ϕ (b) ∃n ∈ N such that ∀M, if M |= ϕ and X ⊆ |M|, then cl(X, M) =
cl n (X, M), (closure in models of ϕ takes less than n steps).

For a local sentence ϕ, n ϕ is the smallest integer n ≥ 1 satisfying (b) of the above definition. In this definition, (a) implies that a local sentence ϕ is always equivalent to a universal sentence, so we may assume that this is always the case.

Example 2.2 Let ϕ be the sentence in the signature S(ϕ) = {<, P, i, a}, where < is a binary relation symbol, P is a unary relation symbol, i is a unary function symbol, and a is a constant symbol, which is the conjunction of:

(

1) ∀xyz[(x ≤ y ∨ y ≤ x) ∧ ((x ≤ y ∧ y ≤ x) ↔ x = y) ∧ ((x ≤ y ∧ y ≤ z) → x ≤ z)],
(2) ∀xy[(P (x) ∧ ¬P (y)) → x < y],

(3) ∀xy[(P (x) → i(x) = x) ∧ (¬P (y) → P (i(y)))], (4) ∀xy[(¬P (x) ∧ ¬P (y) ∧ x = y) → i(x) = i(y)],

(5) ¬P (a).

We now explain the meaning of the above sentences (1)-(5). Assume that M is a model of ϕ. The sentence (1) expresses that < is interpreted in M by a linear order; (2) expresses that P M is an initial segment of the model M; (3) expresses that the function i M is trivially defined by i M (x) = x on P M and is defined from ¬P M into P M . (4) says that i M is an injection from ¬P M into P M and (5) ensures that the element a M is in ¬P M . The sentence ϕ is a conjunction of universal sentences thus it is equivalent to a universal one, and closure in its models takes at most two steps (one adds the constant a in one step then takes the closure under the function i). Thus ϕ is a local sentence. If we consider only the order types of well ordered models of ϕ, we can easily see that ϕ has a model of order type α, for every finite ordinal α ≥ 2 and for every infinite ordinal α which is not a cardinal.

Many more examples of local sentences will be given later in Sections 4 and 5. The reader may also find many other ones in the papers [START_REF] Ressayre | Formal Languages defined by the Underlying Structure of their Words[END_REF][START_REF] Finkel | Stretchings[END_REF][START_REF] Finkel | Locally Finite Languages[END_REF] [ [START_REF] Finkel | Langages de Büchi et ω-Langages Locaux[END_REF][START_REF] Finkel | Topological Complexity of Locally Finite ω-Languages[END_REF][START_REF] Finkel | Closure Properties of Locally Finite Omega Languages[END_REF].

The set of local sentences is recursively enumerable but not recursive [START_REF] Finkel | Locally Finite Languages[END_REF]. However there exists a "recursive presentation" up to logical equivalence of all local sentences. Theorem 2.3 (Ressayre, see [START_REF] Finkel | Locally Finite Languages[END_REF]) There exists a recursive set L of local sentences and a recursive function F such that:

1) ψ local ←→ ∃ψ ′ ∈ L such that ψ ≡ ψ ′ . 2) ψ ′ ∈ L -→ n ψ ′ = F(ψ ′ ).
The elements of L are the ψ ∧ C n , where ψ run over the universal formulas and C n run over the universal formulas in the signature S(ψ) which express that closure in a model takes at most n steps. ψ ∧ C n is local and n ψ∧Cn ≤ n. Then we can compute n ψ∧Cn , considering only finite models of cardinal ≤ m, where m is an integer depending on n. And each local sentence ψ is equivalent to a universal formula θ, hence ψ ≡ θ ∧C n ψ .

From now on we shall assume that the signature of local sentences contain a binary predicate < which is interpreted by a linear ordering in all of their models. We recall now the stretching theorem for local sentences. Below, semi-monotonic, special, and monotonic indiscernibles are particular kinds of indiscernibles which are precisely defined in [START_REF] Finkel | Stretchings[END_REF]. To every local sentence ϕ and every ordinal α such that ω ≤ α < ω ω one can associate by an effective procedure a local sentence ϕ α , a unary predicate symbol P being in the signature S(ϕ α ), such that:

(C α ) ϕ has a well ordered model of order type α if and only if ϕ α has a finite model M generated by N ϕα semi-monotonic indiscernibles into P M .

The integer N ϕ can be effectively computed from n ϕ and q where ϕ = ∀x 1 . . . ∀x q θ(x 1 , . . . , x q ) and θ is an open formula, i.e. a formula without quantifiers. If v(ϕ) is the maximum number of variables of terms of complexity ≤ n ϕ + 1 (resulting by at most n ϕ + 1 applications of function symbols) and v ′ (ϕ) is the maximum number of variables of an atomic formula involving terms of complexity

≤ n ϕ + 1 then N ϕ = max{3v(ϕ); v ′ (ϕ) + v(ϕ); q.v ′ (ϕ)}.
From Theorem 2.4 we can prove the decidability of several problems about local sentences. For instance (C) states that a local sentence ϕ has an infinite well ordered model iff it has a finite model generated by N ϕ semi-monotonic indiscernibles. Therefore in order to check the existence of an infinite well ordered model of ϕ one can only consider models whose cardinals are bounded by an integer depending on n ϕ and N ϕ , because closure in models of ϕ takes at most n ϕ steps. This can be done in a finite amount of time.

Notice that the set of local sentences is not recursive so the algorithms given by the following theorem are applied to local sentences in the recursive set L given by Proposition 2.3. In particular ϕ is given with the integer n ϕ .

Theorem 2.5 ([FR96]) It is decidable, for a given local sentence ϕ, whether

(1) ϕ has arbitrarily large finite models.

(2) ϕ has an infinite model.

(3) ϕ has an infinite well ordered model.

(4) ϕ has well ordered models of unbounded order types in the ordinals.

(5) ϕ has a model of order type α, where α < ω ω is a given ordinal.

These decidable problems (1) -(4) and (5) (at least for α = ω) are in the class NTIME(2 O(n.log(n)) ), (and even probably of lower complexity): Using non determinism a Turing machine may guess a finite structure M of signature S(ϕ) generated by N ϕ elements y 1 , . . . y Nϕ in at most n ϕ steps. Then, assuming ϕ = ∀x 1 . . . ∀x q θ(x 1 , . . . , x q ) where θ is an open formula, the Turing machine checks that θ(x 1 , . . . , x q ) holds for all x 1 . . . x q in M, and that the elements y 1 , . . . y Nϕ are indiscernibles (respectively, semi-monotonic, special, monotonic, indiscernibles) in M.

