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Abstract

We study the links between the topological complexity of an ω-context free
language and its degree of ambiguity. In particular, using known facts from
classical descriptive set theory, we prove that non Borel ω-context free lan-
guages which are recognized by Büchi pushdown automata have a maximum
degree of ambiguity. This result implies that degrees of ambiguity are really
not preserved by the operation W → Wω, defined over finitary context free
languages. We prove also that taking the adherence or the δ-limit of a finitary
language preserves neither ambiguity nor inherent ambiguity. On the other
side we show that methods used in the study of ω-context free languages can
also be applied to study the notion of ambiguity in infinitary rational relations
accepted by Büchi 2-tape automata and we get first results in that direction.
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1 Introduction

ω-context free languages (ω-CFL) form the class CFLω of ω-languages accepted by push-
down automata with a Büchi or Muller acceptance condition. They were firstly studied
by Cohen and Gold, Linna, Boasson, Nivat, [CG77] [Lin76] [BN80] [Niv77], see Staiger’s
paper for a survey of these works [Sta97a]. A way to study the richness of the class CFLω

is to consider the topological complexity of ω-context free languages when the set Σω of
infinite words over the alphabet Σ is equipped with the usual Cantor topology. It is well
known that all ω-CFL as well as all ω-languages accepted by Turing machines with a
Büchi or a Muller acceptance condition are analytic sets. ω-CFL accepted by determinis-
tic Büchi pushdown automata are Π0

2
-sets, while ω-CFL accepted by deterministic Muller

pushdown automata are boolean combinations of Π0

2
-sets. It was recently proved that

the class CFLω exhausts the finite ranks of the Borel hierarchy, [Fin01], that there exists
some ω-CFL which are Borel sets of infinite rank, [Fin03b], or even analytic but non Borel
sets, [Fin03a].

Using known facts from Descriptive Set Theory, we prove here that non Borel ω-CFL have
a maximum degree of ambiguity: if L(A) is a non Borel ω-CFL which is accepted by a
Büchi pushdown automaton (BPDA) A then there exist 2ℵ0 ω-words α such that A has
2ℵ0 accepting runs reading α, where 2ℵ0 is the cardinal of the continuum.

The above result of the second author led the first author to the investigation of the notion
of ambiguity and of degrees of ambiguity in ω-context free languages, [Fin03c]. There exist
some non ambiguous ω-CFL of every finite Borel rank, but all known examples of ω-CFL
which are Borel sets of infinite rank are accepted by ambiguous BPDA. Thus one can
make the hypothesis that there are some links between the topological complexity and the
degree of ambiguity for ω-CFL and such connections were firstly studied in [Fin03c].
The operations W → Adh(W ) and W → W δ, where Adh(W ) is the adherence of the
finitary language W ⊆ Σ⋆ and W δ is the δ-limit of W , appear in the characterization of
Π0

1
(i.e. closed)-subsets and Π0

2
-subsets of Σω, for an alphabet Σ, [Sta97a]. Moreover

it turned out that the first one is useful in the study of topological properties of ω-
context free languages of a given degree of ambiguity [Fin03c]. We show that each of
these operations preserves neither unambiguity nor inherent ambiguity from finitary to ω-
context free languages. We deduce also from the above results that neither unambiguity
nor inherent ambiguity is preserved by the operation W → Wω. This important operation
is defined over finitary languages and is involved in the characterization of the class of ω-
regular languages (respectively, of ω-context free languages) as the ω-Kleene closure of the
class of regular (respectively, context free) languages [Tho90] [PP02] [Sta97a] [Sta97b].

On the other side we prove that the same theorems of classical descriptive set theory
can also be applied in the case of infinitary rational relations accepted by 2-tape Büchi
automata. The topological complexity of infinitary rational relations has been studied by
the first author who showed in [Fin03d] that there exist some infinitary rational relations
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which are not Borel. Moreover some undecidability properties have been established in
[Fin03e]. We then prove some first results about ambiguity in infinitary rational relations.

The paper is organized as follows. In section 2, we recall definitions and results about
ω-CFL and ambiguity. In section 3, Borel and analytic sets are defined. In section 4, we
study links between topology and ambiguity in ω-CFL. In section 5, we show some results
about infinitary rational relations.

2 ω-context free languages

We assume the reader to be familiar with the theory of formal languages and of ω-
regular languages, [Ber79] [Tho90] [Sta97a] [PP02]. We shall use usual notations of formal
language theory. When Σ is a finite alphabet, a non-empty finite word over Σ is any
sequence x = a1 . . . ak, where ai ∈ Σ for i = 1, . . . , k, and k is an integer ≥ 1. The length
of x is k, denoted by |x| . We write x(i) = ai and x[i] = x(1) . . . x(i) for i ≤ k. We write
also x[0] = λ, where λ is the empty word, which has no letter; its length is |λ| = 0. Σ⋆ is
the set of finite words over Σ, and Σ+ is the set of finite non-empty words over Σ. The
mirror image of a finite word u will be denoted by uR.

