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[1] Volcano eruption forecast remains a challenging and
controversial problem despite the fact that data from
volcano monitoring significantly increased in quantity and
quality during the last decades. This study uses pattern
recognition techniques to quantify the predictability of the
15 Piton de la Fournaise (PdlF) eruptions in the 1988–
2001 period using increase of the daily seismicity rate as a
precursor. Lead time of this prediction is a few days to
weeks. We formulate a simple prediction rule, use it for
retrospective prediction of the 15 eruptions, and test the
prediction quality with error diagrams. The best prediction
performance corresponds to averaging the daily seismicity
rate over 5 days and issuing a prediction alarm for 5 days.
65% of the eruptions are predicted for an alarm duration
less than 20% of the time considered. Even though this
result is concomitant of a large number of false alarms, it
is obtained with a crude counting of daily events that are
available from most volcano observatories. INDEX

TERMS: 7280 Seismology: Volcano seismology (8419); 8414

Volcanology: Eruption mechanisms; 8419 Volcanology: Eruption

monitoring (7280). Citation: Grasso, J.-R., and I. Zaliapin

(2004), Predictability of volcano eruption: Lessons from a

basaltic effusive volcano, Geophys. Res. Lett., 31, L05602,

doi:10.1029/2003GL019022.

1. Introduction

[2] The effective prediction success of volcanic erup-
tions is rare if one defines ‘‘prediction’’ as a precise
statement of time, place, and ideally the nature and size
of an impending activity [Minakami, 1960; Swanson et
al., 1985; Voight, 1988; Chouet, 1996; Mcnutt, 1996].
Moreover most studies do not quantify the effectiveness
and reliability of proposed predictions, and often do not
surpass the analysis of a unique success on a single case
history with the lack of systematic description of fore-
casting results. In this study we focus on rigorous
quantification of the predictive power of the increase in
the daily seismicity rate—a well-known and probably the
simplest volcano premonitory pattern.
[3] Following Minakami [1960], Kagan and Knopoff

[1987], Keilis-Borok [2002], we do not consider here
deterministic predictions, and define a prediction to be ‘‘a
formal rule whereby the available observable manifold of

eruption occurrence is significantly contracted and for this
contracted manifold a probability of occurrence of an
eruption is significantly increased’’ [Kagan and Knopoff,
1987]. To quantify the effectiveness and reliability of such
predictions we use error diagrams [Kagan and Knopoff,
1987; Molchan, 1997].
[4] Previous attempts in probalistic forecast of volcanic

eruptions used seismicity data in combination with other
observations or alone [Minakami, 1960; Klein, 1984;
Mulargia et al., 1991, 1992]. These studies did not
quantify the prediction schemes in the error diagram
framework. Minakami [1960] was a pioneer in the devel-
opment of seismic statistics method for volcano monitor-
ing. Based on the data from the andesitic Asama volcano,
Honshu, he uses the increase in five-day frequencies of
earthquakes to derive an increase in the probability for an
eruption in the next 5 days. Klein [1984] tests the
precursory significance of geodetic data, daily seismicity
rate, and tides before the 29 eruptions during 1959–1979
at the Kilauea volcano, Hawaii. The forecasting ability of
daily seismicity rate is shown to be better than random at
90% confidence in forecasts on the time scale of 1 or
30 days using small earthquakes that occur in the caldera.
A better performance is achieved with a 99% confidence
when using located earthquakes only, in forecasts on the
time scale of 1 day. Mulargia et al. [1991, 1992] use
regional seimicity to define clusters of seismic events
within 120 km distance of Etna volcano. Clusters within
this regional seismicity are found within 40 days before 9
out of 11 flank eruptions in the 1974–1989 period. On
the same period no statistically significant patterns are
identified 40 days before and after the 10 summit
eruptions.
[5] As a test site we choose the PdlF volcano, the most

active volcano worldwide for the last decades with 15 erup-
tions in the 1988–2001 period. On this site the volcanic risk
remains low because most of the eruptions are effusive and
occurred in an area that is not inhabited. For the PdlF site,
the increase in seismicity rate and an increase in deforma-
tion rate have been reported within a few hours prior to an
eruption [e.g., Lenat et al., 1989; Toutain et al., 1992; Sapin
et al., 1996; Aki and Ferrazzini, 2000]. In this study we
quantify the predictability of the PdlF eruptions on the
longer time scale of a few days to weeks prior to an
eruption.We use the increase of the daily seismicity rate to
test the predictability of individual eruptions. This is
achieved by rigorous quantification of the prediction
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performance by introducing error diagrams [Kagan and
Knopoff, 1987; Molchan, 1997] to choose among compet-
itive prediction strategies.