On the other hand Büchi's procedure to decide whether a monadic second order formula of size

n of S1S is true in the structure (ω, <) might run in time 2 2 . . 2 n O(n)
, [START_REF] Büchi | On a Decision Method in Restricted Second Order Arithmetic, Logic Methodology and Philosophy of Science[END_REF][START_REF] Safra | Complexity of Automata on Infinite Objects[END_REF]. Moreover Meyer proved that one cannot essentially improve this result: the monadic second order theory of (ω, <) is not elementary recursive, [START_REF] Meyer | Weak Monadic Second Order Theory of Successor is not Elementary Recursive[END_REF].

We know that the expressive power of local sentences is much greater than that of monadic second order sentences hence this is a remarkable fact that decision algorithms for local sentences given by Theorem 2.5 are of much lower complexity than the algorithm for decidability of the monadic second order theory S1S of one successor over the integers.

Notice however that the nonemptiness problem for Büchi automata is known to be logspace-complete for the complexity class NLOGSPACE which is included in the class DTIME(Pol) of problems which can be solved in deterministic polynomial time [START_REF] Vardi | Reasoning about Infinite Computations[END_REF][START_REF] Börger | The Classical Decision Problem[END_REF]. Moreover there is a linear time algorithm for deciding the nonemptiness problem for Büchi automata which is nowadays very useful for many applications in the domain of specification and verification of non terminating systems, see for example [START_REF] Barringer | CTL ⋆ Model-Checking for SPIN[END_REF].

More decidability results

We assume in this section that the function symbols of a local sentence ϕ are at most unary. We shall prove in this case some more decidability results which rely on an extension of the stretching Theorem 2.4.

The cardinal of a set X will be denoted by card(X).

We recall that the infinite cardinals are usually denoted by ℵ 0 , ℵ 1 , ℵ 2 , . . . , ℵ α , . . . The cardinal ℵ α is also denoted by ω α , as usual when it is considered as an ordinal.

We recall now the notions of cofinality of an ordinal and of regular cardinal which may be found for instance in [START_REF] Devlin | Constructibility[END_REF][START_REF] Jech | Set Theory, Third Edition[END_REF].

Let α be a limit ordinal, the cofinality of α, denoted cof (α), is the least ordinal β such that there exists a strictly increasing sequence of ordinals (α i ) i<β , of length β, such that ∀i < β α i < α and sup

i<β α i = α
This definition is usually extended to 0 and to the successor ordinals: cof (0) = 0 and cof (α + 1) = 1 for every ordinal α.

The cofinality of a limit ordinal is always a limit ordinal satisfying:

ω ≤ cof (α) ≤ α cof (α) is in fact a cardinal. A cardinal k is said to be regular iff cof (k) = k.
Otherwise cof (k) < k and the cardinal k is said to be singular.

We recall now the notion of special indiscernibles, [START_REF] Finkel | Stretchings[END_REF], in that particular case where all function symbols hence all terms of S(ϕ) are unary.

A set X included in a structure M, having a linear ordering < in its signature, is a set of indiscernibles iff whenever x and ȳ are order isomorphic sequences from X they satisfy in M the same atomic sentences. The indiscernibles of X are special iff they satisfy (i) and (ii):

(i) for all x < y in X and all terms t: t(x) < y.

(ii) for all x < y in X and all terms t: t(y) < x → t(y) = t(z) for all elements z > x of X (i.e. t is constant on {z ∈ X | z > x}).

Theorem 3.1 For each local sentence ϕ whose function symbols are at most unary, there is a positive integer N ϕ such that, for each regular cardinal ω α , the following statements are equivalent: Proof. It is proved in [START_REF] Finkel | Stretchings[END_REF] that for each local sentence ϕ there is a positive integer N ϕ such that (a) is equivalent to (b).

To prove (a) → (c) assume that ϕ has an ω-model M. Then it is proved in [START_REF] Finkel | Stretchings[END_REF] that there exists an infinite set X of special indiscernibles in M. Recall that every linear order Y can be extended to a model M(Y ) of ϕ, called the stretching of M along Y , so that:

(1) M(X) is the submodel of M generated by the set X.

(2) Y ⊆ Z implies M(Y ) ⊆ M(Z).

(3) Every order embedding f : Y → Z has an extension M(f ) which is an embedding of M(Y ) into M(Z).

Let then β be a limit ordinal and M(β) be the stretching of M along β. We are going to show that M(β) is of order type β. The model M(β) is generated by the set β in a finite number of steps so there is a finite set T ϕ of (unary) terms of the signature S(ϕ) such that the domain of

M(β) is β ∪ ∪ t∈Tϕ ∪ γ<β t(γ).
The indiscernibles are special thus for each term t ∈ T ϕ , either t is constant on β or for all indiscernibles x < y < z in β we have x < t(y) < z. It is then easy to see that M(β) is of order type β.

(c) → (d) is trivial so it remains to prove (d) → (a). We assume that α is an ordinal and that M is a model of ϕ of order type ω α where ω α is a regular cardinal. We are going to show that there exists in M an infinite set of special indiscernibles. These indiscernibles have to satisfy (i) and (ii) only for terms of complexity ≤ n ϕ because for each term t of complexity greater than n ϕ there will be another term t ′ of complexity ≤ n ϕ such that t(x) = t ′ (x) for all indiscernibles x. This finite set of terms of complexity ≤ n ϕ will be denoted by T = {t 1 , t 2 , . . . , t N }.

Using the fact that ω α is a regular cardinal, we can firstly construct by induction a strictly increasing sequence (x δ ) δ<ωα of elements of M such that for each ordinal δ < ω α and each term t ∈ T it holds that t(x δ ) < x δ+1 . We denote

X 0 = {x δ | δ < ω α }; this set has cardinal ℵ α .
We consider now the three following cases:

First case. The set {x δ ∈ X 0 -{x 0 } | t 1 (x δ ) = x 0 } has cardinal ℵ α .
Then we denote this set by X 1 0 . Second case. The set {x δ ∈ X 0 -{x 0 } | t 1 (x δ ) < x 0 } has cardinal ℵ α and the first case does not hold. The initial segment {x ∈ M | x < x 0 } of M has cardinal smaller than ℵ α thus there is a subset of {x δ ∈ X 0 -{x 0 } | t 1 (x δ ) < x 0 } which has cardinal ℵ α and on which t 1 is constant. Then we denote this set by X 1 0 . Third case. The set {x δ ∈ X 0 -{x 0 } | t 1 (x δ ) > x 0 } has cardinal ℵ α and the two first cases do not hold. Then we call this set X 1 0 .