The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence a1 . . . an . . ., where
∀i ≥ 1 ai ∈ Σ. The set of ω-words over the alphabet Σ is denoted by Σω. An ω-
language over an alphabet Σ is a subset of Σω. For V ⊆ Σ⋆, the ω-power of V is the
ω-language V ω = {σ = u1 . . . un . . . ∈ Σω | ∀i ≥ 1 ui ∈ V − {λ}}. LF (v) is the set of
finite prefixes (or left factors) of the word v, and LF (V ) = ∪v∈V LF (v) for every language
V of finite or infinite words.

We introduce now ω-context free languages via Büchi pushdown automata.

Definition 2.1 A Büchi pushdown automaton is a 7-tuple A = (K, Σ, Γ, δ, q0, Z0, F ),
where K is a finite set of states, Σ is a finite input alphabet, Γ is a finite pushdown
alphabet, q0 ∈ K is the initial state, Z0 ∈ Γ is the start symbol, F ⊆ K is the set of final
states, and δ is a mapping from K × (Σ ∪ {λ}) × Γ to finite subsets of K × Γ⋆ .
If γ ∈ Γ+ describes the pushdown store content, the leftmost symbol will be assumed to be
on “top” of the store. A configuration of the BPDA A is a pair (q, γ) where q ∈ K and
γ ∈ Γ⋆.
For a ∈ Σ∪{λ}, γ, β ∈ Γ⋆ and Z ∈ Γ, if (p, β) is in δ(q, a, Z), then we write a : (q, Zγ) 7→A

(p, βγ).
Let σ = a1a2 . . . an . . . be an ω-word over Σ. A run of A on σ is an infinite sequence
r = (qi, γi, εi)i≥1 where (qi, γi)i≥1 is an infinite sequence of configurations of A and, for
all i ≥ 1, εi ∈ {0, 1} and:

1. (q1, γ1) = (q0, Z0)
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2. for each i ≥ 1, there exists bi ∈ Σ ∪ {λ} satisfying
bi : (qi, γi) 7→A (qi+1, γi+1)
and ( εi = 0 iff bi = λ )
and such that a1a2 . . . an . . . = b1b2 . . . bn . . .

In(r) is the set of all states entered infinitely often during run r.
The ω-language accepted by A is

L(A) = {σ ∈ Σω | there exists a run r of A on σ such that In(r) ∩ F 6= ∅}

The class CFLω of ω-context free languages is the class of ω-languages accepted by
Büchi pushdown automata. It is also the ω-Kleene closure of the class CFL of context
free finitary languages, where for any family L of finitary languages, the ω-Kleene closure
of L, is: ω − KC(L) = {∪n

i=1Ui.V
ω
i | ∀i ∈ [1, n] Ui, Vi ∈ L}.

If we omit the pushdown stack and the λ-transitions, we get the classical notion of Büchi
automaton. Recall that the class REGω of ω-regular languages is the class of ω-languages
accepted by finite automata with a Büchi acceptance condition. It is also the ω-Kleene
closure of the class REG of regular finitary languages, [Tho90] [Sta97a] [PP02].

Notice that we introduced in the above definition the numbers εi ∈ {0, 1} in order to
distinguish runs of a BPDA which go through the same infinite sequence of configurations
but for which λ-transitions do not occur at the same steps of the computations. We can
now briefly recall some definitions of [Fin03c] about ambiguity.

We shall denote ℵ0 the cardinal of ω, and 2ℵ0 the cardinal of the continuum. It is also the
cardinal of the set of real numbers and of the set Σω for every finite alphabet Σ having at
least two letters.

Definition 2.2 Let A be a BPDA accepting infinite words over the alphabet Σ. For
x ∈ Σω let αA(x) be the cardinal of the set of accepting runs of A on x.

Lemma 2.3 ([Fin03c]) Let A be a BPDA accepting infinite words over the alphabet Σ.
Then for all x ∈ Σω it holds that αA(x) ∈ N ∪ {ℵ0, 2

ℵ0}.

Definition 2.4 Let A be a BPDA accepting infinite words over the alphabet Σ.

(a) If sup{αA(x) | x ∈ Σω} ∈ N ∪ {2ℵ0}, then αA = sup{αA(x) | x ∈ Σω}.

(b) If sup{αA(x) | x ∈ Σω} = ℵ0 and there is no word x ∈ Σω such that αA(x) = ℵ0,
then αA = ℵ−

0 .
(ℵ−

0 does not represent a cardinal but is a new symbol that we introduce to conve-
niently speak of this situation).