2. Data

[6] The PdlF hot spot volcano is a shield volcano with
an effusive erupting style due to low viscosity basaltic
magma. During 1988–2001 period the seismicity at the
PdlF site remained low, with Mmax = 3.5, and was
localized within a radius of a few km beneath the central
caldera. This seismogenic volume is also thought to be
the main path for the magma to flow from a shallow
storage system toward the surface [Lenat and Bachelery,
1990; Sapin et al., 1996; Aki and Ferrazini, 2000]. On
the PdlF there is neither seismically active flank sliding
or basal faulting nor tectonic interaction with neighboring
active structures. Accordingly, the PdlF seismicity is one
of the best candidates to be purely driven by direct
volcano dynamics. During the May 1988–June 2001
period the geometry and instrumental characteristics of
the 16 seismic station network remained stable, with a
magnitude detection threshold of 0.5 [e.g., Collombet et
al., 2003]. In this period 15 eruptions were seismically
monitored. We use here the seismicity rate of the volcano
tectonic (VT) events, excluding long period (LP) events
or rockfall signals. The number of LP events at the PdlF
site is insignificant compared to the number of VT
events. For example, the eruption of 1998 was acconpa-
nied by a single LP event 4 hours before the surface lava
flow [Aki and Ferrazzini, 2000], and 2500 VT events had
been recorded at that time.

3. Synthesis of Seismicity Pattern Before
Eruptions

[7] Although the peaks of seismicity rate clearly cor-
relate with eruption days [Collombet et al., 2003], it is
difficult to identify a long-term seismicity pattern before
each eruption, except possibly during the last few hours
before surface lava flow [Lenat et al., 1989; Sapin et al.,
1996; Aki and Ferrazzini, 2000; Collombet et al., 2003].
For each of the 15 PdlF eruptions the hourly seismicity
rate during the seismicity crisis that precedes each surface
lava flow is roughly constant with values ranging from
60 to 300 events/hr, with an average value of 120 events/hr.
The average crisis duration is 4 hrs, the extreme values

ranging from 0.5 hours for the may 1988 eruption to
36 hours for the 1998 eruption. No correlation is found
between the seismic rates or the durations of the crisis
and the erupted volumes. Because there is no recurrent
migration of seismicity during these crises [e.g., Sapin et
al., 1996] we suggested, as proposed by Rubin et al.
[1998], that damage is neither directly related to the dyke
tip, nor does it always map the dyke propagation. It is the
response to dike intrusion of parts of the volcano edifice
that are close to failure [e.g., Grasso and Bachelery,
1995].
[8] We synthesize the pre-eruption seismicity rate on

the PdlF volcano as a 3 step process (Figure 1). First, the
seismicity rate increases in average and it follows a
power law 10–15 days prior the eruption [Collombet et
al., 2003]. As for earthquake foreshocks [Helmstetter and
Sornette, 2003], we suggest that this pattern illuminates a
local damage process rather than a macroscopic failure,
the damage being localized within the magma storage
system a few km below the volcano [e.g., Sapin et al.,
1996]. This average acceleration is different from the
acceleration proposed prior to each single eruption by
Voight [1988], or individual large earthquakes [e.g., Buffe
and Varnes, 1993]. The second phase is seismically
mapped by a discontinuity in seismicity rate from a peak
value <20 events/day to a >2000 events/day constant rate
(Figure 1). We suggest it corresponds to the onset of the
magma flow outward of the storage system. The third
phase is characterized by a constant strong seismicity rate
during each crisis. It corresponds to the damage induced
by fluid flow, either as a diffuse response to dyke
propagation in an heterogeneous rock matrix or as dam-
age in the open reservoir walls during fluid flow.
[9] This pre-eruption scheme helps both to clarify the

eruption phases on the PdlF and to define our prediction
targets. If one uses a conventional definition of the target
as the onset time of surface lava flow, then all the
eruptions can be predicted a few hours in advance by
choosing a daily seismicity rate larger than 60 events/day
as an alarm threshold. For this threshold value the seismic
crisis that did not end up in an eruption are false alarms
(Figure 2). They are post-labelled at the observatory as
intrusion, and are part of the endogeneous growth of any
volcano. We aim to find precursory patterns before the
outward magma flow from the reservoir system. Accord-
ingly, we define our target as the onset of a reservoir leak
as mapped by the end of the average acceleration process
and before the onset of the eruption crisis (Figure 1).
This target possibly maps a local failure in the reservoir
walls, contemporary to the onset of outward magma flow

Figure 1. Average pre-eruptive pattern before a PdlF
eruption as obtained by averaging the seismicity rate over
the 15 eruptions, 1988–2001.

Figure 2. Prediction scheme and prediction outcomes.
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from the reservoir, and corresponds to predicting erup-
tions more than one day in advance. Thus, our problem is
different from that posed by Klein [1984].