We can repeat now this process, replacing X 0 by X 1 0 and the term t 1 by the term t 2 , so we obtain a new set X 2 0 ⊆ X 1 0 having still cardinal ℵ α . Next we repeat the process replacing X 1 0 by X 2 0 and the term t 2 by the term t 3 , so we obtain a new set X 3 0 ⊆ X 2 0 having still cardinal ℵ α . After having considered all terms t 1 , t 2 , . . . , t N we have got a set

X N 0 ⊆ X N -1 0 ⊆ . . . ⊆ X 0 . We denote X 1 = X N 0 .
Let x δ 1 be the first element of X 1 . We can repeat all the above process replacing X 0 by X 1 and x 0 by x δ 1 . This way, considering successively each of the terms t 1 , t 2 , . . . , t N , we construct new sets

X N 1 ⊆ X N -1 1 ⊆ . . . ⊆ X 1 1 ⊆ X 1
, each of them having cardinal ℵ α , and we set X 2 = X N 1 . Assume now that we have applied this process K times for some integer K ≥ 2. Then we have constructed successively some sets X 1 , X 2 , . . . , X K of cardinal ℵ α . Let now x δ K be the first element of X K . We can repeat the above process replacing X 0 by X K and x 0 by x δ K . This way we construct a new set X K+1 = X N K of cardinal ℵ α . Then we can construct by induction the sets X K for all integers K ≥ 1. We set X = {x δ i | 0 ≤ i < ω} where for all i, x δ i is the first element of X i .

Let now X [n] be the set of strictly increasing n-sequences of elements of X. Let ∼ be the equivalence relation defined on X [v ′ (ϕ)] by: x ∼ y if and only if x and y satisfy in M the same atomic formulas of complexity ≤ n ϕ + 1 (i.e. whose terms are of complexity ≤ n ϕ + 1). Applying the Infinite Ramsey Theorem, we can now get an infinite set Y ⊆ X such that Y [v ′ (ϕ)] is contained in a single equivalence class of ∼. Y is a set of indiscernibles in M because if z and z ′ are two elements of Y [n] for n ≥ v ′ (ϕ), then they satisfy in M the same atomic sentences of complexity ≤ n ϕ + 1 hence of any complexity by Fact 1 of [FR96, page 568]. By the above construction of the set X, the indiscernibles of Y are special.

Thus the submodel M(Y ) of M generated by Y is a model of ϕ of order type ω.

Notice that one cannot omit the hypothesis of the regularity of the cardinal ω α in the above theorem. This is due to the fact that there exists a local sentence whose function symbols are at most unary and which has some well ordered models of order type α, for every ordinal α which is not a regular cardinal. Such an example is given in [START_REF] Finkel | Stretchings[END_REF]. We are going to recall it now because some steps of its construction will be also useful later.

We recall first the operation ϕ → ϕ ⋆ over local sentences which was first defined by Ressayre in [START_REF] Ressayre | Formal Languages defined by the Underlying Structure of their Words[END_REF] in order to prove that the class of local languages is closed under star operation. For each local sentence ϕ, the signature of the first order sentence S(ϕ ⋆ ) is S(ϕ) to which is added a unary function symbol I and in which every constant symbol e is replaced by a unary function symbol e(x). ϕ ⋆ is the sentence defined by the conjunction of:

(1) ( < is a linear order ), ( 2 

. . . x n [( i,j≤n I(x i ) = I(x j )) → f (x 1 . . . x n ) = min(x 1 . . . x n )] ,
for each n-ary function f of S(ϕ), (5) ∀x 1 . . . x n [( i,j≤n I(x i ) = I(x j )) → I(f (x 1 . . . x n )) = I(x 1 )], for each n-ary function f of S(ϕ), (6) ∀xϕ x , where ϕ x is the local sentence ϕ in which every constant e is replaced by the term e(x) and each quantifier is relativized to the set {y | I(y) = I(x)}.

We now explain the meaning of sentences (1)-(6). Sentence (2) is used to divide a model M of ϕ ⋆ into successive segments. The function I M is constant on each of these segments and the image I M (x) of an element x is the first element of the segment containing x. Sentence (3) expresses that each unary function e M obtained from a constant symbol e ∈ S(ϕ) is constant on every segment of the model. ( 4) and (5) express that, for each function symbol f ∈ S(ϕ), each segment of the model is closed under the function f M and that f M is trivially defined by f M (x 1 . . . x n ) = min(x 1 . . . x n ) when at least two of the elements x i belong to different segments. Finally sentence (6) expresses that each structure which is obtained by restricting some segment of the model to the signature of ϕ is a model of ϕ. This implies that models of ϕ ⋆ are essentially direct sums of models of ϕ.

It is easy to see that n ϕ ⋆ = n ϕ + 1. Closure in models of ϕ ⋆ takes at most n ϕ + 1 steps: one takes the closure under the function I then the closure under functions of S(ϕ) in n ϕ steps.

We recall now the operation (ϕ, ψ) → ϕ ⋆ψ over local sentences which is an extension of the operation ϕ → ϕ ⋆ and is defined in [START_REF] Finkel | Stretchings[END_REF].

We assume that S(ϕ ⋆ )∩ S(ψ)={<}. Then S(ϕ ⋆ψ )=S(ϕ ⋆ ) ∪ S(ψ) ∪ {P }, where P is a new unary predicate symbol not in S(ϕ) ∪ S(ψ). ϕ (⋆ψ) is the conjunction of :

(

1) ϕ ⋆ , (2) ∀x[P (x) ↔ I(x) = x], (3) ∀x 1 . . . x k [( k i=1 P (x i )) → P (t(x 1 . . . x k ))],
for each k-ary function t of S(ψ), (4) P (a), for each constant a of S(ψ), (5

) ∀x 1 . . . x n [( n i=1 ¬P (x i )) → t(x 1 . . . x n ) = min(x 1 . . . x n )], for each n-ary function t in S(ψ). (6) ∀x 1 . . . x k [Q(x 1 . . . x k ) → P (x 1 ) ∧ . . . ∧ P (x k )], for each k-ary predicate sym- bol Q of S(ψ) (7) ∀x 1 . . . x n [( n i=1 P (x i )) → ψ 1 (x 1 . . . x n )], where ψ = ∀x 1 . . . x n ψ 1 (x 1 . . . x n ) and ψ 1 is an open formula,
We now explain the meaning of (1)-(7). Sentence (1) is ϕ ⋆ so it expresses that a model M is essentially a direct sum of models of ϕ . (2) says that in such a model M, P M is the set of first elements of the segments of M defined with the function I M . (3)-( 5) are used to ensure that P M is closed under functions of S(ψ) and that these functions are trivially defined elsewhere. (6) says that for every k-ary predicate Q in S(ψ) the set Q M is included into (P M ) k . Sentence (7) expresses that the restriction of M to the set P M and to the signature of ψ is a model of ψ. It is easy to see that n ϕ (⋆ψ) = n ϕ + n ψ + 1; to take closure of a set X in a model of ϕ (⋆ψ) one takes the closure under the function I, then under the functions of S(ψ) in n ψ steps, then under the functions of S(ϕ) in n ϕ steps. The models of ϕ (⋆ψ) essentially are direct sums of models of ϕ , these models being ordered by the order type of a model of ψ.