(c) If sup{αA(x) | x ∈ Σω} = ℵ0 and there exists (at least) one word x ∈ Σω such that
αA(x) = ℵ0, then αA = ℵ0
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Notice that for a BPDA A, αA = 0 iff A does not accept any ω-word.
N ∪ {ℵ−

0 ,ℵ0, 2
ℵ0} is linearly ordered by the relation < defined by ∀k ∈ N, k < k + 1 <

ℵ−
0 < ℵ0 < 2ℵ0 . Now we can define a hierarchy of ω-CFL:

Definition 2.5 For k ∈ N ∪ {ℵ−
0 ,ℵ0, 2

ℵ0} let
CFLω(α ≤ k) = {L(A) | A is a BPDA with αA ≤ k}
CFLω(α < k) = {L(A) | A is a BPDA with αA < k}
NA − CFLω = CFLω(α ≤ 1) is the class of non ambiguous ω-context free languages.
For every integer k such that k ≥ 2, or k ∈ {ℵ−

0 ,ℵ0, 2
ℵ0},

A(k) − CFLω = CFLω(α ≤ k) − CFLω(α < k)
If L ∈ A(k)−CFLω with k ∈ N, k ≥ 2, or k ∈ {ℵ−

0 ,ℵ0, 2
ℵ0}, then L is said to be inherently

ambiguous of degree k.

Recall that one can define in a similar way the degree of ambiguity of a finitary context
free language. If M is a pushdown automaton accepting finite words by final states (or
by final states and topmost stack letter) then αM ∈ N or αM = ℵ−

0 or αM = ℵ0. However
every context free language is accepted by a pushdown automaton M with αM ≤ ℵ−

0 ,
[ABB96]. We shall denote, with similar notations as above, the class of non ambiguous
context free languages by NA − CFL and the class of inherently ambiguous context free
languages of degree k ≥ 2 by A(k)−CFL. Then A(ℵ−

0 )−CFL is usually called the class
of context free languages which are inherently ambiguous of infinite degree, [Her97].

Now we can state some links between cases of finite and infinite words.

Proposition 2.6 ([Fin03c]) Let V ⊆ Σ⋆ be a finitary context free language and d be a
new letter not in Σ, then the following equivalence holds for all k ∈ N ∪ {ℵ−

0 }:

V.dω is in CFLω(α ≤ k) iff V is in CFL(α ≤ k)

3 Borel and analytic sets

We assume the reader to be familiar with basic notions of topology which may be found
in [Mos80] [LT94] [Kec95] [Sta97a] [PP02].
For a finite alphabet X we shall consider Xω as a topological space with the Cantor
topology. The open sets of Xω are the sets in the form W.Xω, where W ⊆ X⋆. A set
L ⊆ Xω is a closed set iff its complement Xω − L is an open set.
Define now the hierarchy of Borel sets of finite ranks:

Definition 3.1 The classes Σ0
n

and Π0
n

of the Borel hierarchy on the topological space
Xω are defined as follows:
Σ0

1
is the class of open sets of Xω.

Π0

1
is the class of closed sets of Xω.

And for any integer n ≥ 1:
Σ0

n+1
is the class of countable unions of Π0

n
-subsets of Xω.

Π0

n+1
is the class of countable intersections of Σ0

n
-subsets of Xω.
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The Borel hierarchy is also defined for transfinite levels, but we shall not need them in
the present study. The class of Borel subsets of Xω is the closure of the class of open
subsets of Xω under complementation and countable unions (hence also under countable
intersections) There are also some subsets of Xω which are not Borel. In particular the
class of Borel subsets of Xω is strictly included into the class Σ1

1
of analytic sets which

are obtained by projection of Borel sets.
Notice that if Σ and Γ are two finite alphabets then the product Σω ×Γω can be identified
with the space (Σ × Γ)ω and we always consider in the sequel that such a space Σω × Γω

is equipped with the Cantor topology.

Definition 3.2 A set A ⊆ Σω is an analytic set if there is a finite alphabet Γ and a Borel
set B ⊆ Σω × Γω such that A = {α ∈ Σω | ∃β ∈ Γω (α, β) ∈ B}.
A set C ⊆ Σω is coanalytic if its complement Σω − C is analytic. The class of analytic
sets is denoted Σ1

1
and the class of coanalytic sets is denoted Π1

1
.

Recall also the notion of completeness with regard to reduction by continuous functions.
For an integer n ≥ 1, a set F ⊆ Xω is said to be a Σ0

n
(respectively, Π0

n
, Σ1

1
, Π1

1
)-

complete set iff for any set E ⊆ Y ω (with Y a finite alphabet): E ∈ Σ0
n

(respectively,
E ∈ Π0

n
, E ∈ Σ1

1
, E ∈ Π1

1
) iff there exists a continuous function f : Y ω → Xω such that

E = f−1(F ).
Σ0

n
(respectively, Π0

n
)-complete sets, with n an integer ≥ 1, are thoroughly characterized

in [Sta86].

4 Topology and ambiguity in ω-context free lan-

guages

Let Σ and X be two finite alphabets. If B ⊆ Σω × Xω and α ∈ Σω, the section in
α of B is Bα = {β ∈ Xω | (α, β) ∈ B} and the projection of B on Σω is the set
PROJΣω(B) = {α ∈ Σω | Bα 6= ∅} = {α ∈ Σω | ∃β (α, β) ∈ B}.

We are going to prove the following lemma which will be useful in the sequel:

Lemma 4.1 Let Σ and X be two finite alphabets having at least two letters and B be a
Borel subset of Σω × Xω such that PROJΣω(B) is not a Borel subset of Σω. Then there
are 2ℵ0 ω-words α ∈ Σω such that the section Bα has cardinality 2ℵ0.