4. Prediction Scheme and Error Diagram

[10] Here we follow a pattern recognition approach [e.g.,
Gelfand et al., 1976] to predict rare extreme events in
complex systems; this approach is reviewed by Keilis-Borok
[2002]. Applied to the problem of predicting events of a
temporal point process (eruptions), this general approach is
reduced to the following 3 steps of data analysis [Keilis-
Borok and Shebalin, 1999]. First we consider a sequence of
VT earthquake occurrence times C = {te: e = 1, 2,. . . E; te �
te+1}. Note that we use neither magnitude nor location of
events. Second, on the sequenceCwe define a functionN(t, s)
as thenumberofearthquakeswithin the timewindow[t�s, t],s
being a numerical parameter. This functional is calculated
for the time interval considered with different values of
numerical parameter s. Third, an alarm is triggered when
the functional N(t, s) exceeds a predefined threshold N0.
The threshold N0 is usually chosen as a certain percentile of
the distribution function for the functional N(t, s). The
alarm is declared for a time interval D. The alarm is
terminated after an eruption occurs or the time D expires,
whichever comes first. Our prediction scheme depends on
three parameters: time window s, threshold N0, and duration
D of alarms. The quality of this kind of prediction is
evaluated with help of ‘‘error diagrams’’ which are a key
element in evaluating a prediction algorithm [Kagan and
Knopoff, 1987; Molchan, 1997, 2003].
[11] The definition of an error diagram is the following.

Consider prediction by the scheme described above. We
continously monitor seismicity, declare alarms when the
functional N(t, s) exceeds the threshold, and count the
prediction outcomes (Figure 2). During a given time interval
T, N targets occurred and NF of them were not predicted.
The number of declared alarms was A, with AF of them

being false alarms. The total duration of alarms was D. The
error diagram shows the trade-off between the relative
duration of alarms t = D/T, the fraction of failures to predict
n = NF/N, and the fraction of false alarms f = AF/A. In the
(n, t)-plane the straight line n + t = 1 corresponds to a
random binomial prediction — at each step in time the
alarm is declared with some probability t and not declared
with probability 1 � t. Given a particular prediction that
depends on our three parameters (s, N0, D), different points
in the error diagram correspond to different values of these
parameters. Error diagrams thus tally the score of a predic-
tion algorithm’s successes and errors. This score depends on
the algorithm’s adjustable parameters. For example, raising
the threshold N0 will reduce the number of alarms A but
may increase the number NF of failures to predict. Raising
D, on the other hand, will increase the duration alarms D but
may reduce the number of failures to predict NF, etc. A
prediction algorithm is useful if: (i) the prediction quality is
better than that of a random one, i.e., the points on error
diagram are close to the origin and distant from the diagonal
n + t = 1; and (ii) this quality is fairly insensitive to changes
in the parameters.

5. Results and Discussion

[12] We estimate the time predictability of volcanic
eruptions based on the increase of the daily seismicity rate.
The parameters of the algorithm are varied as follows: 1 <
s < 30 days, 1 � N0 � 100 events per s days, 1 � D �
30 days. The 30 day limit is the minimum time between two
eruptions during 1988–2001. The best predictions are
obtained when averaging seismicity rate over a 5 day
window and declaring an alarm for 5 days. The predictive
skills of our prediction scheme are illustrated by the error
diagrams of (Figures 3 and 4). Each point in the error
diagram corresponds to different values of the threshold N0

ranging from 1 to 100 events per 5 days, other parameters
are fixed as s = 5 days, D = 5 days. Error diagrams outline
the whole range of possible prediction outcomes; thus they
are more convenient for decision making than performance
of ‘‘the best’’ single version of prediction. We observe for

Figure 3. Error diagram: fraction of failures to predict as a
function of alarm duration. The diagonal line corresponds to
a random prediction. Deviations from this line depict
predictive power of the precursor. 99% confidence level for
the null hypothesis of random binomial prediction for
15 events [Molchan, 2003] is shown by stairs. Our
predictions lie outside this level, confirming the predictive
power of considered precursor.

Figure 4. Error diagram: fraction of false alarm as a
function of alarm duration.The point Q1, 20% of alarm
duration as deduced from Figure 3 correspond to a 90%
false alarm rate.
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instance (Point Q1) that 65% of the PdlF eruptions can be
predicted with 20% of the time covered by alarms. These
results are of the same quality as that obtained on the Etna
or the Hawaii volcanoes. For instance, using regional
seismicity in a 120 km radius from the Etna volcano, 50%
of the eruptions could have been predicted within 40 days in
the 1974–1990 period, which can be sorted as 80% of the
11 flank eruptions, and no summit eruptions [Mulargia et
al., 1991, 1992]. Decreasing the threshold N0 yields an
alternative prediction strategy that favors a lower failure to
predict rate and accepts a higher alarm duration rate; it is
shown as point Q2 on Figure 3. The choice of a particular
prediction strategy must be always based on the analysis of
the entire error diagram; different prediction strategies may
be used in parallel to complement each other [see more in
Molchan, 1997; Zaliapin et al., 2003].
[13] The performance of our simple prediction algorithm

is comparable to the performance of much more sophisti-
cated ones that use numerous seismic parameters to predict
large observed earthquakes [e.g., Kossobokov et al., 1999].
A very similar simple prediction scheme applies success-
fully to geomagnetic data [Bellanger et al., 2003]. The
significant predictability we obtain here is still concomitant
of a fraction of false alarm larger than 90% (Figure 4).
Because this predictability emerges from the use of a daily
seismicity rate only, we expect that a modification of the
above prediction strategy to include earthquake location and
magnitudes with deformation and geochemistry data will
improve this first quantitative analysis of eruption predic-
tion on PdlF.
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