We are mainly interested in this paper by well ordered models of local sentences, so we now recall the notion of spectrum of a local sentence ϕ. As usual the class of all ordinals is denoted by On. The spectrum of ϕ (⋆ψ) depends on the spectra of the local sentences ϕ and ψ ans is given by the following proposition.

Proposition 3.3 Let ϕ and ψ be some local sentences, then ϕ (⋆ψ) is a local sentence and its spectrum is

Sp(ϕ (⋆ψ) ) = { α<ν a α | ν ∈ Sp(ψ) and ∀α < ν a α ∈ Sp(ϕ)}
We can now construct a local sentence which has models of order type α for every infinite ordinal α which is not a regular cardinal [START_REF] Finkel | Stretchings[END_REF]. Let θ be a local sentence in the signature S(θ)={<, a} which just expresses that the constant symbol a is interpreted by the last element of a model. Then the spectrum of θ is the class of successor ordinals. And let β be a local sentence in the signature S(β)={<, P, s} where P is a unary predicate symbol and s is a unary function symbol, which expresses that in a model M, the set P M is an initial segment of the model and that s M is a strictly non decreasing involution from P M onto ¬P M . Then the spectrum of β is the class of ordinals of the form α.2 for some ordinal α. It holds by construction that there are not in the signature of θ ⋆β any function symbols of arity greater than 1 and we can verify that Sp ∞ (θ ⋆β ) = {α ≥ ω | α is not a regular cardinal }. In particular the sentence θ ⋆β has a model of order type ω α for every singular cardinal ω α but it has no model of order type ω. So the hypothesis of the regularity of the cardinal ω α was necessary in Theorem 3.1.

Return now to decision algorithms given by stretching theorems. By Theorem 2.5 it is decidable whether a local sentence ϕ has an ω-model so Theorem 3.1 implies also the following decidability result.

Theorem 3.4 It is decidable, for a given local sentence ϕ whose function symbols are at most unary, and a given regular cardinal ω α , whether:

(1) ϕ has an ω α -model (2) ϕ has a β-model for all limit ordinals β.

So in particular one can decide, for a given local sentence ϕ whose function symbols are at most unary, whether ϕ has a model of order type ω 1 , (respectively, ω 2 , ω n where n is a positive integer).

As mentioned in the introduction it is interesting to know that the class LOCAL(1) of local sentences with at most unary function symbols has more decidability properties because it has already a great expressive power. In particular LOCAL(1) can define all regular ω-languages [START_REF] Finkel | Locally Finite Languages[END_REF], but also some Σ 0 n -complete and some Π 0 n -complete Borel sets for every integer n ≥ 1, [START_REF] Finkel | Topological Complexity of Locally Finite ω-Languages[END_REF].

Moreover it is easy to see that local ω-languages satisfy an extension of Büchi's lemma. Recall that this lemma states that a regular ω-language is non-empty if and only if it contains an ultimately periodic ω-word, i.e. an ω-word in the form u.v ω for some finite words u and v. On the other hand by the proof of the Stretching Theorem 2.4 (C) we know that a local ω-language L(ϕ) ⊆ Σ ω is non-empty if and only if it contains an ω-word which is the reduction to the signature Λ Σ = {<, (P a ) a∈Σ } (of words over Σ) of an ω-model of ϕ generated by special indiscernibles. If the function symbols of the local sentence ϕ are at most unary then it is easy to see that such a reduction of an ω-model of ϕ generated by special indiscernibles is always an ultimately periodic ω-word.

The local theory of ω 2

It was proved in [START_REF] Finkel | Stretchings[END_REF] that there exists a local sentence ψ (whose signature contains binary function symbols) having well ordered models of order type α for every ordinal α in the segment [ω; 2 ℵ 0 ] but not any well ordered model of order type α for card(α) > 2 ℵ 0 . On the other hand it is well known that the continuum hypothesis CH is independent of the axiomatic system ZF C. This means that there are some models of ZF C in which 2 ℵ 0 = ℵ 1 and some others in which 2 ℵ 0 ≥ ℵ 2 . Therefore the statement "ψ has a model of order type ω 2 " is independent of ZF C. However if we assume the continuum hypothesis and even the generalized continuum hypothesis GCH saying that, for every cardinal ℵ α , 2 ℵα = ℵ α+1 , then the above result of [START_REF] Finkel | Stretchings[END_REF] does not imply a similar independence result.

Nevertheless we are going to prove the existence of a local sentence Φ such that "Φ has a model of order type ω 2 " is independent of ZF C + GCH. For that purpose we shall use results about Kurepa trees which we now recall.

A partially ordered set (T, ≺ T ) is called a tree if for every t ∈ T the set {s ∈ T | s ≺ T t} is well ordered under ≺ T . Then the order type of the set {s ∈ T | s ≺ T t} is called the height of t in T and is denoted by ht(t). We shall not distinguish a tree from its base set. For every ordinal α the α-th level of T is

T α = {t ∈ T | ht(t) = α}.
The height of T , denoted by ht(T ), is the smallest ordinal α such that T α = ∅. A branch of T will be a linearly ordered subset of T intersecting every nonempty level of T . The set of all branches of T will be denoted B(T ). A tree T is called an ω 1 -tree if card(T ) = ℵ 1 and ht(T ) = ω 1 . An ω 1 -tree T is called a Kurepa tree if card(B(T )) > ℵ 1 and for every ordinal α < ω 1 , card(T α ) < ℵ 1 .