Proof. Let Σ and X be two finite alphabets having at least two letters and B be a Borel
subset of Σω × Xω such that PROJΣω(B) is not Borel.

In a first step we shall prove that there are uncountably many α ∈ Σω such that the
section Bα is uncountable.
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Recall that by a Theorem of Lusin and Novikov, see [Kec95, page 123], if for all α ∈ Σω,
the section Bα of the Borel set B was countable, then PROJΣω(B) would be a Borel
subset of Σω.

Thus there exists at least one α ∈ Σω such that Bα is uncountable. In fact we have not
only one α such that Bα is uncountable.

For α ∈ Σω we have {α} × Bα = B ∩ [{α} × Xω]. But {α} × Xω is a closed hence Borel
subset of Σω × Xω thus {α} × Bα is Borel as intersection of two Borel sets.

If there was only one α ∈ Σω such that Bα is uncountable, then C = {α} × Bα would be
Borel so D = B−C would be borel because the class of Borel sets is closed under boolean
operations.
But all sections of D would be countable thus PROJΣω(D) would be Borel by Lusin and
Novikov’s Theorem. Then PROJΣω(B) = {α} ∪ PROJΣω(D) would be also Borel as
union of two Borel sets, and this would lead to a contradiction.

In a similar manner we can prove that the set U = {α ∈ Σω | Bα is uncountable } is
uncountable, otherwise U = {α0, α1, . . . αn, . . .} would be Borel as the countable union of
the closed sets {αi}, i ≥ 0.
For each n ≥ 0 the set {αn} × Bαn

would be Borel, and C = ∪n∈ω{αn} × Bαn
would be

Borel as a countable union of Borel sets. So D = B − C would be borel too.
But all sections of D would be countable thus PROJΣω(D) would be Borel by Lusin and
Novikov’s Theorem. Then PROJΣω(B) = U ∪ PROJΣω(D) would be also Borel as union
of two Borel sets, and this would lead to a contradiction.

So we have proved that the set {α ∈ Σω | Bα is uncountable } is uncountable.

On the other hand we know from another Theorem of Descriptive Set Theory that the set
{α ∈ Σω | Bα is countable } is a Π1

1
-subset of Σω, see [Kec95, page 123].

Thus its complement {α ∈ Σω | Bα is uncountable } is analytic. But by Suslin’s Theorem
an analytic subset of Σω is either countable or has cardinality 2ℵ0 , [Kec95, p. 88]. Therefore
the set {α ∈ Σω | Bα is uncountable } has cardinality 2ℵ0 .

Recall now that we have already seen that, for each α ∈ Σω, the set {α}×Bα is Borel. We
can then infer that Bα itself is Borel by considering the function h : Xω → Σω×Xω defined
by h(σ) = (α, σ) for all σ ∈ Xω. The function h is continuous and Bα = h−1({α} × Bα).
So Bα is Borel because the inverse image of a Borel set by a continuous function is a Borel
set. Again by Suslin’s Theorem Bα is either countable or has cardinality 2ℵ0 . ¿From this
we deduce that {α ∈ Σω | Bα is uncountable } = {α ∈ Σω | Bα has cardinality 2ℵ0} has
cardinality 2ℵ0 . ¤

We can now infer some results for ω-context free languages.
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Theorem 4.2 Let L(A) be an ω-CFL accepted by a BPDA A such that L(A) is an an-
alytic but non Borel set. The set of ω-words, which have 2ℵ0 accepting runs by A, has
cardinality 2ℵ0.

Proof. Let A = (K, Σ, Γ, δ, q0, Z0, F ) be a BPDA such that L(A) is an analytic but non
Borel set.

To an infinite sequence r = (qi, γi, εi)i≥1, where for all i ≥ 1, qi ∈ K, γi ∈ Γ+ and
εi ∈ {0, 1}, we associate an ω-word r̄ over the alphabet X = Γ ∪ K ∪ {0, 1} defined by

r̄ = q1.γ1.ε1.q2.γ2.ε2 . . . qi.γi.εi . . .

Then to an infinite word σ ∈ Σω and an infinite sequence r = (qi, γi, εi)i≥1, we associate
the couple (σ, r̄) ∈ Σω × (Γ ∪ K ∪ {0, 1})ω.

Recall now that Π0

2
-subsets of a Cantor set Σω are characterized in the following way. For

W ⊆ Σ⋆ the δ-limit W δ of W is the set of ω-words over Σ having infinitely many prefixes
in W : W δ = {σ ∈ Σω | ∃ωi such that σ(1) . . . σ(i) ∈ W}. Then a subset L of Σω is a
Π0

2
-subset of Σω iff there exists a set W ⊆ Σ⋆ such that L = W δ, [Sta97a] [PP02].