Recall now the well known results about Kurepa trees, [START_REF] Devlin | Constructibility[END_REF]:

We now explain the meaning of the above sentences (1)-(10). Assume that M is a model of ϕ 1 . The sentence (1) expresses that < is interpreted in M by a linear order; (2) expresses that Q M is an initial segment of the model M; (3) and (4) state that Q M is closed under the functions of S(ϕ 0 ) while ( 5) and (6) state that these functions are trivially defined elsewhere; (7) means that the restriction of the model M to the domain Q M and to the signature of S(ϕ 0 ) is a model of ϕ 0 ; Finally (8) and (9) ensure that, for each x ∈ ¬Q, the binary function g realizes an injection from the segment {y ∈ ¬Q | y < x} into Q and (10) states that the function g is trivially defined where it is not useful for that purpose. The sentence ϕ 1 is a conjunction of universal sentences thus it is equivalent to a universal one, and closure in its models takes at most n ϕ + 1 steps: one applies first the function g and then the functions of S(ϕ 0 ). Thus the sentence ϕ 1 is local. Consider now a well ordered model M of ϕ 1 . The restriction of M to the domain Q M and to the signature of S(ϕ 0 ) is a well ordered model of ϕ 0 hence it is of order type ≤ ω. But the function g defines an injection from each initial segment of ¬Q into Q thus each initial segment of ¬Q is countable and this implies that the order type of ¬Q M is smaller than or equal to ω 1 . Finally we have proved that the order type of M is ≤ ω 1 . Conversely it is easy to see that every ordinal α ∈ [ω, ω 1 ] is the order type of some model of ϕ 1 .

Return now to the construction of the sentence Φ given by Theorem 4.2. We are going to explain this construction by several successive steps.

A model M of Φ will be totally ordered by < and will be the disjoint union of four successive segments. This will be expressed by the following sentence Φ 1 in the signature S(Φ 1 ) = {P 0 , P 1 , P 2 , P 3 }, where P 0 , P 1 , P 2 , P 3 , are unary predicate symbols. Φ 1 is the conjunction of:

(1) ∀xyz[(x ≤ y ∨ y ≤ x) ∧ ((x ≤ y ∧ y ≤ x) ↔ x = y) ∧ ((x ≤ y ∧ y ≤ z) → x ≤ z)], (2) ∀xy 0≤i<j≤3 [(P i (x) ∧ P j (y)) → x < y].
We want now to ensure that, if M is a well ordered model of Φ, then P M 0 is of order type ≤ ω and P M 1 is of order type ≤ ω 1 . For that purpose, the signature of Φ will contain the signature S(ϕ 1 ) = S(ϕ 0 ) ∪ {Q, g} = {<, P, f, p 1 , p 2 , Q, g} and Φ will express that if M is a model of Φ, then P M 0 = Q M and the restriction of the model M to (P M 0 ∪ P M 1 ) and to the signature of ϕ 1 is a model of ϕ 1 . This is expressed by the following sentence Φ 2 which is the conjunction of:

(1) ∀x[Q(x) ↔ P 0 (x)],

(2) ∀xy[(x ∈ P 0 ∪ P 1 ∧ y ∈ P 0 ∪ P 1 ) → f (x, y) ∈ P 0 ∪ P 1 ],

(3) ∀xy[(x ∈ P 0 ∪ P 1 ∧ y ∈ P 0 ∪ P 1 ) → g(x, y) ∈ P 0 ∪ P 1 ], (4) ∀x[(x ∈ P 0 ∪ P 1 ) → p i (x) ∈ P 0 ∪ P 1 ], for each i ∈ [1, 2], (5) ∀xy[(x / ∈ P 0 ∪ P 1 ∨ y / ∈ P 0 ∪ P 1 ) → f (x, y) = x], (6) ∀xy[(x / ∈ P 0 ∪ P 1 ∨ y / ∈ P 0 ∪ P 1 ) → g(x, y) = x], (7) ∀x[x / ∈ P 0 ∪ P 1 → p i (x) = x], for each i ∈ [1, 2], (8) ∀x 1 . . . x k ∈ (P 0 ∪ P 1 )[ϕ ′ 1 (x 1 , . . . , x k )], where

ϕ 1 = ∀x 1 . . . x k ϕ ′ 1 (x 1 , . . . , x k ) with ϕ ′
1 an open formula.

Above sentences (2)-(4) state that in a model M the set (P 0 ∪ P 1 ) M is closed under the functions of S(ϕ 1 ) while ( 5)-(7) state that these functions are trivially defined elsewhere; (8) means that the restriction of the model M to the domain (P 0 ∪ P 1 ) M and to the signature of S(ϕ 1 ) is a model of ϕ 1 .

We want now that, in a model M of Φ, the set P M 2 represents the base set of a tree (T, ≺). We shall use a binary relation symbol ≺. The following sentence Φ 3 is the conjunction of:

(1) ∀xy[x ≺ y → P 2 (x) ∧ P 2 (y)], (2) ∀xyz[((x y ∧ y x) ↔ x = y) ∧ ((x ≺ y ∧ y ≺ z) → x ≺ z)]. (3) ∀xy[x ≺ y → x < y].
Above sentences (1)-(2) express that ≺ is a partial order on P 2 and the sentence (3) ensures that, in a well ordered (for < ) model M of Φ 3 , for every t ∈ P 2 , the set {s ∈ P 2 | s ≺ t} is well ordered under ≺ because M itself is well ordered under <.

Moreover we want now that in an ω 2 -model M of Φ, the set P M 2 represents the base set of an ω 1 -tree T whose levels are countable. We have firstly to distinguish the different levels of the tree T . We shall use for that purpose unary functions I and p and the following sentence Φ 4 conjunction of: 

(x) ∨ ¬P 2 (y) ∨ I(x) = x ∨ I(x) ≥ I(y)) → p(x, y) = x], (6) ∀x[¬P 2 (x) → I(x) = x].
Above the sentence (1) is used to divide the segment P 2 of a model of Φ 4 into successive segments. The function I is constant on each of these segments and the image I(x) of an element x ∈ P 2 is the first element of the segment containing x. Sentences (2)-(3) ensure that if y ∈ P 2 then every element x ∈ P 2 such that x ≺ y belongs to some segment I z = {w ∈ P 2 | I(w) = I(z)} for some z < I(y). Moreover for each z < I(y), the segment I z contains at most one z ∈ P 3 . For each level T α of the tree which is represented by the segment of P 2 whose first element is I(x), the sentence (1) says that h(I(x), z) is an element at the same level T α and (2) says that the elements h(I(x), z), for x ∈ P 2 , are linearly ordered for ≺ hence they form a branch b(z) of the tree T . The function k is used to associate to two different elements x and y of P 3 a level of the tree T , which is represented by the element k(x, y): the first element of the segment of P 2 representing this level. This is expressed by the sentence (4). The sentence (5) says that, for two distinct elements x and y of P 3 , the branches b(x) and b(y) differ at the level represented by k(x, y). Finally sentences (3) and ( 6) are used to trivially define the functions h and k in other cases.