It is then easy to see that the set

R = {(σ, r̄) | r̄ is the code of an accepting run of A over σ}

is a Π0

2
-subset of Σω × Xω = (Σ × X)ω as intersection of two Π0

2
-sets. In fact we have

R = (R′)δ ∩ (R′′)δ where R′ ⊆ (Σ × X)+ is the set of couples of words (u, v) in the form:

u = a1.a2. . . . ap

v = q1.γ1.ε1.q2.γ2.ε2 . . . qn.γn.εn

where for each i ∈ [1, p] ai ∈ Σ, for each i ∈ [1, n] qi ∈ K, γi ∈ Γ+ and εi ∈ {0, 1}.
Moreover |u| = |v|, εn = 1, and

1. (q1, γ1) = (q0, Z0)

2. for each i ∈ [1, n − 1], there exists bi ∈ Σ ∪ {λ} satisfying
bi : (qi, γi) 7→A (qi+1, γi+1)
and ( εi = 0 iff bi = λ )
and such that b1b2 . . . bn−1 is a prefix of u = a1.a2. . . . ap.

And R′′ ⊆ (Σ × X)+ is the set of couples of words (u, v) ∈ Σ+ × X+ such that |u| = |v|
and the last letter of v is an element q ∈ F .

In particular R is a Borel subset of Σω × Xω. But by definition of R it turns out that
PROJΣω(R) = L(A) so PROJΣω(R) is not Borel. Thus Lemma 4.1 implies that there
are 2ℵ0 ω-words α ∈ Σω such that Rα has cardinality 2ℵ0 . This means that these words
have 2ℵ0 accepting runs by the Büchi pushdown automaton A. ¤
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Example 4.3 Let Σ = {0, 1} and d be a new letter not in Σ and

D = {u.d.v | u, v ∈ Σ⋆ and (|v| = 2|u|) or (|v| = 2|u| + 1) }

D ⊆ (Σ ∪ {d})⋆ is a context free language. Let g : Σ → P((Σ ∪ {d})⋆) be the substitution
defined by g(a) = a.D. As W = 0⋆1 is regular, g(W ) is a context free language, thus
(g(W ))ω is an ω-CFL. It is proved in [Fin03a] that (g(W ))ω is Σ1

1
-complete. In particular

(g(W ))ω is an analytic non Borel set. Thus every BPDA accepting (g(W ))ω has the
maximum ambiguity and (g(W ))ω ∈ A(2ℵ0) − CFLω.

On the other hand we can prove that g(W ) is a non ambiguous context free language.

For that purpose consider a (finite) word x ∈ g(W ); then x ∈ g(0n.1) for some integer
n ≥ 0. Therefore x may be written in the form

x = 0.u1.d.v1.0.u2.d.v2 . . . 0.un.d.vn.1.un+1.d.vn+1

where ui.d.vi ∈ D holds for all i ∈ [1, n+1]. It is easy to see that the length |vn+1| and the
word vn+1 are determined by the word x: vn+1 is the suffix of x following the last letter
d of x, and |vn+1| = 2|un+1| (if |vn+1| is even) or |vn+1| = 2|un+1| + 1 (if |vn+1| is odd)
thus |un+1| is determined by |vn+1| hence un+1 is also determined. Next one can see that
vn also is fixed by x (the word vn.1.un+1 is the segment of x which is located between the
nth and the (n + 1)th occurrences of the letter d in x and knowing un+1 gives us vn).
We can similarly prove by induction on the integer k that the words vn+1−k and un+1−k,
for k ∈ [0, n], are uniquely determined by x.
Therefore the word x admits a unique decomposition in the above form. We can then easily
construct a pushdown automaton (and even a one counter automaton) which accepts the
language g(W ) and which is non ambiguous. So the language g(W ) is a non ambiguous
context free language.

The above example shows that the ω-power of a non ambiguous context free language may
have maximum ambiguity. Conversely consider the context free language V = V1 ∪ V2 ⊆
{a, b, c}⋆ where V1 = {anbncp | n ≥ 1, p ≥ 1} and V2 = {anbpcp | n ≥ 1, p ≥ 1}. V1 and
V2 are deterministic context free, hence they are non ambiguous context free languages.
But their union V is an inherently ambiguous context free language [Mau69]. V ⋆ is a
context free language which is inherently ambiguous of infinite degree (and it is proved in
[Naj98] that it is even exponentially ambiguous in the sense of Naji and Wich, see also
[Wic99] about this notion). Let then L = V ⋆ ∪ {a, b, c}. The language L is still a context
free language which is inherently ambiguous of infinite degree and Lω = {a, b, c}ω is an
ω-regular language hence it is a non ambiguous ω-context free language.

We have then proved that neither unambiguity nor inherent ambiguity is preserved by the
operation L → Lω:
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Proposition 4.4

1. There exists a non ambiguous context free finitary language L such that Lω is in
A(2ℵ0) − CFLω.

2. There exists a context free finitary language L, which is inherently ambiguous of
infinite degree, such that Lω is a non ambiguous ω-context free language.

We can also consider the above mentioned language g(W ) in the context of code theory. We
have proved that g(W ) is a non ambiguous context free language. By a similar reasoning
we can prove that g(W ) is a code, i.e. that every (finite) word y ∈ g(W )+ has a unique
decomposition y = x1.x2 . . . xn in words xi ∈ g(W ).
On the other side g(W ) is not an ω-code, i.e. some words z ∈ g(W )ω have several
decompositions in the form z = x1.x2 . . . xn . . . where for all i ≥ 1 xi ∈ g(W ). In fact we
can get a much stronger result, using Lemma 4.1:

Fact 4.5 There are 2ℵ0 ω-words in g(W )ω which have 2ℵ0 decompositions in words in
g(W ).

Proof. We can fix a recursive enumeration θ of the set g(W ). So the function θ : N →
g(W ) is a bijection and we denote ui = θ(i).
Let now D be the set of couples (σ, x) ∈ {0, 1}ω × (Σ ∪ {d})ω such that:

1. σ ∈ (0⋆.1)ω, so σ may be written in the form

σ = 0n1 .1.0n2 .1.0n3 .1 . . . 0np .1.0np+1 .1 . . .

where ∀i ≥ 1 ni ≥ 0, and

2.
x = un1

.un2
.un3

. . . unp
.unp+1

. . .

D is a Borel subset of {0, 1}ω × (Σ ∪ {d})ω because it is accepted by a determinis-
tic Turing machine with a Büchi acceptance condition [Sta97a]. On the other hand
PROJ(Σ∪{d})ω(D) = g(W )ω is not Borel and Lemma 4.1 implies that there are 2ℵ0 ω-

words x in g(W )ω such that Dx has cardinality 2ℵ0 . This means that there are 2ℵ0

ω-words x ∈ g(W )ω which have 2ℵ0 decompositions in words in g(W ).
We can say that the code g(W ) is really not an ω-code ! ¤

The result given by Theorem 4.2 may be compared with a general study of topological
properties of transition systems due to Arnold [Arn83a]. If we consider a BPDA as a tran-
sition system with infinitely many states, Arnold’s results imply that every non ambiguous
ω-CFL is a Borel set. On the other side deterministic ω-CFL have not a great topological
complexity, because they are boolean combinations of Π0

2
-sets. We know some examples

of non ambiguous ω-CFL of every finite Borel rank, but none of infinite Borel rank. These
results led the first author to the following question: are there some more links between
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the topological complexity of an ω-CFL and the ambiguity of BPDA which accept it? In
[Fin03c] the well known notions of degrees of ambiguity for CFL are extended to ω-CFL
and such supposed connections are investigated. In particular, using results of Duparc
on the Wadge hierarchy, which is a great refinement of the Borel hierarchy [Dup01], it is
proved that for each k such that k is an integer ≥ 2 or k = ℵ−

0 and for each integer n ≥ 1,
there exist in A(k) − CFLω some Σ0

n
-complete ω-CFL and some Π0

n
-complete ω-CFL.

In the proofs of these results is used the operation W → Adh(W ) where for a finitary
language W ⊆ Σ⋆, Adh(W ) = {σ ∈ Σω | LF (σ) ⊆ LF (W )} is the adherence of W . We
recall that a set L ⊆ Σω is a closed set of Σω iff there exists a finitary language W ⊆ Σ⋆

such that L = Adh(W ).
It is well known that if W is a context free language, then Adh(W ) is in CFLω. Moreover
every closed (deterministic ) ω-CFL is the adherence of a (deterministic ) context free
language, [Sta97a].
So the question of the preservation of ambiguity by the operation W → Adh(W ) naturally
arises.

Proposition 4.6 Neither unambiguity nor inherent ambiguity is preserved by taking the
adherence of a finitary context free language.

Proof. (I) We are firstly looking for a non ambiguous finitary context free language which
have an inherently ambiguous adherence. Let then the following finitary language over
the alphabet {a, b, c, d}:

L1 = {anbncp.d2i | n, p, i are integers ≥ 1} ∪ {anbpcp.d2i+1 | n, p, i are integers ≥ 1}

L1 is the disjoint union of two deterministic (hence non ambiguous) finitary context free
languages thus it is a non ambiguous CFL because the class NA − CFL is closed under
finite disjoint union. It is easy to see that the adherence of L1 is

Adh(L1) = {aω}
⋃

a+.bω
⋃

{anbn | n ≥ 1}.cω
⋃

(V1 ∪ V2).d
ω

where V1 = {anbncp | n ≥ 1, p ≥ 1} and V2 = {anbpcp | n ≥ 1, p ≥ 1}. Then it holds that
Adh(L1) ∩ a+.b+.c+.dω = (V1 ∪ V2).d

ω = V.dω, where V = V1 ∪ V2.
By proposition 2.6, the ω-context free language V.dω is inherently ambiguous because V is
inherently ambiguous [Mau69]. Thus Adh(L1) is inherently ambiguous because otherwise
V.dω would be non ambiguous because the class NA−CFLω is closed under intersection
with ω-regular languages [Fin03c], and a+.b+.c+.dω is an ω-regular language.