We have seen that in a well ordered model M of Φ, P M 1 and P M 2 will be of order type ≤ ω 1 . The following sentence Φ 7 will then imply that P M 3 is of order type ≤ ω 2 . Its signature is {<, P 1 , P 3 , l}, where l is a binary function symbol, and Φ 7 is the conjunction of:

(1) ∀xy[(P 3 (x) ∧ P 3 (y) ∧ y < x) → P 2 (l(x, y))],

(2) ∀xyz[(P 3 (x) ∧ P 3 (y

) ∧ P 3 (z) ∧ y < z < x) → l(x, y) = l(x, z)], (3) ∀xy[(¬P 3 (x) ∨ ¬P 3 (y) ∨ ¬(y < x)) → l(x, y) = x].
Above sentences (1)-(3) are in fact very similar to sentences (8)-(10) used in the construction of the sentence ϕ 1 .

(1) and (2) ensure that, for each x ∈ P 3 , the binary function l realizes an injection from the segment {y ∈ P 3 | y < x} into P 2 and (3) states that the function l is trivially defined where it is not useful for that purpose.

We can now define the sentence

Φ = 1≤i≤7 Φ i in the signature S(Φ) = 1≤i≤7 S(Φ i ) = {<, P 0 , P 1 , P 2 , P 3 , Q, p 1 , p 2 , f, g, ≺, p, I, i, j, h, k, l}.
Φ is a conjunction of universal sentences thus it is equivalent to a universal sentence and closure in its models takes at most 7 steps: one takes firstly closure under the function l then under the functions I and k, then under the functions h and p, then under i and j, then under the function g, then under the functions p 1 and p 2 , and finally under the function f . Notice that the two last steps are due to the construction of ϕ 0 and the fact that n ϕ 0 = 2 (see [START_REF] Finkel | Stretchings[END_REF]). Assume now that M is a well ordered model of Φ. By construction P M 0 is of order type ≤ ω, P M 1 and P M 2 are of order types ≤ ω 1 , and P M 2 is the base set of a tree T whose levels are countable. Moreover every strict initial segment of P M 3 is of cardinal ≤ ℵ 1 , so P M 3 is of order type ≤ ω 2 . Finally we have got that M itself is of order type ≤ ω 2 . Suppose now that M is of order type ω 2 . Then P M 3 also is of order type ω 2 and for every strict initial segment J of P M 3 there is an injection from J into P M 2 thus P M 2 is of cardinal ℵ 1 . But its order type is ≤ ω 1 , hence it is in fact equal to ω 1 . The tree T is then really an ω 1 -tree and all its levels are countable. Moreover the set P M 3 can be identified to a set of branches of T thus card(B(T )) > ℵ 1 and T is a Kurepa tree. Conversely if there exists a Kurepa tree, we can easily see that Φ has an ω 2 -model.

We can now infer from Theorems 4.1 and 4.2 the following result which shows that the local theory of ω 2 is not determined by the axiomatic system ZF C + GCH.

Theorem 4.5 If the theory ZF C + " there is an inaccessible cardinal " is consistent then " Φ has an ω 2 -model " is independent of ZF C + GCH.

Notice that this result can be extended easily to ordinals larger than ω 2 . For instance reasoning as in the construction of the local sentence ϕ 1 from the local sentence ϕ 0 (see Lemma 4.4 above), we can construct by induction, for each integer n ≥ 2, a local sentence Ψ n such that: for all ordinals α ∈]ω n , ω n+1 ], ( Ψ n has an α-model ) iff ( Φ has an ω 2 -model ) iff ( there is a Kurepa tree ). This implies the following extension of Theorem 4.5.

Theorem 4.6 If the theory ZF C + " there is an inaccessible cardinal " is consistent then for each integer n ≥ 2 and each ordinal α ∈]ω n , ω n+1 ], " Ψ n has an α-model " is independent of ZF C + GCH.

A similar result can be obtained for larger ordinals of cofinality ω n , for an integer n ≥ 2. We can first construct the local sentence Θ 2 = θ ⋆Φ , from the local sentence θ given in section 3 whose spectrum is the class of successor ordinals, and the local sentence Φ we have constructed above. It is then easy to see that Θ 2 has not any well ordered model whose order type is an ordinal α having a cofinality greater than ω 2 . Moerover if α is an ordinal of cofinality ω 2 then the local sentence Θ 2 has a model of order type α if and only if Φ has an ω 2 -model. In the same way, for each integer n ≥ 2, we can construct the local sentence Θ n+1 = θ ⋆Ψn , from θ and the local sentence Ψ n cited in the above theorem.

where S n is a recursive function. We can now infer, by induction on the integer p > n, that if n < p then the local theory of ω n is recursive in the local theory of ω p . Remark 5.4 We have called here local theory of α the set of all local sentences having a model of order type α. We could have restricted this set to local sentences in the recursive set L given by Proposition 2.3. We can get a similar result in that case, defining firstly the recursive function S n only on this set L with values in L. This is possible because we have seen that for a local sentence ϕ it holds that n Sn(ϕ) = n ϕ + n ϕn + 2. Thus we can compute n Sn(ϕ) from n ϕ .

Theorem 5.3 states that if n < p then the local theory of ω n is less "complicated" than the local theory of ω p because there is a recursive reduction of the first one to the second one. We are going to prove the following similar result.

Theorem 5.5 For all integers n ≥ 1, if α is an ordinal of cofinality ω n then the local theory of ω n is recursive in the local theory of α.