(II) We are now looking for an inherently ambiguous context free language which have
a non ambiguous adherence. We shall use a result of Crestin, [Cre72]: the language
C = {u.v | u, v ∈ {a, b}+ and uR = u and vR = v} is a context free language which is
inherently ambiguous (of infinite degree). In fact C = L2

p where Lp = {v ∈ {a, b}+ | vR =
v} is the language of palindromes over the alphabet {a, b}. Consider now the adherence
of the language C. Adh(C) = {a, b}ω holds because every word u ∈ {a, b}⋆ is a prefix of a
palindrome (for example of the palindrome u.uR) hence it is also a prefix of a word of C.
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Thus C is inherently ambiguous and Adh(C) is a non ambiguous ω-context free language
because it is an ω-regular language. ¤

We have seen that closed sets are characterized as adherences of finitary languages. Sim-
ilarly we have already seen, in the proof of Theorem 4.2, that Π0

2
-subsets of Σω are

characterized as δ-limits W δ of finitary languages W ⊆ Σ⋆.
Recall that W ∈ REG implies that W δ ∈ REGω. But there exist some context free lan-
guages L such that Lδ is not in CFLω; see [Sta97a] for an example of such a language L.
In the case W ∈ CFL and W δ ∈ CFLω, the question naturally arises of the preservation
of ambiguity by the operation W → W δ. The answer is given by the following:

Proposition 4.7 Neither unambiguity nor inherent ambiguity is preserved by taking the
δ-limit of a finitary context free language.

Proof. (I) Let again L1 be the following finitary language over the alphabet {a, b, c, d}:

L1 = {anbncp.d2i | n, p, i are integers ≥ 1} ∪ {anbpcp.d2i+1 | n, p, i are integers ≥ 1}

L1 is a non ambiguous CFL. And the δ-limit of the language L1 is (L1)
δ = (V1 ∪ V2).d

ω =
V.dω. We have already seen that this ω-language is an inherently ambiguous ω-CFL.

(II) Consider now the inherently ambiguous context free language V = {anbncp | n, p ≥
1} ∪ {anbpcp | n, p ≥ 1}. Its δ-limit is V δ = {an.bn | n ≥ 1}.cω. It is easy to see that V δ is
a deterministic ω-CFL hence it is a non ambiguous ω-CFL. ¤

5 Topology and ambiguity in infinitary rational

relations

Infinitary rational relations are subsets of Σω × Γω, where Σ and Γ are finite alphabets,
which are accepted by 2-tape Büchi automata.
We are going to see in this section that some above methods can also be used in the case
of infinitary rational relations.

Definition 5.1 A 2-tape Büchi automaton (2-BA) is a sextuple T = (K, Σ, Γ, ∆, q0, F ),
where K is a finite set of states, Σ and Γ are finite alphabets, ∆ is a finite subset of
K ×Σ⋆ ×Γ⋆ ×K called the set of transitions, q0 is the initial state, and F ⊆ K is the set
of accepting states.
A computation C of the 2-tape Büchi automaton T is an infinite sequence of transitions

(q0, u1, v1, q1), (q1, u2, v2, q2), . . . (qi−1, ui, vi, qi), (qi, ui+1, vi+1, qi+1), . . .

The computation is said to be successful iff there exists a final state qf ∈ F and infinitely
many integers i ≥ 0 such that qi = qf .
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The input word of the computation is u = u1.u2.u3 . . .

The output word of the computation is v = v1.v2.v3 . . .

Then the input and the output words may be finite or infinite.
The infinitary rational relation R(T ) ⊆ Σω × Γω accepted by the 2-tape Büchi automaton
T is the set of couples (u, v) ∈ Σω × Γω such that u and v are the input and the output
words of some successful computation C of T .
The set of infinitary rational relations will be denoted RATω.

One can define degrees of ambiguity for 2-tape Büchi automata and for infinitary rational
relations as in the case of BPDA and ω-CFL.

Definition 5.2 Let T be a 2-BA accepting couples of infinite words of Σω × Γω. For
(u, v) ∈ Σω ×Γω, let αT (u, v) be the cardinal of the set of accepting computations of T on
(u, v).

Lemma 5.3 Let T be a 2-BA accepting couples of infinite words (u, v) ∈ Σω × Γω. Then
for all (u, v) ∈ Σω × Γω it holds that αT (u, v) ∈ N ∪ {ℵ0, 2

ℵ0}.

The proof that a value between ℵ0 and 2ℵ0 is impossible follows from Suslin’s Theorem
because one can obtain the set of codes of accepting computations of T on (u, v) as a
section of a Borel set (see proof of next theorem) hence as a Borel set. A similar reasoning
was used in the proof of Lemma 2.3, [Fin03c].

Definition 5.4 Let T be a 2-BA accepting couples of infinite words (u, v) ∈ Σω × Γω.

(a) If sup{αT (u, v) | (u, v) ∈ Σω × Γω} ∈ N ∪ {2ℵ0}, then αT = sup{αT (u, v) | (u, v) ∈
Σω × Γω}.

(b) If sup{αT (u, v) | (u, v) ∈ Σω × Γω} = ℵ0 and there is no (u, v) ∈ Σω × Γω such that
αT (u, v) = ℵ0, then αT = ℵ−

0 .