We shall proceed by successive lemmas. The signature of ψ ′ n is S(ψ ′ n )=S(ϕ n-1 ) ∪ S(ψ) ∪{R, t} where R is a new unary predicate symbol and t is a new binary function symbol not in S(ϕ n-1 ) ∪ S(ψ). The sentence ψ ′ n expresses that in a model M, R M is an initial segment of the model which is closed under functions of S(ϕ n-1 ); and the restriction of M to R M and to the signature S(ϕ n-1 ) is a model of ϕ n-1 . In the same way the restriction of M to ¬R M and to the signature S(ψ) is a model of ψ. The function t is used to realize, for every element a ∈ ¬R, an injection from {x ∈ ¬R | x < a} into R (as in the proof of Lemma 4.4) and it is trivially defined where it is not useful for that purpose. We know that the sentence ϕ n-1 given by Lemma 5.1 has infinite spectrum Sp ∞ (ϕ n-1 ) = [ω, ω n-1 ] so in a well ordered model M of ψ ′ n the initial segment R M will have order type ≤ ω n-1 . Moreover every strict initial segment of ¬R M will be of cardinal ≤ ℵ n-1 because it is injected into R M , so ¬R M will be of order type ≤ ω n thus M will be also of order type ≤ ω n . We have then proved

  Theorem 2.4 ([START_REF] Finkel | Stretchings[END_REF]) For each local sentence ϕ there exists a positive integer N ϕ such that (A) ϕ has arbitrarily large finite models if and only if ϕ has an infinite model if and only if ϕ has a finite model generated by N ϕ indiscernibles. (B) ϕ has an infinite well ordered model if and only if ϕ has a finite model generated by N ϕ semi-monotonic indiscernibles. (C) ϕ has a model of order type ω if and only if ϕ has a finite model generated by N ϕ special indiscernibles. (D) ϕ has well ordered models of unbounded order types in the ordinals if and only if ϕ has a finite model generated by N ϕ monotonic indiscernibles.

  (a) ϕ has an ω-model. (b) ϕ has a finite model generated by N ϕ special indiscernibles. (c) ϕ has a β-model, for all limit ordinals β. (d) ϕ has an ω α -model.

  ) ∀yz[I(y) ≤ y and (y ≤ z → I(y) ≤ I(z)) and (I(y) ≤ z ≤ y → I(z) = I(y))], (3) ∀xy[I(x) = I(y) → e(x) = e(y)], for each constant e of the signature S(ϕ) of ϕ, (4) ∀x 1

Definition 3. 2

 2 Let ϕ be a local sentence; the spectrum of ϕ is Sp(ϕ) = {α ∈ On | ϕ has a model of order type α} and the infinite spectrum of ϕ is Sp ∞ (ϕ) = {α ∈ On | α ≥ ω and ϕ has a model of order type α}

( 1 )

 1 ∀xy ∈ P 2 [(I(y) ≤ y) ∧ (y ≤ x → I(y) ≤ I(x)) ∧ (I(y) ≤ x ≤ y → I(x) = I(y))]. (2) ∀xy ∈ P 2 [x ≺ y → I(x) < I(y)], (3) ∀xyz ∈ P 2 [(x ≺ y ∧ z ≺ y ∧ I(x) = I(z)) → x = z],(4) ∀xy ∈ P 2 [I(x) < I(y) → (I(p(I(x), y) = I(x) ∧ p(I(x), y) ≺ y)], (5) ∀xy[(¬P 2

Lemma 5. 6

 6 Let ψ be a local sentence and n be an integer ≥ 1, then there exists another local sentenceψ ′ n such that Sp ∞ (ψ ′ n ) ⊆ [ω, ω n ]and the following equivalence holds: [ψ has a model of order type ω n ] iff [ψ ′ n has a model of order type ω n ]. Proof. Let ψ be a local sentence (with <∈ S(ψ)) and n be an integer n ≥ 1. We now explain informally the construction of a local sentence ψ ′ n such that Sp ∞ (ψ ′ n ) ⊆ [ω, ω n ] and [ψ has a model of order type ω n ] iff [ψ ′ n has a model of order type ω n ].
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Theorem 4.1

(1) If ZF is consistent so too is the theory: ZF C+GCH+" there is a Kurepa tree ".

(2) If the theory ZF C + " there is an inaccessible cardinal " is consistent so too is the theory ZF C + GCH + " there are no Kurepa trees ". (3) If the theory ZF C + " there are no Kurepa trees " is consistent so too is the theory ZF C + " there is an inaccessible cardinal ".

In order to use the above result in the context of local sentences we state now the main technical result of this section.

Theorem 4.2 There exists a local sentence Φ such that:

[Φ has an ω 2 -model ] ←→ [ there is a Kurepa tree ].

To prove this theorem we shall firstly state the two following lemmas.

Lemma 4.3 There exists a local sentence ϕ 0 such that ϕ 0 has a well ordered model of order type ω but has no well ordered model of order type > ω.

Proof. Such a sentence is given in [START_REF] Finkel | Stretchings[END_REF] in the signature S(ϕ 0 ) = {< , P, f, p 1 , p 2 }, where P is a unary predicate, f is a binary function, and p 1 , p 2 are unary functions.

Lemma 4.4 There exists a local sentence ϕ 1 such that ϕ 1 has well ordered models of order type α, for every ordinal α ∈ [ω, ω 1 ], but has no well ordered model of order type > ω 1 .

Proof. We give below the sentence ϕ 1 in the signature S(ϕ 1 ) = S(ϕ 0 ) ∪ {Q, g} = {<, P, f, p 1 , p 2 , Q, g}, where Q is a unary predicate and g is a binary function. ϕ 1 is the conjunction of the following sentences (1)-(10) whose meaning is explained below:

The function p is used to ensure that, for each z < I(y), the segment I z contains in fact exactly one element x ∈ P 2 such that x ≺ y: the element p(I(z), y). This is implied by the sentence (4). Thus Φ 4 will imply that each segment I z is really a level of the tree T . If y ∈ P 2 is at level α of the tree T and if x ∈ P 2 and I x represents the β-th level T β of the tree T for some β < α (so I(x) < I(y)), then the element p(I(x), y) is the unique element t ∈ T β such that t ≺ y. Finally sentences (5)-( 6) are used to trivially define the functions p and I where they are not useful as explained above.

The following sentence Φ 5 will imply that all levels of the tree T are countable and that ht(T ) ≤ ω 1 hence also card(T ) ≤ ℵ 1 . The signature of Φ 5 is {< , P 0 , P 1 , P 2 , I, i, j}, where i and j are two new unary function symbols, and Φ 5 is the conjunction of:

Above sentences (1)-(2) say that the function i is defined from P 2 into P 0 and that it is an injection from any level of the tree T into P 0 . We have seen that in a well ordered model M of Φ the set P M 0 will be of order type ≤ ω thus each level of the tree will be countable. Sentences (3)-(4) say that the function j is strictly increasing from P 2 into P 1 thus in a well ordered model M of Φ the set P M 1 hence also P M 2 will be of order type ≤ ω 1 . So we shall have ht(T ) ≤ ω 1 and card(T ) ≤ ℵ 1 . Finally sentences (5)-( 6) are used to trivially define the functions i and j on ¬P 2 = P 0 ∪ P 1 ∪ P 3 .