(c) If sup{αT (u, v) | (u, v) ∈ Σω × Γω} = ℵ0 and there exists (at least) one couple
(u, v) ∈ Σω × Γω such that αT (u, v) = ℵ0, then αT = ℵ0

The set N ∪ {ℵ−
0 ,ℵ0, 2

ℵ0} is linearly ordered as above by the relation <.

Definition 5.5 For k ∈ N ∪ {ℵ−
0 ,ℵ0, 2

ℵ0}, let
RATω(α ≤ k) = {R(T ) | T is a 2 − BA with αT ≤ k}
RATω(α < k) = {R(T ) | T is a 2 − BA with αT < k}
NA − RATω = RATω(α ≤ 1) is the class of non ambiguous infinitary rational relations.
For every integer k ≥ 2, or k ∈ {ℵ−

0 ,ℵ0, 2
ℵ0},

A(k) − RATω = RATω(α ≤ k) − RATω(α < k) is the class of infinitary rational relations
which are inherently ambiguous of degree k.

As for ω-context free languages, one can use Lemma 4.1 to prove the following result.
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Theorem 5.6 Let R(T ) ⊆ Σω ×Γω be an infinitary rational relation accepted by a 2-tape
Büchi automaton T such that R(T ) is an analytic but non Borel set. The set of couples
of ω-words, which have 2ℵ0 accepting computations by T , has cardinality 2ℵ0.

Proof. It is very similar to proof of Theorem 4.2. Let R(T ) ⊆ Σω × Γω be an infinitary
rational relation accepted by a 2-tape Büchi automaton T = (K, Σ, Γ,∆, q0, F ). We
assume also that R(T ) is an analytic but non Borel set. To an infinite sequence

C = (q0, u1, v1, q1), (q1, u2, v2, q2), . . . (qi−1, ui, vi, qi), (qi, ui+1, vi+1, qi+1), . . .

where for all i ≥ 0, qi ∈ K, for all i ≥ 1, ui ∈ Σ⋆ and vi ∈ Γ⋆, we associate an ω-word C̄
over the alphabet X = K ∪ Σ ∪ Γ ∪ {e}, where e is an additional letter. C̄ is defined by:

C̄ = q0.u1.e.v1.q1.u2.e.v2.q2 . . . qi.ui+1.e.vi+1.qi+1 . . .

Then the set

{(u, v, C̄) ∈ Σω × Γω × Xω | C̄ is the code of an accepting computation of T over (u, v)}

is accepted by a deterministic Turing machine with a Büchi acceptance condition thus it
is a Π0

2
-set. We can conclude as in proof of Theorem 4.2. ¤

The first author showed that there exist some Σ1

1
-complete, hence non Borel, infinitary

rational relations [Fin03d]. So we can deduce the following result.

Corollary 5.7 There exist some infinitary rational relations which are inherently am-
biguous of degree 2ℵ0.

Remark 5.8 Looking carefully at the example of non Borel infinitary rational relation
given in [Fin03d], we can find a rational relation S over finite words such that S is non
ambiguous and Sω is non Borel. So S is a finitary rational relation which is non ambiguous
but Sω has maximum ambiguity because Sω ∈ A(2ℵ0) − RATω holds by Theorem 5.6.

Moreover the question of the decidability of ambiguity for infinitary rational relations
naturally arises. It can be solved, using another recent result of the first author.

Proposition 5.9 ([Fin03e]) Let X and Y be finite alphabets containing at least two
letters, then there exists a family F of infinitary rational relations which are subsets of
Xω × Y ω, such that, for R ∈ F , either R = Xω × Y ω or R is a Σ1

1
-complete subset of

Xω × Y ω, but one cannot decide which case holds.

Corollary 5.10 Let k be an integer ≥ 2 or k ∈ {ℵ−
0 ,ℵ0}. Then it is undecidable to deter-

mine whether a given infinitary rational relation is in the class RATω(α ≤ k) (respectively
RATω(α < k)).
In particular one cannot decide whether a given infinitary rational relation is non ambigu-
ous or is inherently ambiguous of degree 2ℵ0.
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Proof. Consider the family F given by Proposition 5.9 and let R ∈ F .
If R = Xω × Y ω then R is obviously non ambiguous but if R is a Σ1

1
-complete subset of

Xω × Y ω then by Theorem 5.6 the infinitary rational relation R is inherently ambiguous
of degree 2ℵ0 . But one cannot decide which case holds and this ends the proof. ¤

Acknowledgements. We thank Dominique Lecomte and Jean-Pierre Ressayre for useful
discussions and the anonymous referees for useful comments on a preliminary version of
this paper.

References

[Arn83b] A. Arnold, Rational Omega-Languages are Non-Ambiguous, Theoretical Computer Sci-
ence 26 (1983), 221-223

[Arn83a] A. Arnold, Topological Characterizations of Infinite Behaviours of Transition Systems,
ICALP 1983: 28-38.

[ABB96] J-M. Autebert, J. Berstel and L. Boasson, Context Free Languages and Pushdown Au-
tomata, in Handbook of Formal Languages, Vol 1, Springer Verlag 1996.

[Ber79] J. Berstel, Transductions and Context Free Languages, Teubner Studienbücher Informatik,
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