In a well ordered model M of Φ of order type ω 2 , the set P M 2 will be the base set of an ω 1 -tree T and the set P M 3 will be identified to a set of branches of T . For that purpose we use two new binary function symbols h and k and the following sentence Φ 6 , conjunction of:

Above sentences (1)-(2) are used to associate a branch b(z) of T to an element It is then easy to see that Θ n+1 has not any well ordered model whose order type is an ordinal having a cofinality greater than ω n+1 because by construction the local sentence Ψ n has no well ordered model of order type greater than ω n+1 . Moreover if α is an ordinal of cofinality ω n+1 then the local sentence Θ n+1 has a model of order type α iff Ψ n has an ω n+1 -model iff Φ has an ω 2model iff there is a Kurepa tree. So we have got the following extension of Theorem 4.6.

Theorem 4.7 If the theory ZF C + " there is an inaccessible cardinal " is consistent then for each integer n ≥ 2 and each ordinal α of cofinality ω n , " Θ n has an α-model " is independent of ZF C + GCH.

5 The local theories of ω n , n ≥ 1

We have already mentioned in the introduction that it would be still possible that there are only finitely many possible local theories of ω 2 and that each of them is decidable, but that it is more plausible that the situation is much more complicated.

On the other hand the above method cannot be applied to study the local theory of ω 1 . We are going to prove in this section that the local theory of ω 1 is recursive in the local theory of ω 2 , and more generally that, for all integers n, p, 1 ≤ n < p, the local theory of ω n is recursive in the local theory of ω p .

Lemma 5.1 For each integer n ≥ 0, there exists a local sentence ϕ n such that

Proof. We have already proved this result in the cases n = 0 and n = 1 by proving Lemmas 4.3 and 4.4. We can now construct by induction on the integer n a local sentence ϕ n such that Sp ∞ (ϕ n ) = [ω, ω n ]. The local sentence ϕ n is constructed from the local sentence ϕ n-1 in a similar manner as in the construction of the local sentence ϕ 1 from the local sentence ϕ 0 (see the proof of Lemma 4.4). Details are here left to the reader. Proof. Let n be an integer ≥ 1 and ϕ be a first order sentence in a signature S(ϕ). We are going to explain informally the construction of the sentence S n (ϕ) from the sentence ϕ using similar methods as in the preceding section.

We can assume that S(ϕ)∩ S(ϕ n )={<}. The signature of S n (ϕ) is equal to S(ϕ n ) ∪ S(ϕ) ∪ {s, t, R 1 , R 2 , R 3 }, where s is a new unary function symbol, t is a new binary function symbol, and R 1 , R 2 , R 3 are three unary predicate symbols not in S(ϕ n ) ∪ S(ϕ).

The sentence S n (ϕ) expresses that a model M is linearly ordered by the binary relation < M , and that R M 1 , R M 2 , and R M 3 are three successive segments of M. Then S n (ϕ) expresses that the restriction of R M 1 to the signature of ϕ n is a model of ϕ n and the restriction of R M 2 to the signature of ϕ is a model of ϕ (a k-ary function of S(ϕ n ) is trivially defined out of R 1 by f (x 1 , . . . , x k ) = x 1 and similarly functions of S(ϕ) are trivially defined out of R 2 ). The function s is a strictly non decreasing function from R M 2 into R M 1 and is trivially defined by s(x) = x elsewhere. The function t is used to realize, for every element a ∈ R M 3 , an injection from {x ∈ R 3 | x < a} into R 2 (as in the proof of Lemma 4.4) and it is trivially defined where it is not useful for that purpose.

The function S n is clearly recursive and it is easy to see that ϕ is local iff S n (ϕ) is local. In that case it holds that n Sn(ϕ) = n ϕ + n ϕn + 2. Indeed to take the closure of a set X in a model M of S n (ϕ) one takes the closure under the function t, then under the functions of S(ϕ) in n ϕ steps, then under the function s, then under the functions of S(ϕ n ) in n ϕn steps.

Assume now that S n (ϕ) has an ω n+1 -model M. In this model (R M 1 , < M ) and (R M 2 , < M ) have order types smaller than or equal to ω n because Sp ∞ (ϕ n ) = [ω, ω n ] and there is a strictly non decreasing function

2 has cardinality ℵ n and its order type is exactly ω n . This implies that the restriction of the model M to R M 2 and to the signature of ϕ is an ω n -model of ϕ. Conversely it is easy to see that by construction if there is an ω n -model of ϕ then there is an ω n+1 -model of S n (ϕ).

We can now state the following result. Recall that the local theory of an ordinal α is the set of local sentences having a model of order type α; it will be denoted by LT (α).

Theorem 5.3 For all integers n, p ≥ 1, if n < p then the local theory of ω n is recursive in the local theory of ω p .

Proof. It follows directly from Lemma 5.2 that for each integer n ≥ 1 the local theory of ω n is recursive in the local theory of ω n+1 because

It is now easy to see that if ψ ′ n has a model M of order type ω n , then the restriction of M to ¬R M and to the signature S(ψ) is a model of ψ whose order type is ω n ; conversely if ψ has an ω n -model then there is an ω n -model of ψ ′ n .

The sentence ψ ′ n is equivalent to a universal sentence and closure in its models takes at most n ψ ′ n = n ψ + 1 + n ϕ n-1 . One takes closure under functions of S(ψ) in n ψ steps, then closure under the function t in one step, then closure under functions of S(ϕ n-1 ) in n ϕ n-1 steps. Proof. Let n be an integer ≥ 1 and ψ be a first order sentence in a signature S(ψ). We define T n (ψ) = θ ⋆ψ ′ n where θ is the local sentence whose spectrum is the class of successor ordinals, and ψ ′ n is the first order sentence constructed as above from the sentence ψ. Notice that in preceding lemma the sentence ψ ′ n is constructed from a local sentence ψ but we can easily extend the construction to all first order sentences ψ. Then it holds that ψ is local iff ψ ′ n is local. The sentence θ ⋆ψ ′ n can also be defined even if ψ ′ n is not local, with slight modifications, in such a way that models of θ ⋆ψ ′ n are still essentially direct sums of models of θ, these models being ordered by the order type of a model of ψ ′ n . Moreover it holds also that [ θ ⋆ψ We can now end the proof of Theorem 5.5. It follows from Lemma 5.7 that for each integer n ≥ 1 the local theory of ω n is recursive in the local theory of α, where α is an ordinal having cofinality ω n . Indeed

where T n is a recursive function.